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Abstract
We examine the problem of learning sequential
tasks from a single visual demonstration. A key
challenge arises when demonstrations are tem-
porally misaligned due to variations in timing,
differences in embodiment, or inconsistencies in
execution. Existing approaches treat imitation as
a distribution-matching problem, aligning individ-
ual frames between the agent and the demonstra-
tion. However, we show that such frame-level
matching fails to enforce temporal ordering or en-
sure consistent progress. Our key insight is that
matching should instead be defined at the level
of sequences. We propose that perfect matching
occurs when one sequence successfully covers
all the subgoals in the same order as the other
sequence. We present ORCA (ORdered Coverage
Alignment), a dense per-timestep reward func-
tion that measures the probability of the agent
covering demonstration frames in the correct or-
der. On temporally misaligned demonstrations,
we show that agents trained with the ORCA re-
ward achieve 4.5x improvement (0.11 → 0.50
average normalized returns) for Meta-world tasks
and 6.6x improvement (6.55 → 43.3 average re-
turns) for Humanoid-v4 tasks compared to the
best frame-level matching algorithms. We also
provide empirical analysis showing that ORCA
is robust to varying levels of temporal misalign-
ment. The project website is at https://
portal-cornell.github.io/orca/

1. Introduction
Designing reward functions for reinforcement learning (RL)
is tedious (Eschmann, 2021), especially for tasks that require
completing subgoals in a strict order. A more scalable way
is to learn rewards from a video demonstration. However,
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learning from videos is challenging because demonstrations
are often temporally misaligned—variations in timing, em-
bodiment, or execution mean that frame-level matching fails
to enforce correct sequencing. To follow a demonstration,
an agent must not only match states but also make consistent
progress through the subgoals in the right order.

Inverse reinforcement learning (IRL) (Abbeel & Ng, 2004;
Ziebart et al., 2008) provides a principled way to infer re-
wards by matching the learner’s trajectory to expert demon-
strations. Recent IRL approaches apply optimal transport
(OT) (Peyré & Cuturi, 2020) to align visual embeddings
between frames (Cohen et al., 2022; Fu et al., 2024c; Guzey
et al., 2024; Haldar et al., 2023a;b; Liu et al., 2024; Tian
et al., 2024). However, these methods operate at the frame
level, ignoring temporal dependencies: an agent can revisit
subgoals, skip ahead, or stall without penalty. As a re-
sult, frame-matching approaches fail on sequence-matching
tasks, where the correct subgoal order is crucial for success.

Our key insight is that matching should be defined at the
sequence level instead of the frame level when learning
rewards for sequence-matching tasks. Under temporal mis-
alignment, we claim that two sequences only match if one
sequence aligns with all of the other sequence’s subgoals in
the same order. This leads to an intuitive and principled re-
ward function for sequence-matching tasks: an agent should
be rewarded for covering all subgoals in order, without re-
quiring precise timing alignment.

We propose ORCA (ORdered Coverage Alignment), which
computes dense rewards given a single video demonstration
and a visual learner trajectory, as shown in Fig. 1. Con-
cretely, the reward function is recursively defined as the
probability that (1) the learner currently occupies the sub-
goal specified by the final video frame, and (2) the learner
has already covered all prior frames in the correct order.
In practice, we train an ORCA policy via RL in two stages.
First, we initialize the policy by training with rewards that
assume a temporally aligned demonstration. Second, we re-
fine this policy with ORCA rewards to significantly improve
its efficiency and performance. Our key contributions are:

1. A novel, principled reward function class ORCA that
formulates the reward as an ordered coverage problem.

2. Analysis on the weakness of rewards based on optimal
transport and other frame-level matching algorithms.
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Figure 1. ORCA overview. The expert video demonstrates the Stick-Push task, where the robot must grasp the tool before pushing the
water bottle. However, this demonstration is temporally misaligned because it contains long pauses before picking up the tool. To learn
from this demonstration, ORCA provides a per-timestep reward for the visual learner trajectory ξ = {ot}Tt=1. (1) Each frame is passed
through an off-the-shelf visual encoder before calculating its distance with respect to the other frames. (2) The ORCA reward calculates
the probability that the learner has covered all the frames in the correct order.

3. Experiments showing that the ORCA reward can effec-
tively and efficiently train RL agents to achieve 4.5x im-
provement (0.11 → 0.50 average normalized return) for
Meta-world tasks and 6.6x improvement (6.55 → 43.3
average return) for Humanoid-v4 tasks compared to
the best frame-level matching approach.

2. Problem Formulation
Sequence-matching problems focus on tasks where it is
critical to follow the entire sequence in the correct order:
e.g., for assembly tasks, robots must assemble all parts in
the demonstrated order. We model the problem as a Markov
Decision Process (MDP) (S,A, T , r, γ). At time t, the
agent at state st ∈ S receives an image observation ot ∈ O
of the state. On taking action at ∈ A, it transitions to a new
state st+1 ∈ S and gets a new observation ot+1 ∈ O.

We assume the reward function for this task is unknown.
Instead, we assume access to a single visual demonstration
of the task, ξ̃ = {õ1, . . . , õT̃ }. The robot policy must follow
all subgoals in the same order as the demonstration. Im-
portantly, this demonstration may be temporally misaligned
with the learner’s trajectory and have a different execution
speed. Additionally, the demonstration lacks state and action
labels, rendering classical imitation learning inapplicable.

Instead, we approach this as an inverse reinforcement learn-
ing (IRL) problem, where the reward R(o1:t, ξ̃) is defined
as a function of the visual demonstration ξ̃ and the learner’s
observations. The goal is to learn a policy π∗(a|s) that
maximizes the expected discounted sum of rewards:

π∗ = argmax
π

Eπ

[
T∑

t=1

γtR(o1:t, ξ̃)

]
.

3. Desiderata of Sequence-Matching Rewards
IRL can be formulated as a distribution matching problem
between the learner and the demonstrator on “moments",
i.e., expectations of reward basis functions (Swamy et al.,
2021). Hence, solving IRL is equivalent to optimizing In-
tegral Probability Metrics (IPMs) between the learner and
demonstrator distributions (Sun et al., 2019). Recent works
use optimal transport (OT) by minimizing the Wasserstein
distance (an IPM) between embeddings of the frames in
the learner and demonstration trajectories. They work with
Markovian moments that depend on only a single frame.

However, the true reward function for a sequence-matching
task depends on trajectory history to determine whether the
agent has followed the subgoals in order, so it is not in the
span of Markovian moments. Instead of matching the distri-
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Figure 2. Failure cases for OT reward. The suboptimal learner
trajectory ξ− moves in the counter-clockwise direction while opti-
mal one ξ+ moves clockwise. Unlike the learner, the agent in the
demonstration trajectory can move multiple cells per timestep.

bution over frames, we should be matching the distribution
over trajectories. We propose that the corresponding reward
should be a measure of:

1. Subgoal Ordering: A learner trajectory that completes
the subgoals in the correct order should receive a higher
cumulative reward than one that completes the sub-
goals in the wrong order.

2. Subgoal Coverage: A learner trajectory that completes
more of the subgoals should receive a higher cumula-
tive reward than one that completes less of them.

Rewards that use frame-level matching fail to satisfy these
desiderata: OT fails to enforce subgoal covering (Sec. 3.1),
and mitigations to OT’s problem fail to enforce full subgoal
coverage (Sec. 3.2 and 3.3).

3.1. Optimal Transport Fails to Respect Ordering

Prior works in imitation learning use Optimal Transport
(OT) (Peyré & Cuturi, 2020), specifically the Wasser-
stein distance, to measure how closely a learner trajec-
tory matches a demonstration trajectory (Fu et al., 2024c;
Kedia et al., 2025; Papagiannis & Li, 2022; Tian et al.,
2024). These approaches assume a Markovian distance

metric d(·, ·) that measures the distance between the em-
beddings of a learner and demonstration frame. Given
a learner trajectory ξ = {ot}Tt=1 and a video demon-
stration ξ̃ = {õj}T̃j=1, they define corresponding learner
and demonstration distributions that are uniform in time.
Specifically, ρ = 1

T

∑T
t=1 δot , where δot is a Dirac distri-

bution centered on ot. The demonstration similarly has
a distribution of ρ̃ = 1

T̃

∑T̃
j=1 δõj . Consequently, the

matching matrices are evenly weighted, defined as the set
M = {µ ∈ RT×T̃ : µ1 = 1

T , µ
T1 = 1

T̃
}. With an en-

tropy regularizer H(·), OT solves for the optimal matching
matrix:

µ∗ = arg min
µ∈M

T∑
t=1

T̃∑
j=1

d(ot, õj)µt,j − ϵH(µ). (1)

The OT reward is:

ROT(ot, ξ, ξ̃) = −
T̃∑

j=1

d(ot, õj)µ
∗
i,j . (2)

Although this is a non-Markovian reward function, it still
matches Markovian moments. This is clear in its failure to
enforce subgoal ordering.
Counterexample 3.1. There exists an MDP (Fig. 2) where
OT fails to penalize violations of temporal ordering.

The OT reward uses a Markovian distance based on two
frame embeddings, and there are no temporal constraints on
µ∗ in (1). Thus, OT does not penalize trajectories that com-
plete subgoals in the wrong order. Fig. 2 shows an example
where a suboptimal trajectory that visits the subgoals in the
reversed order has the same OT reward as the optimal one.

3.2. Dynamic Time Warping Fails to Cover All Subgoals

Dynamic Time Warping (DTW) (Sakoe & Chiba, 1978)
overcomes the subgoal ordering problem of OT by tem-
porally aligning the learner and demonstration trajectories,
while allowing for flexible distribution of the assignment
over each demonstration frame. Specifically, each matching
matrix µ must align the beginning and the end of two tra-
jectories (i.e., µ1,1 = 1 and µT,T̃ = 1), and the indices of
its positive entries must be non-decreasing in time. Subject
to these constraints, DTW solves for the optimal matching:
µ∗ = argminµ

∑T
t=1

∑T̃
j=1 µt,jd(ot, õj).

Given µ∗, the DTW reward is the same as (2). DTW’s
temporal constraints allow it to avoid the example failure of
OT (shown in Fig. 7 of Appendix A.2), but they lead to a
new failure mode.
Counterexample 3.2. There exists an MDP (Fig. 8,
App. A.2) where DTW fails to penalize incomplete subgoal
coverage.
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Although DTW constrains the order of assignment, it does
not limit the number of learner frames matched with each
subgoal. Once the learner reaches an intermediate subgoal,
it can achieve high DTW reward by remaining in that sub-
goal until the last few frames of the trajectory. Fig. 8 of
Appendix A.2 shows an example where a trajectory stuck in
the second subgoal achieves the same DTW reward as a tra-
jectory that completes all subgoals. This is a local minimum
that could cause RL agents to stall at earlier subgoals.

3.3. TemporalOT Fails to Cover All Subgoals under
Temporal Misalignment

Recognizing the limitations of OT, Fu et al. (2024c) propose
TemporalOT, which alters the OT objective to optimize over
a temporally masked cost matrix. Specifically, the mask is a
variant of the diagonal matrix with a hyperparameter kw to
define the width of the diagonal:

Wt,j =

{
1, if j ∈ [t− kw, t+ kw],

0, otherwise.
(3)

Consequently, TemporalOT solves for the optimal matching
matrix µ∗ ∈ M with the same constraints as (1):

µ∗ = arg min
µ∈M

T∑
t=1

T̃∑
j=1

Wt,jd(ot, õj)µt,j − ϵH(W ⊙ µ).

(4)
Given µ∗, the TemporalOT reward is the same as (2).
Counterexample 3.3. There exists an MDP (Fig. 9,
App. A.2) where TemporalOT fails to penalize trajectories
that do not reach every subgoal given a temporally mis-
aligned demonstration.

To define the mask window, TemporalOT makes the strong
assumption that the demonstration is temporally aligned
with the learner trajectory. Regardless of how temporally
misaligned a demonstration is, TemporalOT’s matching ma-
trix always approximates a diagonal matrix, matching an
equal proportion of learner frames to each subgoal. Fig. 9
of Appendix A.2 shows an example where a suboptimal,
slower policy that does not reach later subgoals has a higher
TemporalOT reward than an optimal policy that makes con-
sistent progress to complete the task.

4. Approach
We introduce ORCA (ORdered Coverage Alignment), a re-
ward function that measures, at each time step, the prob-
ability that (1) the learner currently occupies the subgoal
specified by the final video frame, and (2) it has already cov-
ered all prior frames in the correct order. Since the ORCA
reward at time t depends on the learner trajectory up until t,
it models the non-Markovian nature of sequence-matching

tasks. In Sec. 4.2, we theoretically analyze and prove that
ORCA satisfies the desiderata proposed in Sec. 3.

4.1. ORCA: Ordered Coverage Reward Function

We define the ordered coverage for two sequences as the
probability that one sequence covers all the subgoals in the
same order as the other sequence. Ordered coverage shares
the same recursive nature as the true reward function of
sequence-matching tasks: it depends on how well the final
subgoal is covered and how well previous subgoals have
already been covered. We next present how to calculate
ordered coverage and use it to compute rewards.

Calculate ordered coverage via dynamic programming.
Given a video demonstration and a learner trajectory, we
can calculate ordered coverage between the two sequences
by computing the matrix Ct,j , which is the probability that
the segment of the learner trajectory from time 1 to t has
covered the first to the j-th subgoals in the correct order.
By the recursive definition of ordered coverage, Ct,j can be
expressed with two components: (1) the ordered coverage
until the (j − 1)-th subgoal and (2) how well the learner is
currently occupying the j-th subgoal. In addition, ordered
coverage should be nondecreasing over time: i.e., once the
learner has covered a subgoal at a timestep, it is always at
least equally successful in future timesteps. Let Gt,j denote
the event that the learner occupies the j-th demonstration
subgoal at timestep t. We assume that the probability for
this event is proportional to the negative exponent distance:
P (Gt,j) ∝ exp(−λd(ot, õj)), where λ is a temperature
hyperparameter. For simplicity, we substitute P (Gt,j) with
Pt,j . Thus, we recursively calculate ordered coverage:

Ct,j = max{Ct−1,j , Ct,j−1Pt,j}. (5)

Algorithm 1 shows the entire computation.

ORCA reward function. In most robotics tasks, the learner
should stay in the final demonstration subgoal after covering
all previous subgoals. A reward function that directly uses
the ordered coverage for the final subgoal does not satisfy
this requirement: even if the learner does not remain occupy-
ing the final subgoal, as long as it has covered the subgoal at
one timestep, the maximum operator in (5) keeps the reward
high for remaining timesteps. Instead of simply equating
the reward to Ct,T̃ , the final ORCA reward at timestep t is:

RORCA(ot, ξ, ξ̃) = Ct,T̃−1Pt,T̃ . (6)

Runtime complexity. ORCA’s runtime complexity is O(T ·
T̃ ). This is the lower bound time complexity of any method
that relies on a frame-level distance matrix, including all
OT-based methods. To validate this, we experimentally
tested the latency of ORCA against a variety of common
baselines, finding that ORCA is faster than TemporalOT and
comparable to OT. See Appendix C.6 for details.
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Algorithm 1 ORCA Rewards.

Input: learner traj ξ = {ot}Tt=1, demo traj ξ̃ = {õj}T̃j=1,
distance function d(·, ·), temperature term λ
// Calc probability matrix
Pi,j = exp(−λd(ot, õj)) for t ∈ [[T ]], j ∈ [[T̃ ]]
// Init coverage at learner time t = 1

C1,1 = P1,1

C1,j = C1,j−1P1,j for j ∈ {2, 3, . . . , T̃}
// Init coverage of first demo frame j = 1

Ct,1 = max{Ct−1,1, Pt,1} for t ∈ {2, 3, . . . , T}
// Solve recurrence relation (5)
for t = 1 to T do

for j = 1 to T ′ do
Ct,j = max{Ct−1,j , Ct,j−1Pt,j}

end for
end for
// Compute the final ORCA rewards (6)
Return Rewards RORCA = {Ct,T̃−1Pt,T̃ | t ∈ [[T ]]}

4.2. Analysis

The ORCA reward satisfies the two desiderata for a sequence-
matching reward function (Sec. 3), overcoming the failure
modes of frame-level matching algorithms. In the following
analysis, we define a subgoal õj to be occupied if Pt,j ≈ 1.
Proposition 4.1 (ORCA enforces subgoal ordering). Let
ξ− be a trajectory that is out of order; specifically, there
exists a subgoal õj such that õj is occupied at time t but
õj−1 is not yet occupied. Let ξ+ be a trajectory that is
identical to ξ−, except that it occupies õj−1 before time t.
Then, RORCA(o

+
t , ξ

+, ξ̃) > RORCA(o
−
t , ξ

−, ξ̃).

By (5), at a timestep, the ordered coverage of the current
subgoal can be no greater than the coverage of the previous
subgoal. Since ξ+ occupies õj−1 before t and ξ− does not,
ξ+ achieves a greater coverage of the subgoal õj−1 than
ξ−. The trajectories are otherwise equivalent, so ξ+ must
achieve a higher ORCA reward at time t. A formal proof is
given in Appendix A.1. This overcomes OT’s failure mode
(Sec. 3.1).
Proposition 4.2 (ORCA enforces subgoal coverage). Let
ξ− be a trajectory that occupies õj−1 at time t − 1 and
continues to occupy õj−1 at time t, instead of progressing
towards õj . Let ξ+ be an identical trajectory that pro-
gresses towards õj at t, and assume that neither trajectory
has been closer to õj before. Then, RORCA(o

+
t , ξ

+, ξ̃) >

RORCA(o
−
t , ξ

−, ξ̃).

Both trajectories achieve the same coverage of subgoals up
to õj−1. Since ξ+ moves closer to the next subgoal õj than
ξ−, it achieves a higher probability of occupying õj and
gets higher coverage of õj . The trajectories are otherwise
equivalent, so ξ+ must achieve a higher ORCA reward at

time t. A formal proof is given in Appendix A.1. This
overcomes the failure modes of DTW and TemporalOT in
Sec. 3.2 and 3.3. Appendix A.2 visualizes how the ORCA
reward avoids the example failures of these frame-level
matching algorithms.

4.3. Pretraining

We observe that in practice, ORCA can have multiple local
minima. This is because the agent is trying to achieve high
coverage for many subgoals. It has a trade-off between
covering all subgoals equally well, which is often slower, or
quickly achieving high coverage for most subgoals while a
small portion of them get lower (but still nonzero) coverage.
Some of these minima are undesirable, e.g. if the small
portion of subgoals that the agent only partially covers are
vital to the task and require the agents to match them more
perfectly, the agent is more likely to fail.

To initialize the agent in a better basin, we first bias the
agent towards spending an equal amount of time attempting
to cover each subgoal, and then train with the ORCA reward.
Specifically, we pretrain the agent on a reward function that
assumes the video demonstration is temporally aligned (e.g.,
TemporalOT rewards). In Section 5, we empirically show
the importance of pretraining.

5. Experiments
5.1. Experimental Setup

Environments. We evaluate our approach across two envi-
ronments (details in Appendix B):

• Meta-World (Yu et al., 2020). Following Fu et al.
(2024c), we use ten tasks from the Meta-world environ-
ment to evaluate the effectiveness of ORCA reward in the
robotic manipulation domain. On each rollout, the loca-
tions of task-relevant objects are randomized according
to the default setup of Metaworld. The training and evalu-
ation seeds are also different. We classify the tasks into
three difficulty levels based on the number of types of mo-
tions required and whether the task requires precision. Vi-
sual demonstrations are generated using hand-engineered
policies provided by the environment.

• Humanoid. We define four tasks in the MuJoCo
Humanoid-v4 environment (Todorov et al., 2012) to
examine how well ORCA works with precise motion. Be-
cause there is no predefined expert, we obtain visual
demonstrations by rendering an interpolation between
the initial and goal joint state.

RL Policy. For Meta-world, we follow the RL setup in
Fu et al. (2024c). We train DrQ-v2 (Yarats et al., 2021)
with state-based input for 1M steps and evaluate the policy
every 10k steps on 10 randomly seeded environments. For
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Table 1. Meta-world results on temporally misaligned demonstrations. We report the mean expert-normalized returns with standard
error, and we highlight the top-performing approaches. Multiple are included if they are within the standard error of the top score. Agents
trained with ORCA consistently outperform other frame-level matching approaches. RoboCLIP is omitted because it fails for all tasks.

Category Environment Threshold DTW OT TemporalOT ORCA (NP) ORCA

Easy Button-press 0.30 (0.10) 0.00 (0.00) 0.00 (0.00) 0.10 (0.02) 0.45 (0.11) 0.62 (0.11)
Door-close 0.34 (0.07) 0.00 (0.00) 0.00 (0.00) 0.19 (0.01) 0.86 (0.01) 0.88 (0.01)

Medium

Door-open 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.08 (0.01) 1.60 (0.09) 0.89 (0.13)
Window-open 0.72 (0.14) 0.00 (0.00) 0.19 (0.06) 0.26 (0.05) 0.86 (0.17) 0.85 (0.16)
Lever-pull 0.07 (0.02) 0.00 (0.00) 0.00 (0.00) 0.07 (0.03) 0.27 (0.08) 0.28 (0.09)
Hand-insert 0.00 (0.00) 0.00 (0.00) 0.03 (0.02) 0.00 (0.00) 0.08 (0.08) 0.04 (0.04)
Push 0.07 (0.05) 0.00 (0.00) 0.03 (0.01) 0.01 (0.01) 0.02 (0.02) 0.00 (0.00)

Hard
Basketball 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.07 (0.03) 0.01 (0.00)
Stick-push 0.12 (0.04) 0.00 (0.00) 0.07 (0.02) 0.36 (0.00) 0.46 (0.13) 1.25 (0.04)
Door-lock 0.00 (0.00) 0.05 (0.02) 0.04 (0.02) 0.00 (0.00) 0.23 (0.09) 0.19 (0.08)

Average 0.16 (0.02) 0.01 (0.00) 0.04 (0.01) 0.11 (0.01) 0.49 (0.04) 0.50 (0.04)

Table 2. Humanoid results on temporally misaligned demon-
strations. Results are presented as the mean returns with standard
error. TemporalOT is abbreviated to TOT. For results of all base-
lines, see Table 4 in Appendix C.

Task TOT ORCA (NP) ORCA

Arm up (L) 5.29 (2.22) 65.9 (8.25) 81.6 (3.65)
Arm up (R) 7.67 (2.88) 92.5 (4.71) 49.6 (5.00)
Arms out 1.62 (0.75) 72.7 (10.1) 8.50 (2.60)
Arms down 11.6 (3.56) 19.7 (5.03) 33.4 (7.20)

Average 6.55 (2.35) 62.9 (7.02) 43.3 (4.61)

the Humanoid environment, we train SAC (Haarnoja et al.,
2018) for 2M steps and evaluate the policy every 20k steps
on 8 environments. All policies use state-based input, and in
metaworld we include an additional feature that represents
the percentage of total timesteps passed. Appendix B.4
contains RL training details and hyperparameters.

Baselines. We compare ORCA against baselines that use
frame-level matching algorithms: OT (Tian et al., 2024),
TemporalOT (Fu et al., 2024c), and DTW (Sakoe & Chiba,
1978). We also compare ORCA, which is pretrained on Tem-
poralOT rewards for half of the total timesteps and ORCA
rewards for the remaining timesteps, against ORCA(NP),
which fully trains on ORCA rewards without any initial-
ization. All approaches use the pretrained ResNet50 (He
et al., 2016) to extract visual features and cosine similar-
ity as the distance function. We include a simple baseline
Threshold, which tracks the subgoals completed based
on a threshold distance, and a transformer-based approach
RoboCLIP (Sontakke et al., 2024), which directly encodes
an entire video. Details are in Appendix B.5. We also inves-
tigate a language-conditioned baseline and a traditional IRL

baseline on a subset of the tasks in Appendix C.3.

Metrics. We evaluate the final checkpoints of all approaches
on cumulative binary rewards, or returns, so a policy that
succeeds quickly and remains successful is better. In Meta-
world, we use the ground-truth sparse rewards and report
the normalized return, which is the return as a fraction of the
expert’s return on the same task, given the same number of
timesteps. We define a success metric for Humanoid, using
privileged states, which no approaches have access to. An
agent is successful if it can remain standing (torso height
above 1.1) and its arm joint position is close to the goal joint
position (Euclidean distance less than 1). There is no expert
in for Humanoid tasks, so we report unnormalized returns.

5.2. How well does ORCA perform given temporally
misaligned demonstrations?

Metaworld. For each original demonstration, we subsample
it such that the first one-fifth retains the original execution
speed, but the rest is sped up by five to ten times. In Ta-
ble 4.3, the ORCA reward significantly outperforms other
baselines and trains agents to acquire the highest average
normalized return of 0.50. The Push task is difficult for all
approaches and the only one where ORCA or ORCA(NP)
does not achieve top performance. As analyzed by Fu et al.
(2024d), the distance matrix is generally noisier for the Push
task due to the small size of the target object, which benefits
a sparser reward function like Threshold. Meanwhile,
rewards based on frame-level matching algorithms perform
poorly on all tasks, revealing their weakness when encoun-
tering temporal misalignment.

Humanoid. Because there does not exist an expert policy
for the Humanoid tasks, we generate demonstrations by
interpolating ten frames between the initial and final joint
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Figure 3. Qualitative example of TemporalOT failing to encourage full subgoal coverage. The video demonstration shows how to
open a door by latching on the door handle, but it speeds through the movement after latching. TemporalOT trains a slow agent that
fails to complete the task due to its diagonal-like matching matrix, but ORCA trains a successful agent that completes the task efficiently.

positions. These demonstrations are naturally temporally
misaligned because the environment is unstable, making it
impossible to follow the subgoals at the same speed. Ta-
ble 2 shows that agents trained with ORCA(NP) achieve
the highest average cumulative return of 62.9. Due to poor
TemporalOT performance, ORCA does not benefit from
pretraining, and ORCA(NP) thus performs better because it
is trained on the ordered coverage reward for more steps. We
further investigate the failure of TemporalOT in Sec. 5.4.
Meanwhile, Fig. 15 in Appendix C shows how the ORCA
reward satisfies Prop. 4.1 and 4.2, covering the subgoals as
quickly as possible and successfully completing the task.

Varying Misalignment Level. We identify two types of
temporal misalignment: either a slower demonstration that
contains pauses, or a faster demonstration that accelerates
through a segment. For each misalignment type, we ran-
domly perturb the original demonstrations of three Meta-
world tasks (Door-open, Window-open, Lever-pull), where
the misalignment level controls how varied and nonlinear
speed changes are. See appendix B.6 for details.

In Fig. 4, ORCA consistently maintains a higher return com-
pared to TemporalOT as the demonstrations become more
misaligned. Meanwhile, TemporalOT’s performance sig-
nificantly deteriorates when there is any level of misalign-
ment. When the demonstrations are sped up, because
TemporalOT encourages agents to spend an equal amount
of time at each subgoal (in-depth discussion in Sec 5.4),
TemporalOT agents often cannot finish the task in time.
This problem is further exacerbated when the demonstra-
tions are slowed down and longer than the learner trajec-
tory. ORCA’s performance also worsens more given slower
demonstrations compared to faster ones.

In addition to being affected by poor initialization due to

TemporalOT’s poor performance, we observe that when
ORCA agents fail, they successfully follow the general mo-
tions of the demonstration, but they miss details (e.g., align-
ing the gripper with the target object). We hypothesize that
this behavior is caused by the frame-level distance metric,
which pays more attention to the general robot arm motions
than details, allowing most subgoals to achieve relatively
good coverage.

5.3. How important is enforcing subgoal ordering?

Fig. 17 in Appendix C.1 shows a key failure point for OT: its
matching matrix can match later subgoals to earlier learner
frames and vice versa. The optimal matching matrix min-
imizes the transport cost regardless of the order in which
subgoals are completed, thereby giving higher OT rewards to
trajectories that violate the temporal ordering. In both Meta-
world and Humanoid environments, the OT rewards create
a difficult optimization landscape that causes the agents to
learn undesirable behaviors. Fig. 17 also demonstrates that
TemporalOT can violate temporal ordering depending on
the demonstration length and the mask window size. Tuning
this value is a major drawback of TemporalOT because it
requires prior knowledge of the temporal alignment.

5.4. How important is enforcing full subgoal coverage?

Fig. 3 shows that ORCA successfully trains an efficient agent,
while the TemporalOT agent opens the door much more
slowly and fails. The OT/TemporalOT formulation as-
sumes that the learner and demonstration distributions are
uniform in time. However, given a temporally misaligned
demonstration, different portions of learner frames should
be matched to different subgoals, which is impossible us-
ing this formulation. Empirically, successful trajectories
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Figure 4. Results given varying levels of temporal misalignment.
We report the mean expert-normalized returns with standard er-
ror across 3 Meta-world tasks (Door open, Window open, Lever
pull). We generate 3 perturbed demonstrations per task per mis-
alignment level (L=Low, H=High), training on each demonstration
separately.

Figure 5. Results given temporally aligned demonstrations. We
report mean expert-normalized returns with standard error across
all 10 Meta-world tasks.

produce coupling matrices that approximate the diagonal
matrix, as shown in Fig. 3. The subsequent rewards teach
the agent to spend an equal amount of time at each subgoal
instead of following the demonstration as fast as possible,
which can cause the agent to exhaust the timesteps before
completing the task. TemporalOT also exhibits poor per-
formance for Humanoid tasks. We hypothesize that the
agent fails because TemporalOT rewards force the agent
to spend an equal amount of time in each intermediate sub-
goal, which is difficult in a highly unstable environment.
We show DTW’s failure case in Fig. 18 of Appendix C.1.

5.5. How does pretraining affect ORCA’s performance?

Pretraining leads to better ORCA performance when the
pretraining strategy is able to obtain some success. In Ta-
ble. 4.3, ORCA is equal or better than ORCA(NP) on tem-
porally misaligned demonstrations. In Humanoid tasks,
ORCA(NP) achieves higher overall performance because
TemporalOT almost entirely fails on every task. The ef-
fect of pretraining is most apparent when the demonstrations
are temporally aligned because this setting satisfies the core
assumption of TemporalOT. In Fig. 5, ORCA achieves an

average normalized return of 0.57 compared to ORCA(NP)
(0.33) on aligned demonstrations.

ORCA(NP) fails due to undesirable local minima. Consider
the Stick-Push task in Fig. 19 of Appendix C.1, where the
robot arm needs to grasp the stick before pushing the water
bottle with that stick. The ORCA(NP) policy directly moves
to push the water bottle without the stick. Because the robot
arm initially seems close to the stick, the ORCA(NP) policy
could get partial coverage on earlier subgoals while collect-
ing high coverage on later subgoals for pushing the bot-
tle. Meanwhile, ORCA is initialized with the TemporalOT
policy that fails the task but spends equal time attempting
each subgoal. ORCA is able to refine the policy, finding the
middle ground between ORCA(NP) and TemporalOTand
quickly grasping the stick before pushing the water bottle
with it. Overall, pretraining initializes ORCA in a better
basin, allowing it to train successful and efficient policies.

5.6. Does ORCA scale with more demonstrations?

Following the strategy of Fu et al. (2024c), ORCA
can be adapted to multiple demonstration videos Ξ̃ =
{ξ̃1, . . . , ξ̃N} by calculating the ORCA reward at each
timestep with respect to every video and max-pooling:

RORCA(ot, ξ, Ξ̃) = max
ξ̃∈Ξ̃

RORCA(ot, ξ, ξ̃) (7)

To study how the number of demonstrations affects perfor-
mance, we first investigate the setting where they all have
the same speed, and the demonstrations only vary due to
randomly initialized object locations. Figure 6 shows how
ORCA’s performance improves as the number of demon-
strations increases. In contrast, although TemporalOT
handles multiple videos using the same method, and it ini-
tially benefits from having more than one demonstration,
its performance starts to degrade given a large number of
demonstrations.

We additionally train policies using 4 demonstrations with
different speeds by randomly sampling one video from
each of the four temporal misalignment categories de-
scribed in Figure 4. ORCA outperforms TemporalOT in
this scenario, as shown in figure 6. ORCA policies ad-
ditionally perform better when trained on 4 demonstra-
tions with different speeds than just a single demonstra-
tion (0.67 ± 0.08 → 0.77 ± 0.08), although they are
still worse than 4 same speed demonstrations. Meanwhile,
TemporalOT shows minimal gains with different speed
demonstrations (0.14±0.02 → 0.16±0.02), demonstrating
its inability to handle temporal misalignment at scale. Over-
all, ORCA consistently benefits from training with multiple
demonstrations and exhibits greater robustness compared to
baselines when these demonstrations have different speeds.
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Figure 6. Results given more demonstrations. Same indicates
that all demonstrations in the set are the same speed, whereas Diff
indicates that they are different speeds. We report mean expert-
normalized returns with standard error across 3 Meta-world tasks
(Door open, Window open, Lever pull).

5.7. How does ORCA perform given a policy
conditioned on image observations?

ORCA’s goal is to estimate rewards from a single demon-
stration in the observation space before learning a policy,
making no assumptions about the policy itself. We addi-
tionally evaluate ORCA when the policy is conditioned on
image observations instead of ground-truth states, follow-
ing the DrQv2 setup of (Fu et al., 2024c). The results in
Appendix C.5 demonstrate that the state-based and image-
based policies trained with ORCA have similar performance
(average normalized return: 0.704± 0.10 → 0.76± 0.06).
In contrast, policies trained with TemporalOT perform
poorly, regardless of their input.

5.8. Visual Encoder Ablation

ORCA works with any visual encoder that can act as a dis-
tance metric between frames. We include in Appendix C.4
an additional ablation of ORCA with LIV (Ma et al., 2023), a
robotics-specific visual encoder, and DINOv2 (Oquab et al.,
2023), a standard vision model. The Resnet50 used for
the main result in this paper achieves the best performance.
However, there is high variability, substantiating the find-
ings of prior work that evaluates different visual encoders
for RL training (Hu et al., 2023). Ultimately, the best visual
encoder is a practical and task-dependent choice.

6. Related Works
Learning From a Few Video Demonstrations. Prior works
in imitation learning (Duan et al., 2017; Fu et al., 2024a;
Jain et al., 2024; Palo & Johns, 2024; Xu et al., 2022) train
a policy that, at inference time, takes a video-action demon-
stration and the current robot state to output actions. This is
different from our policy formulation because ORCA and its
baselines do not have access to demonstrations with action
labels. Closer to our setting, some works focus on training

a reward model that takes videos as input and outputs scalar
rewards for RL (Sontakke et al., 2024; Yang et al., 2024),
but these models often require fine-tuning on task-specific
data to improve performance (Fu et al., 2024b). We follow
IRL’s formulation where we aim to match the learner and
demonstration distributions, which is equivalent to optimiz-
ing the Integral Probability Metrics (IPMs) (Sun et al., 2019;
Swamy et al., 2021).

Optimal Transport Used In IRL. Recent works leverage
OT (Peyré & Cuturi, 2020) to optimize IPMs. In the imi-
tation learning setting, where a teleoperated demonstration
dataset contains state-action labels, prior works can directly
minimize the Wasserstein distance between the learner and
the demonstration’s state-action distributions (Bobrin et al.,
2024; Dadashi et al., 2021; Luo et al., 2023; Papagiannis
& Li, 2022; Xiao et al., 2019). These approaches do not
work given only a single visual demonstration. Without ac-
cess to privileged states, recent works instead use a distance
function that measures the transport cost between two visual
embeddings (Cohen et al., 2022; Fu et al., 2024c; Guzey
et al., 2024; Haldar et al., 2023a;b; Kedia et al., 2025; Liu
et al., 2024; Tian et al., 2024). Both types of approaches
assume that a Markovian function measuring transport cost
between two timesteps is sufficient. However, our work tack-
les sequence-matching problems, where agents must follow
the subgoals from a temporally misaligned demonstration
in the correct order. OT with a Markovian distance function
fails because the true reward function depends on the entire
trajectory, a limitation that our approach addresses.

7. Discussion
We investigate sequence-matching tasks, where the learner
must follow a expert video demonstration that may be tem-
porally misaligned. We analyze how algorithms that match
the learner and expert distribution at the frame level (e.g.,
optimal transport) result in reward functions that fail in this
setting. Following our key insight that matching should
be defined at the sequence level, we present ORCA: a prin-
cipled reward function that computes the probability that
the learner has covered every subgoal in the correct order.
Experiments on Meta-world and Humanoid tasks show that
ORCA rewards train agents that complete the tasks efficiently
regardless of the level of temporal misalignment.

We recognize a few limitations of ORCA: (1) it relies on
a good visual distance metric that measures the similarity
between two frames. Future work will explore using online
finetuning to improve the encoder (Fu et al., 2024b) and
solve cross-embodiment tasks where temporal misalignment
is common. (2) video-following may result in unexpected
failures due to task misspecification. We plan to explore
how ORCA can be applied to language subgoals in addition
to video frames.
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A. Detailed Analysis of ORCA
We prove propositions 4.1 and 4.2, showing that the ORCA reward encourages the agent to complete all subgoals in the
correct order, thus addressing the limitations of baselines that use frame-level matching. First, we derive basic properties of
the ORCA coverage matrix. Then, we restate the propositions and prove them using these properties.

A.1. Proofs of ORCA Desiderata

Lemma A.1. For all t, Ct,j = maxti=1 Ci,j−1Pi,j .

Proof. We prove this by induction on t.

Base case: For t = 1, C1,j = C1,j−1P1,j by (5), which satisfies the statement.

Inductive step: Assume Ct,j = maxti=1 Ci,j−1Pi,j holds for t. For t+ 1, by the recursive definition (5):

Ct+1,j = max{Ct,j , Ct+1,j−1Pt+1,j}.

Substituting the inductive hypothesis:

Ct+1,j = max{ t
max
i=1

Ci,j−1Pi,j , Ct+1,j−1Pt+1,j} =
t+1
max
i=1

Ci,j−1Pi,j .

Thus, the statement holds for t+ 1. By induction, the lemma is proven.

Corollary A.2. If at time t, maxti=1 Pi,j = Pt,j , then Ct,j = Ct,j−1Pt,j .
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Proof. By the non-decreasing property of coverage along the learner axis (5),

t
max
i=1

Ci,j−1 = Ct,j−1. (8)

By lemma A.1,
Ct,j = Ct,j−1Pt,j . (9)

Corollary A.3. If two trajectories ξ+ and ξ− are identical, except a subgoal õj is covered at time t in ξ+ and is not covered
in ξ−, then C+

t,j > C−
t,j .

Proof. ξ+ achieves coverage of õj at time t, so by corollary A.2:

C+
t,j = C+

t,j−1P
+
t,j > C+

t−1,j . (10)

Since the trajectories are identical prior to t, we have:

C+
t−1,j = C−

t,j−1. (11)

Moreover, P+
t,j > P−

t,j implies
C+

t,j−1P
+
t,j > C−

t,j−1P
−
t,j . (12)

It follows that
C+

t,j−1P
+
t,j > max{C−

t,j−1, C
−
t,j−1P

−
t,j}. (13)

We conclude from the coverage definition (5):
C+

t,j > C−
t,j . (14)

Proposition A.4 (ORCA enforces subgoal ordering (Restating Prop. 4.1)). Let ξ− be a trajectory that is out of order;
specifically, there exists a subgoal õj such that õj is occupied at time t and õj−1 is not yet covered. Let ξ+ be a trajectory
that is identical to ξ−, except that it covers õj−1 before time t. Then, RORCA(o

+
t , ξ

+, ξ̃) > RORCA(o
−
t , ξ

−, ξ̃).

Proof. Because õj is occupied at time t in ξ+ (maxti=1 P
+
i,j = P+

t,j), by corollary A.2,

C+
t,j = C+

t,j−1P
+
t,j . (15)

According to the DP recurrence relation (5), there are two cases for C−
t,j :

Case 1. C−
t,j = C−

t−1,j

By lemma A.1,

C−
t−1,j =

t−1
max
i=1

C−
i,j−1P

−
i,j . (16)

By corollary A.3, and the fact that coverage is nondecreasing along the demonstration,

C+
t,j−1 > C−

t,j−1 ≥ t
max
i=1

C−
i,j−1. (17)

Because ξ+ and ξ− both occupy subgoal õj at time t:

P+
t,j =

t
max
i=1

P−
i,j . (18)
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Multiplying (17) and (18) lets us establish a bound on (16):

C+
t,j−1P

+
t,j >

t
max
i=1

C−
i,j−1

t
max
i=1

P−
i,j ≥

t−1
max
i=1

C−
i,j−1P

−
i,j . (19)

Substituting (15), we get:
C+

t,j > C−
t,j . (20)

Case 2. C−
t,j = C−

t,j−1P
−
t,j

Because P+
t,j = P−

t,j , and by corollary A.3,
C+

t,j−1P
+
t,j > C−

t,j−1P
−
t,j . (21)

Substituting (15), we get:
C+

t,j > C−
t,j . (22)

Since C+
t,j > C−

t,j in both cases, and the trajectories are otherwise identical,

RORCA(o
+
t , ξ

+, ξ̃) > RORCA(o
−
t , ξ

−, ξ̃). (23)

Proposition A.5 (ORCA enforces subgoal coverage. (Restating Prop. 4.2)). Let ξ− be a trajectory that occupies õj−1 at
time t− 1 and continues to occupy õj−1 at time t, instead of progressing towards õj . Let ξ+ be an identical trajectory that
progresses towards õj at t, and assume that neither trajectory has been closer to õj before. Then, RORCA(o

+
t , ξ

+, ξ̃) >

RORCA(o
−
t , ξ

−, ξ̃).

Proof. At time t, ξ+ moves closer to õj than it has previously been. Thus, by corollary A.2:

C+
t,j = C+

t,j−1P
+
t,j > C+

t−1,j . (24)

There are two cases for C−
t,j .

Case 1. C−
t,j = C−

t−1,j

Because ξ+ is identical to ξ− prior to t,
C+

t−1,j = C−
t−1,j (25)

Thus, by (24),
C+

t,j > C+
t−1,j = C−

t−1,j = C−
t,j . (26)

Case 2. C−
t,j = C−

t,j−1P
−
t,j

Since ξ+ is identical to ξ− prior to t, and at time t neither improves its coverage of subgoals prior to õj :

C+
t,j−1 = C−

t,j−1. (27)

However, because ξ+ moves closer to õj than ξ− at time t,

P+
t,j > P−

t,j . (28)

We conclude that
C+

t,j = C+
t,j−1P

+
t,j > C−

t,j−1P
−
t,j = C−

t,j . (29)

Since C+
t,j > C−

t,j in both cases, and the trajectories are otherwise identical,

RORCA(o
+
t , ξ

+, ξ̃) > RORCA(o
−
t , ξ

−, ξ̃). (30)
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Figure 7. Failure cases for OT reward in the 2D-Navigation environment. Both DTW and ORCA overcomes OT’s limitation.

A.2. Toy Examples of ORCA Overcoming Failure Cases of Existing Approaches

We present complete figures showing how ORCA overcomes OT’s failure to enforce subgoal ordering and DTW/Tempo-
ralOT’s failure to enforce full subgoal coverage. The distance function between each state is the Manhattan distance, which
is Markovian.

In Fig 7, the suboptimal learner trajectory completes the demonstration subgoals in the wrong order compared to the optimal
learner trajectory that completes the task in the correct order. Because OT treats the learner and trajectory distribution as
two unordered sets, and the distance function does not encode any temporal information, it fails to penalize the suboptimal
trajectory, giving both equally high rewards. In contrast, because DTW enforces temporal constraint in its alignment, the
final alignment is the same for both trajectories, resulting in a lower DTW reward for the suboptimal trajectory. Similarly,
ORCA measures the probability that all subgoals are covered in the correct order. Although the suboptimal learner trajectory
perfectly occupies the third subgoal at time 3, because it has not occupied the second subgoal, its overall ordered coverage is
still low, thereby penalizing the suboptimal learner trajectory for covering out of order.

In Fig. 8, the suboptimal learner trajectory stalls at the second subgoal while the optimal trajectory makes consistent progress
towards covering all subgoals. DTW fails because it does not constrain the number of learner frames that can be matched
with each subgoal. Consequently, its alignment matrix matches most learner frames to the second subgoal, which has no
cost since they perfectly occupy it, resulting in equally high DTW rewards for both trajectories. In contrast, because ORCA
rewards depends on all subgoals to be covered, the suboptimal trajectory receives low rewards for most timestep since it has
not covered the final subgoal.

In Fig. 9, the video demonstration is temporally misaligned because the agent can move one cell at a time, and the subgoals
would require the agent to take multiple timesteps to reach. The suboptimal learner trajectory is slow, spending 2 timesteps
at earlier subgoals and failing to solve the tasks in time. Meanwhile, the optimal learner trajectory makes consistent progress
and succeeds. Because TemporalOT assumes that the learner and demonstration demonstrations are temporally aligned,
the mask window that it then defines causes the coupling matrix to also approximate a diagonal matrix. Such coupling
matrix would encourage the agent to spend equal amount of time matching each subgoal, thereby rewarding the suboptimal
trajectory that does so perfectly even though they did not finish the task. In contrast, ORCA’s rewards depend on all subgoals
to be covered, so the suboptimal trajectory receives low rewards for all timesteps since it has not covered the final subgoal.

B. Environment Details
We run experiments in two different environments: Meta-world (Yu et al., 2020), a manipulation environment, and
Humanoid-v4 (Todorov et al., 2012), a more difficult control environment. Following prior work (Fu et al., 2024c), we
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Figure 8. Failure cases for DTW reward in the 2D-Navigation environment. ORCA overcomes DTW’s limitation. The suboptimal
learner trajectory ξ− gets stuck at the second frame of the demonstration, while the optimal one ξ+ makes consistent progress.

Figure 9. Failure cases for TemporalOT reward given a temporally misaligned demonstration in the 2D-Navigation environment.
ORCA overcomes TemporalOT’s limitation. the video demonstration is temporally misaligned because the agent can move one cell at a
time, and the subgoals would require the agent to take multiple timesteps to reach. The suboptimal learner trajectory ξ− that moves slowly
and fails to complete the task. In contrast, the optimal learner trajectory ξ+ makes steady progress and completes the task successfully.
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test 10 different tasks in Meta-world. To show that ORCA works in more general domains, we additionally design 4 tasks in
the humanoid environment that require moving the arms of the humanoid.

B.1. Visual Encoder

ORCA, as well as all baselines except RoboCLIP, requires a distance function defined on the space of images. We use a
visual encoder to obtain embeddings for each image in the learner and expert trajectory, and find the pairwise distances
between them to obtain the distance matrix.

In Meta-world, we follow prior work (Fu et al., 2024c) in using an off-the-shelf Resnet50 (He et al., 2016) as the visual
encoder. We use the cosine distance between embeddings to produce a cost matrix.

In Humanoid, we find that off-the-shelf visual encoders do not capture the fine-grained details necessary for the more
difficult control task. Instead, we train a model to predict the joint positions of the humanoid, and use the Euclidean distance
between joint predictions as the distance function. To address out-of-distribution samples, we train a separate network to
predict the model confidence, which is used to scale the final rewards. For more details on the joint predictor, see B.3.2.

B.2. Meta-world

B.2.1. TASKS

We run experiments on 10 different tasks in the Meta-world (Yu et al., 2020) environment. In addition to the 9 tasks
in Fu et al. (2024c), we added Door-close. We classify them into easy, medium, and hard based on factors like their visual
difficulty, necessity for precise motor control, and interaction with other objects. For further information on the tasks, we
refer the reader to (Fu et al., 2024c). Below is a brief description of the objective for each task:

Task Difficulty Success Criteria

Button-press Easy The button is pushed.
Door-close Easy The door is fully closed.
Door-open Medium The door is fully open.
Window-open Medium The window is slid fully open.
Lever-pull Medium The lever is pulled up.
Hand-insert Medium The brown block is inserted into the hole in the table.
Push Medium The cylinder is moved to the target location.
Basketball Hard The basketball is in the hoop.
Stick-push Hard The bottle is pushed to the target location using the stick.
Door-lock Hard The locking mechanism is engaged (pushed down).

B.2.2. TRAINING DETAILS

In order to improve performance across all methods, we employ two training strategies on top of the reward model and RL
algorithm:

1) Context embedding: We use the context embedding-based cost matrix proposed in (Fu et al., 2024c), which can be
interpreted as a diagonal smoothing kernel. Specifically, the distance between two frames is expressed as the average
distance over the next cw learner and demonstration frames (where cw refers to the context window):

dwindow(o
L
i , o

D
j ) =

1

cw

cw∑
k=1

d(oLi+k, o
D
j+k)

We choose a context window of length 3, which resulted in the best performance in (Fu et al., 2024c). Although a longer
context window could damage performance on extremely mismatched tasks, we find that a small window helps regularize
the noisiness of the visual distance metric.

2) Timestep in agent state: By nature of the sequence-following task, the reward at a given time step depends on the states
visited by the learner in previous time steps. Thus, if the policy or value estimator cannot observe the entire trajectory, then
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Figure 10. Visual Demonstrations of the tasks in the Humanoid Environment. These were generated by selecting the target final joint
state, interpolating from the start joint state, and rendering the intermediate frames.

it does not have enough information to model the reward. In practice, we find that including the current time step (as a
percentage of the episode length) in the state observation of the agent allows it to reasonably estimate the value function. We
emphasize that, although the agent has access to the ground truth state and time step, the reward model only sees the visual
learner rollout and demonstration. Because the purpose of this paper is to examine specific sequence-matching reward
functions, we choose to use this empirical trick for our experiments, leaving further investigations into RL algorithms given
non-Markovian rewards as future work.

B.3. Humanoid

B.3.1. TASKS

We use the MuJoCo Humanoid-v4 environment (Foundation, 2024; Todorov et al., 2012). In order to improve visual
encoder performance, we modify the environment textures and camera angle, as described in (Rocamonde et al., 2024). At
the beginning of an episode, the humanoid is spawned upright, slightly above the ground, with its arms curled towards its
chest.

The humanoid’s goal is to follow the motion of a demonstration trajectory within a maximum of 120 timesteps. We define 4
motions, corresponding to 4 demonstration trajectories. The humanoid must remain standing while doing all tasks. The
visual demonstrations for each task are shown in B.3.1. These demonstration trajectories each have a length of 10 and are

Task Success Criteria

Arm up (L) The left arm is raised above the head and the right arm is down.
Arm up (R) The right arm is raised above the head and the left arm is down.
Arms out Both arms are raised to shoulder height. (T-pose)
Arms down Both arms are lowered to the side.

generated by interpolating between the initial and final poses. Fig. 10 shows snapshots of these trajectories.
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Figure 11. Goal-reaching rewards of (left) two pretrained models and (right) our joint prediction model on an example learner
trajectory, with the goal of raising the left arm to the side. To emphasize their shape, all rewards are normalized along the trajectory
dimension. Rewards using the pretrained SigLIP-ViT-B-16 (Zhai et al., 2023) and DINOv2-ViT-B-14-reg (Oquab et al., 2023) models are
calculated as the cosine similarity between the learner and demonstration embeddings. The fine-tuned joint prediction model provides a
smoother reward curve. The trajectories are in the MuJoCo Humanoid-v4 environment (Foundation, 2024; Todorov et al., 2012), which
is visually modified to mimic the setup of (Rocamonde et al., 2024).

B.3.2. CONFIDENCE-SCALED VISUAL REWARDS.

Empirically, we found that off-the-shelf visual encoders produced noisy rewards in the Mujoco environment, as shown in
Fig. 11. This resulted in training failure regardless of the distribution-matching or sequence-matching function. To solve
this problem, we train a network that predicts the joint positions of the humanoid given an image observation. To address
distribution shift during RL training, we use an autoencoder to predict a model confidence score, which we use to scale the
final rewards. We additionally assume access to a stability reward function, which includes a control cost and a reward for
remaining standing:

Rstability = exp(−(htorso − 1.3)2)− cctrl (31)

where htorso is the height of the humanoid torso, and cctrl is a control cost provided by the environment.

Given a learner observation oLt , demonstration subgoal oDj , visual backbone ϕ, and joint predictor f , we let

d(oLt , o
D
j ) = ||f(ϕ(oLt ))− f(ϕ(oDj ))||2 (32)

This distance metric is used by ORCA to obtain Rorca. Then, we compute the confidence of the learner observation
embedding c(ϕ(oLt )) according to 34. This results in the final reward function:

R = c(ϕ(oLt )) ∗ Rorca(o
L
t , ξ

D) + λRstability (33)

B.3.3. JOINT PREDICTOR TRAINING DETAILS

Dataset: We collect a dataset D = {(oi, ji)}Ni=1 containing MuJoCo images oi of various poses and corresponding joint
positions ji. The dataset includes in total 9,038 samples. To build the dataset, we utilize a set of rollout trajectories covering
a set of goal reaching tasks (such as different hand poses, doing splits, etc.), We include both successful and unsuccessful
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trajectories. To ensure diversity among samples representing different stages of a trajectory, we select one frame every
k frames (here k = 5), encouraging the network to differentiate between similar images. Given the similarity of initial
trajectories, we retain the first four frames only 25% of the time, and in those cases, select a random frame from a five-frame
interval.

Training: To train our joint predictor f ◦ ϕ, we fully fine-tune a ResNet50 backbone (He et al., 2016) pre-trained on
ImageNet-1K (Deng et al., 2009) with a 3-layer MLP head that projects to the joint dimension. The MLP head has layers of
shape (2048, 1024), (1024, 1024), and (1024, 54), where 54 represents the number of joints (18) multiplied by the dimension
per joint (3). Optimization is performed over 100 epochs using SGD with learning rate .008, batch size 16, and momentum
0.875. After training the joint predictor, we freeze the backbone weights, and train a shallow autoencoder architecture with
two linear layers of shapes (dϕ, 32) and (32, dϕ) using the same parameters, where dϕ is the dimension of the backbone
(2048 in this case). This provides the reconstruction loss that is used for confidence estimation, as described in B.3.4

Figure 12. The impact of confidence scaling on rewards for a trajectory where the robot falls down. The ground truth trajectory is
shown on top and renders of the model’s joint predictions given the top frames are shown on the bottom. The rewards are computed with
respect to the final reference image of the left arm wave task. Once the robot starts falling, there is a distribution shift in the images, and
the model predicts that the robot is upright. This leads to high reward predictions, but also high uncertainty estimates. When corrected
using the confidence function, the reward shape improves significantly.

B.3.4. CONFIDENCE ESTIMATE AS REWARD SCALING

The use of a joint-position predictor results in an additional challenge: in an environment with unstable dynamics, there is a
large space of image observations with very different joint positions, many of which are difficult to reach through robot play.
During RL training, a policy can reach a state outside of D, resulting in noisy joint predictions and rewards. To solve this
problem, prior work has estimated the epistemic uncertainty of the visual model using an autoencoder architecture (Andrews
et al., 2016; Frey et al., 2023). Given that the training converges, if an embedding z is in the domain, then the autoencoder
will be able to achieve low reconstruction loss. Contrapositively, if it has high reconstruction loss on an embedding z’, then
z’ must not be in domain.

First, we train an autoencoder to reconstruct image embeddings on the offline dataset. After training coverages, we compute
the final mean µreco and standard deviation σreco of the loss on this dataset. Then, we use a formulation inspired by Frey
et al. (2023) to compute a confidence score u(zi):

c(zi) =

{
1, ifLreco(zi) < µreco

exp
(
− (Lreco(zi)−µreco)

2

2(σrecokσ)2

)
, otherwise

(34)

where kσ is a hyperparameter that controls the spread of the confidence function. In our experiments, we set kσ = 2.

We observe that the reconstruction losses over a set of trajectories sampled from partially trained policies are skewed towards
low confidence. In-domain images tend to have low reconstruction loss that is tightly clustered around the average offline
loss, while out-of-domain images tend to have higher and more spread out loss. Figure 12 shows a qualitative example of
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how uncertainty scaling fixes incorrect reward predictions on out-of-distribution images. The shape of the uncertainty scaled
reward curve better matches the ground truth.

B.4. RL Policy.

In the Meta-world environment, we use an identical setup and hyperparameters to Fu et al. (2024c), training the policy
with DrQ-v2 over 1 million steps. We also follow Fu et al. (2024c) to repeat a policy’s predicted action 2 times, which
effectively shortens the episode length by half. This effect is applied both in RL training and generating demonstrations
from hand-engineered policies. In MuJoCo, the policy is trained with SAC over 2 million steps, and we slightly modify
the parameters from Rocamonde et al. (2024) to adapt to the shorter training period (2 million steps vs 10 million steps).
All policies are trained with ground truth state observations, but we emphasize that the reward function only sees visual
observations.

Table 3. Training hyperparameters used for experiments on both environments.

Parameter Meta-world (DrQ-v2) Humanoid (SAC)

Total environment steps 1,000,000 2,000,000
Learning rate 1e-4 1e-3
Batch size 512 256
Gamma (γ) 0.9 0.99
Learning starts 500 6000
Soft update coefficient 5e-3 5e-3
Actor/Critic architecture (256, 256) (256, 256)
Episode length 125 or 175 120

B.5. Approach and Baselines.

We describe the hyperparameter details for each baseline as needed.

• ORCA. We use λ = 1 for temperature turn. For Meta-world tasks, we initialize the policy by loading TemporalOT’s
checkpoint at 500k steps before training on ORCA rewards. For Humanoid tasks, we load the checkpoint at 1M steps
because the total training steps is 2M.

• OT. We solve the entropic regularized optimal transport problem shown in (1). In Meta-world, the weight on the
entropic regularization term is ϵ = 1, and in Humanoid, it is ϵ = 0.

• TemporalOT. TemporalOT (Fu et al., 2024c) was originally designed for learner and reference sequences of the same
length. In this paper, we compare against a slightly stronger version of TemporalOT, which allows for a learner that
is linear in the speed of the expert (either faster or slower). Specifically, we mask with a windowed diagonal matrix
stretched along the longer of the learner and demonstration axis. Because TemporalOT also formulates the entropic
regularized OT problem (4), the entropic weight is also ϵ = 1. We use a varying mask window size, depending on the
reference length. Fu et al. (2024c) used km = 10 for metaworld matched demos. We use the same for matched demos,
and for mismatched demos, we let km ≈ ⌈ |ξ̃|

10 ⌉.

• Threshold. This is a hand-engineered reward function with simple conditionals. Threshold contains two terms:
the number of subgoals completed and the reward with respect to the current subgoal to follow. It initializes the subgoal
to follow as the first subgoal, and it starts tracking the next subgoal, when the current subgoal’s reward is above a
predefined threshold. We set the threshold as 0.90 for all Meta-world tasks and 0.70 for all Humanoid tasks because it
is a more challenging environment where it is difficult to achieve high rewards.

• RoboCLIP. RoboCLIP (Sontakke et al., 2024) uses a pretrained video-and-language model (Xie et al., 2018) to
directly encode the video. For videos with more than 32 frames, RoboCLIP downsample them to 32 frames before
passing them to the encoder. It defines the reward for the last timestep as the cosine similarity between the learner
video’s and the demonstration video’s embeddings, while all previous timesteps have zero as the reward. Due to Python
version issues, we train all RoboCLIP policies using SAC (Haarnoja et al., 2018), following the setup and code base
from Sontakke et al. (2024).
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B.6. Varying Temporal Alignment Level Experiment Details.

We study the effect of how increasingly misaligned demonstrations would affect ORCA and TemporalOT’s performances.
We identify two types of temporal misalignment: either the demonstration contains pauses and is slower, or the demonstration
accelerates through a segment and is faster. We randomly perturb the original demonstrations of three Meta-world tasks
(Door-open, Window-open, Lever-pull), generating 6 demonstrations per task per speed type (i.e, slow or fast).

Concretely, we first evenly split the original demonstration into five segments. To get the first three randomly perturbed
demonstrations, we randomly select one segment and randomly change their speed. We can speed up a segment by 2, 4,
6, 8, or 10 times, and we can slow down a segment by 2, 3, 4, 5, or 6 times. To get the rest of the randomly perturbed
demonstrations, we randomly select three segments and randomly change their speed. Then, for each task and speed type,
we categorize 3 of the perturbed demonstrations as having “Low" level of misalignment and the other 3 as having “High"
level of misalignment by ranking the demonstrations based on the mean absolute deviation between the segment length. The
more varied the segment lengths are with respect to each other, the more temporally misaligned this demonstration is. Each
perturbed demonstration is trained on a random seed, and we ensure that ORCA and TemporalOT are trained on that same
seed for fair comparison.

C. Additional Experiment Results
Temporally Misaligned Experiment.

Figure 13. Training Curves for All Meta-world tasks Given Temporally Misaligned Demonstrations We compute the mean and
standard error across the 3 training runs, each evaluated on 10 random seeds.

Fig. 13 shows training curves of all methods given temporally misaligned demonstrations. The ORCA plot diverges directly
from TemporalOT at 500k steps because it is initialized with these TemporalOT policies, and trained for an additional
500k stops. In tasks where TemporalOT achieves some success by this point steps, ORCA performs at least as well
as ORCA(NP), because it can take advantage of the better initialization. In tasks like basketball and door-open, where
TemporalOT is unsuccessful after 500k steps, ORCA(NP) performs better because it is trained with the ORCA reward for
more steps. All methods fail to learn the push task, which we hypothesize is due to the visual encoder.

Figure 14. Training curves for all humanoid tasks. We compute the mean and standard error across the 3 training runs, each evaluated
on 8 random seeds. Because TemporalOT achieves poor performance, ORCA does not benefit from pretraining, and ORCA(NP) is the
most successful.
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Table 4. Performance comparison across all tasks and baselines in the Humanoid environment. The best value within 1 standard
deviation for each row is highlighted.

Task Threshold RoboCLIP DTW OT TOT ORCA (NP) ORCA

Arm up (L) 7.21 (2.98) 5.17 (2.25) 11.38 (3.49) 5.42 (2.75) 5.29 (2.22) 65.88 (8.25) 81.62 (3.65)
Arm up (R) 13.58 (2.70) 34.17 (7.26) 1.12 (0.69) 19.12 (4.10) 7.67 (2.88) 92.46 (4.71) 49.58 (5.00)
Arms out 20.79 (4.47) 7.75 (5.00) 4.75 (2.36) 3.75 (1.84) 1.62 (0.75) 72.67 (10.09) 8.50 (2.60)
Arms down 0.00 (0.00) 0.67 (0.56) 3.17 (2.31) 30.38 (7.19) 11.62 (3.56) 19.71 (5.03) 33.42 (7.20)

Average 10.40 (2.54) 11.94 (3.77) 5.10 (2.22) 14.67 (3.97) 6.55 (2.35) 62.68 (7.02) 43.28 (4.61)

Fig. 14 shows training curves of all methods given interpolated demonstrations in the humanoid environment, which are
naturally temporally misaligned. Tab. 4 shows the final cumulative reward of all methods. Across all tasks, ORCA(NP)
performs the best. In general, ORCA(NP) performs better than ORCA because TemporalOT achieves near 0 performance,
and ORCA cannot reap the benefits of better initialization. All methods perform poorly on arms down because it is an
extremely unstable position.

Fig. 15 shows a qualitative comparison between frame-level matching approaches and ORCA on the left arm up task. ORCA
quickly solves the task, while the other approaches have the failure modes described in Sec. 3.

Figure 15. Qualitative comparison between the frame-level matching approaches and ORCA when solving the Mujoco Arm Up (L)
task. The ORCA agent completes the task quickly, while the other methods exhibit the failure cases described in Sec. 3

.

Temporally Aligned Experiment.

Fig. 16 shows the training curves for all methods in Meta-world with temporally aligned demonstrations, and Tab. C shows
the final cumulative reward of all methods. Across all tasks, ORCA performs the best. Since TemporalOT achieves good
baseline performance on most of these tasks, ORCA is able to take advantage of pretraining, and outperforms ORCA(NP) on
most tasks.
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Figure 16. Training Curves for All Meta-world tasks Given Temporally Aligned Demonstrations We compute the mean and standard
error across the 3 training runs, each evaluated on 10 random seeds.

Table 5. Meta-world per-task results on temporally aligned demonstrations. We report the mean expert-normalized return and the
standard error; each task is run on three random seeds.

Environment RoboCLIP Threshold DTW OT TemporalOT ORCA (NP) ORCA

Button-press 0.00 (0.00) 0.17 (0.07) 0.16 (0.05) 0.45 (0.09) 0.61 (0.09) 0.86 (0.11) 0.71 (0.12)
Door-close 0.47 (0.38) 0.72 (0.02) 0.30 (0.01) 0.75 (0.01) 0.74 (0.01) 0.92 (0.01) 0.81 (0.01)

Door-open 0.00 (0.00) 0.91 (0.09) 0.40 (0.05) 1.22 (0.03) 1.20 (0.03) 0.00 (0.00) 1.45 (0.11)
Window-open 0.00 (0.00) 0.61 (0.09) 0.01 (0.01) 0.61 (0.09) 0.13 (0.06) 0.07 (0.07) 0.64 (0.17)
Lever-pull 0.00 (0.00) 0.03 (0.02) 0.14 (0.05) 0.15 (0.06) 0.37 (0.08) 0.19 (0.08) 0.35 (0.09)
Hand-insert 0.00 (0.00) 0.11 (0.05) 0.59 (0.11) 0.73 (0.09) 0.56 (0.09) 0.30 (0.10) 0.64 (0.12)
Push 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.25 (0.09) 0.10 (0.06) 0.21 (0.09) 0.12 (0.07)

Basketball 0.00 (0.00) 0.00 (0.00) 0.11 (0.05) 0.06 (0.03) 0.08 (0.08) 0.00 (0.00) 0.00 (0.00)
Stick-push 0.00 (0.00) 0.01 (0.01) 0.07 (0.02) 0.31 (0.08) 0.30 (0.08) 0.00 (0.00) 0.48 (0.13)
Door-lock 0.00 (0.00) 0.00 (0.00) 0.30 (0.08) 0.16 (0.06) 0.18 (0.07) 0.75 (0.13) 0.53 (0.13)

Average 0.05 (0.05) 0.26 (0.02) 0.21 (0.02) 0.47 (0.03) 0.43 (0.03) 0.33 (0.03) 0.57 (0.04)

C.1. Frame-Level Failure Modes in Meta-world

We show qualitative examples of the failure modes of OT, TemporalOT, and DTW described in Sec. 3 occuring during
Meta-world policy training.

OT and TemporalOT Fail to Enforce Ordering: Fig. 17 shows how OT and TemporalOT with a large km both fail to
enforce subgoal ordering, thus rewarding trajectories that do not complete subgoals in the correct order.

DTW Fails to Enforce Subgoal Coverage: Fig. 18 shows how DTW fails to enforce full subgoal coverage, getting stuck in
an intermediate subgoal.

C.2. The importance of pretraining for ORCA

Fig. 19 shows a qualitative example of how pretraining on TemporalOT reward helps initialize ORCA in the correct basin.
Without pretraining, ORCA(NP) gets partial credit for earlier subgoals, and gets stuck in a local minimum of immediately
pushing the bottle without picking up the stick. Meanwhile, TemporalOT on its own moves slowly and does not pick up
the stick. ORCA picks up the stick and completes the task quickly.

C.3. Additional Baselines

In addition to the baselines described in the main paper, we include a classic IRL algorithm and a text-conditioned reward
function. We test these baselines on all easy and medium Meta-world tasks. The results are shown in Table C.3.
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Figure 17. Example of how OT and TemporalOT (depending on the mask window size kw) fail to enforce subgoal ordering when
solving a Meta-world task (Stick-Push).

Figure 18. Example of how DTW fails to enforce full subgoal coverage when solving a Meta-world task (Lever-pull).

Figure 19. Example of how pretraining improves ORCA’s performance.
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GAIfO (Torabi et al., 2019) is a traditional IRL algorithm. It jointly trains an RL policy and a discriminator between
state transitions from the learner and demonstration distributions. The discriminator is used as the reward function for
the policy, encouraging the agent to stay within the expert state distribution. Due to computation limitations, we used a
state-based demonstration instead of a video. In contrast, ORCA and all existing baselines use video demonstrations. GAIfO
outperforms TemporalOT, but it is still significantly worse than ORCA. We hypothesize that, because there is only one
demonstration, GAIfO could fixate on inconsequential details instead of estimating the task reward.

LIV (Ma et al., 2023) is a vision language model that can be used to calculate the rewards of a video that teaches given a
description of text. For this baseline, we follow the implementation of FuRL [3], which closely resembles our IRL setup.
While it outperforms TemporalOT, LIV is significantly worse than ORCA. LIV uses a single text goal to describe the task,
whereas ORCA is conditioned on a sequence of images, making ORCA denser and better at capturing details. Future work
should explore how ORCA can be applied to sequences of text subgoals.

Table 6. Meta-world per-task results on additional baselines LIV and GAIfO. We report the mean expert-normalized return and the
standard error across different methods and task difficulties.

Category Task GAIfO (state-based demo) LIV (text goal) TemporalOT ORCA

Easy Button-press 0.12 (0.04) 0.00 (0.00) 0.10 (0.02) 0.62 (0.11)
Easy Door-close 0.34 (0.04) 0.34 (0.09) 0.19 (0.01) 0.88 (0.01)
Medium Door-open 0.22 (0.05) 0.00 (0.00) 0.08 (0.01) 0.89 (0.13)
Medium Window-open 0.27 (0.09) 0.72 (0.19) 0.26 (0.05) 0.85 (0.16)
Medium Lever-pull 0.10 (0.03) 0.00 (0.00) 0.07 (0.03) 0.28 (0.09)

Total 0.21 (0.03) 0.21 (0.05) 0.14 (0.01) 0.70 (0.05)

C.4. Visual Encoder Ablation

The choice of encoder is a practical, task-dependent choice, and not the main focus of this work. In Metaworld, we followed
Fu et al. (2024c) and used a pretrained Resnet50. In Humanoid, we finetuned the encoder on a set of images from the
simulation environment.

We include in C.4 an ablation of ORCA with LIV (Ma et al., 2023), a robotics-specific visual encoder, and DINOv2 (Oquab
et al., 2023), a standard vision model. Overall, Resnet50 achieves the best performance, although there is high variability.

Table 7. Comparison of different visual backbones with ORCA. We report the mean expert-normalized return and the standard error
across different backbone architectures with their parameter counts.

Task ORCA+Resnet50 (26M) ORCA+LIV (100M) ORCA+DINOv2-L (300M)

Door-open 1.71 (0.08) 1.10 (0.06) 0.44 (0.12)
Window-open 0.50 (0.14) 1.17 (0.15) 0.65 (0.10)
Lever-pull 0.28 (0.09) 0.04 (0.01) 0.16 (0.06)

Total 0.83 (0.09) 0.77 (0.08) 0.42 (0.06)

C.5. Image-Conditioned Policy

ORCA’s goal is to estimate rewards from a single demonstration in the observation space before learning a policy, and we
pose no assumptions on the policy itself. In this paper, we choose to provide the policy with ground truth states, for better
comparisons with prior work. To investigate an image-conditioned policy, we trained an agent using DrQv2 [10] on a subset
of the Metaworld tasks. Table C.5 shows the results. The state and image-based policies trained with ORCA have similar
performance (average normalized return: 0.704 ± 0.10 → 0.76 ± 0.06). In contrast, policies trained with TemporalOT
perform poorly, regardless of their input.
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Table 8. Comparison of policies trained on ground truth states and image observations. We report the mean expert-normalized return
and the standard error across different policy types.

Task TemporalOT (state) TemporalOT (image) ORCA (state) ORCA (image)

Button-press 0.10 (0.02) 0.00 (0.00) 0.62 (0.11) 0.60 (0.11)
Door-close 0.19 (0.01) 0.12 (0.01) 0.88 (0.01) 0.88 (0.02)
Door-open 0.08 (0.01) 0.00 (0.00) 0.89 (0.13) 1.31 (0.12)
Window-open 0.26 (0.05) 0.28 (0.05) 0.85 (0.16) 0.79 (0.15)
Lever-pull 0.07 (0.03) 0.00 (0.00) 0.28 (0.09) 0.19 (0.08)

Total 0.14 (0.02) 0.08 (0.01) 0.71 (0.10) 0.76 (0.06)

C.6. Runtime Comparison of Approaches

We experimentally tested the reward calculation latency to validate that ORCA is similar in runtime to its baselines. For
each method, we evaluated 100 rollouts with a demonstration of length 100 and learner rollouts of length 100 and 300.

Table C.6 shows the average latency (ms) of different reward computation methods. ORCA is 24% faster than TemporalOT
and 52% faster than RoboCLIP given rollouts of length 100, and it is comparable to threshold, OT, and DTW. LIV is the
fastest method because it only considers a text goal and not a sequence of subgoals, but this leads to poor performance on
most tasks. The ordering of the methods is the same for 100 and 300 frames, demonstrating that ORCA can efficiently scale
to longer horizon tasks.

Table 9. Latency comparison of ORCA and its baselines. Methods are sorted by their latency in increasing order from left to right. We
report the mean performance and standard error given learner rollouts of length 100 and 300.

Learner Length LIV OT Threshold ORCA DTW TemporalOT Roboclip

100 frames 38.0 (4.7) 54.0 (0.4) 54.7 (3.8) 56.9 (0.3) 58.8 (0.4) 75.1 (1.2) 118.2 (17.9)
300 frames 130.0 (3.3) 170.2 (0.4) 171.0 (4.2) 179.9 (0.6) 185.3 (0.4) 228.5 (2.0) 300.2 (31.3)
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