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Abstract
Satellite imagery is essential for Earth observa-
tion, enabling applications like crop yield pre-
diction, environmental monitoring, and climate
change assessment. However, integrating satellite
imagery with climate data remains a challenge,
limiting its utility for forecasting and scenario
analysis. We introduce a novel dataset of 2.9 mil-
lion Sentinel-2 images spanning 15 land cover
types with corresponding climate records, form-
ing the foundation for two satellite image genera-
tion approaches using fine-tuned Stable Diffusion
3 models. The first is a text-to-image generation
model that uses textual prompts with climate and
land cover details to produce realistic synthetic im-
agery for specific regions. The second leverages
ControlNet for multi-conditional image genera-
tion, preserving spatial structures while mapping
climate data or generating time-series to simulate
landscape evolution. By combining synthetic im-
age generation with climate and land cover data,
our work advances generative modeling in remote
sensing, offering realistic inputs for environmen-
tal forecasting and new possibilities for climate
adaptation and geospatial analysis.

1. Introduction
Satellite imagery is a critical resource for a variety of re-
search and industrial applications, ranging from environ-
mental monitoring and climate research (de Araújo et al.,
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2025; Hussain et al., 2022) to agriculture (Khanal et al.,
2020), archaeology (Marı́n-Buzón et al., 2021), resource
exploration (Shirmard et al., 2022), and human develop-
ment mapping (Burke et al., 2021b). It provides valuable
spatial and temporal data, often serving as the primary or
supplementary source for prediction and analysis models,
including crop yield forecasting (Khaki et al., 2021; Mu-
ruganantham et al., 2022; von Bloh et al., 2023), forestry
surveillance (Fassnacht et al., 2024), and disaster manage-
ment (Burke et al., 2021a). In many regions of the world,
satellite data is the only feasible means of acquiring near
real-time information about environmental conditions.

However, the use of remote sensing is hampered by sig-
nificant challenges, including cloud coverage, atmospheric
distortions, and temporal resolution constraints (Dubovik
et al., 2021). Cloud coverage, in particular, renders satellite
imagery unusable for large parts of the world, disrupting
satellite observations in cloud-prone areas for days or even
weeks, depending on the season (King et al., 2013; Mercury
et al., 2012). These operational challenges not only hinder
real-time monitoring but also raise a critical conceptual gap:
the need to integrate satellite imagery with future climate
scenarios to enhance prediction accuracy. While various
datasets support machine learning applications to address
these challenges, most are task-specific or regionally con-
strained, limiting their generalizability (Clasen et al., 2024;
Christie et al., 2018; Schneider et al., 2023; Van Etten et al.,
2018). To address this, we introduce a comprehensive re-
mote sensing dataset—one of the largest to date—featuring
over 2.9 million Sentinel-2 RGB images linked with cli-
mate data, enabling more robust and scalable applications
across diverse environmental conditions. Recent advances
in multimodal foundation models for remote sensing have
significantly improved generation of synthetic satellite im-
agery across domains (Hong et al., 2024; Khanna et al.,
2024; Liu et al., 2024a; Yu et al., 2024b). But a key gap
remains in generative models capable of producing location-
specific satellite imagery conditioned on future climatic
conditions. This limitation hinders predictive applications
such as seasonal crop yield forecasting and the assessment
of climate change impacts on land cover (Iizumi et al., 2018;
Zachow et al., 2024). These models rely on detailed weather
and climate projections to improve their accuracy, but often
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Figure 1. Our framework enables multi-conditional (text+image) satellite image generation using Stable Diffusion 3 (Esser et al., 2024)
and ControlNet (Zhang et al., 2023). On the text-input side, the model takes detailed spatial and climatic prompt embeddings created by
CLIP and T5 text encoders. On the image-input side, ControlNet is fine-tuned to process an image for spatial guidance. Both is passed to
pre-trained Stable-Diffusion 3, which generates a location- and climate specific satellite image, aligned with actual spatial characteristics.

depend on historical or approximated satellite data in the
absence of integration with climate scenarios. This results
in a qualitative gap between predicted environmental condi-
tions and available imagery, complicating the representation
of dynamic changes in land cover or vegetation states, re-
ducing the predictive power of these models (Ebel et al.,
2020; Jozdani et al., 2022). These challenges underscore the
need for synthetic satellite imagery to enhance datasets and
provide realistic projections for future conditions. In this
paper, we introduce a novel approach to generate satellite
images conditioned on geographic-climate prompts using
Stable Diffusion 3. Our method enables the simulation of
how weather and climate affect Earth’s surface - generating
synthetic images that can support forecasting models (e.g.,
crop yield prediction or land cover classification), visualize
climate change models under various scenario assumptions,
and fill observational gaps in regions affected by persistent
cloud cover. The approach is globally applicable and gener-
ates realistic images with 10-meter spatial resolution across
diverse vegetation types (e.g., cropland, broadleaf forests,
savannas), using information about location, land cover type,
and climate conditions. We propose two innovations:

1. A text-to-image generation model that leverages Stable
Diffusion 3 with climate prompt engineering.

2. A multi-conditional (text+image) framework utilizing
ControlNet, which preserves spatial features and en-
ables the generation of time series.

Fig. 1 illustrates the concept. To support this research, we

curated a dataset of over 2.9 million RGB satellite images
from 104,424 locations worldwide, sourced from Sentinel-2
(Drusch et al., 2012). This dataset spans the whole Earth cat-
egorized in 15 vegetation zones and eight years of historical
data. Together, these contributions advance the application
of generative models in remote sensing and offer novel solu-
tions for a variety of environmental monitoring challenges.

2. Related Work
2.1. Diffusion Models

Diffusion models are a powerful class of generative models,
achieving state-of-the-art performance in high-quality image
synthesis across diverse domains (Ho et al., 2020; Khanna
et al., 2024; Zhang et al., 2023). They operate by iteratively
denoising random Gaussian noise through a learned reverse-
diffusion process, producing realistic samples. These mod-
els excel in tasks like image super-resolution, inpainting,
and domain adaptation (Manvi et al., 2024; Toker et al.,
2024), and have been effectively applied to satellite im-
agery synthesis by leveraging control images and textual
prompts to maintain spatial structure and stylistic fidelity
(Sastry et al., 2024). Foundational work by Sohl-Dickstein
et al. (2015) introduced diffusion probabilistic models, later
refined by Ho et al. (2020) with a simplified denoising ob-
jective. Score-based generative modeling (Song et al., 2021)
and classifier-free guidance (Dhariwal & Nichol, 2021) have
enhanced their adaptability and output quality.
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2.2. Satellite Image Generation

In remote sensing, image generation has also been enhanced
by diffusion models, with models like Stable Diffusion (SD)
fine-tuned to generate satellite images from textual descrip-
tions (Liu et al., 2024b). Khanna et al. (2024) enriched in
their “DiffusionSat” the SD model’s input by incorporating
geo-location and sampling time as prompts, enabling the
generation of high-quality satellite images tailored to spe-
cific geographic and temporal conditions. Their experiments
focused on generating diverse land cover types, including ur-
ban areas, croplands, and forests, demonstrating the model’s
ability to capture fine-grained details such as building struc-
tures and vegetation patterns.

Diffusion models have also been widely adopted for image-
to-image generation, producing realistic satellite images
from guiding inputs such as maps, semantic layouts, and
multi-modal data. Espinosa & Crowley (2023) successfully
generated satellite images conditioned on historical maps,
focusing on urban and rural landscapes to simulate histori-
cal and future land use changes. Tang et al. (2024) refined
the generation process by integrating both global (e.g., tex-
tual descriptions) and local (e.g., depth maps, segmentation
masks) control information, expanding the scope of satellite
image synthesis.

Satellite image datasets range from small task-specific col-
lections to large general-purpose sets, with unlabeled remote
sensing data often exceeding one million images, while la-
beled datasets are typically smaller in size. Reben (Clasen
et al., 2024) and EarthView (Velazquez et al., 2025) support
general-purpose and self-supervised learning, with Earth-
View comprising over 15 terapixels of multi-source imagery.
fMoW (Christie et al., 2018) and EuroCrops (Schneider
et al., 2023) provide labeled data, targeting functional land
use and harmonized crop types. Multimodal and cloud-
robust datasets such as SEN12MS-CR-TS (Ebel et al., 2022)
and DiffCR (Zou et al., 2024) offer paired radar-optical time
series for cloud removal. In contrast, MetaEarth (Yu et al.,
2024b) presents a generative foundation model trained on
multi-resolution imagery for large-scale image synthesis. In
contrast, climate-integrated datasets have so far been smaller
and highly specialized for research applications (Nath et al.,
2024; Requena-Mesa et al., 2021).

2.3. Integrating Climate Data

When processing datasets with high-dimensional climate
variables like cyclone distribution, cloud cover, and water
vapor, diffusion models have proven effective (Liu et al.,
2024b). Hatanaka et al. (2023) used cascaded diffusion mod-
els to generate high-resolution cloud cover images, while
Nath et al. (2024) employed multi-stage diffusion frame-
works for precipitation and cyclone forecasting. Gao et al.
(2023) and Leinonen et al. (2023) unified precipitation now-

casting within single diffusion models, achieving state-of-
the-art results by capturing complex spatiotemporal relation-
ships. DiffCast from Yu et al. (2024a) outperforms previous
works in the Critical Success Index (CSI) - which measures
the fraction of correctly predicted precipitation events rela-
tive to all observed or predicted events - by 15.59 %.

3. Preliminaries
3.1. Diffusion

Diffusion models aim to produce images by reversing a
stochastic Gaussian noising process. Given an input image,
a noisy input xt is created by adding Gaussian noise:

xt =
√

1− βt · xt−1 +
√
βt · ϵ, ϵ ∼ N (0, I). (1)

The parameters βt denote the noise variance at each timestep
t, the higher the t the more the added noise. The aim of the
diffusion model is to denoise a random sample using a neural
network to predict its noise vectors, effectively learning the
mapping xt 7→ xt−1. This results in a stochastic generative
model M that maps from a predefined noise distribution
N (0, I) to generated images.

M(z) = x0, z ∼ N (0, I). (2)

Latent diffusion models are a type of generative model that
applies the diffusion process within a lower-dimensional la-
tent space, which is obtained by encoding the input images.
This reduces computational cost compared to traditional
diffusion models. A decoder then reconstructs the image
from the latent space. Conditional architectures, including
Stable Diffusion 2, guide the denoising process by incor-
porating an additional signal C(·) , such as text or images.
This enables the generation of meaningful outputs that align
with the control signal and the specific task for which the
model was trained.

M
(
z, C(z)

)
= x0, z ∼ N (0, I). (3)

3.2. ControlNet

ControlNet (Zhang et al., 2023) enhances diffusion models
by integrating explicit spatial control into the generative
process. Let F (x) denote a neural network block from the
original architecture, which has frozen parameters internally
(omitted here for brevity). The new control block modifies
its output by adding

y = F (x) + Z
(
F
(
x+ Z(c;θ1);θcopy

)
;θ2

)
, (4)

where θcopy is a trainable copy of the original parameters,
and θ1 and θ2 are the parameters of zero modules (e.g.
convolution layers initialized to zero). This design ensures
that the control block has minimal initial effect on the main
block, functioning similarly to a skip connection.
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4. Material and Methods
4.1. The EcoMapper Dataset

We present the EcoMapper dataset that combines Sentinel-2
RGB images with corresponding metadata, assembled using
Google Earth Engine, Sentinel Hub and NASA Power (Dr-
usch et al., 2012; Milcinski et al., 2019; NASA, 2025; Phan
et al., 2020).

4.1.1. SATELLITE IMAGERY

The dataset includes 104,424 unique geographic locations,
randomly sampled from 15 distinct land cover classes (Phan
et al., 2020) excluding water bodies as shown in Figure 2.
For each location, we selected one monthly observation for
a two year period based on the least cloudy day, resulting in
a sequence of 24 images per location. The two years of ob-
servation are randomly distributed between 2017 and 2022.
The test set consists of 5,500 unique geographic locations,
each monitored monthly over a 96-month period from 2017
to 2024. This ensures sufficient spatial and temporal inde-
pendence in the evaluation, enabling robust assessment of
the model’s generalization across diverse regions and unseen
climate conditions. With a spatial coverage of ∼ 26.21 km2

per observation the overall dataset covers ∼ 2,704,000 km2,
accounting for ∼2.05 % of Earth’s terrestrial area. An ex-
cerpt of the dataset is published in the Github repository, the
full dataset is available at the universities servers. For more
dataset details we refer to A.1.

4.1.2. CLIMATE DATA

Each sampled location is enriched with metadata, including
geographic location (longitude and latitude), observation
date (month and year), land cover type, and cloud coverage
(in %). We incorporated average monthly temperature, solar
radiation, and total precipitation from NASA Power (NASA,
2025), as these factors mainly drive vegetation growth, en-
ergy availability and water balance, which in turn influence
agricultural conditions, forestry, biodiversity, and land cover
(Pielke Sr et al., 2011).

4.2. Generative Models

Our goal is to synthesize satellite imagery conditioned on
geographic and climate metadata, enabling realistic pro-
jections of environmental conditions. To achieve this, we
leverage state-of-the-art generative models for two key tasks:
text-to-image generation and multi-conditional image gen-
eration.

For text-to-image generation, we employ generation models
that synthesize satellite images based on structured metadata
prompts. Additionally, we introduce a multi-conditional
generation approach using a ControlNet-enhanced model,

Figure 2. The 104,424 locations were sampled globally across 15
land cover types, providing a representative distribution of Earth’s
land surface. Grasslands and sparsely vegetated regions domi-
nate, followed by forested areas and croplands, with additional
categories summarized into ”Others” (mixed-, evergreen needle-
leaf forest, permanent wetlands, cropland/natural mosaics, urban,
closed shrubland and decidiuous needleleaf forest). Each location
includes a time series of 24 months (training) or 96 months (test-
ing).

which preserves the spatial structure of an input image while
mapping climate-induced variations onto it. By leveraging
our dataset, we demonstrate how environmental changes
can be visually represented by modifying climate metadata
in the generation process.

We evaluate two generative models for their ability to inte-
grate climate metadata into satellite image synthesis:

Stable Diffusion 3 (SD3) from Esser et al. (2024) - A mul-
timodal latent diffusion model incorporating CLIP and T5
text encoders for flexible prompt conditioning. We fine-
tune SD3 using our dataset to generate realistic satellite
imagery conditioned on geographic, climatic, and temporal
metadata. A key challenge is the representation of continu-
ous climate variables, which we address through structured
prompt engineering. DiffusionSat from Khanna et al. (2024)
- a specialized foundation model for satellite imagery, ex-
tending Stable Diffusion 2 with a dedicated metadata em-
bedding layer for numerical conditioning. This architecture
encodes key spatial and temporal attributes, including lati-
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tude, longitude, timestamp, ground sampling distance, and
cloud cover. Unlike generic diffusion models, DiffusionSat
is explicitly designed for remote sensing tasks, including
super-resolution, inpainting, and temporal prediction.

4.2.1. TEXT-TO-IMAGE GENERATION

We compare multiple configurations of Stable Diffusion 3
and DiffusionSat, with and without fine-tuning, to assess
their capacity for climate-aware satellite image synthesis.
The base SD3 model, leveraging a T5 encoder, allows full
climate prompt conditioning. The base DiffusionSat model,
limited to one text encoder with 77 tokens, was only condi-
tioned on month, year, cloudiness, and land cover type due
to its predefined metadata embedding structure. To enable
DiffusionSat fine-tuning with additional climate metadata,
we modified its SatUNet architecture by introducing 10
metadata layers. We initialized this adapted network with
pretrained DiffusionSat weights while randomly initializing
the new layers, followed by full-model fine-tuning. For a
fair comparison, both models were trained at 512×512 res-
olution, which aligns with DiffusionSat’s original training
setup. Additionally, SD3, which supports higher resolu-
tions, was tested in a fine-tuned experiment at 1024×1024
resolution. In summary we evaluate:

1. Baseline models: Both models were evaluated without
fine-tuning at 512×512 resolution.

2. Fine-tuned models: Both models were fine-tuned (-FT)
with climate metadata at 512×512 resolution.

3. High-resolution SD3: SD3-FT-HR was fine-tuned with
climate metadata at 1024×1024 resolution.

4.2.2. CLIMATE-AWARE SENSITIVITY ANALYSIS

To assess the sensitivity of the SD3-FT-HR model to cli-
mate variables and ensure that performance gains stem from
meaningful climate conditioning rather than spurious cor-
relations with month, land cover, or location we perform a
targeted sensitivity analysis. We evaluate the model’s ability
to incorporate climate effects into satellite image generation
by testing it under extreme conditions, ranging from dry bo-
real (cold, dry) to humid tropical (hot, wet) climates. These
variations span multiple land cover types and regions, en-
abling us to determine whether the model captures genuine
climate influences or merely exploits dataset correlations.

4.2.3. MULTI-CONDITIONAL IMAGE GENERATION

For the task of multi-conditional (text+image) image gen-
eration, we utilize a fine-tuned Stable Diffusion 3 model
enhanced with LoRA (Low-Rank Adaptation). This model,
trained at a 512×512 resolution, serves as a foundational
prior for generating high-quality and contextually relevant
outputs. To condition the image generation process on both

spatial structure and climate dynamics, we incorporate a
dual-conditioning mechanism using ControlNet. Control-
Net extends Stable Diffusion by introducing trainable neural
layers that guide the denoising process using an external
control signal. In our approach, two critical conditioning
signals are used: Satellite imagery from previous months
as a control signal that preserves the spatial structure of the
generated image, ensuring that landforms, urban layouts,
and other geographical features remain intact. This also en-
ables the model to incorporate temporal changes over time,
reflecting real-world environmental shifts. Climate Prompts:
A textual conditioning mechanism that specifies climatic
and atmospheric conditions under which the satellite image
should be generated. By combining these two conditioning
factors, the model is capable of generating realistic satellite
images that integrate climate variations while maintaining
spatial consistency. This method supports time-series gener-
ation, allowing the simulation of landscape evolution under
changing climate conditions.

4.3. Prompt Structure

We design two types of prompts to effectively condition
satellite image generation: a spatial prompt, which encodes
metadata, and a climate prompt extending it with environ-
mental details. Both prompts leverage the text encoders of
Stable Diffusion 3, with spatial information processed by
CLIP and climate data handled by the T5 encoder.

1. Spatial Prompt: Captures fundamental metadata, in-
cluding land cover type, location, date, and cloudiness.
This ensures that the generated images align with the
geographic and temporal context.

2. Climate Prompt: Extends the spatial prompt by incor-
porating monthly climate variables temperature, pre-
cipitation, and solar radiation providing additional en-
vironmental conditioning for image generation.

The structured prompt follows the format: “A satellite image
of [land cover type] in [location] on [date]. The average
temperature was [temperature], with [precipitation] and [so-
lar radiation].” This format ensures the generated images
remain contextually and environmentally accurate by inte-
grating both spatial and climatic factors. For example: “A
satellite image of croplands in Northern Cape, South Africa,
on October 2019. The average temperature over the last
month was 20°C, with an average precipitation of 0 mm
and an average daily solar radiation of 25 W/m².” This
structured prompting framework enables effective condi-
tioning across spatial and environmental dimensions. Ad-
ditional details on the prompting strategy and comparative
results for different prompt formulations are provided in
Appendix A.3.5.
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4.3.1. METRICS

To evaluate the quality, diversity, and perceptual fidelity of
the generated satellite images, we use five established met-
rics: FID, LPIPS, SSIM, PSNR, and CLIP Score. FID and
LPIPS assess realism and perceptual similarity, while SSIM
and PSNR measure structural consistency and reconstruc-
tion quality. CLIP Score evaluates text-image alignment. A
detailed description is provided in A.2.

5. Results
5.1. Text-to-Image Generation

We test our models on 5,500 worldwide locations across
all land cover types, using eight years of satellite data with
monthly observations. As shown in Tab. 1, the baseline mod-
els from SD3 and DiffusionSat had the lowest evaluation
scores. However, DiffusionSat demonstrated superior per-
formance over SD3, showing advantages from the satellite-
specific pretraining. Fine-tuning significantly improved both
models across all metrics: SD3-FT achieved higher CLIP,
SSIM, and PSNR scores, while DiffusionSat-FT excelled in
FID and LPIPS. The best-performing model in terms of FID
was SD3-FT-HR, which produced the highest-resolution
images.

The qualitative results in Fig. 3 demonstrate the capabil-
ity of our models in generating realistic satellite images
conditioned on geographic and land type metadata. In par-
ticular, the models excel at capturing the structured patterns
of croplands/grasslands, such as those seen in Kazakhstan
and Paraguay, where regular field patterns are faithfully
reproduced. All three models effectively preserve the essen-
tial structure of these landscapes. In mountainous regions
like Canada, the models successfully capture the distinct
features of snow-covered terrains and rocky surfaces. While
both architectures handle snow coverage well, SD3-FT-HR
excels at preserving the sharp contrasts between snow and
rock formations, providing finer detail compared to Diffu-
sionSat in this context. In grassland regions of Paraguay,
the models represent the expansive, flat terrain with sparse
vegetation effectively, capturing the homogeneous struc-
ture typical of grasslands. All models manage to represent
the broadness of these regions, though SD3 models show
a slight improvement in capturing the subtle variations in
vegetation density. For wetland areas DiffusionSat captures
the water presence with high fidelity, while SD3 also effec-
tively represents the wetland’s dynamic structure, with both
models excelling in maintaining the spatial features, though
with slight differences in texture and detail depending on
the model configuration. A comparison of both pretrained
and fine-tuned models with details about the climate data
can be found in Appendix 10.

Figure 3. Qualitative comparison of satellite images generated by
different models. The columns represent Ground Truth (GT),
DiffusionSat-FT, SD3-FT, and SD3-FT-HR, where FT denotes
fine-tuned and HR high-resolution models. Each row specifies the
country on the left and the corresponding land cover type on the
right.

5.2. Climate-Aware Sensitivity Analysis

The sensitivity experiments in Fig. 4 show a notable varia-
tion in generated vegetation across different climate condi-
tions. In humid environments, the generated images exhibit
denser vegetation, whereas in cold and dry conditions, the
outputs display barren or snow-covered landscapes. Across
most land cover types, there is an observable increase in sim-
ulated vegetation as climate inputs shift towards warmer and
more humid conditions. Conversely, drier and colder con-
ditions result in sparser vegetation and more exposed land
surfaces. However, the magnitude of these effects varies
by region. In areas where the prompted climate conditions
deviate strongly from the typical ones of the region, the
model exhibits a weaker response or no observable change.
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Table 1. Quantitative comparison of text-to-image generation mod-
els. The base models refer to the original models without fine-
tuning, while the “-FT” models have been fine-tuned at a resolution
of 512×512 pixels. The SD3-FT-HR model was fine-tuned and
trained at a higher resolution of 1024×1024 pixels.

Model FID ↓ CLIP ↑ SSIM ↑ PSNR ↑ LPIPS ↓
SD3 157.36 0.29 0.14 8.25 0.85
DiffusionSat 115.00 0.31 0.25 10.18 0.80
SD3-FT 77.9 0.33 0.39 14.24 0.70
DiffusionSat-FT 59.8 0.30 0.33 12.14 0.68
SD3-FT-HR 49.48 0.31 0.36 12.01 0.69

For instance, when simulating snowy conditions in arid en-
vironments such as the United Arab Emirates, the generated
images show only minimal or no adaptation to the extreme
climate input.

Figure 4. Satellite images generated by SD3-FT under extreme
climate conditions for different regions. Rows correspond to geo-
graphical locations (Germany, India, China, and Canada), while
columns represent three climate types: Dry Boreal, Temperate,
and Humid. Land types (Croplands, Mixed Forests, Grasslands)
are labeled on the right.

To complement the visual analysis, we conducted a quanti-
tative stress test of the SD3-FT model on samples exhibiting
extreme weather conditions. These were defined by thresh-
olds: temperature (≤ −10 ◦C or ≥ 30 ◦C), precipitation
(≤ 0.01mm or ≥ 10mm), and radiation (≤ 5W/m2 or

Table 2. SD3-FT Performance on extreme weather conditions

Condition FID↓ CLIP↑ SSIM↑ PSNR↑ LPIPS↓

High Temperature 115.33 0.35 0.47 15.52 0.64
Low Temperature 145.10 0.35 0.26 11.78 0.756
High Precipitation 170.80 0.40 0.36 11.92 0.72
Low Precipitation 85.62 0.33 0.43 15.10 0.66
High Radiation 107.34 0.36 0.46 15.83 0.64
Low Radiation 141.37 0.32 0.25 11.65 0.77

≥ 25W/m2). This setup enables a focused assessment un-
der rare climate scenarios. Results across standard metrics
are shown in Table 2.

5.3. Multi-conditional Image Generation

Compared to the text-to-image generation models, multi-
conditional generation achieves superior performance across
all metrics, benefiting from added control signals that en-
hance its ability to generate more precise images while
preserving both spatial structure and environmental factors.
For evaluation in Tab. 3 we use the same test set as in the
text-to-image generation task. As seen in Fig. 5, the gener-
ated images exhibit strong spatial alignment with the ground
truth images, maintaining key geographical features while
incorporating climate-specific changes. For instance, the
shift in color grading from brown to green illustrates reason-
able simulations of seasonal transitions, such as the onset
of spring or the growth of vegetation after rainfall, which
can also be inferred from increasing precipitation values
in the images. The presence of snow in colder conditions
reflects the model’s responsiveness to low-temperature cli-
mate prompts, accurately simulating seasonal changes that
would occur naturally in such environments.

Moreover, we can observe a noticeable shift in grasslands,
transitioning from green to brown as temperature and solar
radiation values increase. This shows a realistic response
to environmental conditions such as drought or extreme
heat. In certain land classes, such as barren and open shrub-
lands, we do not observe significant changes, even with
higher temperatures. These land types are relatively uni-
form throughout the year, which explains the minimal visual
differences under varying climate conditions. The model
captures this consistency by generating largely unchanged
imagery, accurately reflecting their year-round stability, but
also indicating a correlation between location, land cover,
and the generated image.

Table 3. Metrics for Stable Diffusion 3 ControlNet model

Model FID ↓ CLIP ↑ SSIM ↑ PSNR ↑ LPIPS ↓
SD3 ControlNet 48.20 0.32 0.40 13.63 0.59
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Figure 5. Comparison of Ground Truth, Generated Image, and
Condition Image for multi-conditional image generation under sea-
sonal changes. The top row displays condition images, while the
labels above correspond to the ground truth images in the bottom
row. All examples reflect typical seasonal variations (e.g., tem-
perature and humidity) rather than extreme weather events. Color
shifts (e.g., brown to green vegetation) and the presence or absence
of snow illustrate the model’s sensitivity to climate conditions,
demonstrating its ability to generate seasonally consistent satellite
imagery.

5.4. Robustness Test

5.4.1. PERFORMANCE ACROSS LAND COVER TYPES

We further analyze the model’s consistency across diverse
land cover types to assess how surface characteristics in-
fluence generative performance. Table 4 presents a sub-
set of results, highlighting both frequently occurring and
challenging landcover classes. Grasslands and savannas -
well-represented in the training data - achieve stable and
high-fidelity generations, whereas visually complex or un-
derrepresented classes such as wetlands and urban areas
yield lower scores. The complete per-class evaluation is
provided in Appendix Table 7.

Table 4. SD3 FT performance across selected land cover types.
Dataset % indicates class prevalence in the test set (2017–2024).

Land Cover FID↓ CLIP↑ SSIM↑ PSNR↑ LPIPS↓ Dataset %

Grasslands 121.93 0.32 0.38 14.42 0.71 23.7%
Savannas 116.90 0.35 0.38 13.84 0.71 12.0%
Permanent Wetlands 263.36 0.51 0.39 13.73 0.73 0.8%
Urban/Built-Up 284.65 0.70 0.06 11.17 0.81 0.7%

5.4.2. SPATIAL AND TEMPORAL ROBUSTNESS

Robustness in climate-aware satellite image generation can
be viewed along two axes: spatial generalization producing
realistic outputs at previously unseen locations and temporal
generalization handling climate conditions from time peri-
ods outside the training range. Our test set design allows

us to evaluate both. All 5,500 test locations are unique and
globally sampled across the full time span from 2017 to
2024, while the training set is limited to data from 2017-
2022. This ensures that test samples from 2023 and 2024
represent unseen combinations of both space and time.

As shown in Table 5, the model maintains consistent perfor-
mance across all years, with no substantial degradation on
2023-2024 data.

Table 5. Robustness analysis for Controlnet

Year FID↓ CLIP↑ SSIM↑ PSNR↑ LPIPS↓ Dataset %

2017 102.14 0.36 0.40 13.33 0.61 8.48%
2018 84.12 0.35 0.41 14.00 0.58 12.64%
2019 89.52 0.36 0.41 13.90 0.58 12.38%
2020 86.37 0.35 0.40 13.40 0.59 12.50%
2021 83.30 0.33 0.40 13.73 0.58 12.14%
2022 77.47 0.33 0.40 13.27 0.58 14.83%
2023 93.21 0.35 0.43 14.09 0.59 9.78%
2024 73.54 0.32 0.40 13.48 0.59 17.34%

6. Discussion
In this study, we analyze the ability of diffusion models
to integrate climate effects into satellite image generation.
Through sensitivity experiments, we evaluate whether the
models are able to capture meaningful climate-related trans-
formations. The results show a consistent increase in simu-
lated vegetation under warmer and more humid conditions,
while cold and dry climates produce sparser vegetation or
snow-covered landscapes. This trend aligns with known
environmental patterns, where higher precipitation leads to
denser vegetation, whereas arid and frigid conditions result
in land cover dominated by barren surfaces or snow accumu-
lation (Richardson et al., 2013). These observations indicate
that diffusion models can learn the relationship between cli-
mate variables and environmental features and incorporate
these patterns into satellite image synthesis. The sensitivity
of the models varies depending on the land cover type. Ev-
ergreen zones, such as tropical rainforests, or urban areas,
exhibit lower sensitivity to extreme climate prompts than
regions with pronounced seasonal changes. This suggests
that certain land cover types and locations inherently ex-
hibit less variability in their visual characteristics, making
climate-induced transformations less prominent. Extreme
climate attack scenarios, such as generating snow-covered
rainforests, may not represent realistic environmental condi-
tions. We argue that correlations between locations or land
cover type and typical climate conditions are learned during
joint training. Therefore, a snowy rainforest, although both
features (snow and rainforest) are individually present in the
dataset, represents an out-of-distribution generation. Future
work could further refine prompt masking strategies (e.g.
partially omitting location or land cover specific informa-
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tion) for increasing latent space interpolation capabilities.

The ablation studies on land cover types and spatiotempo-
ral robustness support the expected behavior of the model
and further validate its generalization capabilities. SD3-FT
shows strong performance on well-represented land classes
like grasslands and savannas, while lower scores are ob-
served for visually complex or underrepresented categories
such as wetlands and urban areas. This pattern aligns with
findings from prior work on dataset imbalance in generative
modeling (Ghosh et al., 2024; Qin et al., 2023) and remote
sensing tasks (Leichtle et al., 2017; Xiao et al., 2024). The
model also maintains stable performance across both spa-
tially and temporally unseen samples, including new climate
conditions from 2023 and 2024. This indicates that EcoMap-
per is applicable across varying locations, years, and land
cover types - supporting that a consistent behavior can be
expected in future scenarios.

The diffusion model’s capability of mapping climate to
satellite images is also reported in previous work, such as
Leinonen et al. (2023) and Gao et al. (2023), who success-
fully integrated weather conditions into satellite imagery, al-
though their focus was on nowcasting precipitation. A direct
comparison is difficult, as to the best of our knowledge, no
prior work has explicitly studied global climate-conditioned
satellite image generation using diffusion models. Com-
pared to cloud removal tasks, which typically report FID
scores exceeding values of 120, our results suggest that
generating climate-conditioned satellite images is a more
learnable task, which can likewise be used to generate cloud-
free images (Liu et al., 2024b). When compared to a broader
range of general-purpose satellite image synthesis models,
our FID scores are in line with models from other domains.
In super-resolution tasks, authors have reported FID scores
of 32 (Zheng et al., 2024), 29-40 (Wang & Sun, 2025), and
about 16-25 from Khanna et al. (2024), Toker et al. (2024)
and Yu et al. (2024b) in image generation tasks. Our met-
rics slightly exceed these values, suggesting that generating
climate-conditioned visual effects on Earth’s surface might
be a moderately complex task, potentially requiring addi-
tional fine-tuning strategies, larger models or datasets.

Our experiments highlight the importance of pretraining on
remote sensing data for climate-aware satellite image gener-
ation. Although DiffusionSat was not explicitly trained on
climate data, it still outperformed the general-purpose SD3
model, suggesting that prior exposure to satellite imagery
provides a significant advantage. Fine-tuning on climate
metadata improved all models, reinforcing the benefits of
incorporating climate information into satellite image gen-
eration. However, even after fine-tuning, DiffusionSat-FT
maintained a slight edge over SD3-FT, likely due to its
specialized satellite image generation capabilities. Despite
this, the ability of SD3 to be trained at higher resolutions

(1024×1024) resulted in the best-performing model SD3-
FT-HR, demonstrating that more details and finer textures
were generated effectively. We demonstrated that multi-
conditional generation using ControlNet preserves climate
conditioning while introducing spatial guidance, making it
suitable for generating synthetic satellite images for specific
locations (e.g., areas of interest) under historical or future
climate scenarios. This capability is particularly valuable
for applications such as climate modeling, disaster response,
and environmental monitoring, where reliable synthetic im-
agery can support long-term scenario analysis.

7. Conclusion
In this study, we introduced the comprehensive EcoMapper
models and dataset linking climate data with corresponding
Sentinel-2 satellite imagery and land cover types, enabling
the generation of climate-conditioned satellite images. Our
results demonstrate that diffusion models effectively map
climate effects onto remote sensing imagery, with satellite-
specific models outperforming general-purpose diffusion
models. These findings highlight the potential of diffusion
models as a valuable tool for generating past and future
climate-conditioned satellite images, supporting applica-
tions in agriculture, forestry, climate change analysis and
many other domains. Future research could explore higher
time-resolution climate inputs to enhance the accuracy of
climate-Earth surface interactions. Extending this approach
to multispectral image generation would increase its ap-
plicability to environmental monitoring, where vegetation
indices rely on both visible and non-visible spectral bands.
Linking diffusion-based image generation with climate pro-
jection models could enable seasonal climate simulations,
providing insights into potential land surface changes un-
der different climate scenarios. These advancements would
further solidify generative models as a powerful tool for
climate-aware Earth observation.

8. Code and Data Availability
The code is available under: https://github.com/
maltevb/ecomapper.
The dataset is available under: doi:10.14459/
2025mp1767651
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Impact Statement
EcoMapper introduces a generative framework for simu-
lating satellite imagery conditioned on climate variables,
with the goal of modeling how environmental landscapes
respond to weather and long-term climate change. This
enables new opportunities for climate change impact visu-
alization, scenario exploration, and enhancing downstream
models that integrate satellite and climate data-such as crop
yield forecasting, land use monitoring, or image gap-filling
in cloudy regions. We acknowledge that synthetic imagery
carries risks of misinterpretation if used without proper con-
text or uncertainty modeling. This is particularly relevant
in high-stakes settings like natural disaster assessment or
policy-making, where unreliable outputs could cause harm.
We encourage the responsible use of EcoMapper as a sim-
ulation tool to complement - rather than replace - physical
Earth observation in real-world decision-making.
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de Araújo, B. M. P. B., von Bloh, M., Rupprecht, V., Schae-
fer, H., and Asseng, S. Bird’s-eye view: Remote sensing
insights into the impact of mowing events on eurasian
curlew habitat selection. Agriculture, Ecosystems &
Environment, 378:109299, 2025.

Dhariwal, P. and Nichol, A. Diffusion models beat gans
on image synthesis. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 8780–8794. Curran Associates, Inc., 2021.

Drusch, M., Del Bello, U., Carli, S., and et al. Sentinel-2:
Esa’s optical high-resolution mission for gmes opera-
tional services. Remote Sensing of Environment, 120:
25–36, 2012. doi: 10.1016/j.rse.2011.11.026.

Dubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H.,
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A. Appendix
A.1. Data

The Ecomapper dataset consists of over 2.9 million satellite images with climate metadata. It includes RGB imagery and
corresponding metadata from the Sentinel satellite missions, covering various land cover types and temporal data points.
The training set contains 98,930 locations, each spanning 24 months of data, while the test set includes 5,494 locations, each
covering 96 months. Tab. 6 has details about the structure.

Table 6. Yearly data for batches from 2017 to 2022, showing the number of locations in each batch across three time groups. Each time
group consists of three batches, with two large batches of 14,000 locations and one smaller batch of 5,000 locations, totaling 33,000
locations per group. Each batch sampled randomly according to the earth’s distribution of landcover types. The test batch, with 5,500
locations, is included for all eight years, while the other batches cover two years each. The total image count across all batches is
2,904,000. Note: There are some missing locations due to the fitting of the earth’s land cover distribution.

Batch/Year 2017-2018 2019-2020 2021-2022 2023-2024 Total Image

Batch-1, 2, 3 33,000 0 0 0 792,000
Batch-4, 5, 6 0 33,000 0 0 792,000
Batch-7, 8, 9 0 0 33,000 0 792,000
Test Batch 5,500 5,500 5,500 5,500 528,000

Total Image 924,000 924,000 924,000 132,000 2,904,000

For each temporal data point, the metadata also provides weather data, including temperature, solar radiation, and precipita-
tion. The satellite imagery originates from the Copernicus Sentinel-2 mission, supported by the European Space Agency
(ESA) NoR program. The climate data, consist of average monthly temperature, solar radiation, and total precipitation,
gathered from NASA Power Api (NASA, 2025).
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sampled using Google Earth Engine land cover maps from Phan et al. (2020).
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Figure 7. Average temperature for each land cover type. The temperature data was gathered from the NASA Power Api, representing
monthly average temperatures across the sampled locations.
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Figure 8. Average precipitation for each land cover type. The precipitation data was gathered from the NASA Power Api, representing
monthly average precipitation across the sampled locations.
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Figure 9. The distribution of locations across continents, illustrating the total count of locations within each continent. Water bodies and
Antarctica were excluded from the sampling area.

A.2. Evaluation Metrics

To comprehensively assess the quality of the generated satellite images, we employ the following evaluation metrics:

1. Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018): Measures perceptual similarity between
images using deep feature embeddings. Lower values indicate higher similarity, aligning closely with human perception.

2. Fréchet Inception Distance (FID) (Heusel et al., 2017): Evaluates realism by comparing feature distributions of real
and synthetic images using deep network embeddings. Lower values indicate more realistic images.

3. Structural Similarity Index (SSIM) (Wang et al., 2004): Assesses structural similarity between images based on
luminance, contrast, and texture. Higher values (closer to 1) indicate greater similarity.

4. CLIP Score (Radford et al., 2021): Evaluates how well generated images align with textual descriptions using CLIP
embeddings. Higher values indicate stronger alignment with the provided text prompt.

5. Peak Signal-to-Noise Ratio (PSNR) (Wang et al., 2004): Measures pixel-wise reconstruction accuracy using mean
squared error. Higher values indicate lower distortion and better image quality.

A.3. Experiments

In this section, we outline the experimental setup for fine-tuning three distinct models: DiffusionSat, SD3, and an enhanced
variant of DiffusionSat incorporating additional climate metadata. Each model was fine-tuned to generate climate-aware
satellite imagery, conditioned on both geospatial and climate data. By leveraging these models, we aim to produce more
accurate and contextually relevant satellite images, integrating climate-specific information to improve the representation of
dynamic environmental conditions.

A.3.1. FINE-TUNING DIFFUSIONSAT (TEXT-TO-IMAGE GENERATION)

For the DiffusionSat experiments, we started with the pre-trained checkpoint of the DiffusionSat 512 model, which had
been trained for 150,000 iterations. This checkpoint was originally fine-tuned on a dataset of 512 images. To enhance
the model’s capability to capture climate-related information, we added 3 additional metadata features temperature, solar
radiation, and precipitation bringing the total number of metadata features to 10. These additional layers were incorporated
into the SatUNet architecture, which serves as the backbone of DiffusionSat.

The architecture was initialized with 10 metadata layers, with the weights from the pre-trained DiffusionSat 512 checkpoint
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Figure 10. Comparison of generated satellite images from various models, including base models and fine-tuned models. The columns
show images from the following models: Ground Truth (GT), SD3, DiffusionSat, DiffusionSat-FT, SD3-FT, and SD3-FT-HR, where
FT denotes fine-tuned and HR high-resolution models. Each row represents a different geographical region, with associated metadata
provided for the Ground Truth images, including temperature, precipitation, and solar radiation. The rows correspond to the following
regions: (1) Close Shrublands in Western Australia (January 2022), (2) Evergreen Needleleaf Forests in New Zealand (December 2020),
(3) Barren or Sparsely Vegetated in Xinjiang, China (November 2022), (4) Croplands in Akmola Region, Kazakhstan (May 2017), and (5)
Grasslands in San Pedro, Paraguay (October 2018). The metadata on the right of each image includes the temperature (°C), precipitation
(mm), and solar radiation (W/m²) for each location. This figure highlights the performance improvements achieved by fine-tuned models
compared to their base counterparts.

loaded into the model. The three newly added metadata layers were initialized randomly following a normal distribution
N(0, 1), while the rest of the layers retained their original weights from the pre-trained model. This allowed the model to
retain the general learning from the pre-trained checkpoint while adapting to the new climate data.

We fine-tuned this modified all layers of the model i.e. 900 million parameters on our training set, which consists of
approximately 2 million satellite images, for 2 epochs. During fine-tuning, the encoder, decoder, and the CLIP text encoder
were kept fixed, and only the new metadata layers were updated.

A.3.2. FINE-TUNING SD3 (TEXT-TO-IMAGE GENERATION)

For the SD3 model, we fine-tuned two versions: SD3-FT and SD3-FT-HR.

For the fine-tuning of the SD3-FT model, we applied LoRA (Low-Rank Adaptation) (Hu et al., 2022) by adding adapter
layers to the top of the Transformer block, which introduced approximately 18 million trainable parameters. LoRA
effectively reduces the number of trainable parameters while maintaining high model performance. Despite this reduction,
we observed blurry output images after fine-tuning. To address this issue, we fine-tuned the last two layers of the model the
projection layer and the normalization layer since these layers are crucial for output quality, particularly in the final stages of
the image generation process. The projection layer is responsible for mapping internal representations to the output space,
while the normalization layer ensures stable and high-quality output distributions. Fine-tuning these layers helped improve
the sharpness of the generated images. The model was trained for 2 epochs on our training set.
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In addition, we implemented a captioning strategy during training to introduce variability in the input captions. This strategy
aimed to reduce the direct correlation between location, month, and climate data in the model’s learning process. Typically,
satellite images exhibit a strong correlation between temporal information (like month and year) and environmental factors
(like temperature). For example, January in Russia is usually cold, and this information can be easily inferred from the
month metadata. However, we wanted the model to learn to generate images based on climate data (such as temperature,
precipitation, and solar radiation) independently of the month and location, allowing it to focus more on the environmental
conditioning provided by the climate prompt.

Specifically, for each caption in the dataset, we randomly altered the inclusion of certain metadata components. With a 50%
chance, we either removed the month or the location from the caption. More specifically, for the month and year:

• 25% of the time, we removed both the month and the year.

• 50% of the time, we included both the month and the year.

• 25% of the time, we included only the year.

For the location metadata:

• 25% of the time, we removed both the state and country.

• 50% of the time, we included both the state and country.

• 25% of the time, we included only the country.

This randomization was applied every time the caption was generated during training, ensuring a diverse set of training
inputs and helping the model generalize better to varying levels of spatial and temporal metadata availability.

This approach was validated in the extreme case experiment 4, where we showed that by removing the month from
the caption and changing only the climate data, the generated images exhibited significant differences. This experiment
demonstrated that the model could still generate distinct images based on climate variables, even when the month metadata
was removed, reinforcing the idea that the model was learning to use climate data effectively rather than relying solely on
temporal cues.

For SD3-FT-HR, we used fixed caption i.e. with all the spatial and climate data, and we did not use LoRA, opting instead
to fine-tune 70 % of the Transformer blocks. Specifically, we fine-tuned 1.5 billion parameters, which made training
computationally expensive. Additionally, we reshaped the training images from 512 to 1024 resolution, as recommended in
the original SD3 paper for achieving the highest-quality outputs. Fine-tuning was performed on 60 % of our training set,
which corresponds to 1.2 million images. Training on 1.5 billion parameters resulted in a much slower training process,
taking 5–6 times longer compared to the SD3-FT model with LoRA. Despite the longer training time, this approach allowed
the model to benefit from higher-resolution images, critical for capturing finer details in satellite imagery.

A.3.3. FINE-TUNING SD3 CONTROLNET

For the SD3 ControlNet model, we chose SD3-FT as the prior due to its faster training time and lower computational
cost, which was particularly important given our limited resources. The SD3-FT model was fine-tuned using 512x512
resolution images, striking a balance between performance and computational efficiency. This model was trained with
LoRA (Low-Rank Adaptation) to reduce the number of trainable parameters while preserving high performance. The key
advantage of SD3-FT is its efficient use of resources, as it requires fewer parameters compared to higher-resolution models,
such as SD3-FT-HR, making it a more practical choice for our task.

To fine-tune the SD3 ControlNet model, we transferred the weights from the first 12 layers of the SD3-FT model and the
LoRA adapter into ControlNet. We then fine-tuned all layers of ControlNet, including the LoRA adapter, while freezing
the transformer layers. This resulted in fine-tuning 1.1 billion trainable parameters. The reason for fine-tuning not only
the LoRA weights but also the ControlNet layers is that fine-tuning just the LoRA layers would not have been sufficient
to preserve the spatial structures in the generated images, as the LoRA adapter alone has only 18 million parameters. By
fine-tuning additional ControlNet layers, we ensure that the model captures the spatial information necessary for generating
accurate and high-quality satellite imagery, especially when incorporating climate-specific changes.
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We trained the model for 2 epochs on a dataset of approximately 2 million images, which allowed the model to effectively
learn climate-aware image generation within our computational constraints. Although SD3-FT-HR has been shown to
produce higher-quality images, we opted for SD3-FT to optimize training speed and resource usage, as the 512x512
resolution model offered an effective trade-off between image quality and computational efficiency. The results from
fine-tuning SD3-FT demonstrated good performance in generating spatially accurate, climate-aware images, validating this
approach.

A.3.4. ABLATION – PERFORMANCE ACROSS LAND COVER TYPES

We conduct an ablation study to evaluate the robustness of SD-FT and ControlNet’s generation performance across various
land cover types. Specifically, we assess how well the model generalizes when conditioned on different control maps
representing diverse land cover categories.

To this end, we compute performance metrics on the full 2017–2024 test set and report averages per land cover class.
As shown in Table 7 and 8, generation quality tends to correlate with the prevalence of each class in the training data.
Frequent classes such as Grasslands and Savannas yield more stable results, while less-represented classes like Wetlands
and Urban/Built-Up exhibit degraded performance. This suggests that data distribution plays a significant role in generation
robustness and fidelity.

Table 7. SD3 FT performance across land cover types. Dataset % indicates class prevalence in the test set (2017–2024).

Land Cover FID↓ CLIP↑ SSIM↑ PSNR↑ LPIPS↓ Dataset %

Grasslands 121.93 0.326 0.381 14.42 0.715 23.7%
Barren/Sparse Vegetation 103.57 0.355 0.514 15.62 0.572 16.1%
Savannas 116.9 0.35 0.38 13.84 0.71 12%
Open Shrublands 136.08 0.337 0.362 14.64 0.754 9.9%
Evergreen Broadleaf Forests 164.17 0.343 0.425 12.97 0.724 9.9%
Woody Savannas 136.65 0.353 0.334 13.16 0.713 9.1%
Croplands 181.38 0.336 0.383 14.32 0.725 9.0%
Mixed Forests 200.36 0.357 0.309 14.06 0.751 3.6%
Dec. Broadleaf Forests 250.01 0.402 0.369 14.76 0.759 2.1%
Evergreen Needleleaf Forests 235.00 0.441 0.291 13.14 0.757 2.0%
Crop/Nat. Veg. Mosaics 252.47 0.377 0.316 13.89 0.726 1.1%
Permanent Wetlands 263.36 0.516 0.395 13.73 0.739 0.8%
Urban/Built-Up 284.65 0.701 0.064 11.17 0.811 0.7%
Closed Shrublands 340.73 1.489 0.402 16.02 0.779 0.4%
Dec. Needleleaf Forests 366.61 1.874 0.256 13.36 0.759 0.2%

These results emphasize the importance of class distribution balance in training datasets for generative models. Future work
may explore targeted augmentation or class-aware sampling strategies to improve performance on underrepresented land
cover types.

A.3.5. ABLATION – PROMPTING STRATEGIES FOR CLIMATE CONDITIONING

We evaluated multiple prompting strategies to determine their effect on generation performance when conditioning the
model on climate information. In all configurations, the CLIP encoder input was kept constant using a short spatial prompt
to maintain consistent image-text alignment. Variations were introduced only in the T5 encoder input, which incorporated
climate-related information.

The following strategies were compared:

• Numerical Climate Data + Short Prompt: Combined a spatial prompt (e.g., region and time) with continuous
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Table 8. ControlNet performance across land cover types. Dataset % indicates class prevalence in the test set (2017–2024).

Land Cover FID↓ CLIP↑ SSIM↑ PSNR↑ LPIPS↓ Dataset %

Grasslands 65.27 0.33 0.40 14.06 0.60 23.7%
Barren/Sparse Vegetation 67.44 0.32 0.60 20.18 0.40 16.1%
Savannas 118.73 0.33 0.37 10.73 0.65 12%
Open Shrublands 88.25 0.34 0.41 15.95 0.58 9.9%
Evergreen Broadleaf Forests 122.37 0.37 0.39 9.13 0.68 9.9%
Woody Savannas 109.99 0.33 0.31 10.32 0.64 9.1%
Croplands 100.48 0.34 0.29 12.91 0.60 9.0%
Mixed Forests 148.46 0.36 0.29 11.11 0.65 3.6%
Dec. Broadleaf Forests 172.39 0.42 0.33 11.81 0.69 2.1%
Evg. Needleleaf Forests 169.07 0.44 0.27 10.88 0.68 2.0%
Crop/Nat. Veg. Mosaics 214.63 0.42 0.35 12.16 0.62 1.1%
Wetlands 239.32 0.50 0.38 8.61 0.67 0.8%
Urban/Built-Up 214.36 0.66 0.29 12.01 0.55 0.7%
Closed Shrublands 215.98 0.47 0.18 8.28 0.62 0.4%
Dec. Needleleaf Forests 297.67 0.52 0.28 12.17 0.65 0.2%

climate variables such as temperature, precipitation, and solar radiation. This configuration yielded the best overall
performance.

• Categorical Climate Data + Short Prompt: Climate variables were discretized into interpretable labels (e.g., “hot,”
“moderate,” “extreme precipitation”) and embedded in the prompt alongside the spatial component.

• Numerical Climate Data + Short Prompt with Dropout: Introduced stochasticity by randomly omitting segments of
spatial and temporal metadata during training, simulating missing or uncertain input conditions.

• Categorical Climate Data Only: Used only categorical climate descriptors without the spatial prompt, requiring the
model to rely entirely on environmental cues.

Table 9 reports results for the first three strategies under comparable conditions. The fourth strategy was omitted from
benchmarking due to lower stability and limited relevance to our baseline.

Table 9. Evaluation of prompting strategies.

Strategy FID↓ IS↑ CLIP↑ LPIPS↓ PSNR↑ SSIM↑
1. Numerical + Short Prompt 68 4.7 0.33 0.66 13.11 0.35
2. Categorical + Short Prompt 72 4.8 0.33 0.69 11.90 0.35
3. Numerical + Dropout + Short Prompt 94 4.5 0.35 0.71 13.30 0.35

These results highlight the advantage of preserving continuous climate signals in combination with spatial context. The
dropout-based prompt introduces useful variability but at the cost of higher perceptual dissimilarity. A broader investigation
of prompt design, including hybrid and dynamically adapted strategies, remains a promising direction for future work.

A.3.6. RELATION TO SATCLIP

We acknowledge the relevance of SatCLIP (Klemmer et al., 2024) to our work and include a brief discussion here. SatCLIP
is a contrastive learning framework for satellite imagery that aligns multi-spectral Sentinel-2 images with textual descriptions.
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While its objectives are related to our use of CLIP-like models for image-text alignment, its architectural design and input
requirements differ significantly.

Specifically, SatCLIP operates on 13-band Sentinel-2 imagery, whereas our dataset contains only RGB images. Adapting
RGB data to match SatCLIP’s input format would require artificial padding of missing channels, which can introduce noise
and compromise the integrity of learned representations. To assess compatibility, we conducted a pilot evaluation using
SatCLIP embeddings on our RGB-based generations and ground truth imagery.

Table 10. SatCLIP similarity scores for different models evaluated on RGB imagery. Lower (negative) scores indicate weaker alignment
under SatCLIP’s multi-spectral embedding space.

Model Avg. SatCLIP Score
SD3 FT HR -0.0148
SD3 FT -0.0105
Diffsat FT -0.0285
Ground Truth -0.0171

The results confirm a significant mismatch: even ground truth RGB images yield negative SatCLIP scores. This outcome
reflects the model’s strong dependence on spectral features unavailable in our dataset, making it unsuitable as a reliable
evaluation metric for RGB-only generative models. For this reason, we did not include SatCLIP as a core benchmark in our
main analysis, though we appreciate the reviewer’s suggestion and include it here for completeness.
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