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ABSTRACT

Current Federated Self-Supervised Learning (FSSL) methods can achieve effec-
tive learning on edge devices with unlabeled data. However, in realistic settings,
it is not easy to ensure that distributed clients at a large scale can efficiently com-
municate with a central server. In this work, we study an essential scenario of
Decentralized Self-Supervised Learning (DSSL) based on decentralized commu-
nications. It is a highly challenging scenario where only unlabeled data is used
during the pre-training stage, and the communication between clients involves
only model parameters without data sharing. We propose a novel method to
tackle the problems, which we refer to as Decentralized Navigator (DeNAV). De-
NAV utilizes a lightweight pre-training model, namely the One-Block Masked
Autoencoder, with a training navigator to evaluate selection scores for the con-
nected clients and plan the training route based on these scores, eliminating the
reliance on server aggregation in federated learning. Comprehensive experimen-
tal validation demonstrates that DeNAV surpasses the most advanced FSSL and
Gossip Learning methods in terms of accuracy and communication costs.

1 INTRODUCTION

Distributed learning (Liu et al., 2022), in which multiple clients collaboratively learn a global model
through coordinated communication, generally falls into two types: Server-Client and Client-Only
architectures, as illustrated in Figure 1. Federated learning, a typical server-client architecture where
the server facilitates global model training by aggregating locally learned model parameters, has
been an active research topic over the past few years (Zhuang et al., 2021a;b; Lubana et al., 2022;
McMahan et al., 2017; Zhang et al., 2023; Jeong et al., 2020). However, in real-world settings, not
all clients can connect to the server; instead, there is more inter-client communication. Such decen-
tralized learning offers numerous advantages in addressing realistic issues such as data privacy and
security. For example, inter-communication between devices (Clients) in a smart home is generally
endorsed to users, while they are unwilling to link private devices directly to an external service
provider (Server), suggesting a preference for system improvement within the local area network.

Existing decentralized learning approaches handle these problems by aggregating neighbor-learned
model parameters in local clients (Tang et al., 2020). A common limitation is that they only consider
supervised learning settings, assuming fully labeled local data. However, the assumption is not
realistic for real-world applications. Suppose that we perform on-device decentralized learning;
the users may not want to spend their time and effort annotating the data, and the participation
rate across the users may largely differ. Another standard limitation is that they consider different
communication settings between clients, where each client communicates with all other clients in
the All-Reduced system (Chu et al., 2017), and each client communicates with all neighbors in the
Gossip Learning system (Chu et al., 2017; Kempe et al., 2003). However, high communication costs
may result in increased power consumption for mobile devices, and more frequent communication
will increase the potential risk of data interception or unauthorized access. Thus, in many realistic
scenarios for decentralized learning, local data will be mostly unlabeled, and the communication cost
can not be significant. This leads to practical problems of decentralized learning with a deficiency
of labels and lower communication, namely Decentralized Self-Supervised Learning (DSSL).

To address these problems, we propose a novel training framework called Decentralized Navigator
(DeNAV). DeNAV employs a training navigator to determine the training client for each pre-training
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Figure 1: Different system architectures for Distributed Learning. (a) Federated Learning: A
subset of clients train the global model from the server and send their model updates to the server.
The server then aggregates the updates of all these clients. (b) All-Reduce: Every client trains a
model and communicates with all other clients to aggregate model updates. (c) Gossip Learning:
Every client trains a model and communicates with all neighbors to aggregate model updates. (d)
DeNAV (Ours): A client trains a model and communicates with one of its neighbors to transmit the
model update. The client receiving the model will continue the training.

step to achieve good training performance. The navigator calculates the selection scores for clients,
taking into account the data volume, computing resources, and the selection history of each client.
The client with the highest score will usually be selected for training, but if multiple clients share
the highest score, the navigator will recursively compare more clients to select the optimal one
of the equal-scored clients. Besides, DeNAV offers acceptable communication and training costs
compared to existing decentralized learning methods. As shown in Figure 1, each step of pre-training
is performed on only one idle client in the network, and the training client will then communicate
with only one neighboring client to transmit the model updates. The pre-training model used in
DeNAV is a lightweight masked autoencoder where both the encoder and decoder contain a single
transformer block. After pre-training, each client can create a transformer backbone of varying
depths using the local one-block masked autoencoder and then fine-tune the transformer backbone
for downstream tasks with a small amount of labeled data.

In summary, the main contributions of the paper are shown below:

• We introduce the scenario of decentralized self-supervised learning (DSSL) and rigorously
prove that the pre-training performance of autoencoder depends mainly on the amount
rather than the class distribution of data from the participating clients. (Section 3)

• We propose a training framework, DeNAV, for DSSL to pre-train a one-block masked au-
toencoder in edge devices with efficient computation and communication. (Section 4)

• We design a training navigator for DSSL and utilize it in DeNAV to achieve effective train-
ing performance. (Section 5)

• We conduct comprehensive experiments to evaluate DeNAV compared to FSSL and Gossip
Learning. The results show that DeNAV achieves better model performance than FSSL and
uses less computation and communication than Gossip Learning. (Section 6)

2 RELATED WORK

Self-Supervised Learning and Transformer. Since the transformer was proposed (Vaswani et al.,
2017), this class of models has been trained using self-supervised learning. When transformers
(Dosovitskiy et al., 2020; Liu et al., 2021) emerged in the field of computer vision, corresponding
self-supervised methods also emerged, such as BeiT (Bao et al., 2021), DeiT (Touvron et al., 2021),
and MAE (He et al., 2022). During the training of MAE (Masked Autoencoder), 75% of image
patches are randomly masked, and an autoencoder is trained to reconstruct the masked portion.
Subsequently, the encoder is fine-tuned for downstream tasks. The significant advantage of MAE is
its ability to reduce memory consumption. Similarly, ALBERT (Lan et al., 2019) introduced a trick
called cross-layer parameter sharing. By sharing all parameters across transformer model layers, the
training overhead is drastically reduced without significantly lossing performance.
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Federated Self-Supervised Learning. Federated learning is a collaborative training framework
where there are multiple clients and a central server connected to all clients (Zhang et al., 2021;
Dong et al., 2022; Liu et al., 2023; Jeong et al., 2020). Federated self-supervised learning (FSSL)
combines federated learning with self-supervised learning, aiming at utilizing the unlabeled data on
clients for training. Recent advancements in FSSL (Zhuang et al., 2021a;b; Lubana et al., 2022)
have been comparable with federated learning methods using labeled data (McMahan et al., 2017;
Zhang et al., 2023).

Decentralized Learning. Like federated learning, decentralized learning can utilize local client data
to train models. However, decentralized learning is less popular than federated learning because ex-
isting decentralized frameworks (All-Reduce and Gossip Learning) are not communication-efficient
(Tang et al., 2020). As shown in Figure 1, after each client in the network completes local training,
All-Reduce requires them to transmit their model updates to all other clients (Chu et al., 2017), while
Gossip Learning requires them to transmit their model updates to all their neighbors (Kempe et al.,
2003; Hegedűs et al., 2019).

3 THEORETICAL FOUNDATIONS FOR DSSL

The state-of-the-art FSSL methods employ contrastive learning (Chen et al., 2020; Chen & He,
2021; Grill et al., 2020) to pre-train convolutional neural networks. However, contrastive learning
is unsuitable for DSSL because there is no central server in DSSL to mitigate the adverse effects of
non-independent and identically distributed (non-IID) data on training. We thus conducted math-
ematical modeling and discovered that generative self-supervised methods using autoencoder are
suitable for DSSL because their pre-training performance depends mainly on the data volume.

3.1 PRELIMINARIES

DSSL Scenario. The scenario of DSSL consists of a network of M clients, where the unlabeled
training data Xm are stored in client m ∈ M := 1, . . . , |M |. There are no isolated nodes among
these clients, meaning that communication can be initiated from any client, and after successive
hops, all the other clients can be accessed. Depending on the demand, C models will be simulta-
neously trained for S steps in this network. Correspondingly, in each pre-training step, a subset of
clients Ps ⊂ M simultaneously training these models. At the beginning of the step s = 1, . . . , S,
the client m checks if it has received a model from another client. If so, the client m aggregates the
received model θs−1 with the local model θm to update θs−1. The client m then conducts a local
training with local data of size nm = |Xm| for K iterations to update the model from θs−1 to θs.
After local training, a copy of the model θs is saved on the client m to update θm. Next, client m
determines all possible communication targets Pm from the remaining clients in the network and
selects a client pm from Pm to send the model θs. Therefore, the subset of clients responsible for
local training of the models can be updated by Ps+1 =

⋃
m∈Ps

pm. After S pre-training steps, the
local model θm can be fine-tuned for downstream tasks.

Self-Supervised Learning using Autoencoder. Autoencoders are widely used in self-supervised
learning (Bao et al., 2021; He et al., 2022; Xie et al., 2022). The training involves an unlabeled
dataset, denoted as X = {x1, x2, . . . , xn}, and an autoencoder, which consists of an encoder
h(x) = z and a decoder g(z) = x. The autoencoder learns features from the unlabeled data by
data reconstruction, represented as a pairwise encoder-decoder relationship x̂ = g(h(x)). To quan-
tify the difference between the original data x and the reconstructed data x̂, a loss function l(x, x̂) is
used. However, due to artificial corruption operations such as adding noise and masking, the input x
has been degraded to x̃. Thus, during training, the parameters of the autoencoder, denoted as θ, are
optimized by solving the problem: θ = argminθ

1
n

∑n
i=1 l(xi, g(h(x̃i)); θ).

3.2 IMPACT OF DATA VOLUME ON DSSL USING AUTOENCODER

With the above mathematical definitions, when DSSL uses autoencoder as the pre-training model,
the total loss produced in each step can be denoted as ℓs = 1

C

∑
m

1
nm

∑nm

i=1 l(xi, g(h(x̃i)); θ
m
s ),

where m ∈ Ps, s ≤ S and xi ∈ Xm. Reconstruction of the input image is represented by the joint
relation of the h(·) and g(·) operators. It should be noted that when the input is an image where all
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pixels are 0, the output of the encoder is a tensor that tends to zero, i.e., h(0)→ 0. Similarly, when
the input is a zero tensor, the output of the decoder is a reconstructed image with all zero pixels,
that is, g(0) = 0. As a result, there is a zero reference point for the discussion of the encoder and
decoder operators. Based on these observations, the following proposition is derived.
Proposition 1. There exists a linear equivalent mapping with Wh to the approximate encoder h(·)
and a linear equivalent mapping with Wg to the approximate decoder g(·).

Proof. Due to page limits, the detailed proof of Proposition 1 is provided in Appendix A.2.1.

Remark 1. It is important to note that this linear representation may have limitations since it
lacks higher-order feature representations and residual terms. Despite this, our main focus is on
understanding the nature of the mapping. It is used as a means to simplify the problem.

For local training on the clientm, the approximate linear equivalence mapping allows simplification
of the model. Consequently, the approximate encoder h(·) can be represented as a linear mapping
Whm . Similarly, the decoder g(·) can be expressed as another linear mapping Wgm , resulting in the
equation x̂ = gm(hm(x̃)) ≈WgmWhm x̃ =Wmx. Then, the following theorem is obtained.
Theorem 1. In each pre-training step of DSSL, the approximate optimal solution for the model over
the C participating clients can be obtained by W ∗

A, in which

W ∗
A = X̄X̃T (X̃X̃T )−1 (1)

where

X̃ =

 x̃1,1 . . . x̃1,C
... x̃i,j

...
x̃nmax,1 . . . x̃nmax,C


nmax×C

X =

 x1,1 . . . x1,C
... xi,j

...
xnmax,1 . . . xnmax,C


nmax×C

nmax = max{nm | m ∈ Ps}, X̃i,j , Xi,j =

{
0, if i > nm
x̃i,j , xi,j , otherwise

(2)

Proof. Due to page limits, the detailed proof of Theorem 1 is provided in Appendix A.2.2.

Corollary 1. In each pre-training step of DSSL, the training performance depends mainly on the
amount of data in the selected clients.

Remark 2. Theorem 1 reveals that the approximate optimal solution W ∗
A is related to X̃ and X .

In each step of pre-training, since the data Xm in each selected client m is invariant and random
data corruption is performed in Xm to generate X̃m, the controllable factors are C, nm, and nmax,
where C is kept constant each step, while nmax depends on nm. If the selected clients have large
data volumes, both nm and nmax will increase. Consequently, the size of the matrix W ∗

A (which is
nmax × nmax) will increase, and the matrix W ∗

A will be less sparse. Thus, the approximate optimal
solution W ∗

A of the global model obtained from training will be closer to the ground-truth mapping
from input to output, enhancing training performance.

4 DENAV OVERVIEW

Based on the theoretical foundation described above, we propose the Decentralized Navigator (De-
NAV) to solve the DSSL problem. In this section, we provide an overview of the pre-training phase
and the fine-tuning phase of DeNAV.

Pre-training. In the scenario of DSSL, clients’ computing resources are limited so that large au-
toencoders with multiple transformer blocks for both the encoder and decoder can not be deployed.
Therefore, in DeNAV, the pre-training model is a one-block masked autoencoder. To reduce com-
putational overhead on clients, we minimize both the encoder and decoder to contain only one
transformer block and mask 75% of image patches out of the local data during the local training.

Before pre-training begins, an idle client is randomly selected from the network for the first pre-
training step. A one-block masked autoencoder is initialized on this client along with its associated
state log, which records information about the training state. Subsequently, a training procedure
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Figure 2: Illustration of training procedure of DeNAV. The DSSL scenario is a client-only ar-
chitecture where clients vary in terms of data classes, data volume, and computing resources. At
the beginning of each pre-training step, a client receives the one-block masked autoencoder and its
state log from a neighbor. During pre-training: 1⃝ The client trains the received model using local
unlabeled data, updates the received state log, and creates a local copy of both. 2⃝ The training
navigator calculates the selection score of each candidate to find the client for the next pre-training
step. The latest model and state log are transmitted from the current client to the selected client.

is repeated throughout the pre-training. As illustrated in Figure 2, the operations in this training
procedure are: 1⃝ Local Training and Model Update: A client receives the pre-training model and
the state log of this model from its neighbor or model initialization. The received model is trained
using unlabeled local data, and the state log is updated at the end of the local training. Then, a
copy of the latest model and state log is saved on the client. If a local model and a local state
log exist, the local copy will be updated. 2⃝ Next Client Selection and Model Transmission: A
training navigator is utilized to determine the training client for the next step of pre-training. The
training navigator calculates the selection score for each candidate (consisting of the training client
and the neighbors of the training client) and selects the candidate with the highest selection score.
Subsequently, communication is initiated from the current client to the selected client, transmitting
the latest model and the state log of this model.

Furthermore, DeNAV can be deployed in DSSL scenarios with parallel training for better perfor-
mance, but this increases training and communication costs. Due to page limits, the details of
DeNAV with parallel training can be found in Appendix A.4.

Fine-tuning. After pre-training, each client has a local copy of the one-block masked autoencoder.
The decoder of this model is discarded, and its encoder can be utilized for fine-tuning at any time.
During fine-tuning, a client first averages the local encoder block with those from neighbors to obtain
a pre-trained transformer block. Based on the computing resources, the client creates a trainable
large transformer backbone with multiple transformer blocks by sharing the parameters of the pre-
trained transformer block. Lastly, the transformer backbone is fine-tuned using a small amount of
labeled data from the local client.

5 THE TRAINING NAVIGATOR IN DENAV

Due to variations among clients, selecting which client for the next step of pre-training significantly
affects the training performance of DSSL. The above training procedure shows that DeNAV em-
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ploys a training navigator to determine the optimal training route of the model in the network. The
navigator does two main tasks: evaluating the selection scores of candidates and selecting the next
training client based on these scores.

5.1 CLIENT SELECTION SCORE FORMULATION

The objective of the training navigator is to find a sweet spot in the trade-off between the training
performance and the training efficiency by associating each client with its selection score. Achiev-
ing this goal leads to four challenges: 1. How to determine which client’s data would help improve
the training performance the most without compromising privacy? 2. How to take into account opti-
mization of training efficiency while optimizing training performance? 3. How to balance between
exploring new clients and continuing to exploit the clients that have been selected for maximum
gain? 4. How to ensure that all clients in the network have the opportunity to participate in the
model pre-training? To address all these challenges, the navigator evaluates a client’s local data,
computing resources, and selection history.

Data Volume Utility. Corollary 1 shows that the training performance depends mainly on the data
volume in the selected clients. Therefore, the importance of the data on the client m for training
should be quantified by its data volume nm. Intuitively, this utility is formulated as Ud

m = nm∑
m∈Pm

nm
,

where Pm represents the candidates of the client m. However, this formulation has limitations, as
the sum of data volumes can be excessively large compared to individual data volumes, resulting in
an insignificant difference in the data volume utilities between clients with more data and those with
less data. Therefore, we define the data volume utility Ud

m as:

Ud
m =

nm
max{nm | m ∈ Pm}

(3)

where the denominator is the maximum data volume of all clients. Since the data volume utility
only focuses on the amount of data instead of raw data, the privacy of client m is preserved.

Computing Resource Utility. In real-world settings, clients with more computing resources can
train models at a larger batch size and finish the training in less time than clients with fewer comput-
ing resources, demonstrating greater training efficiency. Thus, the training efficiency of the client m
is measured by the computing resource utility U c

m, formulated as:

U c
m = (

min{tm | m ∈ Pm}
tm

)1(L(m)>0) (4)

where tm is the time spent by the client m on its last local training, L(m) denotes the last step that
the client m selected for local training, and 1(x) is an indicator function that returns 1 if x is true
and 0 otherwise. The maximum computing resource utility is allocated to never-selected clients to
encourage more client engagement and determine their local training time.

Selection History Factor. Simply integrating the two utilities is insufficient to formulate an ideal
client selection score, as the navigator tends to exploit the already identified excellent clients rather
than explore new ones. This repeated selection of the same group of clients can lead to dimin-
ishing training rewards as the model overfits their local data. Moreover, in real scenarios, clients’
data volume and computing resources may change during pre-training, making previously identi-
fied superior clients no longer advantageous. To harmonize the trade-off between exploration and
exploitation during training, the selection history factor α is introduced, formulated as:

α = (
s− L(m)

S
)1(L(m)>0) (5)

where s is the current pre-training step, and S is the total number of pre-training steps. The inclusion
of α gradually increases the selection scores of clients which have not been selected for a long time,
allowing well-qualified clients with sufficient scores since their last training to be reselected.

Total Selection Score. The navigator combines the two utilities and a factor into the client selection
score. First, the data volume utility should be associated with the computing resource utility asUd

m×
U c
m in order to yield good training results while optimizing the training efficiency. Furthermore,

since we prioritize the training performance over training efficiency, the association of α and two
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utilities is formulated as Ud
m× (α+U c

m) instead of (α+Ud
m)×U c

m. Lastly, to ensure the utilization
of all clients’ data during training, the client selection score m is formulated as:

Um = (Ud
m × (α+ U c

m) + 1)1(Z(m)<Z), Z ≥ S

|M |
(6)

where Z(m) is the count of the previous selections of client m, and Z is the maximum allowed
selections per client. If a client reaches the maximum selection count, its score is adjusted to a
minimum of 1, allowing other clients the chance for selection. Besides, the upper limit of client
selection should depend on the ratio of the total training steps S to the number of clients |M | in
the network. If |M | remains constant but S increases, each client can be selected more times while
ensuring complete use of data for model training.

5.2 NEXT CLIENT SELECTION

With the selection scores of candidates, the training navigator determines the client for the next
step of pre-training. The simplest approach is to select the client with the highest score, but multiple
clients may share the highest score. For instance, when the selection score of each candidate is 1 due
to frequent selection, randomly selecting any client may not be optimal. Therefore, the navigator
will use different client selection strategies depending on whether this situation occurs.

Initially, the training navigator determines the candidate set Pm for the training client m and cal-
culates the selection scores for all clients in Pm using the formula 6. If a single client in Pm has
the highest selection score, it is selected as the communication target of client m and the training
client for the next pre-training step. However, if multiple clients in Pm share the highest selection
score, the training navigator iteratively searches the neighbors of these candidates and compares
their neighbors’ scores to determine which candidate to select. The recursion starts with the neigh-
bors whose communication hops, d, equal to 1. If multiple neighbors also share the highest selection
score, the recursion is continued to neighbors that require d + 1 communication hops until the tie
score is broken or the stop condition is satisfied. Regardless of the search results, a client from
Pm,d−1 with the highest selection score is chosen. In the case that multiple such clients exist in
Pm,d−1, one is randomly chosen. The navigator then backtracks the recursive search to identify the
corresponding client pm in Pm for the one chosen in Pm,d−1, and selects this client from Pm as the
communication target of the client m. Due to page limits, detailed client selection performed by the
training navigator is provided in Appendix A.3.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Dataset. In our experiments, we utilized various datasets, including ImageNet (Deng et al., 2009),
Mini-ImageNet, and Mini-INAT2021, which are datasets with large-size images, and CIFAR10 and
CIFAR100 (Krizhevsky et al., 2009), which are datasets with small-size images. Both ImageNet
and Mini-ImageNet have 224x224 images. Mini-ImageNet is a dataset with 60000 images in 100
classes, selected from ImageNet through the methodology detailed in (Vinyals et al., 2016). Mini-
INAT2021 is a reduced version of the INaturalist-2021 dataset (ina, 2021) containing 10000 classes
and a maximum image size of 800 pixels. CIFAR10 and CIFAR100 each include 60,000 32x32
color images, with CIFAR10 having 10 classes and CIFAR100 having 100 classes.

System Settings. We evaluated the performance of DeNAV and baselines on a simulated Inter-
net of Things (IoT) network. This network is initialized using the Erdős-Rényi model (ERDdS &
R&wi, 1959), where the total number of clients is 100 and the network connectivity is 0.15. For
FSSL baselines, we assumed a server connected to all clients in this network. During experiments,
the Mini-ImageNet dataset is used for pre-training, and the remaining datasets are used for down-
stream evaluation. The Mini-ImageNet dataset is partitioned according to the number of clients.
The amount of data on each client is randomly assigned. If it is assumed that the local data is IID,
then each client will hold images of all categories. However, if it is assumed that the data follows
a non-IID distribution, the dataset will be divided by sampling the category priors of the Dirichlet
distribution (Hsu et al., 2019) so that each client will have images of a few categories. Additionally,
we allocate random computing resources with a scale rank from 1 to H to each client and set the
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local training time of a client to be affected by its computing resources. The impact is formulated as
tm = t̂m/(1 +

hm−1
H−1 ), where tm is the training time updated in the model state log, t̂m is the actual

time consumed by the client m to train the model, and hm is the scale of computing resources on
the client m. (Due to page limits, detailed system settings are provided in Appendix A.5.)

6.2 COMPARISON WITH FEDERATED LEARNING BASELINES

To comprehensively assess the effectiveness of our proposed DeNAV framework, the following
state-of-the-art FSSL benchmarks were compared: 1) Fed-SimSiam: a naive combination of Sim-
Siam (Chen & He, 2021) and Federated Learning. 2) Fed-SimCLR: a naive combination of Sim-
CLR (Chen et al., 2020) and Federated Learning. 3) FedU (Zhuang et al., 2021a): Using the
divergence-aware predictor module for dynamic updates within the self-supervised BYOL network
(Grill et al., 2020). 4) FedEMA (Zhuang et al., 2021b): Employing EMA of the global model
to adaptively update online networks. 5) Orchestra (Lubana et al., 2022): Combining clustering
algorithms with Federated Learning for better model aggregation.

Table 1: Comparison of DeNAV with FSSL baselines in terms of model parameters and GFLOPs.
The size of the input image is 224x224.

Fed-SimSiam Fed-SimCLR FedU FedEMA Orchestra DeNAV
(pre-train)

DeNAV
(Downstream)

Model Params 12.03M 11.70M 38.47M 38.47M 11.84M 11.62M 39.97M
GFLOPs 3.65 3.65 7.40 7.40 7.31 1.23 7.39

Since the pre-training model is not a convolutional neural network and clients can construct down-
stream models of varying depths using a pre-trained one-block masked autoencoder, we first com-
pare the computational overhead (measured in GFLOPS) and model size (quantified by the number
of model parameters) of DeNAV and the baselines during pre-training and fine-tuning to ensure a
fair comparison. As shown in Table 1, DeNAV, taking the experimental settings in the Appendix,
is comparable to the FSSL baselines in terms of computational overhead and model size. Besides,
DeNAV not only achieves pre-training of transformers but also has a lower training cost than the
baselines during pre-training.

Table 2: Accuracy (%) on the CIFAR10, CIFAR100, ImageNet, and Mini-INAT datasets following
IID or non-IID data distribution. For pre-training, the local training epochs were set to 10. For the
downstream evaluation, each model was fine-tuned for 100 epochs. The experimental results show
the mean and standard deviation of three trials.

CIFAR10 CIFAR100 ImageNet Mini-INATMethod IID non-IID IID non-IID IID non-IID IID non-IID

Fed-SimSiam(%) 89.91 89.58 68.52 71.46 65.26 64.87 32.57 37.43
±0.17 ±0.21 ±0.31 ±0.44 ±0.42 ±0.20 ±0.13 ±0.30

Fed-SimCLR(%) 89.54 90.39 67.20 71.24 65.47 65.32 37.70 37.60
±0.20 ±0.22 ±0.09 ±0.12 ±0.13 ±0.41 ±0.09 ±0.43

FedU(%) 77.43 72.02 40.40 38.44 65.34 65.34 37.88 37.61
±0.12 ±0.19 ±0.02 ±0.18 ±0.20 ±0.37 ±0.24 ±0.46

FedEMA(%) 70.73 71.00 40.78 41.13 65.24 65.35 38.40 37.43
±0.08 ±0.06 ±0.37 ±0.06 ±0.03 ±0.14 ±0.49 ±0.27

Orchestra(%) 88.87 90.66 72.11 72.27 65.02 66.50 38.74 39.23
±0.14 ±0.19 ±0.20 ±0.09 ±0.35 ±0.21 ±0.09 ±0.33

DeNAV(%) 91.12 91.00 74.50 73.89 77.49 77.62 46.38 44.98
±0.21 ±0.26 ±0.10 ±0.23 ±0.21 ±0.05 ±0.27 ±0.19

Then, we pre-trained models using DeNAV and FSSL baselines and collected their fine-tuning accu-
racy on downstream datasets. In this experiment, the number of local training epochs is 10 instead
of the default 5 during pre-training. Table 2 demonstrates that DeNAV achieves superior results
not only on small image datasets such as CIFAR10 and CIFAR100 but also on large-scale datasets
such as ImageNet and Mini-INAT, although there is only a single-client training model in each pre-
training step and there is no model aggregation in DeNAV compared to the baselines. The improve-
ment in fine-tuning accuracy on large-scale datasets is particularly significant, with an improvement
of approximately 12% on ImageNet and 5% on Mini-INAT.
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Table 3: Comparison of DeNAV and Gossip Learning. “Epochs” represents the total number of
local training epochs for all training clients. “Communication Cost” indicates the total number of
client-to-client communications occurring in a network with 100 clients and 0.15 connectivity.

CIFAR10(%) CIFAR100(%) Communication Cost
DeNAV (Epochs = 5000) 92.80 75.62 1000
Gossip Learning (Epochs = 5000) 90.52 72.34 14850
DeNAV (Epochs = 15000) 93.44 77.30 3000
Gossip Learning (Epochs = 15000) 90.30 72.52 44550
DeNAV (Epochs = 25000) 93.88 77.94 5000
Gossip Learning (Epochs = 25000) 92.91 75.71 74250

6.3 COMPARISON WITH GOSSIP LEARNING

DeNAV was also compared to other decentralized learning approaches. Since All-Reduce is only
suitable for high-performance computing clusters, a comparison was made between DeNAV and
Gossip Learning, which can also be applied to edge devices. Before the experiment, we implemented
the baseline by referring to the Gossip Learning architecture described in Tang’s paper (Tang et al.,
2020). In our version of Gossip Learning, each client trains a one-block masked autoencoder with
local data and aggregates the local model with the first received model from neighbors. Table 3
shows that DeNAV has better fine-tuning accuracy and incurs much lower overall communication
costs during pre-training than Gossip Learning.

Table 4: Analysis on Client Selection.
Formula CIFAR10(%) CIFAR100(%) Pre-train Time (min)
Random Selection 90.28 71.70 33.7
Formula w/o data volume utility Ud

m 88.54 71.99 28.8
Formula w/o computing resource utility U t

m 90.65 73.46 37.6
Formula w/o selection history factor α 90.23 73.51 38.9
Our Formula 90.96 73.70 36.8

6.4 FURTHER ANALYSIS

Client Selection Ablation Study. One of the important contributions of this paper is the proposal
of a training navigator for DSSL scenarios. We further conducted an ablation study to analyze the
impact of employing the training navigator on the training performance of DeNAV. The performance
breakdown provided in Table 4 indicates that selecting clients using the training navigator enhances
training, and each component of the client evaluation formula plays a constructive role in the im-
provement. Specifically, the data volume utility Ud

m primarily drives training improvements, while
the computational resource utility U c

m reduces time while improving training performance. The
selection history factor α has the smallest impact on training but also produces a positive effect.

Hyper-parameter Impact Analysis. We also conducted experiments to comprehensively analyze
the impact of some hyper-parameters from the system settings on the training of DeNAV. Due to
page limits, the experimental results can be found in Appendix A.6.

7 CONCLUSION

While FSSL has achieved effective training using unlabeled data on edge devices while preserving
privacy, the training scenario required for FSSL is difficult to deploy under realistic conditions. In
this paper, we introduce the DSSL scenario, which is more practical than FSSL, and propose a novel
training framework called DeNAV to tackle the challenges of DSSL. DeNAV pre-trains a lightweight
model, the One-Block Masked Autoencoder, equipped with a training navigator to assess selection
scores for clients and plan the training route in the network of clients based on their scores. Through
extensive experimental validation, DeNAV demonstrates superior performance compared to existing
distributed learning mechanisms and lower communication cost compared to other decentralized
learning methods such as Gossip Learning.
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A APPENDIX

A.1 MATH NOTATION

System Architecture Related

m The client
M The set of all clients
x An unlabeled image
X The set of unlabeled images
s The current step of pre-training
S The total number of pre-training steps
C The number of simultaneously pre-trained models
Ps The set of training clients in the pre-training step s
Pm The set of the communication candidates for the client m
pm The communication target of the client m
d The number of communication hops between two clients
Pm,d The set of the clients that are d hops away from the client m
θ The pre-trained model
Θ The set of pre-trained models
n The data volume
ψ The state log of the pre-trained model
Ψ The set of state logs
h The computing resources of a client
H The highest scale of computing resources
ω The network connectivity

Pre-training Related

h(·) Encoding
g(·) Decoding
x̃ Corrupted Image
x̂ Reconstructed Image
l Loss
ϵ A higher order infinitesimal residual
Wh Linear Equivalent Mapping to the encoder
Wg Linear Equivalent Mapping to the decoder
W ∗

A The approximate optimal solution of the pre-trained model
t The time of local training
λ The staleness bound
U The selection score of a client
Ud The data volume utility
U c The computing resource utility
α The selection history factor
z The selection times of a client
Z The maximum times that a client can be selected
L The last step that a client is selected

A.2 MATHEMATICAL PROOFS

A.2.1 PROOF FOR PROPOSITION 1

Proof. Expanding the nonlinear vector function h(x) into a Taylor series at 0, we have

h(x) = h(0) +∇xh(0)x+ ϵ (7)

where ∇xh(0) denotes the gradient of operator h(·) at 0 in the direction of the vector x, and ϵ a
higher order infinitesimal residual. By neglecting the residual and letting∇xh(0)x =Whx, we get

h(x) ≈Whx+ h(0) (8)
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As h(0) → 0, h(x) can be represented by the mapping Wh. Likewise, by neglecting the residual
and letting∇xg(0)x =Wgx, we get

g(x) ≈Wgx+ g(0) (9)

Since g(0) = 0, g(x) can be represented by the mapping Wg , thus completing the proof.

A.2.2 PROOF FOR THEOREM 1

Proof. With local data of size nm, the corrupted input to the model on client m can be formulated
as

X̃m = [x̃1, . . . , x̃nm
] (10)

The ground-truth data can be formulated as

Xm = [x1, . . . , xnm ] (11)

Then, the transformed loss function of the training with the aggregation can be formulated as

l(Xm, X̂m) = l(Xm, gm(hm(X̃m)))

= 1
2∥Xm −WmX̃m∥2

= 1
2 tr

[
(Xm −WmX̃m)(Xm −WkX̃m)T

] (12)

This loss function is a convex function that can reach a minimum value when its derivative is 0.
Therefore, with ∇Wm l(Xm, X̂m) = 0, it yields

2∇Wm l(Xm, X̂m) = ∇Wmtr
[
(Xm −WmX̃m)(Xm −WmX̃m)T

]
= ∇Wm

tr(XT
mXm − X̃T

mW
T
mXm −XT

k WmX̃m + X̃T
mW

T
mWmX̃m)

= ∇Wm
tr(WmX̃mX̃

T
mW

T
m)− 2∇Wm

tr(WmXmX̃
T
m)

= 2WmX̃mX̃
T
m − 2XmX̃

T
m = 0

(13)

Solving the equation 13 yields W ∗
m = XmX̃

T
m(X̃mX̃

T
m)−1. Next, if we aggregate the input and the

ground-truth data over the C selected clients for each step, we have

X̃ = [X̃m1
, . . . , X̃mC

]T

X = [Xm1 , . . . , XmC
]T

(14)

Since nm varies from client to client, it is necessary to append 0 to the empty space of X̃ and X .
Finally, the approximate optimal solution for the modelWA can also be represented in the same way
by X̃ and X , so the proof is completed.
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A.3 PSEUDOCODE OF THE TRAINING NAVIGATOR

Algorithm 1 The Training Navigator
Input: Current step s, Total steps S, Current participating clients Ps, The maximum number of

selections for each client Z
Output: Participating clients of the next step Ps+1

1: Ps+1 ← ∅
2: for all client m in Ps do
3: Initialize the candidate set Pm consisting of the neighboring clients of m and m itself
4: Um ← EvaluateV alue(Pm, s, S, Z) ▷ Evaluating function refers to formula 6
5: count max← FindNumOfMax(Um,max{Um})
6: if count max = 1 then ▷ Case when there is only one client with the highest score
7: Select client pm with the highest score max{Um} from Pm

8: else ▷ Case when there are multiple clients with the highest score
9: d← 1 ▷ d is the hop distance to client m

10: Pm,d ← FindClientsWithMaxV alue(Pm,max{Um})
11: P̄m ← Pm ▷ P̄m is the set of clients that have been checked
12: while count max > 1 do
13: Pm,d+1 ← ∅
14: for all client m̂ in Pm,d do
15: Identify the neighboring clients Pm̂ of m̂
16: Pm,d+1 ← Pm,d+1 ∪ Pm̂

17: end for
18: if there are clients in Pm,d+1 that are not in P̄m then
19: P̄m ← P̄m ∪ Pm,d+1

20: Um ← EvaluateV alue(Pm,d+1, s, S, Z)
21: count max← FindNumOfMax(Um,max{Um})
22: Pm,d+1 ← FindClientsWithMaxV alue(Pm,d+1,max{Um})
23: d← d+ 1
24: if max{Um} ≤ 1 then
25: break ▷ Unable to continue when the highest score is 1
26: end if
27: else
28: d← d+ 1
29: break ▷ No more unchecked neighboring clients so stop
30: end if
31: end while
32: Randomly selects a client pm,d−1 with the highest score from Pm,d−1

33: Select client pm ∈ Pm on the shortest path from m to pm,d−1.
34: end if
35: Ps+1 ← Ps+1 ∪ pm
36: end for
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A.4 DENAV WITH PARALLEL MODEL TRAINING

With some modifications to the training procedure, DeNAV can also achieve parallel training of
multiple models, similar to existing FSSL methods. This section describes the modified training pro-
cedure of DeNAV with parallel model training and a novel model aggregation algorithm involved in
the procedure, namely staleness-aware model aggregation. Unlike federated approaches, the model
aggregation during pre-training is asynchronous, and the aggregation targets are the model received
by the client and multiple local models on the same client.

A.4.1 MODIFIED TRAINING PROCEDURE

Before pre-training begins, given the number of models to be trained simultaneously, an equal num-
ber of idle clients are selected from the network for the first step of pre-training. A one-block
masked autoencoder is initialized on one of these clients and then synchronized with the other se-
lected clients through communication. Subsequently, the state log corresponding to that model is
generated on the same client. Preparation is completed when all clients have confirmed that they
have their model and the model’s state log.

During pre-training, a new training procedure consisting of the following operations is repeated for
a number of pre-training steps. 1⃝ Staleness-aware Model Aggregation: Each client selected for
local training receives the pre-training model from a neighbor or model initialization. The client
then compares the received model’s state log with the state log from each local model to examine if
there are local models meeting the criteria for staleness-aware model aggregation. If such models
exist, they are aggregated with the received model based on the information in the state logs of both
parties, updating the received model. 2⃝ Local Training and Model Update: Each participating client
performs local training consistent with the original procedure. After training, each client updates the
state log of the received model and compares the state log of the received model with the state log
of each local model. If a local model is found by comparison to be a local copy of a received model,
then the received model replaces the local model, and the received state log replaces the local state
log. Otherwise, a local copy of the received model and the received state log is saved on the client.
3⃝ Next Client Selection and Model Transmission: This operation is the same as the operation in the

original procedure. Each participating client performs this operation.

Algorithm 2 Staleness-aware Model Aggregation
Input: Received model θ, Received state log ψ, The set of locally saved models Θm, The set of

locally saved state logs Ψm, Staleness bound λ
Output: The model θ for subsequent local training

1: ΘAgg ← {θ};wV olume ← {ψV olume};wStale ← {ψSteps};w ← ∅
2: for all θm in Θm do
3: if ψID

m ̸= ψID and |ψSteps
m − ψSteps| ≤ λ then

4: ΘAgg ← ΘAgg ∪ θm; wV olume ← wV olume ∪ ψV olume
m ; wStale ← wStale ∪ ψSteps

m
5: end if
6: end for
7: wV olume ← SoftMax(wV olume); wStale ← SoftMax(wStale)
8: for i = 0, 1, . . . , |ΘAgg| − 1 do
9: w ← w ∪ (wV olume[i]× wStale[i])

10: end for
11: w ← SoftMax(w)

12: θ ←
∑|w|

i=1 w[i]Θ
Agg[i]

A.4.2 STALENESS-AWARE MODEL AGGREGATION

According to the experience of federated learning, effective model aggregation can combine the
strengths of each model and leverage their collective knowledge to improve performance. There-
fore, model aggregation is still used in DeNAV, but given the differences between the architectures,
DeNAV employs asynchronous model aggregation between the model received by the client and the
local models on the same client. We notice that if a client is selected again after a long interval, the
local models saved on the client are much more stale in training than the received model. Simply
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aggregating the local models and the received model using average weights will not output a bet-
ter model than the received model. To address this issue, we take the staleness of each model into
account during model aggregation.

Algorithm 2 shows the staleness-aware model aggregation employed in DeNAV. The algorithm starts
by initializing the list of aggregated models ΘAgg , the data volume weight listwV olume, the staleness
weight list wStale, and the aggregation weight list w (line 1). For each local model on client m, its
state log ψm is compared with the state log of the received model ψ. If the local model θm isn’t a
previous local copy of the received model θ and the step interval between the two models falls within
the staleness bound λ, the local model θm is included in ΘAgg , and two weight lists wStale and
wV olume are updated using the information recorded in the state log ψm (lines 2-6). Subsequently,
the SoftMax function is applied to transform the values in wStale and wV olume into the 0-1 range
(lines 7). Following this, the weights from wStale and wV olume are utilized to derive the actual
weights w for model aggregation. Similarly, the weights w are mapped to the 0-1 range using the
SoftMax function (lines 8-11). Finally, model aggregation is performed on the models within ΘAgg

using the weights from w to formulate the model θ for the subsequent local training (line 12).

Table 5: Analysis on model aggregation.
Method CIFAR10(%) CIFAR100(%)
With Average Weights 90.64 73.79
With Only Data Volume Weights wV olume 91.08 73.72
Staleness-aware Aggregation 91.46 74.49

Furthermore, we compared our algorithm with the frequently used aggregation methods in FSSL.
As shown in Table 5, the staleness-aware model aggregation algorithm demonstrates superior results
than the baselines, revealing that our algorithm effectively solves the problem of local models being
too stale compared to the received models when aggregating models in the DSSL scenario.

A.5 SYSTEM SETTINGS OF EXPERIMENTS

Table 6: Default Decentralized System Settings.
Decentralized System Value
Number of Clients 100
Network Connectivity 0.15
Pre-training Steps 200
Local Training Epochs 5
Number of Participants per Step (Parallel Training) 5
Fine-tuning Epochs 100
Client Selection Upper Limit 3
Staleness Bound (Parallel Training) 5
Depth of Downstream Model 5

Table 7: Default Federated System Settings.
Federated System Value
Number of Clients 100
Pre-training Rounds 200
Local Training Epochs 10
Number of Participants per Round 5
Fine-tuning Epochs 100
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A.6 HYPER-PARAMETER IMPACT ANALYSIS

The system setting of a DSSL scenario involves many hyper-parameters. Experiments are conducted
to comprehensively explore the impact of some hyper-parameters on the training of DeNAV.

Table 8: Impact of S on DeNAV.
CIFAR10(%) CIFAR100(%) Pre-train Time(min)

S = 200 90.64 73.51 37.6
S = 400 90.85 74.87 73.1
S = 600 91.83 74.57 111.9
S = 800 92.16 75.04 154.9
S = 1000 92.47 75.54 194.1

A.6.1 IMPACT OF TOTAL NUMBER OF PRE-TRAINING STEPS S

The performance of DeNAV was evaluated for different numbers of pre-training steps. Table 8
demonstrates that as the number of pre-training steps S increases, DeNAV achieves better training
performance. However, the total training time also increases in proportion to the increase in the
number of steps. This effect is consistent with the number of training rounds on training performance
in federated learning.

Table 9: Impact of K on DeNAV.
CIFAR10(%) CIFAR100(%) Pre-train Time(min)

K = 1 88.31 70.16 10.2
K = 5 90.64 73.51 37.6
K = 10 91.41 74.98 75.5
K = 15 91.74 74.88 109.3

A.6.2 IMPACT OF NUMBER OF LOCAL EPOCHS K

The parameterK is the number of iterations for each selected client to train the received model using
local data. Table 9 shows that the training time is proportional to the value of K, but increasing K
improves the training outcome of DeNAV. Besides, Table 9 also shows that the training performance
improvement by increasing K converges to a certain value. For DeNAV training, if extra time cost
is affordable, setting the number of local epochs to a value between 10 and 15 will achieve optimal
training performance.

Table 10: Impact of C on DeNAV.
CIFAR10(%) CIFAR100(%) Avg Pre-train Time(min)

C = 1 90.90 73.81 36.8
C = 5 91.48 73.44 40.1
C = 10 91.81 74.04 43.4
C = 15 91.88 75.25 46.6

A.6.3 IMPACT OF NUMBER OF SIMULTANEOUSLY TRAINED MODELS C

Both decentralized learning and federated learning involve the hyper-parameter C, which is the
number of models that clients simultaneously train. Table 10 shows that increasing C increases the
average training time per model while improving the training performance of DeNAV. However, the
effect of C on training time is much smaller compared to the effect of K on time. The increase in
training time is not proportional to the increase in C.

A.6.4 IMPACT OF NETWORK CONNECTIVITY ω

The DSSL scenarios used in experiments were simulated using the Erdős-Rényi model. This model
requires two parameters: the number of nodes in the network and the network connectivity ω. A
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Table 11: Impact of ω on DeNAV.
CIFAR10(%) CIFAR100(%)

ω = 0.03 89.17 72.01
ω = 0.15 90.64 73.51
ω = 0.75 91.16 73.65

lower value of ω corresponds to a lower probability that each node in the generated network is
connected to other nodes. By varying ω, we evaluated the performance of DeNAV across different
networks. As shown in Table 11, the connectivity of the client network significantly affects DeNAV’s
training results. Specifically, the training performance of DeNAV deteriorates if the client network
is sparse. Conversely, in dense networks, the training performance of DeNAV improves.

Table 12: Impact of H on DeNAV.
CIFAR10(%) CIFAR100(%) Pre-train Time(min)

Z = 1 89.51 71.90 36.4
Z = 3 90.64 73.51 37.6
Z = 5 91.05 74.31 45.7
Z = 7 92.15 74.72 54.2

A.6.5 IMPACT OF CLIENT SELECTION UPPER LIMIT Z

DeNAV’s client evaluation formula involves an important hyper-parameter Z, determining the max-
imum allowed selections per client. As shown in Table 12, increasing Z improves the training
performance of DeNAV while increasing the training time. Additionally, it is also observed that the
performance gap between Z = 1 and Z = 3 is more pronounced in comparison to the gaps between
Z = 3 and Z = 5, and Z = 5 and Z = 7, since the condition Z ≥ S

|M | is unmet when Z = 1,
resulting in the too early stop on exploiting good clients. Thus, the value of Z needs to be taken in
compliance with the condition.

Table 13: Impact of λ on DeNAV.
CIFAR10(%) CIFAR100(%)

λ = 1 91.39 74.35
λ = 5 91.46 74.49
λ = 20 90.64 73.51
λ = 50 90.52 73.45
λ = 200 90.43 73.64

A.6.6 IMPACT OF STALENESS BOUND λ

When multiple models are simultaneously pre-trained in DeNAV, the staleness bound λ is employed
to restrict the aggregation of local models that have become excessively stale compared to the global
model. The results in Table 13 illustrate that relaxing λ makes the training performance of DeNAV
worse, but overly tightening λ also results in limited or no aggregation between the received model
and the local models on the same client during pre-training, thereby hindering optimal training
performance. Our experimental results reveal that setting λ = 5 can deliver favorable training
results for DeNAV, but tuning of λ is suggested for the best training results.
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