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Abstract

Complex planning and scheduling problems have long been
solved using various optimization or heuristic approaches. In
recent year, imitation learning that aims to learn from ex-
pert demonstrations has been proposed as a viable alterna-
tive in solving these problems. Generally speaking, imitation5

learning is designed to learn either the reward (or prefer-
ence) model or directly the behavioral policy by observing
the behavior of an expert. Existing work in imitation learn-
ing and inverse reinforcement learning has focused on imi-
tation primarily in unconstrained settings (e.g., no limit on10

fuel consumed by the vehicle). However, in many real-world
domains, the behavior of an expert is governed not only by
reward (or preference) but also by constraints. For instance,
decisions on self-driving delivery vehicles are dependent not
only on the route preferences/rewards (depending on past de-15

mand data) but also on the fuel in the vehicle and the time
available. In such problems, imitation learning is challeng-
ing as decisions are not only dictated by the reward model
but are also dependent on a cost constraint model. In this pa-
per, we provide multiple methods that match expert distribu-20

tions in the presence of trajectory cost constraints through:
(a) Lagrangian-based method; (b) Meta-gradients to find a
good trade-off between expected return and minimizing con-
straint violation; and (c) Cost-violation-based alternating gra-
dient. We empirically show that leading imitation learning ap-25

proaches imitate cost-constrained behaviors poorly and show
that our meta-gradient-based approach achieves the best per-
formance.

Introduction
Complex planning and scheduling problems have long been30

studied in the literature using a wide variety of optimization
algorithms and heuristics. One generic way to think about
the process of solving these complex problems is to first
define a set of states, where a state represents the minimal
amount of information required to describe a planning or35

scheduling instance; then for each state, compute the rec-
ommended action by optimizing certain well-defined perfor-
mance measure. A comprehensive list of (state, action rec-
ommendation) tuples is then called the policy for the solved
problem, and can be used in practice easily by looking up40

the encountered states.
An alternative paradigm to the above classical approach is

to directly “learn” from an expert. More specifically, with a

few expert-demonstrated traces of actions, try to generalize
and derive actionable policies. Such an approach is gener- 45

ally called “imitation learning”, which aims to replicate ex-
pert behaviors by directly observing human demonstrations,
eliminating the need for designing explicit reward signals as
in reinforcement learning (RL) (Abbeel and Ng 2004). This
approach has been successfully applied in a variety of do- 50

mains such as robotics (Fang et al. 2019), autonomous vehi-
cles (Kuefler et al. 2017), game AI (Hussein et al. 2017), and
more recently scheduling (Ingimundardottir and Runarsson
2018). Typically, this is achieved through techniques such
as behavioral cloning (Bain and Sammut 1995), inverse re- 55

inforcement learning (Ng, Russell et al. 2000), and genera-
tive inverse reinforcement learning (GAIL) (Ho and Ermon
2016).

The previous research in the fields of imitation learning
and inverse reinforcement learning has primarily concen- 60

trated on mimicking human behaviors in unconstrained envi-
ronments, such as mimicking driving a vehicle without any
limitations on fuel consumption by the vehicle. However, in
many practical planning and scheduling scenarios, experts
consider not only rewards or preferences but also limitations 65

or constraints. For example, the decisions made by a self-
driving delivery vehicle are not only based on route prefer-
ences or rewards, which are derived from past demand data
but also on the amount of fuel/power available in the vehi-
cle. As another example, when an agent is being trained to 70

drive a car on a race track, the expert demonstrations that the
agent is mimicking involve high-speed driving and precision
maneuvering, which are critical for success in a race. How-
ever, it is also essential for the agent to adhere to safety con-
straints, such as staying within the track’s boundaries and 75

avoiding collisions with other vehicles. These safety con-
straints differ from the reward function, which may focus
on achieving a fast lap time or winning the race. Therefore,
the agent must strike a balance between the goal of imitat-
ing the expert demonstrations and the need to adhere to the 80

safety constraints in order to successfully complete the task.
In scenarios where the decision-making process is influ-

enced by both a reward model and a cost constraint model,
the implementation of imitation learning becomes signifi-
cantly more complex. This is because the decisions made 85

are not solely based on the reward model, but also take into
consideration the limitations imposed by the cost constraint



model. To that end, we provide a new imitation learning
problem in cost-constrained environments.

Our work is closely related to Malik et al. (2021) and90

Cheng et al. (2023). In Malik et al. (2021), cost constraints
have to be learned from expert trajectories in scenarios
where the reward function is already specified. On the other
hand, in Cheng et al. (2023), both safety constraint (maxi-
mum cost limit) and cost signals are known and provided,95

while the reward signal remains undisclosed.
The major differences of our proposed work to the above

two past studies are that we assume cost signals (from sen-
sors) from the environment are known and provided, but the
safety constraint (maximum cost limit) is not given. In other100

words, we assume that we have necessary sensors to monitor
cost signals (e.g., battery level and temperature of an EV),
yet we do not know the constraints on these sensor values
(e.g., safety ranges on battery level and temperature).

In terms of the solution approach, our work is similar to105

Cheng et al. (2023) in that we also utilize the combination of
the Lagrangian-base method and the GAIL framework (Ho
and Ermon 2016). However, since we do not assume knowl-
edge of the safety constraint, we cannot include the maxi-
mum cost limit in our objective function during the training110

process.
The major challenges we plan to address with this paper

are approaches that could execute imitation learning while
ensuring cost threshold constraint, which is revealed only
via the observations of expert trajectories. Our key contribu-115

tions are summarized as follows:

• First, we formulate the cost-constrained imitation learn-
ing problem which represents the challenge of imitation
learning in cost-constrained environments (where cost
signals are known).120

• We propose three methods to address the cost-
constrained imitation learning problems. First, we design
a Lagrangian-based method utilizing a three-way gradi-
ent update to solve the cost-constrained imitation learn-
ing problem. We then provide a meta-gradient approach125

that is able to tune the Lagrangian penalties of the first
approach to significantly improve the performance. Fi-
nally, we use a cost-violation-based alternating gradient
approach which has a different gradient update depend-
ing on the current solution feasibility.130

• To further validate the effectiveness of our proposed
method, we conducted extensive evaluations in Safety
Gym environments (Ray, Achiam, and Amodei 2019)
and MuJoCo environments (Todorov, Erez, and Tassa
2012). Our numerical evaluations show that the ensemble135

of our three proposed approaches can effectively imitate
expert behavior while satisfying cost constraints.

Background and Related Work

In this section, we describe the two problem models of rele-
vance in this paper, namely Constrained MDPs and Imitation140

Learning. We also briefly review related work.

Constrained Markov Decision Process
Reinforcement Learning problems are characterized by an
underlying Markov Decision Process (MDP), which is de-
fined by the tuple (S,A,R,P). Where S represents the set 145

of states, A represents the set of actions. The reward func-
tion, R : S × A 7→ R, provides a quantitative measure of
how well the system is performing based on the current state
and action. The transition function, P : S ×A×S 7→ [0, 1],
defines the probability of transitioning from one state to an- 150

other, given the current state and action taken. Specifically,
the probability of transitioning from state s to s′, given that
action a is taken, is represented by P(s′|s, a). A feasible set
of policies, denoted as Π, contains all possible policies that
can be implemented in the system. The objective of MDP is 155

to find an optimal policy, π ∈ Π, by maximizing the reward-
based objective function, which is defined as follows:

max
π∈Π

Eπ[

∞∑
t=0

γtr(st, at)]. (1)

In this work, we examine the scenario in which agents
aim to optimize their rewards while adhering to policy-based
cost constraints. This leads to an extension of the traditional 160

MDP framework referred to as the Constrained Markov De-
cision Process (CMDP) (Altman 1999). The objective in a
CMDP problem is succinctly formulated as:

max
π∈Π

Eπ[

∞∑
t=0

γtr(st, at)], s.t. Eπ[

∞∑
t=0

γtd(st, at)] ≤ d0. (2)

Where d(s, a) is the cost associated with taking action a in
state s and is independent of the reward function, r(s, a). 165

d0 is the expected cost threshold for any selected policy.
There have been numerous approaches proposed for solv-
ing Constrained MDPs (Satija, Amortila, and Pineau 2020;
Pathmanathan and Varakantham 2023), when the reward and
transition models are not known a priori. 170

Imitation Learning
Methods of Reinforcement Learning require clearly defined
and observable reward signals, which provide the agent
with feedback on their performance. However, in many real-
world scenarios, defining these rewards can be very chal- 175

lenging. Imitation learning, on the other hand, offers a more
realistic approach by allowing agents to learn behavior in
an environment through observing expert demonstrations,
without the need for accessing a defined reward signal.

An effective method for addressing imitation learning 180

challenges is Behavior Cloning (BC) (Bain and Sammut
1995). This approach utilizes the states and actions of a
demonstrator as training data, allowing the agent to replicate
the expert’s policy (Pomerleau 1991). One of the advantages
of this method is that it does not require the agent to actively 185

interact with the environment, instead, it operates as a form
of supervised learning, similar to classification or regression.
Despite its simplicity, BC is known to suffer from a signif-
icant drawback: the compounding error caused by covariate
shift (Ross, Gordon, and Bagnell 2011). This occurs when 190



minor errors accumulate over time, ultimately resulting in a
significantly different state distribution.

Another approach, Inverse Reinforcement Learning (IRL)
(Ng, Russell et al. 2000) aims to identify the underlying re-
ward function that explains the observed behavior of an ex-195

pert. Once the reward function is determined, a standard Re-
inforcement Learning algorithm can be used to obtain the
optimal policy. The reward function is typically defined as
a linear (Ng, Russell et al. 2000; Abbeel and Ng 2004) or
convex (Syed, Bowling, and Schapire 2008) combination of200

the state features, and the learned policy is assumed to have
the maximum entropy (Ziebart et al. 2008) or maximum
causal entropy (Ziebart, Bagnell, and Dey 2010). However,
many IRL methods are computationally expensive and may
produce multiple possible formulations for the true reward205

function. To address these challenges, Generative Adversar-
ial Imitation Learning (GAIL) (Ho and Ermon 2016) was
proposed. GAIL directly learns a policy by using a discrimi-
nator to distinguish between expert and learned actions, with
the output of the discriminator serving as the reward signal.210

A more recent method, known as Inverse soft-Q Learning
(IQ-Learn) (Garg et al. 2021), takes a different approach
by learning a single Q-function that implicitly represents
both the reward and policy, thereby avoiding the need for
adversarial training. With their state-of-the-art performance215

in various applications, we designate GAIL and IQ-learn as
baselines for our algorithms.

We now describe the imitation learning problem and
GAIL approach here as it serves as the basis for our method.
The learner’s goal is to find a policy, denoted as π, that per-
forms at least as well as an expert policy, denoted as πE , with
respect to an unknown reward function, denoted as r(s, a).
For a given policy π ∈ Π, we define its occupancy measure,
denoted as ρπ ∈ Γ, as (Puterman 2014)

ρπ(s, a) = π(a|s)
∞∑
t=0

γtP (st = s|π)

The occupancy measure represents the distribution of state-
action pairs that an agent encounters when navigating the
environment with the specified policy π. It is important to220

note that there is a one-to-one correspondence between the
set of policies, Π, and the set of occupancy measures, Γ.
Therefore, an imitation learning problem can be equivalently
formulated as a matching learning problem between the oc-
cupancy measure of the learner’s policy, ρπ , and the occu-225

pancy measure of the expert’s policy, ρπE
. In general, the

objective can be succinctly represented as the task of finding
a policy that closely matches the occupancy measure of the
expert’s policy, which is represented as:

min
π
−H(π) + ψ∗(ρπ − ρπE

), (3)

where H(π) ≜ Eπ[− log π(a|s)] is the causal entropy of230

the policy π, which is defined as the expected value of the
negative logarithm of the probability of choosing an action
a given a state s, under the distribution of the policy π.
Additionally, the distance measure between the state-action
distribution of the policy π, represented by ρπ , and the ex-235

pert’s state-action distribution, represented by ρπE
, is repre-

sented by the symbol ψ∗. Specifically, the distance measure

(Jensen-Shannon divergence) employed by the GAIL frame-
work is defined as follows:

ψ∗(ρπ−ρπE
) = max

D
Eπ[logD(s, a)]+EπE

[log(1−D(s, a))]

(4)
The GAIL method utilizes a combination of imitation 240

learning and generative adversarial networks, where D ∈
(0, 1)S×A acts as the discriminator. Through this formal-
ism, the method trains a generator, represented by πθ, to
generate state-action pairs that the discriminator attempts to
distinguish from expert demonstrations. The optimal policy 245

is achieved when the discriminator is unable to distinguish
between the data generated by the generator and the expert
data.

In our problem, as we aim to address the imitation learn-
ing problem within the constraints of an MDP, we have 250

employed a unique distance measure that diverges from
the traditional GAIL framework. This approach allows us
to more effectively navigate the complexities of the con-
strained MDP setting and achieve our desired outcome.

Lagrangian Method 255

In this section, we first describe the problem of cost-
constrained imitation learning and outline our approach to
compute the policy that mimics expert behaviors while sat-
isfying the cost constraints.

We work in the γ−discounted infinite horizon setting, and 260

we denote the expected reward and cost in association with
policy π ∈ Π as: Eπ[r(s, a)] ≜ Eπ[

∑∞
t=0 γ

tr(st, at)] and
Eπ[d(s, a)] ≜ Eπ[

∑∞
t=0 γ

td(st, at)], where s0 ∼ p0, at ∼
π(·|st), and st+1 ∼ P(·|st, at) for t ≥ 0. Formally, the
Cost-Constrained Imitation Learning problem is a combina- 265

tion of the CMDP problem (2) and the Imitation Learning
problem (3), and can be characterized as:

min
π

−H(π) + ψ∗(ρπ − ρπE
)

s.t. Eπ[d(s, a)] ≤ EπE
[d(s, a)] (5)

The imitation learning objective has two terms. The first
term maximizes the entropy of the policy (to ensure no fea-
sible alternative is excluded), while the second term mini- 270

mizes the difference in occupation measures obtained using
the policy and the expert trajectories. The constraint ensures
that the expected cost computed using the policy is lower
than the expected cost of the expert trajectories. In problems
of interest, the cost function d(s, a) is known but the reward 275

is unknown.
Our generative approach to computing the policy that

mimics the behavior of the expert within cost constraints
relies on computing a solution to the unconstrained objec-
tive function of Equation (6) below. The theoretical justi- 280

fication for choosing this objective function is provided in
the Appendix, and our theoretical analysis is based on the
GAIL framework. Equation (6) is composed of three opti-
mizations:
• Minimize the distance between state, action distributions 285

of the new policy, πθ, and expert policy, πE . This is
transformed into the loss associated with a discriminator,



Dω , which discriminates between (state, action) pairs
from experts, and (state, action) pairs generated by the
new policy πθ.290

• Maximize the entropy of the new policy, πθ, to ensure
none of the correct policies are ignored.

• Minimize the cost constraint violations corresponding to
the new policy, πθ.

L(ω, λ, θ) ≜ min
θ

max
ω,λ

Eπθ
[logDω(s, a)] +

EπE
[log(1−Dω(s, a))] +

λ (Eπθ
[d(s, a)]− EπE

[d(s, a)])− βH(πθ), (6)

where θ represents the parameters of the policy, β is the pa-295

rameter corresponding to the causal entropy (since we max-
imize entropy similar to imitation learning) and finally, λ
is the Lagrangian multiplier corresponding to the cost con-
straint.H(πθ) ≜ Eπθ

[− log πθ(a|s)] is the casual entropy of
policy πθ.The given expert policy is represented by πE , and300

a known cost function, represented by d, is also incorporated
into the objective function.

Given the three optimization components, we do not
choose one of the three but instead compute a saddle point
(θ, ω, λ) for (6). To accomplish this, we employ a param-305

eterized policy, represented by πθ, with adjustable weights
θ, as well as a discriminator network, represented by Dω ,
which maps states and actions to a value between 0 and 1,
and has its own set of adjustable weights ω. The Lagrangian
multiplier, denoted by λ, is for penalizing the number of cost310

constraint violations.
To obtain the saddle point, we update the parameters

of policy, discriminator, and Lagrangian multiplier sequen-
tially:
Updating ω: The gradient of (6) with respect to ω is calcu-315

lated as:

▽ω L(ω, λ, θ) = Eπθ
[▽ω logDω(s, a)]+

EπE
[▽ω log(1−Dω(s, a))]

(7)

We utilize the Adam gradient step method (Kingma and Ba
2014) on the variable ω, targeting the maximization of (6) in
relation to D.
Updating θ: To update policy parameters, we adopt the320

Trust Region Policy Optimization (TRPO) method (Schul-
man et al. 2015a). The theoretical foundation of the TRPO
update process involves utilizing a specific algorithm to im-
prove the overall performance of the policy by optimizing
the parameters within a defined trust region:325

θk+1 = argmax
θ
L(θk, θ), s.t. D̄KL(θ||θk) ≤ δ. (8)

The key challenge in applying the TRPO update process
is the computation of the surrogate advantage, denoted by
L(θk, θ). It is a metric that quantifies the relative perfor-
mance of a new policy πθ in comparison to an existing policy
πθk , based on data collected from the previous policy:330

L(θk, θ) = E
s,a∼πθk

[
πθ(a|s)
πθk(a|s)

(A
πθk
r (s, a)− λAπθk

d (s, a))

]
(9)

We do not have a reward function to compute the advan-
tage and hence we utilize the output of the discriminator,
represented by − logDω(s, a), as the reward signal. Subse-
quently, we employ the Generalized Advantage Estimation
(GAE) method outlined in Schulman et al. (2015b) to calcu- 335

late the advantage of the reward, A
πθk
r (s, a). Additionally,

we also calculate the advantage pertaining to cost, denoted
as A

πθk

d (s, a), by utilizing the GAE method, as we know the
cost function.

The average KL-divergence, represented by D̄KL(θ||θk), 340

between policies across states visited by the previous policy,
can be computed as:

D̄KL(θ||θk) = E
s∼πθk

DKL (πθ(·|s)||πθk(·|s)) (10)

Updating ϕr, ϕd: We do an Adam gradient step on
ϕr(reward value network parameters),ϕd (cost value net-
work parameters)to minimize the mean-squared error of re- 345

ward value and cost value, as we minimize these two loss
functions:

min
ϕr

E
s∼πθk

(V r
ϕr
(st)− R̂r

t )
2

min
ϕd

E
s∼πθk

(V d
ϕd
(st)− R̂d

t )
2

(11)

Here R̂r
t , R̂

d
t are the reward to go and cost to go, which

are calculated by the GAE method.
Updating λ: We do an Adam gradient step on λ to increase 350

(6), the gradient of (6) with respect to λ is calculated as:

▽λ L(ω, λ, θ) = (Eπθ
[d(s, a)]− EπE

[d(s, a)]) (12)

Algorithm 1 shows the pseudocode for our approach,
CCIL (Cost ConstraIned Lagrangian).

Meta-Gradient for Lagrangian Approach
In this section, we introduce a meta-gradient approach to im- 355

prove the Lagrangian method introduced in the previous sec-
tion by applying cross-validation to optimize the Lagrangian
multipliers. We call this approach MALM.

Meta-gradient is a strategy designed for the optimiza-
tion of hyperparameters, such as the discount factor and 360

learning rates in Reinforcement Learning problems. This ap-
proach involves the simultaneous execution of online cross-
validation while pursuing the optimization objective of re-
inforcement learning, such as the maximization of expected
return (Xu, van Hasselt, and Silver 2018; Calian et al. 2020). 365

The goal is to optimize both inner and outer losses. The
update of parameters on the inner loss is to update the
parameters of the policy. The outer loss can be based on
measures such as policy gradient loss and temporal differ-
ence loss, and is optimized by updating hyperparameters 370

(Calian et al. 2020) in constrained RL problems, and us-
ing Distributed Distributional Deterministic Policy Gradi-
ents (D4PG) (Barth-Maron et al. 2018) algorithm frame-
work. The critic loss is used in Barth-Maron et al. (2018)
as the outer loss function to optimize the hyperparameters. 375

Instead of optimizing the hyperparameters, the key idea
of MALM is to update the Lagrangian multiplier such that
there is a better balance between reward maximization and



Algorithm 1: Cost ConstraIned Lagrangian (CCIL)
Input: initial parameters of policy θ, reward value network
ϕr, cost value network ϕd, discriminator network ω, batch
size K, a set of expert trajectories ΦE = {τE ∼ πE}, ini-
tial Lagrangian multipliers λ, entropy parameter β, learning
rates αr, αd, αλ, αω .
Output: Optimal policy πθ

1: Compute the average cost of expert trajectories: JE =
1

|ΦE |
∑

τ∈ΦE

∑T
t=1 dt

2: for k = 1, 2, ... do
3: Collect set of learner’s trajectories Φk = {τi} by run-

ning policy πθk for K time steps.
4: Collect the reward rt of K time steps by using the

discriminator output:rt = − log(Dω(st, at))
5: Compute V r

ϕr
(st) and V d

ϕd
(st) of K time steps.

6: Compute the reward and cost advantage Ar(st, at)

and Ad(st, at), reward to go R̂r
t and cost to go R̂d

t
of K time steps by using GAE.

7: Compute the average episode cost of learner’s trajec-
tories: Jk = 1

|Φk|
∑

τ∈Φk

∑T
t=1 dt

8: Update policy by using TRPO rule:
θ′ = argmax

θ

∑K
t=1

πθ(at|st)
πθk

(at|st) (A
r(st, at)− λAd(st, at)) + βH(πθk)

9: Update reward value network:
ϕ′r ← ϕr − 1

K

∑K
t=1 αr ▽ϕr

(V r
ϕr
(st)− R̂r

t )
2

10: Update cost value network:
ϕ′d ← ϕd − 1

K

∑K
t=1 αd ▽ϕd

(V d
ϕd
(st)− R̂d

t )
2

11: Update discriminator network:
ω′ ← ω + 1

K

∑K
t=1 αω(▽ω[log(Dω(st, at))]+

▽ω[log(1−Dω(st, at))])
12: Update Lagrangian multipliers:

λ′ ← λ+ αλ(Jk − JE)
13: θ ← θ′, ϕr ← ϕ′r, ϕd ← ϕ′d, ω ← ω′, λ← λ′.
14: end for

cost constraint enforcement. Specifically, we use the outer
loss that is defined as follows:380

Louter(λ) = Eπθ
(Ar(s, a)− λd(s, a))2 (13)

Every batch is divided into training and validation data
sets. The parameter update equations for the training data set
are the same as described in the Lagrangian-based method
(Equations (8) – (12)), and for the validation data set, we
update the Lagrangian multiplier by minimizing the above385

outer loss function. MALM is similar to Algorithm 1 ex-
cept that from lines 7 to 12, we update policy parameters,
discriminator parameters, and Lagrangian multipliers based
on the training data set. We also have an additional proce-
dure to update the Lagrangian multipliers by minimizing the390

outer loss function based on the validation data set (see the
Appendix for detailed pseudocode).

Cost-Violation-based Alternating Gradient
We now describe our third method, Cost-Violation-based
Alternating Gradient (CVAG), which does not rely on La-395

grangian multipliers. Like previous methods, this method

also maintains a policy network, θ, reward value network,
ϕr, and cost value network, ϕd. The key novelty of this
approach is in doing a feasibility check-based gradient up-
date that is fairly intuitive. If the average episode cost of the 400

learner does not exceed the average episode cost of experts
(cost constraint), then we update the policy parameters to-
wards the direction of maximizing the return, which would
be the following equation in TRPO:

L(θk, θ) = max
θ

E
s,a∼πθk

[
πθ(a|s)
πθk(a|s)

A
πθk
r (s, a)

]
(14)

Otherwise, we update the policy towards the direction of 405

minimizing the costs.

L(θk, θ) = min
θ

E
s,a∼πθk

[
πθ(a|s)
πθk(a|s)

A
πθk

d (s, a)

]
(15)

The detailed pseudocode is provided in the Appendix.

Experiments

Table 1: Environments and expert trajectories.

Task Observation Action Dataset Reward Cost Safety
Space Space Size Coefficient

PointGoal1 60 2 10 18.77 ± 4.64 51.1± 3.36 NA
PointButton1 76 2 10 18.56± 3.83 93.5 ± 7.8 NA
CarGoal1 72 2 10 25.73 ±2.44 45.2 ± 6.35 NA
CarButton1 88 2 10 11.84± 1.36 196.6 ± 25.44 NA
DoggoGoal1 104 12 10 4.62± 1.55 57.9 ± 9.46 NA
DoggoButton1 120 12 10 3.32± 1.2 181.7 ± 15.48 NA
HalfCheetah-v3 17 6 10 4132.72±132.82 547.5 ± 8.1 0.4
Hopper-v3 11 3 10 3594.04±1.78 433.6 ± 2.24 0.001
Ant-v3 27 8 10 1263.43±142.14 653.2 ± 78.82 2
Swimmer-v3 8 2 10 110.47±1.01 63.8 ± 1.08 1
Walker2d-v3 17 6 10 1781.42± 19.06 130.1 ± 21.1 1
Humanoid-v3 376 17 10 1744.53±257.22 206.6 ± 29 0.2

In this section, we compare our approaches against lead-
ing approaches for imitation learning (IL), including GAIL 410

(Ho and Ermon 2016), IQ-Learn (Garg et al. 2021), Behav-
ioral Cloning (BC) (Bain and Sammut 1995), and LGAIL
(Cheng et al. 2023) in cost-constrained environments. This
is to illustrate that a new approach is needed to mimic ex-
pert behaviors when there are unknown cost constraints. As 415

we will soon demonstrate, all baselines suffer from either
extensive cost constraint violations or low reward.

Setup
Environments and Cost Definition We selected Safety
Gym (Ray, Achiam, and Amodei 2019) and MuJoCo 420

(Todorov, Erez, and Tassa 2012), two well-known environ-
ments from the literature for our evaluation purpose.

The Safety Gym environment is a standard platform for
evaluating constrained RL algorithms. Each instance of this
environment features a robot tasked with navigating a clut- 425

tered space to achieve a goal, all while adhering to specific
constraints governing its interactions with objects and sur-
rounding areas. In our experiments, there are three robotic
agents (Point, Car, and Doggo) and two task types (Goal
and Button), resulting in a total of six unique scenarios. 430

The difficulty level for these environments is standardized
to 1. Throughout each timestep, the environment provides
distinct cost signals for various unsafe elements, each linked



Table 2: Overall performance of different environments. Normalized penalized return Rpen captures the trade-off between
achieving higher rewards and making the episode cost go below the expert’s episode cost, higher is better. Recovered return
Rrec evaluates the extent that the agent imitates the expert’s behavior, higher Rrec means the agent imitated the experts better.
Cost-Vio captures the extent that agent’s episode cost goes beyond the expert’s episode cost, lower is better.

Task BC GAIL IQ-learn LGAIL CCIL MALM CVAG

CarGoal1
Rpen 0.54±0.03 -0.86± 0.34 -0.57± 0.5 -0.28±0.62 0.17±0.6 0.67± 0.08 0.61±0.06
Rrec 53.91 73.57 0 72.06 76.02 67.39 61.13
Cost-Vio 0 20.55 0 6.47 0 0 0

CarButton1
Rpen 0.35±0.45 -0.59± 0.07 0.05± 0.02 -0.36±0.47 0.13±0.53 0.01±0.52 0.42±0.08
Rrec 56.84 60.73 5.49 59.29 58.19 51.94 42.48
Cost-Vio 0 18.01 0 10.09 0 0 0

PointGoal1
Rpen 0.81±0.03 0.35± 0.78 -1.07± 0.91 0.1±0.72 0.07± 0.73 0.95±0.09 0.87±0.11
Rrec 80.87 95.05 2.82 95.15 93.55 94.78 87.32
Cost-Vio 0 5.39 12.3 7.35 3.19 0 0

PointButton1
Rpen -0.19±0.53 -0.55± 0.06 -1.26± 0.21 0.37±0.54 -0.19±0.54 0.44±0.53 0.27±0.48
Rrec 69.5 73.49 7.44 68.53 69.88 72.95 55.98
Cost-Vio 5.04 15.41 19.71 0 4.42 0 0

DoggoGoal1
Rpen -0.3 ±0.57 -0.94±0.03 0± 0.01 0.25±0.04 0.36±0.07 -0.25± 0.6 0.29 ± 0.09
Rrec 27.92 44.81 0 25.32 35.5 28.79 33.33
Cost-Vio 0.47 14.97 0 0 0 0 0

DoggoButton1
Rpen 0.35±0.06 -0.38± 0.55 -0.01±0.04 0.14±0.11 0.35±0.05 0.3± 0.05 0.06± 0.1
Rrec 34.94 41.27 -0.6 14.16 34.64 30.42 5.72
Cost-Vio 0 1.96 0 0 0 0 0

HalfCheetah-v3
Rpen -6.16±0.08 -5.91±0.05 -7.08±0.1 -0.29 ± 1.63 0.44±0.37 0.81±0.07 0.53 ± 0.26
Rrec 70.61 95.19 0 51.91 44.47 81.49 52.91
Cost-Vio 392.94 392.12 417.49 0 0 0 0

Hopper-v3
Rpen 0.16±0.02 0.48±0.61 0.07± 0.03 0.02 ±0.49 1±0.01 0.75±0.48 0.5±0.59
Rrec 16.11 98.78 6.54 99.92 99.71 99.62 98.58
Cost-Vio 0 0.49 0 4.16 0 0 0

Ant-v3
Rpen -0.73±0.18 -0.69±0.02 0.15± 0.07 0.77± 0.1 0.06±0.61 0.86±0.03 0.53± 0.47
Rrec 86.64 95.59 14.8 76.82 79.86 85.76 78.1
Cost-Vio 213.94 242.25 0 0 3.12 0 0

Swimmer-v3
Rpen -2.37±2.02 -0.17 ±0.56 0.36 ± 0.05 -0.42± 0.12 0.7 ± 0.49 0.46 ± 0.6 0.63± 0.49
Rrec 58.44 94.87 35.71 93.35 94.76 94.29 87.41
Cost-Vio 93.13 8.57 0 7.96 0 0 0

Walker2d-v3
Rpen -0.34±0.06 -0.06±0.53 0.19±0.06 0.2±0.63 0.73±0.5 0.72±0.51 0.97±0.01
Rrec 99.2 99.35 19.04 98.57 98.53 98.58 97.25
Cost-Vio 14.02 8.1 0 0 0 0 0

Humanoid-v3
Rpen 0.32±0.01 -0.26±0.02 0.21±0.02 0.86 ± 0.02 0.95 ± 0.02 0.39±0.52 0.82± 0.03
Rrec 32.21 122.94 20.6 86.01 94.83 95.77 82.4
Cost-Vio 0 73.54 0 0 0 0 0

to an associated constraint. Additionally, an aggregate cost
signal is provided, encapsulating the overall impact of the435

agent’s interactions with unsafe elements. The cost functions
are straightforward indicators, evaluating whether an unsafe
interaction has occurred (ct = 1 if the agent engages in an
unsafe action, otherwise ct = 0).

In order to illustrate the robustness of our methods, we440

also adopt MuJoCo for its wide array of continuous con-
trol tasks, such as Walker2d and Swimmer. These tasks are
frequently employed to assess RL and IL algorithms. For re-
ward, we utilized the default MuJoCo environment settings,
however, as the MuJoCo environment does not have built-in445

cost constraints like in Safety Gym, we introduce constraints

on features of the state space and action space:

• Control Cost. The agent faces penalties for taking exces-
sively large actions in HalfCheetah-v3 and Hopper-v3.

• Control Cost plus Contact Cost. This is utilized in Ant- 450

v3 and Humanoid-v3. The contact cost of an agent is
generated if the external contact force is too large, the
cost indicator is the sum of control cost and contact cost.

• Speed Limit: This is utilized in Swimmer-v3 and
Walker2d-v3. An agent is penalized when it moves at 455

a much higher speed.

Safety coefficient is the cost threshold for the cost indi-
cator. At each time step, if the cost indicator is larger than
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Figure 1: Performance of Safety Gym environments. The x-axes indicate the number of iterations, and the y-axes indicate the
performance of the agent, including average rewards/costs/cost rates with standard deviations.

the safety coefficient, then the agent will get a cost of 1,
otherwise, the cost is denoted as 0. The expert trajectories460

were generated by solving a forward-constrained RL prob-
lem, and the statistics of these trajectories and Safety Coef-
ficient parameters are summarized in Table 1.
Baselines and Code. In order to evaluate the performance
of our algorithms, we performed a comparison with three465

popular IL methods without explicit cost constraints consid-
eration (GAIL, IQ-Learn, and BC). For the constraint-aware
IL method, we use LGAIL as the baseline. As noted ear-
lier, LGAIL assumes the knowledge of cost limit d′, which
is used as a parameter in their objective function:470

min
θ

max
ω,λ

Eπθ
[logDω(s, a)] + EπE

[log(1−Dω(s, a))] +

λ (Eπθ
[d(s, a)]− d′)− βH(πθ). (16)

As they defined d′ to be less than the minimal episode cost
of expert trajectories, so we use the 90% of minimal episode
cost of expert trajectories as d′. In the case of BC, the ex-
pert trajectories dataset, which consists of state-action pairs,
was divided into a 70% training data set and a 30% valida-475

tion data set. The policy was then trained using supervised
learning techniques. Then in the GAIL method, the policy
network, reward value network, cost value network, and dis-
criminator network all employ the same architectures, com-
prising two hidden layers of 100 units each, with tanh non-480

linearities being utilized in the layers. Lastly, for the IQ-
Learn method, we use the same setting as illustrated in (Garg

et al. 2021), that we use critic and actor networks with an
MLP architecture with 2 hidden layers and 256 hidden units.
Implementation. We employ a neural network architecture 485

consistent with the one utilized in the GAIL method. In ad-
dition, our approaches add a cost value network and a La-
grangian penalty term λ (in CCIL and MALM), which dis-
tinguishes our method from GAIL. The policy, value, and
cost value network are optimized through gradient descent 490

with the Adam optimizer (Kingma and Ba 2014). The initial
value of λ is set to 0.01 and optimized using the Adam op-
timizer. In MALM, the state-action pairs of each batch size
are divided into a 70% training data set and a 30% valida-
tion data set. We run each algorithm for 5 different random 495

seeds. The algorithms ran for 2000 time steps (batch size)
during each iteration, and the episode’s total true reward and
cost are recorded. The details of the hyper-parameters used
in the experiments can be found in the Appendix. The im-
plementation of all code is based on the OpenAI Baselines 500

library (Dhariwal et al. 2017).
Performance Metrics. We use different performance met-
rics to compare overall performance. Firstly, followed by
(Ray, Achiam, and Amodei 2019), we record the average
episode’s true reward, the average episode’s cost, and the 505

cost rate over the entirety of training (the sum of all costs di-
vided by the total number of environment interaction steps)
throughout the training. We also incorporate the normal-
ized penalized return introduced by (Calian et al. 2020).
This metric effectively captures the delicate balance between 510



maximizing rewards and ensuring that the episode cost re-
mains below the expert’s episode cost. The formulation is
represented as Rpen = R/RE − Kmax(Jπ

d /J
πE
d − 1, 0),

where R and Jπ
d denote the average episode true reward/-

cost for the algorithm upon convergence (computed as an515

average over the last 100 iterations), and RE , JπE
d represent

the average episode reward/cost of the expert. The second
term in the equation introduces a penalty if the episode cost
exceeds the expert cost; otherwise, this term remains zero.
The constant K serves as a fixed parameter determining the520

weight assigned to the constraint violation penalty. To effec-
tively penalize algorithms consistently breaching cost con-
straints during evaluation, we set K = 1.2. The recovered
return metric captures the degree to which the agent repli-
cates the expert’s behavior, denoted asRrec = R/RE×100.525

A value of Rrec ≥ 100 signifies proficient imitation of
the expert, while an approach to 0 indicates the agent’s in-
ability to replicate the expert’s behavior (with Rrec being
0 when returns are negative).Finally, cost violation is de-
fined as ϕd = max(0, Jπ

d −J
πE
d ). In cases where the agent’s530

episode cost is less than the expert’s episode cost, denoting
no cost violation, ϕd is set to 0.

Results
In order to assess the effectiveness of each algorithm, we
used average episode true reward, average episode cost, and535

cost rate at each iteration as an evaluation. Here are key ob-
servations from Figures 1 (Training curves for these three
evaluation metrics in Mujoco and DoggoButton tasks can be
found in the Appendix):
• In the BC method, which doesn’t consider cost con-540

straints, three key observations stand out. First, in tasks
like Hopper, both reward and cost remain consistently
low. Second, while the reward tends to approach expert
levels, the cost often surpasses the constraint or the ex-
pert’s cost during training. Lastly, there’s a pattern where545

the average return initially rises but later drops in tasks
like CarGoal and PointButton. This might be due to BC
being prone to overfitting. Initially, the model fits the
training data well, boosting performance. However, as
training continues, the model can become too special-550

ized, struggling to handle new situations. Additionally,
the cost rate in this method is relatively high compared
to other approaches.

• The GAIL method, which also overlooks cost con-
straints, exhibited a pattern wherein the reward ap-555

proached the expert reward during training. However,
the cost consistently exceeded the expert’s cost through-
out the training stage, and the cost rate was notably the
highest across most environments.

• For the IQ-Learn method, the cost of the policy obtained560

was generally lower than that of the expert cost in most
tasks. However, the reward obtained was well below the
expert reward.

• The LGAIL method can achieve performance close to
the expert’s reward in certain tasks, demonstrating com-565

petitive efficacy compared to CCIL. However, it tends to
incur higher costs and cost rates throughout the training

process.
• Our approach, MALM, demonstrated superior perfor-

mance compared to all other methods, consistently offer- 570

ing the optimal balance of reward and adherence to cost
constraints. Notably, in the HalfCheetah task, MALM
excelled in approximating expert behavior, outperform-
ing other methods that exhibited a trend of decreasing re-
wards or surpassing the expert’s cost. Following MALM, 575

CVAG, and CCIL secured the second-best performance,
surpassing GAIL, BC, and IQ-Learn in terms of both re-
ward and cost.

Table 2 presents a performance comparison of various
methods based on penalized return, recovered return, and 580

cost violation. In terms of these metrics, we observed that
while the GAIL method can achieve the highest recovery of
experts’ return in most environments, it often violates cost
constraints. Our methods consistently attained the highest
penalized return and exhibited no cost violation in the ma- 585

jority of tasks. LGAIL also violated cost constraints in cer-
tain tasks. Although BC can recover a high percentage of
experts’ returns in some tasks, it tends to violate cost con-
straints. IQ-Learn falls short in competitive performance in
recovering expert’s returns and avoiding exceeding experts’ 590

episode costs. In comparison, our methods demonstrate su-
perior optimization in both cost and reward aspects.

Conclusion
In this study, we address a novel challenge of solving the
imitation learning problem within cost constraints. To tackle 595

this issue, we provide three methods that are both scalable
and effective. First, we provide a Lagrangian method to
solve the cost-constrained imitation learning problem. We
then provide a meta-gradient approach that is able to tune
the Lagrangian penalties of the first approach to signifi- 600

cantly improve the performance. Finally, we provide a cost
violation-based alternating gradient approach that has a dif-
ferent gradient update depending on the current solution’s
feasibility. Experiments demonstrate that our methods can
effectively imitate expert behavior while satisfying cost con- 605

straints, compared to other imitation learning methods that
do not consider cost constraints. Among our approaches, the
meta-gradient approach achieved the best trade-off between
achieving high expected rewards while satisfying the cost
constraints. 610
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