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VIVID-VR: DISTILLING CONCEPTS FROM TEXT-TO-
VIDEO DIFFUSION TRANSFORMER FOR PHOTOREAL-
ISTIC VIDEO RESTORATION

Anonymous authors
Paper under double-blind review

(a) Bicubic (b) SUPIR (c) UAV (d) MGLD (e) SeedVR-7B (f) Vivid-VR

Restored video

Real-world video AIGC video

Restored video

Figure 1: Video restoration results on both real-world and AIGC videos. To mitigate drift during
fine-tuning of the controllable generation pipeline, we propose a concept distillation strategy that
preserves both texture realism and temporal coherence in generated videos. Leveraging this strategy,
Vivid-VR achieves impressive texture realism and visual vividness. (Zoom-in for best view)

ABSTRACT

We present Vivid-VR, a DiT-based generative video restoration method built upon
an advanced T2V foundation model, where ControlNet is leveraged to control the
generation process, ensuring content consistency. However, conventional fine-
tuning of such controllable pipelines frequently suffers from distribution drift due
to limitations in imperfect multimodal alignment, resulting in compromised tex-
ture realism and temporal coherence. To tackle this challenge, we propose a con-
cept distillation training strategy that utilizes the pretrained T2V model to syn-
thesize training samples with embedded textual concepts, thereby distilling its
conceptual understanding to preserve texture and temporal quality. To enhance
generation controllability, we redesign the control architecture with two key com-
ponents: 1) a control feature projector that filters degradation artifacts from input
video latents to minimize their propagation through the generation pipeline, and
2) a new ControlNet connector employing a dual-branch design. This connector
synergistically combines MLP-based feature mapping with cross-attention mecha-
nism for dynamic control feature retrieval, enabling both content preservation and
adaptive control signal modulation. Extensive experiments show that Vivid-VR
performs favorably against existing approaches on both synthetic and real-world
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benchmarks, as well as AIGC videos, achieving impressive texture realism, visual
vividness, and temporal consistency.

1 INTRODUCTION

Video restoration aims to recover lost textures, fine details, and structural information from low-
quality (LQ) input videos to produce high-quality (HQ) ones. Traditional reconstruction-based
methods typically employ CNNs Wang et al. (2019); Pan et al. (2021); Chan et al. (2021; 2022a;b)
and Transformers Liang et al. (2024; 2022) to extract visual cues for quality enhancement. How-
ever, these approaches face inherent limitations due to insufficient prior knowledge and the ill-posed
nature of the inverse problem, reconstructing high-quality textures directly from severely degraded
inputs remains extremely challenging. While GAN-based methods Wang et al. (2018; 2021) can
generate some textures to a certain extent, their generative capacity remains limited.

Recent years have witnessed significant advancements in diffusion-based generative models Rom-
bach et al. (2022); Podell et al. (2023); Blattmann et al. (2023), which can now synthesize pho-
torealistic content. This progress has established generative video restoration as a promising new
paradigm. While initial explorations using text-to-image (T2I) diffusion models have shown im-
pressive results in image restoration tasks Wang et al. (2024); Yu et al. (2024); Chen et al. (2025a),
their direct application to video sequences suffers from significant temporal inconsistencies due to
inadequate motion modeling. Early attempts to address this limitation typically incorporate tempo-
ral enhancement mechanisms, including adding trainable temporal layers to diffusion denoisers and
VAE decoders Zhou et al. (2024), or employing optical flow-based motion compensation Yang et al.
(2024a). However, these post-modifications during model fine-tuning are insufficient for achieving
robust temporal coherence. The advent of Diffusion Transformers (DiT) Peebles & Xie (2023) has
enabled a significant leap forward, with text-to-video (T2V) models Yang et al. (2024b) now capable
of generating both high-quality and temporally stable video content. This has spurred the develop-
ment of T2V-based restoration approaches. For instance, SeedVR Wang et al. (2025b) integrates
the shift-window attention mechanism with DiT for computational efficiency, and STAR Xie et al.
(2025) proposes a dynamic frequency loss for enhanced fidelity, both achieving decent results.

Despite their advancements, current restoration methods still underperform native T2V models in
both texture realism and temporal coherence. This performance gap stems primarily from distribu-
tion drift induced by imperfect multimodal alignment during the fine-tuning process. This issue is
not prominent in the T2V model pretraining phase because of the large, diverse training dataset. But
the challenge becomes significantly amplified when fine-tuning these models for video restoration,
manifesting as unrealistic textures and compromised temporal consistency.

To overcome this challenge, we propose a concept distillation training strategy that leverages syn-
thetic data generated by a pre-trained T2V model. The proposed approach begins with a source
video and its corresponding text description obtained through a vision-language model (VLM). We
first corrupt the source video with noise, then employ the pre-trained T2V model to perform denois-
ing while incorporating the text description. This process yields a video that encapsulates the T2V
model’s semantic understanding of the textual concepts, ensuring inherent modal alignment between
the generated video and text description in the T2V model’s latent space. By blending these synthe-
sized data with real training samples during fine-tuning, our method successfully transfers the T2V
model’s conceptual knowledge to the video restoration model, thereby mitigating the distribution
drift problem while preserving both texture realism and temporal coherence.

Furthermore, we use ControlNet Zhang et al. (2023a) for generation control and introduce two key
innovations. First, we develop a control feature projector, which effectively filters degradation ar-
tifacts to minimize their propagation through the generation pipeline. While FaithDiff Chen et al.
(2025a) achieves similar functionality by jointly fine-tuning the VAE encoder which is expensive to
train, our solution implements this feature projector as a lightweight CNN-based extension to the
VAE encoder. Second, we redesign the ControlNet connector with a dual-branch architecture. Dif-
ferent from existing connectors Yu et al. (2024) which fail to properly consider DiT features during
fusion, we combine an MLP branch with a cross-attention mechanism, enabling dynamic feature
retrieval that preserves the generation quality and realism of native T2V models. Benefiting from
these improvements, the proposed method, named Vivid-VR, achieves impressive texture realism
and visual vividness (see Figure 1).
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In summary, our main contributions are as follows:

• We propose a novel concept distillation training strategy that leverages a pre-trained T2V
model to synthesize aligned text-video pairs, effectively mitigating distribution drift during
fine-tuning and preserving texture and temporal quality.

• We improve the ControlNet architecture by introducing a lightweight control feature pro-
jector and a dual-branch connector, enabling degradation artifact removal and dynamic
control feature retrieval.

• The proposed Vivid-VR performs favorably against existing methods on both synthetic and
real-world benchmarks, as well as AIGC videos.

2 RELATED WORK

Reconstruction-based Video Restoration. Early approaches focused on architecture design and
loss functions for direct HQ reconstruction from degraded inputs. CNN-based methods employed
various strategies for temporal information integration, including optical flow estimation Caballero
et al. (2017); Pan et al. (2020), deformable convolutions Wang et al. (2019), bidirectional feature
propagation Chan et al. (2021), and optical flow-guided deformable alignment modules Chan et al.
(2022a). Transformer-based methods Liang et al. (2024; 2022) improved performance through at-
tention mechanisms for long-term spatio-temporal modeling. Meanwhile, some studies Wang et al.
(2021); Zhang et al. (2021) have introduced more complex degradation simulations to improve real-
world generalization. To produce richer textural details, GAN-based frameworks Wang et al. (2018;
2021) are consequently adopted that incorporate adversarial training. Despite these advances, meth-
ods relying solely on input-derived cues without strong priors still produce overly smoothed results
when handling severely degraded content.

Diffusion-based Video Restoration. Diffusion-based generative models Rombach et al. (2022);
Podell et al. (2023); Yang et al. (2024b) have made significant progress, which introduce a new
paradigm for restoration tasks. Initial explorations focused on image restoration Wang et al. (2024);
Yu et al. (2024); Chen et al. (2025a), and they achieved remarkable results. However, these ap-
proaches fundamentally lack temporal modeling capabilities, resulting in severe frame inconsis-
tencies when directly applied to video sequences. Early solutions Zhou et al. (2024); Yang et al.
(2024a) attempted to mitigate this through temporal enhancement techniques, such as incorporating
trainable temporal layers or implementing optical flow-based motion compensation, yet these post-
hoc adjustments proved inadequate for ensuring robust temporal coherence. Diffusion Transformers
(DiT) Peebles & Xie (2023) enabled high-quality T2V generation Yang et al. (2024b) with superior
temporal stability, inspiring video restoration methods. SeedVR Wang et al. (2025b) combines the
shift-window attention mechanism with DiT to improve computational efficiency. STAR Xie et al.
(2025) designs a dynamic frequency loss function to improve fidelity. Concurrently, efforts to im-
prove inference efficiency have led to the design of one-step diffusion models Wang et al. (2025a);
Chen et al. (2025b). Nevertheless, existing methods still exhibit noticeable gaps in texture realism
and temporal consistency compared to native T2V models, due to distribution drift from imperfect
multimodal alignment of training data. To bridge this gap, our work introduces a concept distillation
training strategy that effectively preserves the texture and temproal quality of the base T2V model.

3 METHOD

The proposed Vivid-VR leverages the advanced T2V model (i.e., CogVideoX1.5-5B Yang et al.
(2024b)) as its foundation, incorporating the ControlNet Zhang et al. (2023a) to condition the gener-
ation process on input videos. Figure 2 shows an overview of the proposed method. In this section,
we first present the model architecture of the proposed method, and then explain the proposed con-
cept distillation training strategy.

3.1 MODEL ARCHITECTURE

Text Description Generation. Building upon the T2V-based framework, the proposed method re-
quires both LQ input video and corresponding text descriptions. We employ CogVLM2-Video Yang
et al. (2024b) for text generation to maintain consistency with CogVideoX1.5-5B’s training config-
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Figure 2: An overview of the proposed method. Vivid-VR first processes the LQ input video with
CogVLM2-Video to generate a text description, which is encoded into text tokens via T5 encoder.
Simultaneously, the 3D VAE encoder converts the input video into latent, where our control feature
projector removes degradation artifacts. The video latent is then patchified, noised, and combined
with text tokens and timestep embeddings as input to DiT and ControlNet. For enhanced control-
lability, we introduce a dual-branch connector: an MLP for feature mapping and a cross-attention
branch for dynamic control feature retrieval. After T denoising steps, the 3D VAE decoder recon-
structs the HQ output. Only the control feature projector, ControlNet, and connectors are trained via
the proposed concept distillation strategy, and other parameters remain frozen.

uration. Given the input LQ video, CogVLM2-Video produces an aligned text description, subse-
quently encoded into text tokens through the T5 Raffel et al. (2020) text encoder.

Control Feature Preprocessing. In parallel with text tokens generation, we preprocess the LQ
input video to generate corresponding visual tokens for DiT and ControlNet. The preprocessing
pipeline begins by encoding LQ video through the VAE encoder, producing the latent representation
that contains both content information and degradation artifacts. Since these degradation artifacts
may negatively impact generation quality, we propose a lightweight Control Feature Projector to
eliminate them. The proposed projector consists of three cascaded spatiotemporal residual blocks
that effectively filter the degraded features, outputting a cleaner latent representation. The video
latent is then patchified and noise injected to form the visual tokens for subsequent processing.

ControlNet Pipeline. Given the text tokens, the visual tokens and the timestep embedding, DiT
and ControlNet both perform T denoising steps. DiT comprises N DiT blocks, while ControlNet
contains N/7 blocks initialized from DiT’s first N/7 ones. During denoising process, ControlNet’s
visual tokens are integrated into DiT through N proposed Dual-branch Connectors. For the ith

connector, the fusion process of the control visual tokens is:

f̂ i = f i +MLP (c⌊i/7⌋) + CA(f i, c⌊i/7⌋), (1)

where f i denotes the visual tokens from the ith DiT block; c⌊i/7⌋ represents the corresponding
ControlNet block visual tokens aligned with the ith DiT block; MLP (·) and CA(·) are the MLP
layer and cross attention module respectively; f̂ i is the fused visual tokens. After T denoising steps,
the visual tokens are unpatchified and fed into the VAE decoder to generate the final HQ outputs.

3.2 CONCEPT DISTILLATION TRAINING STRATEGY

Training Data Collection. Effective training of DiT-based video restoration models demands exten-
sive high-quality text-video pairs, but existing public datasets Su et al. (2017); Nah et al. (2019); Xue
et al. (2019); Stergiou & Poppe (2022) lack in both scale and diversity. To address this, we collected
a large-scale video pool consisting of 3 million videos with resolutions higher than 1024 × 1024,
frame rates higher than 24, and durations higher than 2 seconds. These videos cover a wide range
of scenes, including portraits, natural landscapes, plants and animals, urban landscapes, etc. To en-
sure video quality, we further screened these videos using the no-reference video quality assessment
metrics Wu et al. (2023); Zhang et al. (2023b) to remove low-quality videos. For the remaining
HQ videos, we generated text descriptions using CogVLM2-Video Yang et al. (2024b), maintaining
consistency with CogVideoX1.5-5B’s configuration. The final curated multimodal training dataset
comprises 500K text-video pairs with exceptional quality and variety.
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“ … an abandoned industrial 
site with ... a red lighthouse... 

parked a white car ... ”

“ … a forest landscape... it 
reveals a rocky outcrop and a 

gentle sky … ”

“ … a peaceful countryside ... 
is dotted with trees, some with 

red leaves ... ”

Figure 3: Example videos generated by
the proposed concept distillation train-
ing strategy. The top row presents
source videos, and the second row
shows corresponding generated videos
after embedding textual concepts via
the T2V model. Due to VLM cap-
tioner limitations, the source videos
exhibit imperfect alignment with their
text descriptions, while the generated
videos have better modality alignment.
(Zoom-in for best view)

Concept Distillation. Due to limitations of the VLM captioner, the constructed text-video data
pairs are not perfectly aligned (see Figure 3 top row). This may lead to distribution drift during fine-
tuning, degrading output video quality. While developing a more accurate VLM captioner could
enhance text-video alignment, it has two drawbacks: (1) it is costly, and (2) discrepancies may per-
sist in the T2V model’s latent space, potentially still leading to distribution drift. Instead, we address
this issue by distilling the text-concept understanding capabilities of the T2V base model into the
video restoration model. To this end, we employ the T2V model itself (i.e., CogVideoX1.5-5B)
to perform text-guided video-to-video translation, generating training data for distillation. Specifi-
cally, given a text-video pair, we perturb the source video by adding noise with a standard deviation
corresponding to T/2 time steps. We then apply CogVideoX1.5-5B to denoise the video over T/2
steps, conditioned on the text description, yielding a synthesized video with inherent alignment to
text concepts in this T2V model’s latent space. As illustrated in Figure 3 (second row), the generated
video largely retains the source content, but some concepts have been modified to better align with
those in the text description. We randomly extract text-video pairs from the constructed multimodal
training dataset and employ the aforementioned process to generate 100K sample pairs. These gen-
erated samples are then combined with the original training dataset to facilitate fine-tuning of the
control module in our DiT-based video restoration model.

Model Training. Following the settings of CogVideoX1.5-5B Yang et al. (2024b), we employ v-
prediction for training, and the loss function is:

L = Ex0,t,ϵ

[∥∥v − vθ(xt, x
lq, xtext, t)

∥∥2] , (2)

where x0 is the HQ video sampled from training dataset; xtext and xlq are the corresponding text
description and the synthesized LQ video using the degradation model from Wang et al. (2021); t
and ϵ are the time step and noise; xt =

√
ᾱtx0 +

√
1− ᾱtϵ is the noised latent of x0, and ᾱt is the

cumulative multiplication of the variance corresponding to time step t; vθ denotes the networks of
DiT and ControlNet (including the control feature projector and the connectors); v is the optimiza-
tion target, which is defined as v =

√
ᾱtϵ −

√
1− ᾱtx0. During training, only the control feature

projector, ControlNet, and connectors are trained, and other parameters remain frozen.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed Vivid-VR on both synthetic and real-world benchmark
datasets and compare it with state-of-the-art methods.

4.1 IMPLEMENTATION DETAILS

The overall training dataset includes 500K real videos and 100K generated videos, as well as their
corresponding text descriptions. During training, we resize the short side of these videos to 1024
pixels and then center-crop them to 1024× 1024 resolution. The number of training video frames is
randomly selected between 17 and 37. We use the AdamW optimizer Loshchilov & Hutter (2017)
with a learning rate of 0.0001, and adopt cosine annealing learning rate scheme Wang et al. (2019).
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Table 1: Quantitative comparisons on benchmarks, including synthetic (SPMCS, UDM10,
YouHQ40), real-world (VideoLQ, UGC50), and AIGC (AIGC50) videos. The best and second
performances are marked in red and blue, respectively.

Datasets Metrics Real-
ESRGAN SUPIR MGLD UAV STAR DOVE SeedVR

-7B
SeedVR2

-7B Vivid-VR

PSNR ↑ 23.19 21.86 21.02 23.01 24.18 24.80 24.08 26.07 21.73
SSIM ↑ 0.690 0.609 0.595 0.606 0.720 0.754 0.689 0.777 0.604
LPIPS ↓ 0.230 0.304 0.281 0.277 0.301 0.168 0.263 0.191 0.278
NIQE ↓ 5.393 3.494 3.790 3.503 7.058 4.031 4.514 4.969 3.457

MUSIQ ↑ 51.39 65.23 58.02 66.11 30.62 63.29 56.99 53.23 70.03
CLIP-IQA ↑ 0.306 0.469 0.357 0.427 0.254 0.410 0.347 0.325 0.483
DOVER ↑ 8.235 10.07 7.981 8.987 4.266 9.898 9.779 8.625 11.35

SPMCS

MD-VQA ↑ 79.16 82.88 78.92 81.90 74.87 83.07 79.56 78.78 86.55
PSNR ↑ 27.57 27.02 28.97 28.20 27.29 30.53 27.80 29.04 24.54
SSIM ↑ 0.857 0.816 0.873 0.826 0.855 0.894 0.848 0.884 0.761
LPIPS ↓ 0.187 0.208 0.158 0.196 0.167 0.101 0.148 0.117 0.243
NIQE ↓ 5.835 4.438 4.827 5.109 6.072 5.055 5.345 5.641 4.046

MUSIQ ↑ 52.32 60.84 55.82 56.19 45.38 55.17 50.29 48.91 64.71
CLIP-IQA ↑ 0.330 0.418 0.339 0.333 0.289 0.340 0.273 0.272 0.426
DOVER ↑ 9.402 10.49 9.319 9.774 9.454 10.41 9.349 8.752 11.97

UDM10

MD-VQA ↑ 83.51 85.21 83.89 83.14 82.10 83.99 80.15 79.88 90.05
PSNR ↑ 23.02 21.57 23.24 22.31 22.92 24.10 22.46 24.00 21.31
SSIM ↑ 0.655 0.585 0.639 0.592 0.657 0.688 0.621 0.693 0.579
LPIPS ↓ 0.341 0.347 0.350 0.340 0.433 0.283 0.240 0.185 0.357
NIQE ↓ 4.316 3.299 4.038 3.127 6.744 4.456 4.243 4.576 3.410

MUSIQ ↑ 60.03 68.46 59.40 65.97 36.36 60.65 61.91 59.34 70.55
CLIP-IQA ↑ 0.389 0.485 0.362 0.427 0.279 0.356 0.360 0.336 0.447
DOVER ↑ 12.60 12.93 11.01 12.36 7.868 12.52 14.00 12.80 14.61

YouHQ40

MD-VQA ↑ 88.85 89.44 86.24 87.35 76.89 86.51 87.51 85.82 92.92
NIQE ↓ 5.014 4.628 4.565 4.591 5.789 5.049 4.994 5.674 4.371

MUSIQ ↑ 55.29 54.45 57.70 55.82 50.52 55.11 46.49 43.41 62.47
CLIP-IQA ↑ 0.287 0.299 0.297 0.262 0.265 0.271 0.229 0.220 0.338
DOVER ↑ 8.453 8.609 8.830 7.777 8.758 8.780 7.240 6.331 9.743

VideoLQ

MD-VQA ↑ 80.50 77.32 80.67 78.02 78.56 79.33 74.80 73.52 83.14
NIQE ↓ 5.866 5.396 4.633 5.350 5.754 5.493 5.662 6.230 4.361

MUSIQ ↑ 52.22 58.25 61.42 54.71 55.01 57.82 49.76 46.12 67.61
CLIP-IQA ↑ 0.318 0.382 0.396 0.353 0.353 0.353 0.305 0.276 0.450
DOVER ↑ 10.25 12.01 11.78 10.44 10.92 11.84 10.47 8.209 14.46

UGC50

MD-VQA ↑ 80.85 82.27 84.81 81.12 81.93 82.30 78.69 75.49 88.89
NIQE ↓ 5.680 5.206 4.953 5.579 5.737 5.278 5.029 5.973 4.184

MUSIQ ↑ 54.26 58.11 61.39 57.62 51.66 62.07 61.61 49.35 67.18
CLIP-IQA ↑ 0.349 0.380 0.391 0.376 0.309 0.379 0.378 0.290 0.445
DOVER ↑ 12.36 13.33 12.70 12.28 12.10 14.49 14.46 11.34 14.51

AIGC50

MD-VQA ↑ 84.56 84.80 85.45 83.06 86.97 85.54 81.47 80.37 89.69

We train Vivid-VR on 32 NVIDIA H20-96G GPUs, with a batch size of 1 per GPU. The number of
training iterations is 30K, and the entire training process takes approximately 6K GPU hours. For
inference, we set the number of denoising steps to 50 and used the DPM solver Lu et al. (2022). To
maintain consistency with training settings, we run inference on videos at 1024 × 1024 resolution.
For higher resolution inputs, we employ aggregation sampling Wang et al. (2024) with direct block
concatenation rather than Gaussian-weighted averaging to prevent overlapping region artifacts.

4.2 QUANTITATIVE RESULTS

To evaluate the performance of the proposed algorithm, we compare Vivid-VR against state-of-
the-art approaches, including reconstruction-based methods (Real-ESRGAN Wang et al. (2021)),
generative image restoration methods (SUPIR Yu et al. (2024)), and generative video restoration
methods (UAV Zhou et al. (2024), MGLD Yang et al. (2024a), STAR Xie et al. (2025), DOVE Chen
et al. (2025b), SeedVR-7B Wang et al. (2025b), SeedVR2-7B Wang et al. (2025a)). The evaluation
covers synthetic (SPMCS Tao et al. (2017), UDM10 Yi et al. (2019), YouHQ40 Zhou et al. (2024))
and real-world (VideoLQ Chan et al. (2022b)) benchmarks. Furthermore, we construct two test-
sets, containing real-world UGC videos (UGC50) and AIGC videos (AIGC50). For real-world and
AIGC videos lacking of ground truth, we employed no-reference image (NIQE Mittal et al. (2012),
MUSIQ Ke et al. (2021), CLIP-IQA Wang et al. (2023)) and video quality assessments (DOVER Wu
et al. (2023), MD-VQA Zhang et al. (2023b)). For synthetic benchmarks, we supplemented these
metrics with full-reference evaluations (PSNR, SSIM, and LPIPS Zhang et al. (2018)).
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(b2) Bicubic (c2) SUPIR (d2) UAV (e2) MGLD

(f2) STAR (g2) DOVE (h2) SeedVR-7B (i2) Vivid-VR(a2) Input

(b3) Bicubic (c3) SUPIR (d3) UAV (e3) MGLD

(f3) STAR (g3) DOVE (h3) SeedVR-7B (i3) Vivid-VR(a3) Input

(b1) Bicubic (c1) SUPIR (d1) UAV (e1) MGLD

(f1) STAR (g1) DOVE (h1) SeedVR-7B (i1) Vivid-VR(a1) Input

Figure 4: Qualitative comparison results on synthetic (first row), real-world (second row), and
AIGC (third row) videos. The proposed Vivid-VR produces the frames with more reasonable struc-
tures, as well as more realistic and vivid textures. (Zoom-in for best view)

(a) Input (#5 frame) (b) Bicubic (c) SUPIR (d) STAR (e) SeedVR-7B (g) Vivid-VR

#0

#5

#10

#0

#5

#10

#0

#5

#10

#0

#5

#10

#0

#5

#10

(f) w/o CD

#0

#5

#10

Figure 5: Visual comparison results on temporal consistency. (a) displays the #5 frame of the input
video, and (b)-(g) present the outputs of the compared methods at frames 0, 5, and 10, where “CD”
denotes the proposed concept distillation. Vivid-VR demonstrates superior temporal coherence, as
evident from the consistent structure of windows and doors throughout the sequence. (Zoom in on
the red arrow area in each frame)

Table 1 presents quantitative comparisons on 6 benchmark testsets. The proposed Vivid-VR signif-
icantly outperforms existing methods in no-reference metrics, achieving the best results in almost
all metrics. At the same time, we also note its advantages in full-reference metrics appear less
pronounced. We argue that this arises primarily from the inherent limitations of these metrics,
which often fail to align with human perceptual preferences. For example, the LPIPS values of
Figure 4(g1) and (i1) are 0.3112 and 0.4297, respectively, while Figure 4(i1) is more prefered by
human. This phenomenon becomes particularly evident in generative restoration scenarios where
severe input degradation allows multiple plausible HQ outputs, making full-reference metrics inad-
equate for quality assessment. This has also been mentioned in Yu et al. (2024) and has been noticed
by quality assessment studies Blau & Michaeli (2018); Jinjin et al. (2020); Gu et al. (2022).
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Table 2: Ablation studies of the proposed method on the UGC50 testset, where “FT” denotes
“fine-tuning”, “CA” denotes “cross attention”, “SK” denotes “replacing MLP with skip connec-
tion”, “QW” denotes “using Qwen2.5-VL as VLM captioner”, “From scratch” denotes “synthesiz-
ing videos from scratch in concept distillation”, and (i) is the setting of the proposed Vivid-VR.

Control Feature Preprocessing ControlNet Connectors Concept
Distillation NIQE ↓ MUSIQ CLIP-IQA DOVER

FT VAE Enc Projector ZeroSFT MLP CA
(a) ✗ ✗ ✗ ! ! ! 4.622 63.06 0.414 13.98
(b) ! ✗ ✗ ! ! ! 4.632 64.31 0.408 14.40
(c) ✗ ! ✗ ! ✗ ! 5.183 59.78 0.374 13.04
(d) ✗ ! ✗ SK ! ! 4.730 63.91 0.401 13.71
(e) ✗ ! ! ✗ ✗ ! 4.771 61.21 0.389 13.77
(f) ✗ ! ✗ ! ! ✗ 5.364 57.36 0.363 12.99
(g) ✗ ! ✗ ! ! QW 5.253 60.88 0.354 13.45
(h) ✗ ! ✗ ! ! From scratch 4.710 62.66 0.391 13.27
(i) ✗ ! ✗ ! ! ! 4.361 67.61 0.450 14.46

4.3 QUALITATIVE RESULTS

Figures 1 and 4 present visual comparisons with existing methods on synthetic, real-world, and
AIGC videos. The proposed Vivid-VR achieves remarkable texture realism and visual vividness.
Notably, Vivid-VR is able to generate reasonable and clear structures, such as the house shown in
Figure 4(i1), while existing methods exhibit structural distortions, artifacts, and loss of fine details
(see Figure 4(c1)-(h1)). Moreover, the proposed Vivid-VR produces more realistic and delicate tex-
tures on human portraits and animal fur (see Figure 4(i2) and (i3)), while existing methods frequently
yield either overly blurred or oversharpened outputs that are perceptually unrealistic.

In addition, Figure 5 shows visual comparisons on temporal consistency. As shown in Figure 5(g),
the proposed Vivid-VR demonstrates superior coherence. For example, the structures of the win-
dows and doors are well-consistent throughout the sequence. In contrast, SUPIR shows frame-wise
inconsistency as it is an image-based restoration approach (see Figure 5(c)). While STAR and
SeedVR-7B leverage T2V frameworks, their fine-tuning-induced distribution drift compromises
temporal consistency (see Figure 5(d)-(e)). Notably, Vivid-VR exhibits similar degradation when
without using the proposed concept distillation strategy (see Figure 5(f)).

5 ANALYSIS AND DISCUSSIONS

We have shown that the proposed Vivid-VR performs favorably against state-of-the-art methods. To
better understand the proposed algorithm, we perform further analysis on the key components.

5.1 EFFECT OF THE CONTROL FEATURE PROJECTOR

The T2V base model is trained on HQ videos, making direct use of latent features from LQ videos
detrimental to generation quality. To address this issue, we propose a control feature projector to
remove degradation artifacts from the LQ video latents. To validate its effectiveness, we conducted
an ablation study by disabling this module while keeping other settings unchanged. As shown in
Table 2 ((a) vs (i)), the proposed control feature projector is able to improve video restoration.
SUPIR attempts to tackle this challenge by independently fine-tuning the VAE encoder. However,
this decoupled optimization creates feature incompatibility with subsequent DiT and ControlNet,
leading to suboptimal results (Table 2 (b)). While this problem can be solved through joint VAE
encoder and video restoration optimization, this approach is expensive to train. In contrast, our
proposed lightweight control feature projector can achieve similar effects at lower training cost.

In addition, we visualize the features before and after passing through the control feature projec-
tor. As shown in Figure 6, features from the low-quality input exhibit degradation artifacts, such as
blurry contours. In contrast, after being processed by our projector, these features become signifi-
cantly sharper and more defined. This provides evidence that the proposed control feature projector
effectively filters out degradation artifacts from the input latent signal.
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(a) Input (b) Before CFP (c) After CFP

Figure 6: Visualizations of features before and af-
ter passing through the control feature projector,
where “CFP” denotes “control feature projector”.

(a) Source video (b) From half-noised (c) From scratch

Figure 7: Example videos generated from half-
noised real samples and from scratch in the pro-
posed concept distillation process.

(b) Bicubic (c) Real-ESRGAN (d) ZeroSFT

(e) MLP (f) SK+CA (g) MLP+CA(a) Input

Figure 8: Effect of the dual-branch connector,
where “SK” denotes “replacing MLP with skip
connection” and “CA” denotes “cross attention”.

(a) Input

(b) Bicubic (c) STAR (d) SeedVR-7B

(e) w/o CD (f) w/ QW (g) Vivid-VR

Figure 9: Effect of the concept distillation, where
“CD” denotes “concept distillation” and “QW”
denotes “using Qwen2.5-VL as VLM captioner”.

5.2 EFFECT OF THE DUAL-BRANCH CONNECTOR

For the ControlNet connector, we propose a dual-branch architecture combining an MLP for feature
mapping with a cross attention mechanism for dynamic feature retrieval. One may wonder whether
this design helps video restoration. To answer this question, we conduct three ablation studies:
1) disabling the cross attention branch; 2) replacing the MLP branch with a skip connection; 3)
adopting the ZeroSFT connector Yu et al. (2024). Table 2 and Figure 8 show the comparative results
of the ablation experiments. When the cross attention branch is disabled, the MLP connector does
not perform well and produces results lacking in detail (see Table 2(c) and Figure 8(e)). When the
MLP branch is simply disabled, the video restoration model fails to converge due to its exclusive
selection of DiT-like features from control inputs, resulting in output results that do not match the
input content. To ensure model convergence, we replace the MLP with a skip connection. The
results in Table 2(d) and Figure 8(f) show that without the MLP feature mapping, the recovered
results are not well. These experiments demonstrate the necessity of our dual-branch design.

In addition, the results in Table 2(e) show that the performance of ZeroSFT connector Yu et al.
(2024) is inferior to our proposed dual-branch connector. Furthermore, the normalization operation
in ZeroSFT architecture often causes residual artifacts of adjacent frames to appear in the output
frames (see Figure 8(d)), while removing the normalization leads to gradient explosion during train-
ing. In contrast, our proposed connector avoids these problems.

5.3 EFFECT OF THE CONCEPT DISTILLATION STRATEGY

To mitigate distribution drift caused by imperfect multimodal alignment in training data, we intro-
duce a concept distillation training strategy, that leverages the T2V base model to generate training
data. To verify its effectiveness, we disable the generated training data and train this baseline method
only on the collected videos. Table 2(f) and Figure 9(e) show that the baseline method without the
concept distillation strategy fails to achieve high-quality results, showing overly sharp textures due
to distribution drift. For the similar reason, textures generated by STAR and SeedVR are also less
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Table 3: Influence of text-visual alignment in the concept distillation, where our strategy enhances
text-visual alignment, and better alignment brings better restoration quality and semantic accuracy.

Training Data Text-Visual Alignment
(FGA-BLIP2↑)

Restored Quality
(DOVER↑)

Restored Semantic Accuracy
(FGA-BLIP2↑)

(a) w/o Concept Distillation 3.49 12.99 3.69
(b) w/ Concept Distillation (Ours) 3.97 14.46 3.78
(c) w/ Shuffled Text during Distillation 1.77 11.88 3.21

realistic. In addition, the baseline method without the concept distillation also suffers from a de-
cline in temporal coherence (see Figure 5(f)). This verifies that our concept distillation method can
facilitate video restoration in terms of both perceptual quality and temporal consistency.

Furthermore, to verify whether using a more accurate VLM captioner could resolve the distribution
drift problem, we conduct an ablation study: using the more advanced Qwen2.5-VL as VLM cap-
tioner for training data annotation. As evidenced by Table 2(g) and Figure 9(f), the more accurate
Qwen2.5-VL also fails to completely eliminate the modality gap in the T2V model’s latent space,
demonstrating the persistence of distribution drift even with superior captioning models.

In addition, one might wonder if it’s possible to generate synthetic videos from scratch (starting with
noise). As shown in Figure 7, we found that videos generated directly from noise often contain no-
ticeable flaws, such as distorted human figures. Synthesizing samples from half-noised real samples
significantly alleviates this issue. We further conducted an ablation study, and the results in Ta-
ble 2(h) show that training a model on data generated ”from scratch” degrades the video restoration
performance, leading to a 1.19 point drop on the DOVER metric.

5.4 INFLUENCE OF TEXT-VISUAL ALIGNMENT IN CONCEPT DISTILLATION

The alignment between text and visual content is critical for concept distillation, and our method is
specifically designed to enhance it. To quantitatively validate this, we employ FGA-BLIP2 Han et al.
(2024) as a metric for semantic consistency between text and video. We randomly selected 10, 000
samples from the training videos generated by our concept distillation to evaluate the training data
text-visual alignment. As shown in Table 3 ((a) vs (b)), the proposed concept distillation strategy
boosts the training data alignment score (with the FGA-BLIP2 score increase of 0.48), which directly
translates to higher quality and better semantic accuracy in the final restored videos. It is worth
noting that the source videos used to generate synthetic samples are randomly sampled from our
original collected dataset. This means the addition of synthetic samples does not expand or alter the
underlying distribution of the training data, indicating that the performance gains stem from better
text-visual alignment rather than from easier distribution of synthetic data.

Furthermore, we validate the influence of significant text-visual misalignment, where we simulated
misalignment by randomly shuffling text-video pairings. As shown in Table 3(c), this drastically
lowered the training data alignment (FGA-BLIP2 score dropped to 1.77). Using this data during the
concept distillation process caused a significant decline in both the quality and semantic accuracy of
the final output, indicating that significant text-visual misalignment degrades performance.

6 CONCLUSIONS AND LIMITATIONS

We have proposed Vivid-VR, a DiT-based generative video restoration method built upon an ad-
vanced T2V foundation model. To mitigate distribution drift during fine-tuning, we have introduced
a concept distillation training strategy that leverages the pre-trained T2V model to synthesize train-
ing samples with embedded textual concepts. Regarding the model architecture for controllable
generation, we have proposed two key components: 1) a control feature projector that removes
degradation artifacts from latent video features, and 2) a dual-branch connector combining an MLP
and cross-attention mechanism for control feature mapping and dynamic retrieval. Both quantitative
and qualitative experimental results demonstrate the effectiveness of the proposed method.

The proposed method builds upon the CogVideoX1.5-5B T2V model and inherits its inference com-
plexity, which results in lengthy inference times. Future work will explore ways to enhance the
algorithm’s efficiency, such as applying one-step diffusion fine-tuning to achieve comparable video
restoration quality in a single forward pass.
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A APPENDIX

A.1 USE OF LLMS

In this paper, we used LLMs to assist with grammar and writing polish. All LLM-generated sugges-
tions were carefully reviewed and edited. The authors take full responsibility for the final content.

A.2 ADDITIONAL ANALYSIS OF THE PROPOSED METHOD

A.2.1 TRADE-OFF BETWEEN FIDELITY AND QUALITY

As Yu et al. (2024) points out, powerful generative prior is a double-edged sword, as excessive
generative capacity may in turn affect the fidelity of the restored video. To address this, we introduce
Restoration-Guided Sampling into Vivid-VR’s inference sampling process to balance the quality and
fidelity:

x̂est
t = xest

t + (
t

T
)τ (xlq − xest

t ), (3)

where xest is the denoised latent at time step t, and xlq is the original input latent; T denotes the
total number of denoising steps; τ is the guidance coefficient; x̂est is the output latent after the
restoration-guided sampling. Figure 10 demonstrates this trade-off: higher guidance coefficient τ
yield more realistic results, while lower τ preserve greater fidelity to the original input content.

A.2.2 EFFECT OF THE NUMBER OF GENERATED TRAINING VIDEOS

As mentioned in the main paper, the proposed method employs the concept distillation strategy to
generate 100K videos for training. A natural question arises: does the number of generated training
videos impact restoration performance? To investigate this, we conducted the ablation studies here.
Table 4 demonstrates that increasing the number of generated training videos from 0 to 100K yields
significant performance gains, while expanding from 100K to 150K shows diminishing returns.
Considering the cost of generating training videos, we therefore adopt 100K generated videos as
our standard configuration. Furthermore, we verified that relying solely on generated training data
(without source videos) leads to suboptimal results. This occurs because the T2V base model’s
outputs contain inherent imperfections. Training exclusively on such data ultimately compromises
model performance.

Table 4: Effect of the number of training videos generated by the proposed concept distillation.

Methods
Concept Distillation Training Strategy

NIQE ↓ MUSIQ ↑ CLIP-IQA ↑ DOVER ↑
# source training videos # generated training videos

(a) 500K 0 5.364 57.36 0.363 12.99
(b) 500K 50K 4.562 63.00 0.408 13.46
(c) 500K 100K 4.361 67.61 0.450 14.46
(d) 500K 150K 4.292 67.19 0.443 14.51
(e) 0 150K 5.652 53.77 0.377 11.63

A.2.3 EFFECT OF THE NUMBER OF CONTROLNET BLOCKS

To reduce the parameter count, we employ N/7 DiT blocks in ControlNet. In Deng et al. (2025),
only one block is used, and all connectors share the same control feature. To further investigate
whether N/7 DiT blocks are indeed necessary, we set the number of blocks to 1 and retrain using
the same settings. The results in Table 5 show that using only one block does not perform well.

Table 5: Effect of the number of controlNet blocks.

NIQE ↓ MUSIQ ↑ CLIP-IQA ↑ DOVER ↑
1 DiT block in ControlNet 4.855 66.85 0.442 14.17
N/7 DiT blocks in ControlNet (Vivid-VR) 4.361 67.61 0.450 14.46
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A.2.4 EXTENDING TO OTHER PRE-TRAINED T2V MODELS

We selected CogVideoX1.5-5B as the T2V base model because it is a state-of-the-art, publicly avail-
able T2V model at the time of our research, demonstrating exceptional generation quality and tem-
poral stability. To assess the generalizability of our approach, we replaced CogVideoX1.5-5B with a
more recent open-source model, Wan2.2-TI2V-5B Wan et al. (2025). By applying the same training
strategy, we found that our proposed concept distillation and ControlNet improvements transferred
effectively to this new model, also achieving SOTA results (see Table 6). We also experimented
with a smaller model, Wan2.1-T2V-1.3B Wan et al. (2025), and observed a corresponding drop in
restoration performance. This suggests that leveraging larger and more powerful T2V models could
yield superior outcomes. Extending this to even larger models (e.g., Wan2.1-T2V-14B) remains a
direction for future work due to significant computational demands.

Table 6: Extending to other pre-trained T2V models.

Pretrained T2V Model Parameters NIQE↓ MUSIQ↑ CLIP-IQA↑ DOVER↑
CogVideoX1.5-5B 5B 4.361 67.61 0.450 14.46
Wan2.2-TI2V-5B 5B 4.101 67.88 0.461 14.01
Wan2.1-T2V-1.3B 1.3B 5.078 63.21 0.339 12.98

A.2.5 MORE QUALITATIVE COMPARISON

In the main paper, we have demonstrated that the proposed Vivid-VR achieves state-of-the-art
performance. Due to the submission file size limit, we further provide more visual comparisons
with state-of-the-art methods and video examples in the Supplementary Material, where Vivid-VR
demonstrates superior structural clarity, texture richness, visual vividness, and temporal consistency.
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Fidelity Quality

(b) Bicubic(a) Input (c) 𝜏 = 1 (d) 𝜏 = 5 (e) 𝜏 = 10 (f) 𝜏 = 20

Figure 10: Trade-off between fidelity and quality. Higher guidance coefficient τ in the Restoration-
Guided Sampling yield more realistic results, while lower τ preserve greater fidelity to the original
input content. (Zoom-in for best view)

16


	Introduction
	Related Work
	Method
	Model Architecture
	Concept Distillation Training Strategy

	Experimental Results
	Implementation Details
	Quantitative Results
	Qualitative Results

	Analysis and Discussions
	Effect of the Control Feature Projector
	Effect of the Dual-Branch Connector
	Effect of the Concept Distillation Strategy
	Influence of text-visual alignment in concept distillation

	Conclusions and Limitations
	Appendix
	Use of LLMs
	Additional Analysis of the Proposed Method 
	Trade-off between Fidelity and Quality
	Effect of the Number of Generated Training Videos
	Effect of the Number of ControlNet Blocks
	Extending to other pre-trained T2V models
	More Qualitative Comparison



