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Abstract

We study first-order optimization algorithms for computing the barycenter of
Gaussian distributions with respect to the optimal transport metric. Although
the objective is geodesically non-convex, Riemannian GD empirically converges
rapidly, in fact faster than off-the-shelf methods such as Euclidean GD and SDP
solvers. This stands in stark contrast to the best-known theoretical results for
Riemannian GD, which depend exponentially on the dimension. In this work,
we prove new geodesic convexity results on auxiliary functionals; this provides
strong control of the Riemannian GD iterates, ultimately yielding a dimension-free
convergence rate. Our techniques also enable the analysis of two related notions
of averaging, the entropically-regularized barycenter and the geometric median,
providing the first convergence guarantees for Riemannian GD for these problems.

1 Introduction

Averaging multiple data sources is among the most classical and fundamental subroutines in data
science. However, a modern challenge is that data is often more complicated than points in Rd. In
this paper, we study the task of averaging probability distributions on Rd, a setting that commonly
arises in machine learning and statistics [CD14; Ho+17; SLD18; Dog+19], computer vision and
graphics [Rab+11; Sol+15], probability theory [KS94; RU02], and signal processing [Elv+20]; see
also the surveys [PC+19; PZ19] and the references within.

The Wasserstein barycenter [AC11; Rab+11] has emerged as a particularly canonical notion of
average. Formally, let P2(Rd) denote the space of probability measures on Rd with finite second
moment, let P be a probability measure over P2(Rd), and let W2 denote the 2-Wasserstein distance
(i.e. the standard optimal transport distance). Then, the Wasserstein barycenter of P is a solution of

minimize
b∈P2(Rd)

∫
W 2

2 (b, ·) dP . (1)

A related notion of average is the entropically-regularized Wasserstein barycenter of P , which is
defined to be a solution of

minimize
b∈P2(Rd)

∫
W 2

2 (b, ·) dP + ent(b) , (2)

where ent is an entropic penalty which allows for incorporating prior knowledge into the average.
Lastly, a third related notion of average with better robustness properties (e.g., with a breakdown
point of 50% [FVJ09]) is the Wasserstein geometric median of P , which is defined to be a solution of

minimize
b∈P2(Rd)

∫
W2(b, ·) dP . (3)
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Importantly, while these three notions of average can be defined using other metrics in lieu of W2, the
Wasserstein distance is critical for many applications since it enables capturing geometric features of
the distributions [CD14].

The many applications of Wasserstein barycenters and geometric medians (see e.g., [CE10; Rab+11;
CD14; GPC15; RP15; Sol+15; BPC16; SLD18; LLR20]) have inspired significant research into their
mathematical and statistical properties since their introduction roughly a decade ago [AC11; Rab+11].
For instance, on the mathematical side it is known that under mild conditions, the barycenter and
geometric median exist, are unique, and admit dual formulations related to multimarginal optimal
transport problems [CE10; AC11; COO15]. And on the statistical side, [PZ16; AC17; LL17; Big+18;
FLF19; ALP20; Le +21; KSS21] provide finite-sample and asymptotic statistical guarantees for
estimating the Wasserstein barycenter from samples.

However, computing these objects is challenging because of two fundamental obstacles. The first is
that in general, barycenters and geometric medians can be complicated distributions which are much
harder to represent (even approximately) than the input distributions. The second is that generically,
these problems are computationally hard in high dimensions. For instance, Wasserstein barycenters
and geometric medians of discrete distributions are NP-hard to compute (even approximately) in high
dimension [AB21b].

Algorithms for averaging on the Bures-Wasserstein manifold. Nevertheless, these computa-
tional obstacles can be potentially averted in parametric settings. This paper as well as most of the
literature [Álv+16; Bac+18; ZP19; Che+20] on parametric settings focuses on the commonly arising
setting where P is supported on Gaussian distributions.1 As noted in [Álv+16], the Gaussian case
also encompasses general location-scatter families.

There are two natural families of approaches for designing averaging algorithms in this setting. Both
exploit the fact that modulo a simple re-centering of all distributions, the relevant space of probability
distributions is isometric to the Bures-Wasserstein manifold, i.e. the cone of positive semidefinite
matrices equipped with the Bures-Wasserstein metric (background is given in Section 2).

The first approach is simply to recognize the (regularized) Wasserstein barycenter problem as a
convex optimization problem over the space of positive semidefinite matrices and apply off-the-shelf
methods such as Euclidean GD or semidefinite programming solvers. However, these methods have
received little prior attention for good reason: they suffer from severe scalability and parameter-tuning
issues (see Section 3.3 for numerics). Briefly, the underlying issue is that these algorithms operate in
the standard Euclidean geometry rather than the natural geometry of optimal transport. Moreover,
this approach does not apply to the Wasserstein geometric median problem because even in one
dimension, it is non-convex in the Euclidean geometry.

A much more effective approach in practice (see Section 3.3 for numerics) is to exploit the geometry
of the Bures-Wasserstein manifold via geodesic optimization. Prior work has extensively pursued this
direction, investigating the effectiveness of (stochastic) Riemannian GD for computing Wasserstein
barycenters, see e.g., [Álv+16; Bac+18; ZP19; Che+20].

Challenges for geodesic optimization over the Bures-Wasserstein manifold. Although geodesic
optimization is natural for this problem, it comes with several important obstacles: the non-negative
curvature of the Bures-Wasserstein manifold necessitates new tools for analysis, and moreover both
the barycenter and geometric median problems are non-convex in the Bures-Wasserstein geometry.
(These two issues are in fact intimately related, see Appendix A.4.) This prevents applying standard
results in the geodesic optimization literature (see e.g., [ZS16; Bou20]) since in general it is only
possible to prove local convergence guarantees for non-convex problems.

For the Wasserstein barycenter problem, it is possible to interpret Riemannian GD (with step size
one) as a fixed-point iteration, and through this lens establish asymptotic convergence [Álv+16;
Bac+18; ZP19]. Obtaining non-asymptotic rates of convergence is more challenging because it
requires developing quantitative proxies for the standard convexity inequalities needed to analyze
GD. The first such result was achieved by [Che+20], showing that Riemannian GD converges to
the Wasserstein barycenter at a linear rate. Yet their convergence rate depends exponentially on the

1In the setting of Gaussians, the Wasserstein barycenter was first studied in the 1990s [OR93; KS94].
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Figure 1: Passes until convergence error 10−r to the barycenter, for r ∈ {3, 5}. This is dimension
independent for Riemannian GD and SGD—consistent with our main results. Details in Section 3.

dimension d, and also their work does not extend to the Wasserstein geometric median or regularized
Wasserstein barycenter.

1.1 Contributions

In this paper, we analyze first-order optimization algorithms on the Bures-Wasserstein manifold. We
summarize our main results here and overview our techniques in the next section.

From exponential dimension dependence to dimension-free rates. In Section 3, we show that
for the Wasserstein barycenter problem, Riemannian GD enjoys dimension-free convergence rates
(Theorem 2). We make several comments to contextualize this result. First, our result eliminates
the exponential dimension dependence of state-of-the-art convergence rates [Che+20], which aligns
with the empirical performance of this algorithm (see Figure 1). Second, our result stands in sharp
contrast to the setting of discrete distributions in which there are computational complexity barriers to
achieving even polynomial dimension dependence [AB21b]. Third, our result closes the gap between
computation and statistical estimation for the Bures-Wasserstein barycenter, since dimension-free
sample complexity bounds were recently proven in [FLF19].

Moreover, in Theorem 3, we further refine this result by replacing the worst-case assumption of
uniform bounds on the matrices’ eigenvalues with a significantly weaker average-case assumption.

Beyond barycenters. In Sections 4 and 5, we show how our analysis techniques also enable
proving fast convergence of Riemannian GD for computing regularized barycenters (Theorem 4)
and geometric medians (Theorem 5). To the best of our knowledge, these are the first guarantees for
Riemannian GD for notions of averaging on the Bures-Wasserstein manifold beyond the barycenter.

1.2 Techniques

Here we briefly sketch the specific technical challenges we face and how we address them to
analyze Riemannian GD for the three notions of Bures-Wasserstein average: barycenter, regularized
barycenter, and geometric median. Although each analysis necessarily exploits particularities of its
own objective, the common structure of our overarching analysis framework may be of interest for
studying other geodesically non-convex optimization problems.

Overcoming non-convexity. As we discuss in Appendix A.4, there is a close connection between
the second-order behavior of these objective functionals and the non-negative curvature of the Bures-
Wasserstein manifold. In particular, while non-negative curvature is used to prove smoothness
properties for the three functionals, it also leads to them all being geodesically non-convex. To
circumvent this issue, we establish gradient domination conditions known as Polyak-Łojasiewicz
inequalities [Pol64; Loj63], which intuitively are quantitative proxies for strong convexity in non-
convex settings (see e.g., [KNS16; Bol+17]). Proving such inequalities requires synthesizing general
optimization principles with specialized arguments based on optimal transport theory. We ultimately
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show that these inequalities hold with constants depending on the conditioning of the iterates, i.e., the
ratio between the maximum and minimum eigenvalues of the corresponding covariance matrices.

Overcoming ill-conditioned iterates. So long as smoothness and gradient domination inequalities
hold at the current iterate, standard optimization results guarantee that the next iterate of GD makes
progress. However, the amount of progress degrades if the iterates are poorly conditioned, since then
our PL inequality degrades. Thus the second major obstacle is to control the regularity of the iterates.
Here, the primary technical tool is shared across the analyses. Informally, it states that if the objective
is a sum of functions, each of whose gradients point towards well-conditioned matrices, then the
GD iterates remain well-conditioned. Formally, this is captured by the following geodesic convexity
result, which may be of independent interest. Below, Sd++ denotes the set of d× d positive definite
matrices. See Appendix A.2 for a review of the relevant geometric concepts, and see Appendix B for
the proof, discussion of tightness, and complementary results.

Theorem 1. The functions −
√
λmin,

√
λmax : Sd++ → R are convex along generalized geodesics.

Using this theorem in conjunction with careful analysis of the objective functions, we establish global
convergence guarantees for first-order geodesic optimization.

1.3 Other related work

Averages such as barycenters and medians on general curved spaces have become popular due to
far-ranging applications in domains such as machine learning, computer vision, analysis, radar signal
processing [ABY13], and brain-computer interfaces [YBL16; CBB17]. While their mathematical
properties such as existence and uniqueness are fairly well-understood [Afs11], their computation is
an active area of research [Wei37; VZ00; Stu03; Yan10; BI13; Bac14; OP15].

For the Wasserstein barycenter problem in particular, there have been many approaches. These
approaches vary significantly depending on if the setting is discrete or continuous. In the discrete
setting, the problem is NP-hard in high dimension [AB21b]. In low dimension (or more precisely
fixed dimension), reasonable approximations can be obtained using fixed-support approximations
which reduce the problem to a large linear program [CD14; Ben+15; COO15; Kro+19; Lin+19;
Lin+20; Dvi21; Gum+21; Haa+21], and it was recently shown that high-precision (or even exact)
solutions can be computed in polynomial time using computational geometry techniques [AB21a].

In the continuous setting, the problem is in general intractable since the optimal barycenter is
intractable even to represent, let alone to compute. Nevertheless, in certain settings it has been
empirically effective to parameterize and solve using neural networks [CAD20; FTC21; Kor+21],
stochastic gradient descent [Li+20], or Riemannian optimization [Álv+16; Bac+18; ZP19; Che+20].

However, for continuous settings, the theory currently lags far behind the empirics. This is true even in
the seemingly simple setting of Gaussians, in which case the barycenter has a concise representation
since it is also Gaussian. Riemmanian GD for this problem was first proposed and demonstrated to
be empirically effective in [Álv+16], where it was introduced as a fixed-point algorithm. Asymptotic
convergence was proved in [Álv+16], and then extended to non-population and stochastic settings
in [Bac+18; ZP19]. Non-asymptotic convergence rates were first shown in [Che+20], but there is a
large gap between these theoretical rates and what is observed in practice. It particular, previous rates
depend exponentially on the dimension. The present paper improves this to dimension-free.

For the other two problems we study, Bures-Wasserstein geometric medians and entropically-
regularized barycenters, no convergence guarantees were previously known for the natural Rie-
mannian GD algorithm.

Our work is in the midst of a flurry of exciting recent developments about entropically regularized
barycenters. Several recent works have, simultaneously with each other, extensively studied these
objects in the particular setting of Gaussians, leading to the establishment of fundamental results such
as the fact that the regularized barycenter of Gaussians is itself Gaussian [BL20; Jan+20; MGM21].
Another recent and related line of work has established fundamental mathematical and statistical
results for entropically regularized barycenters in the setting of general distributions, although with
slightly different penalties than the KL divergence studied here, typically the differential entropy∫
b ln b [Kro18; BCP19; CEK21] and sometimes even broader classes of regularizations [BCP19].
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1.4 Organization

Section 2 briefly recalls relevant preliminaries. We analyze Riemannian GD for computing Bures-
Wasserstein barycenters, regularized barycenters, and geometric medians in Sections 3, 4, and 5,
respectively. We conclude in Section 6. We provide proofs as well as additional background and
numerical results in the Appendix. Code reproducing all experiments in this paper can be found at
https://github.com/PatrikGerber/Bures-Barycenters.

2 Preliminaries

Given probability measures µ and ν on Rd with finite second moment, the 2-Wasserstein distance
between µ and ν is defined as

W 2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫
‖x− y‖2 dπ(x, y) , (4)

where Π(µ, ν) denotes the set of couplings of µ and ν, i.e., the probability measures on Rd×Rd whose
marginals are respectively µ and ν. If µ and ν admit densities with respect to the Lebesgue measure
on Rd, then the infimum is attained, and the optimal coupling is supported on the graph of a map,
i.e., there exists a map T : Rd → Rd such that for π-a.e. (x, y) ∈ Rd × Rd, it holds that y = T (x).
The map T is called the optimal transport map from µ to ν. We refer readers to [Vil03; San15] for
an introduction to optimal transport, and to [Car92] for background on Riemannian geometry. The
Riemannian structure of optimal transport was introduced in the seminal work [Ott01]—detailed
treatments are in [AGS08; Vil09]; for completeness we also provide a quick overview in Appendix A.

In this paper, we mainly work with centered Gaussians, which can be identified with their covariance
matrices. (Extensions to the non-centered case are also discussed below.) We abuse notation via
this identification: given Σ,Σ′ ∈ Sd++, we write W2(Σ,Σ′) for the 2-Wasserstein distance between
centered Gaussians with covariance matrices Σ, Σ′ respectively. Here, Sd denotes the space of
symmetric d × d matrices, and Sd++ denotes the open subset of Sd consisting of positive definite
matrices. Throughout, all Gaussians are non-degenerate; that is, their covariances are non-singular.

The Wasserstein distance has a closed-form expression for Gaussians:

W 2
2 (Σ,Σ′) = tr

[
Σ + Σ′ − 2 (Σ1/2Σ′Σ1/2)

1/2]
. (5)

Also, the optimal transport map from Σ to Σ′ is the symmetric matrix

TΣ→Σ′ = Σ−1/2 (Σ1/2Σ′Σ1/2)
1/2

Σ−1/2 = GM(Σ−1,Σ′). (6)

Above, GM(A,B) := A1/2 (A−1/2BA−1/2)
1/2
A1/2 denotes the matrix geometric mean between

two positive semidefinite matrices [Bha07, Ch. 4]. The Wasserstein distance on Sd++ in fact arises
from a Riemannian metric, which was first introduced by Bures in [Bur69]. Hence, the Riemannian
manifold Sd++ endowed with this Wasserstein distance is referred to as the Bures-Wasserstein space.
The geometry of this space is studied in detail in [Mod17; BJL19]. For completeness, we provide
additional background on the Bures-Wasserstein manifold in Appendix A.

3 Barycenters

In this section, we consider the Bures-Wasserstein barycenter

Σ? ∈ arg min
Σ∈Sd++

∫
W 2

2 (Σ, ·) dP .

We refer to the introduction for a discussion of the past work on the Bures-Wasserstein barycenter.
We also remark that the case when P is supported on possibly non-centered Gaussians is easily
reduced to the centered case; see the discussion in [Che+20, §4].
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3.1 Algorithms

We consider both Riemannian gradient descent (GD) and Riemannian stochastic gradient descent
(SGD) algorithms for computing the Bures-Wasserstein barycenter, which are given as Algorithm 1
and Algorithm 2 respectively. GD is useful for computing high-precision solutions due to its linear
convergence (Theorem 2), and SGD is useful for large-scale or online settings because of its cheaper
updates. We refer to [ZP19; Che+20] for the derivation of the updates. Here, Σ0 is the initialization,
which can be taken to be any matrix in the support of P . For SGD, we also require a sequence (ηt)

T
t=1

of step sizes and a sequence (Kt)
T
t=1 of i.i.d. samples from P . Note that whereas SGD requires

choosing step sizes, GD simply uses step size 1, as justified in [ZP19].

Algorithm 1 GD for Barycenters

1: procedure BARY-GD(Σ0, P, T )
2: for t = 1, . . . , T do
3: St ←

∫
GM(Σ−1

t−1,Σ) dP (Σ)
4: Σt ← StΣt−1St
5: return ΣT

Algorithm 2 SGD for Barycenters

1: procedure BARY-SGD(Σ0, (ηt)
T
t=1, (Kt)

T
t=1)

2: for t = 1, . . . , T do
3: Ŝt ← (1− ηt)Id + ηt GM(Σ−1

t−1,Kt)

4: Σt ← ŜtΣt−1Ŝt
5: return ΣT

3.2 Convergence guarantees

Denote the barycenter functional by F (Σ) := 1
2

∫
W 2

2 (Σ, ·) dP , and denote the variance of P by
varP := 2F (Σ?). We assume that P is supported on matrices whose eigenvalues lie in the range
[λmin, λmax], and we let κ := λmax/λmin denote the condition number. Whereas the previous
state-of-the-art convergence analysis for Algorithms 1 and 2 in [Che+20] suffered a dependence of
κd, we show that the rates of convergence are in fact independent of the dimension d.

Theorem 2. Assume that P is supported on covariance matrices whose eigenvalues lie in the range
[λmin, λmax], 0 < λmin ≤ λmax <∞. Let κ := λmax/λmin denote the condition number. Assume
that we initialize at Σ0 ∈ suppP .

1. (GD) Let ΣGD
T denote the T -th iterate of GD (Algorithm 1). Then,

1

2
√
κ
W 2

2 (ΣGD
T ,Σ?) ≤ F (ΣGD

T )− F (Σ?) ≤ exp
(
− T

4κ3/2

)
{F (Σ0)− F (Σ?)} .

2. (SGD) Let ΣSGD
T denote the T -th iterate of SGD (Algorithm 2), where (Kt)

T
t=1 are i.i.d.

from P . Then, with an appropriate choice of step sizes2,

1

2
√
κ
EW 2

2 (ΣSGD
T ,Σ?) ≤ EF (ΣSGD

T )− F (Σ?) ≤ 48κ3 varP

T
.

In fact, using our new geodesic convexity results we can also relax the conditioning assumption from
requiring all matrices be uniformly well-conditioned, to being individually well-conditioned. This is
a significant improvement when the eigenvalue ranges differ significantly between matrices.

Theorem 3. Let κ? := supΣ∈supp(P ) λmax(Σ)/λmin(Σ). The conclusions of Theorem 2 hold when
replacing κ with κ? everywhere.

Actually, we deduce this from an even stronger statement: in Theorem 2, κ can be replaced ev-
erywhere by an average-case notion of conditioning, namely κ := λmax/λmin where λmin

1/2
:=∫

λmin(Σ)
1/2

dP (Σ) and λmax
1/2

:=
∫
λmax(Σ)

1/2
dP (Σ).

We give the proofs of these results in Appendix C.1.

2Namely, ηt = 1

4κ3/2

(
1−

√
1− 16κ3 (2 (t+t0)+1)

(t+t0+1)2

)
suffices, where t0 = 32κ3 − 1.
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3.3 Numerical experiments

There are two natural competitors of Riemannian GD when minimizing the barycenter functional:
(i) solving an SDP (see Appendix C.3 for the SDP reformulation), and (ii) Euclidean GD (see
Appendix C.2 for a description and analysis of Euclidean GD).

Figure 2: Riemannian vs. Euclidean GD. Figure 3: Riemannian vs. Euclidean SGD.

In Figure 2 we compare Riemannian and Euclidean GD on a dataset consisting of n = 50 covariance
matrices of dimension d = 50, each with condition number κ = 1000. Their eigenspaces are
independent Haar distributed, and their eigenvalues are equally spaced in the interval [λmin, λmax] =
[0.03, 30]. Qualitatively similar results are observed for other inputs; see Appendix F. We run 50
experiments and plot the average accuracy cut off at 10−12; X? denotes the best iterate. We omit
SDP solvers from the plot because their runtime is orders of magnitude slower: using the Splitting
Cone Solver (SCS) [ODo+16; ODo+19], the problem takes ∼15 seconds to solve, and MOSEK
[MOS21] is even slower. For completeness, we also compare GD to the Riemannian Frank-Wolfe
algorithm [WS17] in Appendix F, and conclude that GD is superior. We observe that Euclidean GD’s
convergence rate is quite sensitive to its step size, which depends heavily on the conditioning of the
problem. Riemannian GD was the clear winner in our experiments, as its step size requires no tuning
and it always performed no worse (in fact, often significantly better) than Euclidean GD.

In Figure 3 we observe that Riemannian SGD typically outperforms Euclidean SGD, sometimes
substantially. We average 300× 300 covariance matrices drawn from a distribution whose barycenter
is known to be the identity, see Appendix F for details. As Figure 3 shows, in practice it can be
helpful to tune the step sizes beyond the guidance given by our worst-case theoretical guarantees. In
our experiments, Riemannian SGD was competitive on a wide range of problems with η = 1/t.

We comment on Figure 1, which illustrates the dimension independence of the two Riemannian
algorithms, a main result of this paper. It plots the number of passes until convergenceW 2

2 (Xt, X
?) ≤

10−r varP to the barycenter X?, for r ∈ {3, 5}. To compare algorithms on equal footing, the y-axis
measures “passes” over the n = 50 matrices: a pass constitutes one GD iteration, or n SGD iterations.
The input is generated as in Figure 2. Observe also the tradeoff between GD and SGD: SGD converges
rapidly to low-precision solutions, but takes longer to converge to high-precision solutions.

4 Entropically-regularized barycenters

In this section, we consider the entropically-regularized barycenter b?reg which minimizes

Fγ(b) :=
1

2

∫
W 2

2 (b, ·) dP + γKL
(
b
∥∥ N (0, Id)

)
,

where KL denotes the Kullback-Leibler divergence, and γ > 0 is a given regularization parameter. It
suffices to consider the case when all measures are centered, see Remark 6. The following proposition
justifies considering this problem on the Bures-Wasserstein space; proof in Appendix D.3.
Proposition 1. Suppose P is supported on centered Gaussians whose covariance matrices have
eigenvalues lying in the range [1/

√
κ,
√
κ], for some κ ≥ 1. Then there exists a unique minimizer

b?reg of Fγ over P2(Rd), and this minimizer is a centered Gaussian distribution whose covariance
matrix Σ? also has eigenvalues in the range [1/

√
κ,
√
κ].
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As described in the introduction, prior work on the Wasserstein barycenter typically focuses on a
slightly different entropic penalty, the differential entropy

∫
b ln b. Note that the differential entropy

penalty encourages b to be diffuse over all of Rd (the minimizer blows up as γ → ∞). Here, we
focus on a KL divergence penalty which has the advantage of interpolating between two well-studied
problems: the Wasserstein barycenter problem (γ = 0) and minimization of the KL divergence
(γ =∞). We take the standard Gaussian as a canonical choice of reference distribution, and note
that our method of analysis can be extended to other reference measures at the cost of significant
additional technical complexity. We thus choose to exclusively focus on the standard Gaussian case.

4.1 Algorithm

Algorithm 3 is Riemannian GD for minimizing Fγ . A derivation of the update rule is in Appendix D .

Algorithm 3 GD for Regularized Barycenters

1: procedure RBARY-GD(Σ0, P, T, γ, η)
2: for t = 1, . . . , T do
3: St ← η

∫
GM(Σ−1

t−1,Σ) dP (Σ) + ηγΣ−1
t−1 + (1− η (1 + γ))Id

4: Σt ← StΣt−1St
5: return ΣT

4.2 Convergence guarantees

We provide two convergence guarantees for Algorithm 3. The first holds for all choices of the regu-
larization parameter γ. However, this rate deteriorates with larger γ, and intuitively the optimization
problem should become somewhat easier with larger regularization; hence, we prove a second rate
of convergence to capture this behavior. We emphasize that as in §3, our convergence rates are
dimension-independent. The proof of each rate appears in Appendix D.
Theorem 4. Fix γ > 0 and suppose that P is supported on covariance matrices with eigenvalues
in [1/

√
κ,
√
κ]. If Algorithm 3 is initialized at a point in suppP and run with step size η =

1/(1 + 2γ
√
κ), then the following hold.

1. For any choice of regularization parameter γ > 0 and any T ≥ 1,

Fγ(ΣT )− Fγ(Σ?) ≤ exp
(
− T

κ4 (1 + 2γ
√
κ)

)
{Fγ(Σ0)− Fγ(Σ?)} .

2. If γ ≥ 14κ4 is sufficiently large, then the following improved rate holds: for T ≥ 1,

Fγ(ΣT )− Fγ(Σ?) ≤ exp
(
− T

6
√
κ

)
{Fγ(Σ0)− Fγ(Σ?)} .

For brevity, we omit guarantees in terms of the distance W2(Σt,Σ
?) to the minimizer.

4.3 Numerical experiments

In Figure 4, we investigate the use of the regu-
larization term γKL(·

∥∥ N (0, Id)) to encode a
prior belief of isotropy. In Figure 4, we gener-
ate n = 100 i.i.d. 20 × 20 covariance matrices
from a distribution whose barycenter is the iden-
tity (see Appendix F). Then, for ρ ∈ [0, 10] we
compute the barycenter of a perturbed dataset
obtained by adding ρe1e

T
1 to each matrix for dif-

ferent choices of γ. We see that for γ = 0 the
barycenter quickly departs from isotropy, while
for larger γ the regularization yields averages
which are more consistent with our prior belief.

Figure 4: Effect of regularization for varying γ.
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5 Geometric medians

In this section, we consider the Wasserstein geometric median

b?median ∈ arg min
b∈P2(Rd)

∫
W2(b, ·) dP . (7)

See the introduction for a discussion of the literature on this problem. Observe that, in contrast to the
barycenter (1), here we are minimizing the average unsquared Wasserstein distance.

The following basic result justifies the consideration of the geometric median problem on the Bures-
Wasserstein space. It is proved in Appendix E.1.

Proposition 2. Suppose that P is supported on centered non-degenerate Gaussians whose covariance
matrices have eigenvalues lying in the range [λmin, λmax], where 0 ≤ λmin ≤ λmax < ∞. Then,
there exists a solution to (7) which is also a centered non-degenerate Gaussian distribution; moreover,
its covariance matrix Σ?median can be taken to have eigenvalues in [λmin, λmax].

Remark 1. Suppose now that P is supported on non-degenerate Gaussian distributions which are not
necessarily centered. Then, the proof of Proposition 2 applies with minor modifications to show that
the minimizer of the median functional is still attained at a Gaussian distribution. However, unlike the
barycenter and entropically regularized barycenter, it is not the case that the mean of the Wasserstein
geometric median is the Euclidean geometric median of the means, thus it is not as straightforward to
reduce to the centered case for this problem. Nevertheless, in Appendix E.2, we describe a reduction
which allows the algorithm described in the next section to be applied in a black box manner to the
non-centered case, with corresponding convergence guarantees.

5.1 Algorithm

Since the Wasserstein distance W2(Σ, ·) is neither geodesically convex nor geodesically smooth, nor
Euclidean convex nor Euclidean smooth (see Remark 7), it poses challenges for optimization. We
therefore smooth the objective before optimization. Given a desired target accuracy ε > 0, let

W2,ε :=
√
W 2

2 + ε2 , Fε(b) :=

∫
W2,ε(b, ·) dP .

Algorithm 4 provides pseudocode for running Riemannian GD on the smoothed functional Fε. See
Appendix E for a derivation of the update rule.

Algorithm 4 Smoothed GD for Median

1: procedure MEDIAN-GD(Σ0, P, T, ε)
2: for t = 1, . . . , T do
3: St ← Id + ε

∫
{GM(Σ−1

t−1,Σ)− Id}W2,ε(Σt−1,Σ)
−1

dP (Σ)
4: Σt ← StΣt−1St
5: return ΣT

5.2 Convergence guarantees

We show that Algorithm 4 finds an O(ε)-approximate minimizer for the geometric median functional
in O(κ/ε4) iterations. We emphasize that as in our other results, this convergence is dimension-
independent. Below, let F := F0 denote the unregularized functional. Note that since F typically does
not have a unique minimizer, we only guarantee a small suboptimality. The proof is in Appendix E.1.

Theorem 5. Assume that P is supported on covariance matrices whose eigenvalues lie in
[λmin, λmax], 0 < λmin ≤ λmax < ∞. Let κ := λmax/λmin denote the condition number, and let
0 < ε < 1 denote a target accuracy. Assume that we initialize Algorithm 4 at Σ0 ∈ suppP . Then,
Algorithm 4 outputs ΣT satisfying F (ΣT )− F (Σ?median) ≤ 3ε if

T ≥ 32κFε(Σ0)
4

ε4
.
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Figure 5: Evolution of median objective for vary-
ing ε. X? denotes the best iterate. Figure 6: Robustness of the Wasserstein median.

5.3 Numerical experiments

In Figure 5 we plot the suboptimality gap for the unregularized objective F =
∫
W2(·,Σ) dP as

we optimize Fε using Algorithm 4 for various ε. The regularization parameter ε has a natural
trade-off: smaller ε results in better approximation to the (unregularized) geometric median, but
slower convergence. The covariance matrices are generated as in Figure 2, with n = d = 30 and
[λmin, λmax] = [0.01, 10]. The promising empirics in Figure 5 suggest that our algorithm performs
even better in practice than our worst-case theoretical results guarantee: few iterations may suffice
for convergence, and also moderate regularization may suffice for high-precision approximations.

In Figure 6 we illustrate the robustness of the Wasserstein geometric median up to its breakdown point
of 50% [FVJ09]. We take random input matrices as above, with n = d = 20 and [λmin, λmax] =
[1, 10], and compute their barycenter and approximate median (ε = 1). We then perturb a fraction
(20%, 45%, and 55% for our figure) of the matrices by multiplying them by a constant greater than 1.
The x-axis of the plot shows the size of the perturbation while the y-axis gives the distance of the
original barycenter and median to the barycenter and median of this new, perturbed dataset.

We also implemented Euclidean GD for this geometric median problem; plots are omitted for brevity
since the results are similar to those for the barycenter (c.f. Section 3.3) in that Euclidean GD
depends much more heavily on parameter tuning. Note also that Euclidean GD does not come with
convergence guarantees for this problem since it is non-convex in the Euclidean geometry.

6 Discussion

In this paper we revisited the problem of computing Bures-Wasserstein barycenters and explained the
empirical efficacy of Riemannian (S)GD by proving convergence rates that improve from exponential
dimension dependence to dimension-free. An attractive feature of our analysis framework was that
our tools were sufficiently general to prove similar dimension-free guarantees for related problems of
interest, namely Bures-Wasserstein geometric medians and entropically-regularized barycenters.

Our results suggest several interesting directions for future research. The focus of this paper was
dimension-dependence, and while we also improved the dependence on other parameters along the
way, it is unclear if these other dependencies are optimal. Can the dependence on κ be improved via
stronger PL inequalities? Is the dependence on ε improvable via alternate methods of smoothing in
the case of geometric medians, or via fixed-point acceleration schemes such as Anderson acceleration
in the case of barycenters?

More broadly, conventional wisdom from the now-established field of geodesic optimization tells
us that whenever possible, one should recast a non-convex optimization problem as a convex one
by changing the geometry. However, as demonstrated empirically in Section 3, for computing
Bures-Wasserstein barycenters, it is significantly better to run GD in the non-convex geometry of
optimal transport than in the convex geometry of Euclidean space. A full understanding of why and
when non-convex geometry can be helpful in general optimization problems is an intriguing direction
with potentially significant implications for both the theory and practice of non-convex optimization.
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