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Abstract

We propose a new approach for training medical image classification models using seg-
mentation masks, particularly effective in small dataset scenarios. By guiding the model’s
attention with segmentation masks toward relevant features, we significantly improve ac-
curacy for diagnosing Hydronephrosis. Evaluation of our model on identically distributed
data showed either the same or better performance with improvement up to 0.28 in AUROC
and up to 0.33 in AUPRC. Our method showed better generalization ability than baselines,
improving from 0.02 to 0.75 in AUROC and from 0.09 to 0.47 in AUPRC for four different
out-of-distribution datasets. The results show that models trained on smaller datasets using
our approach can achieve comparable results to those trained on datasets 25 times larger.
The source code is available at github.com/MeriDK/segmentation-guided-attention.
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1. Introduction

Can a model trained to predict medical diagnoses for young children maintain the same
level of accuracy for older children? If a model is trained with data from one hospital, will
it perform just as efficiently with data from another? How precise will a model be when
analyzing images produced by different machines? Machine Learning (ML) models struggle
with these scenarios since they are trained on identically distributed (i.i.d.) data. However,
their accuracy can vary significantly when these models are tested on out-of-distribution
(OOD) data. The problem is known as domain shift between i.i.d source and OOD target
domains. It occurs when models are not trained to deal with the domain shift in mind.
This issue is significant for the medical field, where labeled data is limited, and training
different models for each scenario is impractical.

Domain shift is a challenge that extends beyond healthcare. The task of addressing
domain shift is known as Domain Generalization (DG), a problem that exists in almost
every application of ML (Zhou et al., 2022). For example, in the semantic segmentation task
in autonomous driving, a model trained on urban data may fail in rural settings (Hoffman
et al., 2018; Ros et al., 2016), potentially leading to accidents. In personal identification
systems, the model trained on well-illuminated images may not recognize a person in dim
lighting (Sun et al., 2019; Li et al., 2020), potentially preventing access to their home if the
lights are broken. Even with seemingly simple tasks like recognizing handwritten digits,
ML models can underperform due to minor variations like ink color (Ganin and Lempitsky,
2015). Similarly, in the medical domain, a model trained on images collected with one
protocol might be ineffective for images collected through another (Liu et al., 2020). These
examples underline the significance of the problem across different domains.

An excellent survey (Zhou et al., 2022) categorizes various DG methodologies. The
Domain Alignment (Li et al., 2018b,d) methods focus on learning a mapping function
between the domain and target datasets. Meta-learning (Li et al., 2018a; Balaji et al., 2018)
approaches divide data into meta-train and meta-test sets, where a model is trained on the
meta-train set and evaluated on the meta-test set. The methods separate domain-specific
and domain-agnostic features within datasets in the Learning Disentangled Representations
(Li et al., 2017; Ilse et al., 2020) category. While Domain Alignment, Meta-learning, and
Learning Disentangled Representations offer promising approaches, they require a labeled
target dataset during training on a domain dataset. The target dataset is usually unavailable
during training in the medical domain, so other approaches should be used.

The DG survey (Zhou et al., 2022) also covers the methodologies that do not require
a target dataset during the training. Data augmentations (Volpi et al., 2018; Volpi and
Murino, 2019; Xu et al., 2020) simulate a domain shift by changing images. Ensemble
learning (Xu et al., 2014; Cha et al., 2021) trains the same model with a different random
seed for weight initialization or data split. Self-supervised learning (Carlucci et al., 2019;
Bucci et al., 2021) lets a model learn generic features of your data first and then fine-tune
the model for a downstream task. Regularization Strategies (Wang et al., 2019; Huang et al.,
2020) learn generalized features by focusing on global structure instead of local patterns or
by masking out over dominant features. All of these approaches are generally considered to
make more robust models. However, when trained on small datasets, which is usually the
case for the medical domain, their performance might suffer on i.i.d and OOD data.
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before after before after

Figure 1: Illustration of our approach. Before: focus on both organ and background noise.
After: targeted focus on the critical organ.

To address this limitation we utilize Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al., 2017) to create attention maps. GradCAM is a visual explanation
method in computer vision that highlights the regions in an input image that influence
the model’s outcome the most. Prior work showed that this attention mechanism could
be learned, resulting in a better performance for image segmentation (Li et al., 2018c)
and classification tasks (Fukui et al., 2019). This idea has been adapted for the medical
domain: it showed improved accuracy for thyroid nodules (Lu et al., 2022), for chest X-ray
abnormality localization and diagnosis (Ouyang et al., 2020b), for diagnosis of COVID-19
(Ouyang et al., 2020a) and dementia (Lian et al., 2020, 2019). However, these prior studies
used large datasets, ranging from 2,000 MRI scans to as many as 1.2 million images from
ImageNet, and they focused only on i.i.d. data. In contrast, we apply the idea to DG tasks
and demonstrate its effectiveness on small datasets with less than 100 images.

Our study addresses the typical scenario in the medical field where models are trained on
small datasets. Typically, these models learn specific ”useful” noise patterns, leading to high
performance on similar (i.i.d) test datasets. However, their accuracy declines when applied
to new images without these noise patterns. Beyond basic classification tasks, models should
also be trained to disregard features known a priori to be irrelevant. For instance, in kidney
ultrasound classification (see Figure 1), the model should focus only on the kidney, ignoring
background noise. Often, in medical imaging, additional information like segmentation
masks is available. We adapt gradient-based techniques to utilize segmentation masks for
medical imaging with small dataset scenarios. This adaptation allows us to effectively train
models on small datasets and improve their performance when tested on i.i.d and OOD
data without having target datasets during training.

2. Method

Let X be the input image space and Y the label space. A domain is defined as a joint
distribution D = (X ,Y), which contains image-label pairs {(x(n), y(n))}Nn=1, where N is the
number of samples. Our goal is to learn a classification model Fθ : X → Y using the source
domain D for generalization across unseen target domains {D1

tg, D2
tg, . . . , DK

tg} set of K
target domains. In a source domain for input images X , we have corresponding segmentation
masks M that will be utilized for our method. Note that there are no requirements for
masks in target domains. The core idea of our method is to force the model to learn two
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things simultaneously: the attention mechanism learning task and the classification task
itself.

Attention Map Calculation. Given an input image, a classification model processes
it up to a target layer. Let Ak represent the activation of the k-th feature map at this
layer. The gradient of the score for class c, denoted yc, with respect to the activations Ak

of the feature map is computed. This gradient is represented as ∂yc

∂Ak . To obtain the neuron
importance weights αc

k we apply Global Average Pooling (GAP) to these gradients. This is
given by:

αc
k = GAP

(
∂yc

∂Ak

)
(1)

The Class Activation Map (CAM) for class c, denoted as Lc
Grad−CAM , is a weighted sum

of the feature maps, weighted by αc
k, and passed through a ReLU function:

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
(2)

The final Attention Map A is achieved by resizing Lc
Grad−CAM to the dimensions of the

input image.
Attention Loss. It is a custom loss function, denoted as LAttention, that incorporates

the difference between the Grad-CAM Attention Map A and a given ground truth attention
mask M by calculating the mean squared error (MSE) between A and M:

LAttention =
1

N

N∑
i=1

(Ai −Mi)
2 (3)

where N is the total number of pixels in the image, and i indexes these pixels.
This loss function measures the alignment between the regions highlighted by the Grad-

CAM and those indicated by the attention mask. The objective of the training is to minimize
this loss, thereby encouraging the model to focus more on areas marked as important by
the mask.

Overall Loss. The Binary Cross-Entropy Loss LBCE , given the predicted outputs ypred

and the true labels ytrue, is defined as:

LBCE = − 1

N

N∑
i=1

[
ytruei log(ypredi ) + (1− ytruei ) log(1− ypredi )

]
(4)

where N is the number of samples and i indexes these samples.
The overall loss is a weighted combination of the Binary Cross-Entropy Loss LBCE and

the Attention Loss LAttention.

L = αLBCE + βLAttention (5)

where α and β are weighting coefficients that balance the two components of the loss.
In all our experiments α = β = 1.

By combining these two losses, the model not only focuses on minimizing the prediction
error but also emphasizes the alignment of the attention maps with the important regions
as marked by the attention masks.
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3. Experiments

Hydronephrosis (HN) is a medical condition characterized by the swelling of one or both
kidneys due to a urine buildup. It can affect people of any age and is spotted in up to 5%
of babies during routine pregnancy ultrasound scans. However, surgical intervention is only
required in 20% of these cases (Dos Santos et al., 2015). To determine which cases need
intervention, patients receive repeated invasive scans and ultrasounds to monitor whether
the HN is causing functional damage or resolving without the need for surgery. Previously,
deep learning models have used postnatal ultrasound images to predict surgical intervention
in HN from the first ultrasound (Erdman et al., 2020), further investigated predicting HN
grades (Smail et al., 2020) and risk scores (Tabrizi et al., 2021). While prior models (Erdman
et al., 2020; Smail et al., 2020; Tabrizi et al., 2021) worked well for i.i.d data, they showed
lower performance on smaller and OOD datasets.

Datasets. We use five datasets from four pediatric hospitals in North America con-
taining ultrasounds of kidneys. The variation of the data comes not only from its collection
across various hospitals but also from differences in patient demographics and imaging
equipment, attributing to its OOD characteristics. For example, the average patient age
in the Hospital for Sick Children (SickKids) is 53 weeks, while in the Children’s Hospi-
tal of Philadelphia (CHOP), it is 313 weeks. These variances provide a robust setting for
evaluating models for DG.

The source domain dataset D from SickKids has 2542 ultrasounds. 20% of D is held
out to create i.i.d. test dataset Dtest. The rest of the 2048 images are used for training and
validation. Only 83 out of 2048 images have corresponding kidney segmentation masks. We
will utilize these 83 images for training baseline models. The same 83 images with their
segmentation masks will also be used to train our model. To assess the robustness of our
model, we will further use the complete set of 2048 images, which is bigger by 25 times,
to train additional baseline models. We split D into train Dtrain and validation Dval sets,
ensuring each patient’s images appear in only one set. Dtrain has only 66 images with kidney
segmentation masks, creating Dseg

train with 51 non-surgical and 15 surgical cases. Similarly,
the validation set Dseg

val is a subset of Dval and has 10 non-surgical and 7 surgical cases.

We evaluate models on four distinct target domain datasets. The first, TSickKids, in-
cludes data from 202 patients at SickKids, having 711 images, of which 75 are positive.
Despite being collected at the same hospital as the training dataset, patient demographics
and imaging equipment variations make this dataset OOD. The second dataset, TStanford,
is from the Stanford Children’s Hospital (Stanford) and includes data from 103 patients,
with 551 images (27 positive). The third, TUIowa, is from the University of Iowa Children’s
Hospital (UIowa) with 91 patients and 97 images (56 positives). Lastly, TCHOP comes from
CHOP with 89 patients and 89 images, 60 of which are positive. The datasets summary is
shown in Table 1.

Baselines. ResNet-18, ResNet-50 (He et al., 2016), ViT-Tiny, and ViT-Base (Doso-
vitskiy et al., 2020) were trained on Dseg

train and validated on Dseg
val , utilizing Binary Cross

Entropy Loss LBCE only. We tested two weights initialization methods: Kaiming uniform
initialization (random) (He et al., 2015) and using weights pre-trained on ImageNet (Deng
et al., 2009). Hyperparameters were tuned via Bayesian optimization (Snoek et al., 2012)
to minimize the loss on Dseg

val , more details in Appendix A.Consistent image transformations
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Table 1: Datasets Summary

Name Hospital Domain Used for Masks Patients Images Pos Neg

Dtrain SickKids source training × 266 1549 185 1364
Dseg

train SickKids source training ✓ 35 66 15 51
Dval SickKids source validation × 89 499 67 432
Dseg

val SickKids source validation ✓ 7 17 7 10
Dtest SickKids source i.i.d. test × 89 494 71 423
TSickKids SickKids target OOD test × 202 711 75 636
TStanford Stanford target OOD test × 103 551 27 524
TUIowa UIowa target OOD test × 91 97 56 41
TCHOP CHOP target OOD test × 89 89 60 29

are applied across all experiments. Rotation, cropping, horizontal flipping, and normaliza-
tion are used for training, while resizing and normalization are used for validation. We train
all models for 30 epochs with early stopping based on validation AUROC. One NVIDIA
RTX 2080 Ti was used for all experiments. For further analysis, we also trained additional
baseline models on the larger datasets Dtrain and Dval; all experimental setups were the
same.

Our model. We trained the ResNet-18 model on Dseg
train and validated it on Dseg

val ,
utilizing our proposed loss function as described in Equation 5. The model’s weights were
initialized using pre-trained ImageNet weights. All other experimental setups, including
hyperparameters search, image transformations, and training duration, were consistent with
those used in the baseline models.

3.1. Baselines vs. Our Model trained on the Small Datasets.

The results in Table 2 and Table 3 show Area Under the Receiver Operating Characteristic
(AUROC) and Area Under the Precision-Recall Curve (AUPRC) of the baseline models
and our model, all trained on Dseg

train and validated on Dseg
val .

I.i.d. Comparison.

Table 2 presents a comparative analysis of the models performance on i.i.d. test dataset
Dtest. Note, Dtest is a held-out test dataset from the whole dataset D and has 494 images,
while the models are trained on the small subsets Dseg

train and Dseg
val with 66 and 17 images

respectively. This comparison reflects each model’s ability to generalize to new data with a
similar distribution to the training set. Interestingly, only three models, including our own,
were able to effectively generalize to Dtest, showing 0.81-0.83 AUROC and 0.48 AUPRC.

OOD Comparison.

Table 3 presents the performance of the models across four different OOD datasets
TSickKids, TStanford, TUIowa, and TCHOP . Notably, our model consistently outperformed all
baselines across all OOD datasets.
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Table 2: Comparison of models trained on the small dataset Dseg
train for performance on

held-out i.i.d. test dataset Dtest

Model Name Backbone Weights Init. AUROC AUPRC

R18-random-small ResNet-18 Random 0.79 0.43
R18-imagenet-small ResNet-18 ImageNet 0.70 0.27
R50-random-small ResNet-50 Random 0.68 0.30
R50-imagenet-small ResNet-50 ImageNet 0.71 0.28
ViT-T-random-small ViT-Tiny Random 0.55 0.20
ViT-T-imagenet-small ViT-Tiny ImageNet 0.81 0.48
ViT-B-random-small ViT-Base Random 0.54 0.15
ViT-B-imagenet-small ViT-Base ImageNet 0.83 0.48

R18-attention (Ours) ResNet-18 ImageNet 0.82 0.48

Table 3: Comparison of models trained on the small dataset Dseg
train for performance on four

different OOD datasets TSickKids, TStanford, TUIowa, and TCHOP

AUROC AUPRC
Model Name TSickKids TStanford TUIowa TCHOP TSickKids TStanford TUIowa TCHOP

R18-random-small 0.47 0.19 0.33 0.34 0.09 0.04 0.48 0.59
R18-imagenet-small 0.52 0.35 0.72 0.54 0.10 0.04 0.77 0.73
R50-random-small 0.52 0.23 0.39 0.27 0.20 0.04 0.51 0.58
R50-imagenet-small 0.37 0.13 0.18 0.21 0.08 0.03 0.43 0.52
ViT-T-random-small 0.52 0.29 0.76 0.56 0.10 0.03 0.73 0.72
ViT-T-imagenet-small 0.80 0.72 0.80 0.69 0.35 0.22 0.85 0.82
ViT-B-random-small 0.46 0.31 0.71 0.50 0.10 0.03 0.74 0.68
ViT-B-imagenet-small 0.84 0.84 0.72 0.68 0.46 0.33 0.79 0.81

R18-attention (Ours) 0.86 0.88 0.90 0.81 0.53 0.42 0.90 0.92

3.2. Baselines trained on the Big Datasets vs. Our Model trained on the
Small Datasets.

To further analyze our model, we trained additional baselines on the whole train dataset
Dtrain and validation dataset Dval with a total of 2078 images. We compared the baselines
to our model trained on Dseg

train and validated on Dseg
val with a total of 83 images.

I.i.d. Comparison.

Table 4 shows the overall performance of baselines and our model on the held-out i.i.d.
test dataset Dtest. All models, including our trained only on 4% of the data, have com-
parable AUROC (0.82 - 0.87) and AUPRC (0.47 - 0.54), which means all models generalize
well to unseen images from the same i.i.d. distribution.

OOD Comparison.

Table 5 shows models’ performance on OOD datasets TSickKids, TStanford, TCHOP , and
TUIowa. Out of 9 models that perform well on i.i.d. data, only three models, including ours,
transfer well to all OOD datasets. It demonstrates the effectiveness of using our approach,
considering that our model trained on 25 times less data could generalize well to OOD data.
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Table 4: Comparison of baselines trained on the big dataset Dtrain and our model trained
on the small dataset Dseg

train for performance on held-out i.i.d. test dataset Dtest

Model Name Backbone Weights Init. Images AUROC AUPRC

R18-random ResNet-18 Random 2078 0.85 0.50
R18-imagenet ResNet-18 ImageNet 2078 0.87 0.52
R50-random ResNet-50 Random 2078 0.82 0.47
R50-imagenet ResNet-50 ImageNet 2078 0.83 0.52
ViT-T-random ViT-Tiny Random 2078 0.84 0.50
ViT-T-imagenet ViT-Tiny ImageNet 2078 0.86 0.54
ViT-B-random ViT-Base Random 2078 0.84 0.49
ViT-B-imagenet ViT-Base ImageNet 2078 0.85 0.52

R18-attention (Ours) ResNet-18 ImageNet 83 0.82 0.48

Table 5: Comparison of baselines trained on the big dataset Dtrain and our model trained
on the small dataset Dseg

train for performance on four OOD datasets TSickKids, TStanford,
TUIowa, and TCHOP

AUROC AUPRC
Model Name TSickKids TStanford TUIowa TCHOP TSickKids TStanford TUIowa TCHOP

R18-random 0.59 0.35 0.43 0.36 0.19 0.04 0.52 0.59
R18-imagenet 0.88 0.88 0.82 0.85 0.55 0.40 0.88 0.94
R50-random 0.61 0.49 0.66 0.55 0.21 0.06 0.67 0.71
R50-imagenet 0.74 0.66 0.80 0.78 0.23 0.07 0.84 0.84
ViT-T-random 0.53 0.17 0.23 0.27 0.17 0.03 0.43 0.55
ViT-T-imagenet 0.77 0.62 0.66 0.62 0.35 0.12 0.72 0.72
ViT-B-random 0.57 0.22 0.23 0.24 0.24 0.04 0.44 0.54
ViT-B-imagenet 0.89 0.91 0.88 0.85 0.55 0.48 0.88 0.93

R18-attention (Ours) 0.86 0.88 0.90 0.81 0.53 0.42 0.90 0.92

4. Conclusion

This paper presented a new method for improving medical image classification models using
segmentation masks, especially effective in small dataset scenarios (less than 100 images).
By utilizing a specialized loss function, our model demonstrated remarkable performance
on both i.i.d. and OOD datasets despite limited training data. It matched or exceeded
the performance of other models trained on similar-sized datasets in i.i.d. scenarios and
consistently outperformed all baselines in OOD settings. Notably, our model, trained on
just 4% of the data, showed the same or even better performance as baselines trained on
significantly larger datasets in i.i.d. and OOD settings. The implications of these results
are promising. Creating segmentation masks, which our method relies on, could be more
feasible than gathering extensive data on rare diseases. Additionally, our model’s ability to
transfer across different hospitals could reduce the need for unique models for each medical
setting.
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Appendix A. Hyperparameterms Search

In our study, we used Bayesian optimization to systematically explore and identify optimal
hyperparameters for training all models. We focused on tuning batch size, gamma, learning
rate, and weight decay, aiming to minimize the validation loss. We tested batch sizes of 16,
32, 64, and 128; gamma values ranging from 0.99 to 0.85 in decrements of 0.02; learning
rates of 0.1, 0.01, 0.001, 0.0001, 1e-05, and 1e-06; and weight decay parameters of 0.3, 0.1,
0.03, 0.01, 0.003, and 0.001. The best set of hyperparameters for each model is reported in
the Table 6.

Table 6: Hyperparameter Selection for Models

Model Name Batch Size Gamma Learning Rate Weight Decay

R18-random-small 32 0.91 0.001 0.1
R18-imagenet-small 16 0.91 0.001 0.1
R50-random-small 32 0.85 0.01 0.01
R50-imagenet-small 64 0.85 0.01 0.01
ViT-T-random-small 64 0.85 0.01 0.003
ViT-T-imagenet-small 128 0.95 0.0001 0.01
ViT-B-random-small 16 0.85 0.000001 0.3
ViT-B-imagenet-small 128 0.91 0.00001 0.001
R18-random 64 0.89 0.001 0.001
R18-imagenet 64 0.93 0.00001 0.01
R50-random 64 0.87 0.001 0.001
R50-imagenet 16 0.93 0.0001 0.001
ViT-T-random 32 0.87 0.0001 0.001
ViT-T-imagenet 16 0.99 0.00001 0.01
ViT-B-random 16 0.91 0.00001 0.001
ViT-B-imagenet 16 0.87 0.000001 0.03
R18-attention (Ours) 128 0.85 0.001 0.1

Appendix B. Attention Score

To quantify how much different models actually pay attention to the region of interest, we
create a new metric Attention Score, which has two components Overlap Score and Coverage
Score. Overlap Score (OS) measures the proportion of the important areas, as defined by
the ground truth mask M, that is successfully captured by the attention map A:

OS(A,M) =

∑N
i=1min(Ai,Mi)∑N

i=1Mi

(6)

where N is the total number of pixels, and i indexes these pixels. Coverage Score (CS)
assesses the concentration and specificity of the model’s attention, evaluating how much of
the attention map’s activation A is meaningfully focused on the target areas M:

CS(A,M) =

∑N
i=1min(Ai,Mi)∑N

i=1Ai

(7)
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where N is the total number of pixels, and i indexes these pixels. You can think
about the Overlap Score as a Recall metric and the Coverage Score as Precision but for
Attention maps instead of classification labels. The final Attention Score is computed as
the harmonic mean of the Overlap Score and Coverage Score, providing a balanced measure
of both overlap and coverage:

AttentionScore(A,M) = 2× OS(A,M)× CS(A,M)

OS(A,M) + CS(A,M)
(8)

Table 7: Attention Scores on i.i.d. Dtest and OOD datasets TSickKids, TStanford, TUIowa,
and TCHOP

Model Name Dtest TSickKids TStanford TUIowa TCHOP

R18-random 0.38 0.51 0.34 0.46 0.44

R18-imagenet 0.43 0.56 0.52 0.57 0.52

R50-random 0.40 0.49 0.40 0.40 0.51

R50-imagenet 0.41 0.48 0.43 0.45 0.45

ViT-T-random 0.44 0.57 0.10 0.23 0.09

ViT-T-imagenet 0.26 0.41 0.32 0.43 0.42

ViT-B-random 0.45 0.59 0.50 0.67 0.58

ViT-B-imagenet 0.27 0.36 0.38 0.39 0.39

R18-attention (Ours) 0.57 0.60 0.61 0.59 0.62

In Table 7, we show that our model generally outperforms other models in terms of
Attention Score. The interesting exception is the Attention Score for the ViT-B-random
model on TUIowa dataset, where it shows a higher score than our model. Considering the low
performance of the ViT-B-random model in terms of AUROC and AUPRC on that dataset,
we conclude that the attention score, even though it is a useful indicator of the model’s
performance, is only a part of the evaluation and should be considered in combination with
other metrics.

Appendix C. Datasets Information

Training Dataset
Sex distribution: 2027 M, 515 F.
Kidney side distribution: 1289 Left, 1253 Right.
Ultrasound machine distribution: philips-medical-systems: 992, toshiba-mec: 497, NA:
376, ToshibaST: 258, PhilipsST: 112, SamsungST: 97, ge-medical-systems: 45, samsung-
medison-co-ltd: 36, OutsideST: 26, acuson: 25, atl: 22, toshiba-mec-us: 20, TreeST: 17,
GEST: 13, siemens: 4, ge-healthcare: 2.
The age varies from 0.14 weeks to 720 weeks, with an average of 53 weeks.

OOD dataset TSickKids

Sex distribution: 599 M, 112 F.
Kidney side distribution: 475 Left, 236 Right.
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Ultrasound machine distribution: ToshibaST: 294, PhilipsST: 247, SamsungST: 158, Out-
sideST: 12.
The age varies from 0.29 weeks to 92 weeks, with an average of 17 weeks.

OOD dataset TStanford

Sex distribution: 413 M, 138 F.
Kidney side distribution: 275 Left, 276 Right.
Ultrasound machine distribution: Stanford: 551.
The age varies from 104.0 weeks to 988 weeks, with an average of 190 weeks.

OOD dataset TUIowa

Sex distribution: 80 M, 17 F.
Kidney side distribution: 59 Left, 38 Right.
Ultrasound machine distribution: UIowa: 97.
The age varies from 0.14 weeks to 266 weeks, with an average of 28 weeks.

OOD dataset TCHOP

Sex distribution: 55 M, 34 F.
Kidney side distribution: 56 Left, 33 Right.
Ultrasound machine distribution: Philips: 51, GE: 16, Phillips: 7, HDI 5000: 3, Siemens: 2,
Acuson: 2, General electric: 1, MRI abd w/wo, RBUS 7/19/2010: 1, Cineloop: 1, Mindray:
1, Toshiba: 1.
The age varies from 1.43 weeks to 1001 weeks, with an average of 313 weeks.

Appendix D. Limitations and Future Work

Limitations. Even though our model performed well on multiple out-of-distribution
datasets, it’s worth noting that all the data came from hospitals in the USA and Canada.
In real-world scenarios, particularly in areas with substantially different demographics or
medical equipment, our model might show diminished performance.

Future Work. We plan to conduct a series of comprehensive ablation studies to pre-
cisely quantify the impact of attention loss on the performance of each model separately.
Additionally, we aim to broaden the applicability and robustness of our model by collect-
ing and incorporating data from hospitals outside North America. This effort will test the
model’s ability to generalize across diverse demographics, addressing potential biases and
enhancing its global applicability. Furthermore, we intend to explore the potential of our
approach in other clinical settings, such as the diagnosis of pneumonia in lung ultrasound
images. By extending our domain generalization efforts to various medical imaging tasks,
we hope to contribute further to the advancement of AI in healthcare, ensuring models are
both effective and equitable across different populations and conditions.
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