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ABSTRACT

This paper develops a new perspective on parameter-efficient training for LLMs,
inspired by the classical theory of subspace minimization. We introduce a unify-
ing framework, Parameter-Efficient Subspace Optimization (PESO), which not
only recovers many existing methods such as LoRA but also bridges them with
the principled algorithmic and theoretical foundations of subspace optimization.
This connection highlights a natural “exploration–exploitation” view of subspace
methods, guiding the design of new algorithms that achieve strong convergence
performance while still preserving memory efficiency. Importantly, our frame-
work establishes the first convergence in the full-parameter space, resolving a crit-
ical gap in the current literature where low-rank updates lack such guarantees. We
further instantiate the framework into a practical algorithm named PESO-LoRA,
based on LoRA-type parameterization. Our algorithm achieves notable improve-
ments over existing methods on standard benchmarks.

1 INTRODUCTION

Pre-training and fine-tuning deep neural networks are the cornerstones of modern AI, powering the
success of large-scale foundation models such as Large Language Models (LLMs) (Brown et al.,
2020). At their core, both procedures reduce to solving a high-dimensional optimization problem
over weight matrices:

∆W ∗ := argmin∆W ℓ
(
W0 +∆W

)
, (1)

where ℓ(·) is the loss function, W0 is the initialization, and ∆W the increment. In practice, (1) is typ-
ically solved by first-order methods such as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov
& Hutter, 2017), which are the workhorses of large-scale training. However, these methods re-
quire storing additional optimizer states (e.g., momentum and velocity), and for LLMs this overhead
places enormous pressure on memory resources, making parameter-efficient strategies appealing.

In the realm of fine-tuning, we often have limited labeled data for a downstream task but still wish
to adapt the pretrained weights effectively and efficiently. Therefore, updating the entire parameter
set is both memory-intensive. This motivates the study of Parameter-Efficient Fine-Tuning (PEFT)
methods (Han et al., 2024; Houlsby et al., 2019; Hu et al., 2022), where optimization is restricted to
a smaller set of parameters initialized from pretrained weights. In other words, W0 denotes weights
obtained from a large-scale pretraining phase, and ∆W is not updated freely but instead follows an
efficient parameterization that constrains the search space.

A popular PEFT method is low-rank adaptation (LoRA, Hu et al. (2022)), where matrices in ∆W
are expressed as the product of two low-rank factors. LoRA has shown strong empirical success,
reducing memory costs while achieving competitive downstream performance. However, it suffers
from two key limitations: 1) performance often lags behind full-parameter fine-tuning (Figure 1, left:
MetaMathQA); 2) theoretical guarantees are limited, with convergence typically shown only for the
low-rank factors (Figure 1, middle: a synthetic example illustrating LoRA’s potentially unbounded
loss gap). To address these issues, many LoRA variants (Hayou et al., 2024; Wang et al., 2024a;b;
Zhang et al., 2023; 2025) have been proposed, yet they largely inherit the same shortcomings and
leave the following fundamental question open:

Can we design fine-tuning methods that maintain the memory footprint of LoRA while still enjoying
the convergence and optimality of full-parameter fine-tuning?
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Figure 1: Comparison of full-parameter tuning, LoRA, and our method (PESO-LoRA). Left: Meta-
MathQA. Middle: synthetic example minW ∥W −M∥2F with M = 10 · diag(1, . . . , 1, 0, . . . , 0)
(r+1 ones); see Appendix A. Right: optimization trajectories. PESO-LoRA bridges the loss gap of
LoRA while preserving memory and computation efficiency.

To address this question, we reveal an inherent connection between parameter-efficient training and
the classical idea of subspace minimization, a long-standing nonlinear optimization strategy dat-
ing back to Conn et al. (1994); Cragg & Levy (1969). The central philosophy is to decompose
a large-scale problem like (1) into iterative, simpler subproblems constrained to carefully chosen
subspaces. This view resonates naturally with modern PEFT methods, which restrict updates to
structured low-rank forms for better efficiency. Interestingly, subspace minimization historically
received less attention in the optimization society, since full-parameter information were often af-
fordable in traditional applications. However, it is especially well suited to LLM training, where
massive dimensionality calls for memory-efficient methods.

Formally, we build on the notion of intrinsic dimensionality in LLM training (Aghajanyan et al.,
2020; Li et al., 2018), recognized in (Hu et al., 2022) as the origin of LoRA: there exists a dimension-
lifting mapM : Rd → Rm×n, with d≪ m×n, such that the optimal solution ∆W ∗ of (1) satisfies

∆W ∗ ≈M(ξ∗), ξ∗ := argminξ∈Rd ℓ(W0 +M(ξ)). (2)

Here, d stands for the number of trainable parameters, and this characterization implies that it suf-
fices to optimize within the reduced space defined byM to approximate ∆W ∗. For clarity, we focus
on a single weight matrix ∆W ∈ Rm×n (multi-layer extensions are straightforward) and represent
ξ as a d-dimensional vector. This is without loss of generality, since tensor parameters can always
be flattened via vectorization into an isomorphic Euclidean space. For example, LoRA adopts the
simple formM(A,B) = AB with A ∈ Rm×r, B ∈ Rr×n, and d = (m+n)r. However, it remains
unclear whether such a simpleM is sufficient to capture the complexity of LLM training dynamics.

Our framework approximatesM adaptively through a sequential subspace approximation, provid-
ing a more effective capture of (2). We construct a sequence of maps {Mk}, each with a simple
representation,

∆W ∗ ≈
∑

kMk(ξ
∗
k), ξ∗k := argminξ∈Rd ℓ(W0 +

∑k−1
i=1 Mi(ξ

∗
i ) +Mk(ξ)). (3)

where eachMk approximates a subspace and ξ∗k is its low-dimensional coordinate. In essence, the
complexity ofM is captured by a sequence of piecewise-linear subspaces. This philosophy parallels
classical approximation schemes in numerical analysis such as finite element methods (Bathe, 2006).

Guided by this perspective, we develop a principled framework for PEFT grounded in subspace
minimization, named Parameter-Efficient Subspace Optimization (PESO). A key insight is to view
the problem (3) through an exploration–exploitation lens: exploration designs new subspaces that
capture full gradient information, while exploitation optimizes efficiently within the current sub-
space. This resolves LoRA’s two central limitations: lack of full-parameter convergence guarantees
and inefficiency from rigid low-rank parameterization; see Figure 1.

Contributions. Our contributions can be summarized at three levels. Although our focus is on
PEFT, many of the ideas developed here naturally extend to pre-training.

I. Perspective Level. We introduce a novel framework PESO for memory-efficient training in-
spired by classical subspace minimization (Conn et al., 1994), unifying existing PEFT approaches
such as LoRA variants (Hu et al., 2022; Wang et al., 2024a;b; Zhang et al., 2023; 2025) and GaLore
(Zhao et al., 2024). This framework allows us to explore the rich algorithmic techniques in subspace
methods, providing systematic guidance to improve memory-efficient methods. In particular, we
highlight two complementary directions: exploration of new subspaces through information from
the full gradient, and exploitation of the current subspace via streaming SVD representations.
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II. Theoretical Level. Our exploration mechanism, full gradient restart, enables the framework to
effectively guide training dynamics. The resulting algorithm is, to our knowledge, the first memory-
efficient method for LLM training with provable convergence to full-parameter optimality up to
small errors, without additional assumptions such as explicit low-rankness of the solution.

III. Empirical Level. Guided by our PESO framework, we show that two practical instantia-
tions of our framework—PESO-LoRA-R and PESO-LoRA-T—achieve improved performance
while preserving the memory efficiency of state-of-the-art PEFT methods across benchmarks such
as GLUE, mathematical reasoning, code generation, and instruction tuning.

Related Work. LoRA (Hu et al., 2022) is perhaps the most widely known PEFT method, and
numerous variants have been proposed to enhance its performance. For instance, LoRA+ (Hayou
et al., 2024) introduces imbalanced learning rates; PiSSA (Meng et al., 2024) proposes an SVD-
based initialization of pretrained weights; and AdaLoRA (Zhang et al., 2023) maintains an adaptive
SVD-based low-rank representation. Other extensions focus on gradient scaling (Tastan et al., 2025;
Zhang & Pilanci, 2024). More recent work leverages information from the full gradient: LoRA-
GA (Wang et al., 2024a) and LoRA-Pro (Wang et al., 2024b) propose memory-efficient gradient
approximations, projection-based methods are studied in (Liang et al., 2024; Zhao et al., 2024;
Zhu et al., 2024), and LoRA-One (Zhang et al., 2025) employs the SVD of the full gradient for
initialization.

Convergence guarantees for PEFT algorithms remain scarce, and existing results typically address
only the low-dimensional parameters (Jiang et al., 2024). A related line of work studies subspace
descent methods (Chen et al., 2025; Kozak et al., 2019; Liang et al., 2024), which constrain updates
to Wk+1 ← Wk − ηkPkP

⊤
k Gk, where Pk is the projection matrix, ηk the learning rate, and Gk

the full gradient. These approaches establish convergence in the full-parameter space, but under
extra structural assumptions. For example, Liang et al. (2024) analyze a continuous-time variant
via Lyapunov arguments, but require P⊤G = 0 ⇒ G = 0, which holds only if P has full column
rank—an unrealistic condition when r < m. Likewise, Chen et al. (2025); Kozak et al. (2019) rely
on random projection theory, assuming E[PP⊤] = Im and P⊤P = Ir, conditions not needed in
our analysis. Closer to LoRA, Jang et al. (2024) provide a convergence analysis, but only within the
Neural Tangent Kernel (NTK) regime, limiting its applicability.

Subspace minimization is a classical theme in nonlinear optimization (Conn et al., 1994; Cragg &
Levy, 1969; Yuan, 2014). It was historically overshadowed by full-parameter algorithms such as
L-BFGS (Liu & Nocedal, 1989) and conjugate gradient methods (Nocedal & Wright, 2006, Ch.
5), since many traditional applications could afford storing full gradients and quasi-Newton pairs.
More recently, however, subspace-based strategies have re-emerged in large-scale derivative-free
optimization (Cartis & Roberts, 2023; Dzahini & Wild, 2024; Menickelly, 2024; Nozawa et al.,
2025; Zhang, 2025), where gradients are unavailable and low-dimensional surrogates are crucial.

2 PESO: A FRAMEWORK FROM SUBSPACE MINIMIZATION

In this section, we provide a novel perspective of PEFT methods with insights from subspace min-
imization. We summarize an algorithmic framework Parameter-Efficient Subspace Optimization
(PESO) in Algorithm 1, and discuss how it unifies many benchmarks such as LoRA and GaLore.

To build an iterative scheme, a central question is how to represent the weight W at each iteration
using low-dimensional representation ξ. In (3), the optimization is expressed through evolving
subspaces. At iteration k, we define the anchored state W̃k := W0 +

∑k−1
i=1 Mi(ξ

∗
i ) to encode

historical progress, and represent

Wk = W̃k +Mk(ξk). (4)

Following the design of subspace minimization, PESO considers eachMk to admit a simple image
in the form of a subspace: Sk := {Mk(ξ) : ξ ∈ Rd}.
Under representation (4), the evolution of Wk can be viewed as three complementary operations: 1)
exploration: updatingMk to select a new subspace Sk, (line 5 of Algorithm 1) 2) exploitation: op-
timizing ξk within the current subspace (line 7-8 of Algorithm 1), and 3) updating W̃k to absorb past
progress into the anchored weights. These operations mirror the classical paradigm of subspace
minimization (Conn et al., 1994), where a large-scale problem is solved by iteratively: (i) con-
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Algorithm 1 PESO: Generic Framework of Parameter-Efficient Subspace Optimization

Require: Initialization W0 ∈ Rm×n, ξ0 ∈ Rd, and M0; an algorithmic subroutine
UpdateSubspace, an optimizer Opt, frequency K.

1: Set k ← 1 and W̃0 ←W0.
2: while stopping criteria not satisfied do
3: (Mk, W̃k)← (Mk−1, W̃k−1).
4: if k − 1 mod K = 0 then ▷ Exploration to new Sk
5: (Mk, W̃k)← UpdateSubspace(Mk−1, W̃k−1).
6: end if
7: ∆ξk ← Opt(ξk−1,Mk) ▷ Exploitation of current Sk
8: ξk ← ξk−1 +∆ξk.
9: k ← k + 1.

10: end while

structing a subspace based on local information such as gradients, (ii) solving a reduced subproblem
within that subspace, and (iii) updating the iterate to incorporate the subspace solution.

In our design, exploration and exploitation directly parallel subspace selection and subproblem op-
timization, while the anchored state W̃k retains progress from earlier subspaces. In LoRA, W̃ is
fixed at W0, confining progress to the active subspace. In contrast, updating W̃ absorbs accumu-
lated contributions back into the parameter space, giving rise to two distinct exploration strategies:
warm-start and restart, which we detail below in Section 2.1.

Leveraging this connection to subspace minimization, we present our generic framework PESO
in Algorithm 1. It is important to note that, by selecting corresponding parameterization of Mk,
UpdateSubspace, and Opt, we are able to recover a variety of existing benchmarking methods
in parameter-efficient training; see representatives in Table 1. We also remark that Algorithm 1 is
equivalent to the classical two-loop subspace minimization scheme (Conn et al., 1994), which we
defer to Appendix B in Algorithm 4.

2.1 SUBSPACE EXPLORATION-EXPLOITATION IN PESO

Now let us discuss two main components of our framework, subspace exploration and exploitation.

Subspace Exploration. Exploring new subspaces is essential for navigating the full-parameter
space under memory restriction. Algorithm 1 carries out exploration by UpdateSubspace, which
updates bothMk and W̃k. Such updates are often performed lazily every K iterations, as in prior
works (Liang et al., 2024; Zhang et al., 2023; Zhao et al., 2024; Zhu et al., 2024).

Depending on how much Mk is changed, two philosophies arise for how exploration inter-
acts with the low-dimensional ξk: warm-start and restart. These are simply two modes of
UpdateSubspace:

• Warm-start. Preserve ξk and keep W̃k fixed. Formally,

Wk+1 = W̃k +Mk+1(ξk +∆ξk). (5)

• Restart. Absorb the previous contribution into the baseline, W̃k+1 ← W̃k +Mk(ξk), and
start the new subspace from ξnew (often 0):

Wk+1 = W̃k+1 +Mk+1(ξnew +∆ξk). (6)

Intuitively, warm-start provides smoother transitions when consecutive subspaces remain similar,
while restart marks a new phase, useful when the optimization geometry changes sharply. In prac-
tice, these two modes naturally lead to two main approaches for designing UpdateSubspace.
A warm-start typically updates the parameterization of Mk smoothly along an optimization tra-
jectory—for example, by applying an Adam step on subspace parameters as in LoRA vari-
ants—yielding a gradually evolving subspace. Restart, on the other hand, often reassigns Mk

directly using local information such as gradients. This strategy is common in classical optimiza-
tion; for example, in line search (a one-dimensional subspace method) each iteration resets the step
size initialization when a new direction is chosen (Nocedal & Wright, 2006, Ch. 3). It is also used
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Table 1: Examples of memory-efficient training methods as instances of PESO.

Methods ξ Mk(ξ) Sk UpdateSubspace Init.

LoRA (A,B) AB {AkB +ABk : A∈
Rm×r, B∈Rr×n}

Adam for Ak, Bk warm-start

AdaLoRA Λ PkΛQk {PkΛQk : Λ ∈
Rr×r diagonal}

SGD for Pk, Qk warm-start

GaLore R PkR {PkR : R ∈ Rr×n} Pk: left r-SVD of Gk restart

Kozak et al. (2019) R PkR {PkR : R ∈ Rr×n} randomly sample Pk restart

Liang et al. (2024) R PkR {PkR : R ∈ Rr×n} online PCA of Pk warm-start

in LLM training, as in GaLore (Zhao et al., 2024), which periodically resets the subspace via the
SVD of the full gradient. Concrete examples of both approaches are summarized in Table 1, and
Section 3.1 introduces a new restart scheme leveraging full gradients.

Subspace Exploitation. Between two updates of UpdateSubspace, our framework performs
K iterations of Opt within the current subspace Sk. This amounts to solving the subproblem

minξ∈Rd ℓ(W̃k +Mk(ξ)) (7)

approximately for K steps. In practice, Opt is often chosen as Adam.

The philosophy relies on a common belief in classical optimization: during an optimization pro-
cedure, once an effective subspace is identified, repeatedly exploiting it for multiple iterations im-
proves efficiency. This principle underlies many classical optimization methods, such as trust-region
methods (Nocedal & Wright, 2006, Ch. 4) and L-BFGS-B (Byrd et al., 1995).

2.2 CONNECTION TO EXISTING BENCHMARKS

While (4) may strike to be abstract, many existing benchmarks for LLM training can naturally fit in
it by considering specific subspaces. Here we summarize several notable methods in Table 1.

• Projected subspace. A simple way to define a memory-efficient subspace is through low-rank pro-
jection, whereMk : R ∈ Rr×n 7→ PkR is parameterized by a left-projection matrix Pk ∈ Rm×r.
This formulation can be extended to right-sided or two-sided projections. By applying the chain rule
to ∇Rℓ(W̃k + PkR), one obtains the projected subspace schemes analyzed in (Kozak et al., 2019;
Liang et al., 2024; Zhao et al., 2024; Zhu et al., 2024); see Appendix C for details. Within PESO,
GaLore (Zhao et al., 2024), APOLLO (Zhu et al., 2024), and stochastic subspace descent (Kozak
et al., 2019) correspond to a restart strategy by reassigning Pk, while online subspace descent (Liang
et al., 2024) adopts a warm-start update of Pk via online PCA.

• Low-rank subspace. The LoRA family defines the subspace {AkB + ABk : A ∈ Rm×r, B ∈
Rr×n}, where the adapters (A,B) jointly serve as both ξ and the parameterization ofMk. Conse-
quently, a single Adam update of (A,B) simultaneously updates the subspace and its coordinates,
effectively realizing a warm-start scheme with K = 1. Many LoRA variants can be viewed as
modifications of this generic template: LoRA-Pro (Wang et al., 2024b) applies a different precon-
ditioner, and PiSSA (Meng et al., 2024), LoRA-GA (Wang et al., 2024a), and LoRA-One (Zhang
et al., 2025) adjust initialization strategies, while other works modify learning rates or scaling rules.
Our framework unifies these designs by interpreting them as specific choices of Opt or initialization
within the same subspace structure.

• SVD subspace. A principled way to extract low-dimensional structure from matrices (such as ∆W )
is through Singular Value Decomposition (SVD), leading to the representation Mk : λ ∈ Rr 7→
Udiag(λ)V . Here, (U, V ) define the subspace (exploration), while λ is the low-dimensional coor-
dinates (exploitation). This separation fits directly into Algorithm 1, enabling flexible optimization
strategies for (U, V ) and λ. AdaLoRA (Zhang et al., 2023) exemplifies this parameterization, and
our framework clarifies the roles of (Pk,Λk, Qk) in their notation. We build on this principle in
Section 3, where we propose a practical SVD-based variant PESO-LoRA-T.
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Together, these three subspace categories illustrate how PESO unifies existing PEFT methods under
a single framework, setting the stage for designing new practical algorithms and proving conver-
gence in the following sections.

3 PESO-LORA: PRACTICAL ALGORITHMS FROM THE FRAMEWORK

The previous section establishes a conceptual link between PEFT methods and classical subspace
minimization, providing a unifying interpretation. Building on this perspective, we now develop
a concrete algorithm PESO-LoRA, which extends LoRA using guidance from our PESO frame-
work. We present two variants: PESO-LoRA-R leverages a full gradient restart strategy to improve
exploration of subspaces, and PESO-LoRA-T is a SVD-based method that enhances exploitation
through more effective optimization within each subspace.

3.1 FULL GRADIENT RESTART

We now introduce an important variant of the UpdateSubspace subroutine in the restart cat-
egory (see (6)) that enables convergence to stationarity in the full-parameter space. We design
UpdateSubspace so that each new subspace Sk induced byMk remains well aligned with the
current full gradient Gk. We call this scheme full gradient restart:

Full Gradient Restart. Given learning rates {ηk}, whenever k − 1 mod K = 0:

1) Absorb history: W̃k ← W̃k−1 +Mk−1(ξk−1).

2) Compute the (stochastic) full gradient Gk = ∇W ℓ(W̃k).
3) Choose a low rank subspace SFG

k depending on Gk.
4) Restart with ξk ← ξnew

k such thatMk(ξ
new
k ) = −ηkPSFG

k
(Gk).

Here, PSFG
k
(Gk) denotes the projection of Gk onto SFG

k . This procedure effectively redefinesMk so
that the new adapter is initialized by a projected gradient step:

Wk ←Wk−1 − ηkPSFG
k
(Gk). (8)

Thus, each restart ensures that Sk captures information from full gradients, with initial progress
comparable to a standard SGD step. In the literature on subspace methods, incorporating the full
gradient into {Sk} is critical for convergence guarantees (Conn et al., 1994; Zhang, 2025). In par-
ticular, one can show that ∥∇W ℓ∥ → 0 provided that Gk := ∇W ℓ(Wk) lies in Sk. Building on this,
we demonstrate in Section 5 that full gradient restart ensures convergence to a stationary point of
the original problem (1) by interleaving projected steepest-descent steps with subspace updates.

Algorithm 2 PESO-LoRA-R: PESO with LoRA and Subspace ExploRation

Require: Pre-trained parameters W0 ∈ Rm×n, frequency K, scale parameter γ.
1: Set k ← 1, W̃0 ←W0, A0 ← 0 and B0 ← 0.
2: while stopping criteria not satisfied do
3: if k − 1 mod K = 0 then
4: W̃k ← W̃k−1 +Ak−1Bk−1.
5: Compute stochastic full gradient Gk.
6: (Uk,Λk, Vk)← SVD(−Gk). ▷ Top-r SVD of Gk

7: Set Ak−1 ← 1√
γUk

√
Λk and Bk−1 ← 1√

γ

√
ΛkVk.

8: end if
9: (Ak, Bk)← AdamW(Ak−1, Bk−1). ▷ One AdamW step on (Ak−1, Bk−1)

10: k ← k + 1.
11: end while
12: return W̃k +AkBk.

A practical construction of SFG
k is to compute a rank-r SVD of Gk and define the subspace as the

span of its top singular directions. This ensures that SFG
k captures the main structure of Gk, while the

approximation error ∥Gk − PSFG
k
(Gk)∥ is governed by the spectral tail of Gk. Crucially, this tail is

independent of the rank gap in the objective, underscoring a key distinction between representation
deficiency (e.g., LoRA) and update efficiency. In practice, given (Uk, Vk) from the rank-r SVD of
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Gk, one can also restart with Mk(ξ
new
k ) = −ηkUkVk, which corresponds to the update from the

recent training benchmark Muon (Jordan et al., 2024), providing improved stability over (8).

One practical advantage of full gradient restart is that it acts as a “plug-and-play” mechanism for
existing PEFT methods. It can be applied with a moderate frequency K to reduce the cost of SVD
while still guiding subspace exploration effectively. Recent work, such as GaLore (Zhao et al., 2024)
and LoRA-One (Zhang et al., 2025), has demonstrated the empirical benefits of leveraging the full
gradient. In particular, the recent variants LoRA-GA (Wang et al., 2024a) and LoRA-One (Zhang
et al., 2025) can be interpreted as special cases of LoRA with full gradient restart applied only
at initialization. To achieve convergence in the full-parameter space, we propose PESO-LoRA-R
(Algorithm 2), which embeds LoRA with a repeated restart mechanism every K iterations.

To implement Algorithm 2, directly assigning (Ak−1, Bk−1)← 1/
√
γ(Uk

√
Λk,
√
ΛkVk) can cause

instability due to mismatches in optimization states. For robustness, we propose alignment tech-
niques to maintain consistency of subspace bases, momentum, and velocity; details are provided in
Appendix D. Finally, we remark both empirical evidence and theoretical results suggest that gradi-
ents Gk in deep learning often have strong low-rank structure, making them especially suitable for
efficient SVD-based approximations (Cosson et al., 2023; Yang et al., 2023; Zhao et al., 2024).

3.2 EXPLOITATION VIA SVD SUBSPACE

Having discussed exploration techniques inspired by subspace minimization, we now turn to the
complementary philosophy: exploitation within the current subspace.

As outlined in Section 2.2, an SVD-based parameterization provides a clean and principled way to
define Mk. Specifically, we approximate the target mapping M(ξ∗) by a sum of rank-r compo-
nents,

∑
k Ukξ

∗
kVk, where each pair (Uk, Vk) defines an SVD subspace of rank r. Because SVD

naturally captures the dominant gradient directions, this parameterization ensures that exploitation
is focused on the most informative directions in the weight space.

Within each subspace, we optimize the low-dimensional coordinate ξ for K steps using Adam. This
design can be viewed as an extension of LoRA, with the key difference that the SVD structure
explicitly decouples subspace exploitation (through ξ) from exploration (through (U, V )). The prac-
tical variant is summarized in Algorithm 3. A small frequency K (e.g., 1 or 2) often suffices for
strong performance without significant overhead.

Algorithm 3 PESO-LoRA-T: PESO with LoRA and Subspace ExploiTation

Require: Pretrained weights W0 ∈ Rm×n, initial subspace matrices U0 ∈ Rm×r, V0 ∈ Rr×n,
initial coordinate ξ0 ∈ Rr, frequency K.

1: Set k ← 1.
2: while stopping criterion not met do
3: Keep (Uk, Vk)← (Uk−1, Vk−1).
4: if k − 1 mod K = 0 then
5: (Uk, Vk)← AdamW(Uk−1, Vk−1). ▷ One AdamW step on (Uk−1, Vk−1)
6: end if
7: ξk ← AdamW(ξk−1). ▷ One AdamW step on ξk−1

8: k ← k + 1.
9: end while

10: return W0 + Uk diag(ξk)Vk.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate our methods across diverse tasks and models,
comparing with standard LoRA-based approaches and full fine-tuning. We first assess natural lan-
guage understanding on the GLUE benchmark (Wang et al., 2018) by fine-tuning T5-base (Raffel
et al., 2020). We then evaluate natural language generation on Llama-2-7B (Touvron et al., 2023)
for tasks including mathematical reasoning, code generation, and general instruction tuning. Finally,
we demonstrate that LoRA-PESO-R remains effective even under strict memory constraints when
trained for more epochs. Implementation details are provided in Appendix E.
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4.1 NATURAL LANGUAGE UNDERSTANDING TASKS

We fine-tune the T5-base model on a subset of GLUE, including MNLI, SST-2, CoLA, QNLI, and
MRPC, and evaluate performance using test accuracy (%). Following the setting in (Zhang et al.,
2025), we compare our method against several LoRA variants, including LoRA (Hu et al., 2022),
LoRA+ (Hayou et al., 2024), P-LoRA (Zhang & Pilanci, 2024), PiSSA (Meng et al., 2024), LoRA-
GA (Wang et al., 2024a), LoRA-Pro (Wang et al., 2024b), and LoRA-One (Zhang et al., 2025). For
fairness, hyperparameters are tuned individually for each method.

The results are summarized in Table 2. PESO-LoRA-R and PESO-LoRA-T achieve the best per-
formance on three of the five GLUE tasks (MNLI, SST-2, and QNLI), which are also the larger
datasets. On the remaining tasks, PESO-LoRA-T ranks second. This demonstrates the over-
all efficiency and robustness of our approaches, with advantages most evident on larger datasets
that demand longer training and stronger exploration–exploitation. Moreover, PESO-LoRA-T
generally outperforms PESO-LoRA-R, but at the cost of 1.4× more computation time, whereas
PESO-LoRA-R runs at nearly the same speed as standard LoRA. Memory costs are comparable
across all methods, so the choice ultimately depends on whether performance or efficiency is prior-
itized.
Table 2: Performance of fine-tuned T5-base on natural language understanding tasks with rank set
to 8. Results are reported as accuracy (%) over 3 runs. Bold and underline indicate the highest and
second-highest accuracies excluding PESO-LoRA-T, which is shaded in gray and omitted from
direct comparison due to its longer runtime.

Method MNLI SST-2 CoLA QNLI MRPC

LoRA 85.30±0.04 94.04±0.09 72.84±1.25 93.02±0.07 68.38±0.01

LoRA+ 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39

P-LoRA 85.28±0.15 93.88±0.11 79.58±0.67 93.00±0.07 83.91±1.16

PiSSA 85.75±0.07 94.07±0.06 74.27±0.39 93.15±0.14 76.31±0.51

LoRA-GA 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24

LoRA-Pro 86.03±0.19 94.19±0.13 81.94±0.24 93.42±0.05 86.60±0.14

LoRA-One 85.89±0.08 94.53±0.13 82.04±0.22 93.37±0.02 87.83±0.37

PESO-LoRA-R 86.08±0.15 94.61±0.09 81.50±0.16 93.43±0.06 86.36±0.11

PESO-LoRA-T 86.09±0.04 94.76±0.19 82.01±0.30 93.45±0.03 87.59±0.46

4.2 NATURAL LANGUAGE GENERATION TASKS

Following prior work (Wang et al., 2024a; Zhang et al., 2025), we fine-tune the Llama-2-7B model
on three datasets and evaluate on the corresponding downstream tasks. For mathematical reason-
ing, we use a 100k subset of MetaMathQA (Yu et al., 2023) and evaluate on GSM8K (Cobbe
et al., 2021). For general instruction tuning, we fine-tune on Alpaca (Taori et al., 2023) and eval-
uate on MMLU (Hendrycks et al., 2020). For code generation, we use a 100k subset of Code-
Feedback (Zheng et al., 2024) and evaluate on HumanEval (Chen et al., 2021), reporting PASS@1.
To ensure fairness, all datasets are preprocessed to exclude overlaps with test sets. Results are shown
in Table 3. Remarkably, our methods outperform baselines on two of the three tasks—mathematical
reasoning and code generation—both involving larger training datasets, highlighting the substantial
gains enabled by subspace exploration and exploitation in handling complex tasks.

4.3 MULTI-EPOCH LOW-RANK ANALYSIS

To demonstrate the effectiveness of subspace exploration, we extend T5-base fine-tuning on SST-
2 from one epoch (Section 4.1) to four. This longer schedule enables more thorough exploration
and reduces the intrinsic low-rank bottleneck. As shown in Table 4, PESO-LoRA-R with r = 2

Table 3: Performance of fine-tuned Llama-2-7B on natural language generation tasks with rank set
to 8. Results are reported as accuracy (%) over 3 runs. Bold and underline indicate the highest and
second-highest accuracies excluding PESO-LoRA-T.

LoRA LoRA-GA LoRA-One PESO-LoRA-R PESO-LoRA-T

GSM8K 59.26±0.99 56.44±1.15 60.44±0.17 60.55±0.34 60.82±0.77

MMLU 45.73±0.30 45.15±0.57 47.24±0.20 46.16±0.58 46.44±0.37

HumanEval 25.85±1.75 26.95±1.30 28.66±0.39 31.70±1.30 30.85±1.18
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Table 4: Performance of fine-tuned T5-base (4 epochs) on the SST-2 dataset. Results are reported as
accuracy (%) over 3 runs. Bold and underline indicate the highest and second-highest accuracies.

Method Epoch 1 Epoch 2 Epoch 3 Epoch 4

LoRA (r = 2) 93.02±0.44 93.47±0.51 93.41±0.12 93.52±0.17

LoRA (r = 4) 94.23±0.30 94.42±0.15 94.46±0.10 94.61±0.25

LoRA (r = 8) 93.85±0.30 94.03±0.09 94.54±0.05 94.54±0.23

PESO-LoRA-R (r = 2) 94.30±0.15 94.47±0.08 94.84±0.25 95.14±0.15

Full fine-tuning 94.42±0.11 94.70±0.10 94.85±0.11 94.90±0.06

consistently outperforms standard LoRA even at higher ranks (r = 4, 8), showing that it overcomes
the low-rank limitation, achieves full-parameter optimality, and delivers stronger performance even
under highly restricted memory budgets.

5 CONVERGENCE ANALYSIS

In this section, we establish convergence of PESO with the full gradient restart. For general non-
convex losses, the optimality measure E∥Gk∥ converges to zero up to controlled inexactness. To
our knowledge, this is the first convergence result for memory-efficient training that guarantees full-
parameter stationarity under standard assumptions. We begin by stating the regularity assumptions.
Assumption 1. The loss ℓ is nonconvex, bounded from below, and has L-Lipschitz gradients.

Assumption 2. Stochastic gradients G̃k of the full gradient Gk satisfy E(G̃k) = Gk and there exists
C > 0 such that V(G̃k) ≤ C.
Assumption 3. The learning rates for full gradient restart in (8) satisfies

∑
ηk =∞ and

∑
η2k <∞.

Assumption 4. There exists a sequence {δk} ≥ 0 such that dist(Gk,Sk) ≤ δk for k where full
gradient restart is implemmented. Furthermore, limk→∞ δk <∞.
Assumption 5. Opt and UpdateSubspace generate the updates satisfying E[ℓ(Wk)] ≤
E[ℓ(W̃k+Mk(ξk−1))]+Ck and E[ℓ(W̃k+Mk(ξk−1))] ≤ E[ℓ(Wk−1)]+Ck where

∑
k |Ck| <∞.

Assumptions 1–3 are standard in stochastic optimization; see, e.g., (Bottou et al., 2018). Assump-
tion 4 requires the subspace at full gradient restart to be sufficiently aligned with Gk, allowing
approximation errors, e.g., from low-rank SVD. Assumption 5 is mild and holds, for example, when
both Opt and UpdateSubspace use SGD with diminishing learning rates; see Appendix F.

We now state the main convergence result; the proof and its deterministic counterpart are de-
ferred to Appendix F. Importantly, the result holds for any choice of UpdateSubspace, whether
warm-start or restart, and at any frequency. In particular, Algorithm 1 may combine different
UpdateSubspace strategies at varying frequencies, and the guarantee remains valid.
Theorem 5.1. Suppose all assumptions hold. With full gradient restart, the iterates {Wk} generated
by Algorithm 1 satisfy lim infk→∞ E[∥Gk∥] ≤ limk→∞ δk.
Remark. If SFG

k is chosen such that Gk ∈ SFG
k , then δk = 0 and the optimality measure converges to

zero. In PESO-LoRA-R, SFG
k is the top-r SVD subspace of G̃k, so δk reflects both SVD truncation

error and a noise term of order O(
√
C). When Gk is effectively low rank and variance-reduction

(e.g., online PCA or EMA) is used, limk→∞ δk can be made small.

6 CONCLUSIONS AND LIMITATIONS

This paper bridges classical methodology from nonlinear optimization with the practical challenge
of memory-efficient LLM training. It highlights two key perspectives: 1) practical constraints in
LLM training, such as memory limits, can motivate specialized optimization designs; 2) principles
from nonlinear optimization can in turn guide the development of practical algorithms for LLMs.
We believe this opens promising directions for principled and scalable LLM training, while under-
scoring a broader philosophy: the rapid progress in LLMs can be enriched by classical foundations
in computation and optimization. Our study has certain limitations. Due to limited resources, our ex-
periments are restricted to medium-scale settings and do not yet reach the largest practical regimes.
Extending our framework to full-scale pre-training remains an important future work, and we expect
the methodology developed here to provide a solid foundation for such efforts.
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Algorithm 4 Classical Iterated-Subspace Minimization

Require: Initialization W0 ∈ Rm×n, ξ0 ∈ Rd, M0, an algorithmic subroutine
UpdateSubspace, an optimizer Opt, frequency K.

1: Set k ← 1 and W̃0 ←W0.
2: while stopping criteria not satisfied do
3: Update the subspace (Mk, W̃k)← UpdateSubspace(Mk−1, W̃k−1).
4: Approximately solve the subspace minimization by Opt using K inner-loop iterations:

ξ∗k ← approx argmin
ξ

ℓ(W̃k +Mk(ξ)) (10)

5: Wk ← W̃k +Mk(ξ
∗
k).

6: k ← k + 1.
7: end while

A SYNTHETIC EXAMPLE OF LORA DEFICIENCY

One critical limitation in the literature is the absence of convergence guarantees toward valid op-
timality conditions of (1). Most existing works establish convergence only with respect to the
low-dimensional parameters—such as the factors A and B in LoRA—but do not address conver-
gence with respect to the full-parameter matrix W . For instance, Jiang et al. (2024) shows that
∇Aℓ(W0 + AkBk) and ∇Bℓ(W0 + AkBk) vanish as k → ∞, while leaving the behavior of ∇W ℓ
uncharacterized. This gap is not merely technical: it highlights a fundamental deficiency of PEFT
methods compared to standard full-parameter training. In fact, the optimal loss attained by LoRA
can be arbitrarily worse than the true optimal loss of (1). To illustrate this, consider the following
simple synthetic example in matrix optimization:

min
W∈Rn×n

∥W −M∥2F , where M = a · diag(1, . . . , 1, 0, . . . , 0), (r+1 ones). (9)

The optimal solution is clearly W ∗ = M with f(W ∗) = 0. However, applying LoRA with rank r
to (9) can at most achieve a rank-r approximation of M , and attains f(A∗B∗) = a2. As a increases,
or as the rank mismatch between the LoRA adapters and the true solution grows, the optimality gap
between LoRA and full gradient methods can become arbitrarily large.

This example underscores the cost of memory restrictions: while low-rank parameterizations save
memory, they may fundamentally limit convergence to the true optimum. In the middle and right
panels of Figure 1, we show that LoRA with exploration (PESO-LoRA-R) can effectively converge
to the true optimal solution while LoRA would not. Note in this implementation of PESO-LoRA-R
(Algorithm 2), the SVD of the full gradient is a rank-r SVD and therefore the low-rankness of this
computational scheme would not affect the convergence.

B REVIEW ON SUBSPACE MINIMIZATION

It is worth noting that Algorithm 1 is essentially equivalent to the classical two-loop subspace mini-
mization scheme (Conn et al., 1994), summarized in Algorithm 4.

The key distinction between warm-start and restart, discussed in (5) and (6) of Section 2.1, lies in
how the subproblem (10) is initialized within each outer iteration of Algorithm 4.

C PROJECTED SUBSPACE AND MEMORY EFFICIENCY

One-sided projected subspaces in PESO can offer stronger memory efficiency than LoRA. This idea
is exemplified by GaLore (Zhao et al., 2024), which we now place in the PESO framework. GaLore
requires memory of order mn+mr+2nr (assuming m ≤ n), compared to LoRA’s mn+3mr+3nr.

With the projected subspace representation in Table 1, optimization reduces to ξ := R ∈ Rr×n. By
the chain rule,

∇Rℓ(Wk) = ∇ξℓ(W̃k + PkRk) = P⊤
k ∇W ℓ(Wk) = P⊤

k Gk. (11)

Once Pk is computed and stored, subspace gradients are obtained directly from Gk with no extra
overhead, though computing the full Gk each iteration is more costly than subspace-only gradients.
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Then, an exploitation step in the subspace by gradient descent with learning rate ηk gives

Wk+1 = W̃k +Mk(Rk − ηkP
⊤
k Gk)

= W̃k + Pk(Rk − ηkP
⊤
k Gk)

= Wk − ηkPkP
⊤
k Gk,

(12)

which matches the classical projected subspace descent step (Kozak et al., 2019).

In GaLore, Pk is chosen as the rank-r left SVD of the full gradient at fixed intervals. PESO recovers
GaLore when the subspace gradient∇Rℓ(Wk) = P⊤

k Gk in (12) is replaced with its Adam update.

This shows how GaLore saves memory: gradients of ξk are derived directly from Gk, and updates
are written back into W via (12), reusing the stored pretrained weights W0. Thus explicit storage
of ξk is unnecessary. Further savings arise because GaLore omits optimizer states forMk (i.e., for
Pk), instead updating Pk by direct reassignment in a restart manner. However, smoother transitions
of subspace parameters often yield greater stability, as observed in our experiments; we discuss
smoothing techniques for restart strategies in the next section.

D IMPLEMENTATION OF PESO-LORA-R

We discuss several implementation details of PESO-LoRA-R that are critical for practical stability
and performance.

D.1 SMOOTHING THE SUBSPACES

A potential issue with restart methods (see (6)) is that they directly reassign the subspace parameter-
ization from new information, which can introduce sharp changes and instability, especially in LLM
training where stochastic noise is significant.

To mitigate this, we adopt an Exponential Moving Average (EMA) of old and new subspaces, similar
in spirit to how Adam (Kingma & Ba, 2014) stabilizes noisy updates. However, this is nontrivial in
PESO-LoRA-R (Algorithm 2), since the pre-restart adapters (Ak, Bk)—evolved through Adam dy-
namics—may differ significantly in scale and coordinates from the restarted pair (Uk

√
Λk,
√
ΛkVk)

obtained from rank-r SVD. A naive EMA would mismatch these terms and discard valuable explo-
ration information.

We resolve this by performing basis and scaling alignment. For clarity, we omit the subscript k.
Given current adapters (A,B), we first compute thin QR factorizations:

A = QARA, B = RBQ
⊤
B , Q⊤

AQA = Ir, Q
⊤
BQB = Ir,

to extract bases (QA, QB) and decouple scaling. Next, let the rank-r SVD of the full gradient be
−G ≈ U ΣV ⊤. We align (U, V ) to (QA, QB) by applying SVD to Q⊤

AU and Q⊤
BV :

Q⊤
AU = PUΣUQ

⊤
U , RU := PUQ

⊤
U , Q⊤

BV = PV ΣV Q
⊤
V , RV := PV Q

⊤
V ,

yielding aligned bases
Û := UR⊤

U , V̂ := V R⊤
V .

Here RU solves
min
R
∥UR−QA∥F , RR⊤ = I,

so Û best aligns U with QA in Frobenius norm; the same holds for V̂ . This produces the best
alignment by classical low-rank SVD guarantees.

We then smooth the bases via EMA:

Uema := τ1QA + (1− τ1)Û , Vema := τ1QB + (1− τ1)V̂ ,

for smoothing parameter τ1. To smooth the scaling, we project the old adapter into the new bases
and combine with the gradient:

Snew := τ2 [U
⊤
ema(AB)Vema]− (1− τ2) [U

⊤
emaGVema],

with parameter τ2. Since this merges the scaling of A and B, we refactorize Snew using polar
decomposition (Glentis et al., 2025):

Snew = RL ΣR⊤
R,

14
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and define the new adapters via balanced splitting:
Anew := Uema RL Σ1/2, Bnew := Σ1/2 R⊤

R V ⊤
ema.

Finally, although empirically less effective, we also rotate the momentum vectors according to the
new basis. Specifically, we compute

TA := Q⊤
AUema, TB := Q⊤

BVema,

and update the pre-restart momentum (mA,mB) as
mA ← mATA, mB ← T⊤

BmB .

Training then proceeds with the new adapters (Anew, Bnew) in PESO-LoRA-R.

D.2 MOMENTUM AND VELOCITY ALIGNMENT

Even with basis and scaling alignment from the previous subsection, another stability issue arises:
the new adapters (Anew, Bnew) can induce gradients of very different magnitudes compared to the
old (A,B). Since restarts are based on the SVD of the full gradient, the new adapters align with
top gradient directions, so the gradients with respect to (Anew, Bnew) are typically larger. This
mismatch can leave the velocity “too cold”: historical states (vA, vB) may underestimate the new
gradient magnitudes, leading to an excessively large normalized step and unstable behavior, often
observed as jumps in the loss curve.

To address this, we propose a combined momentum/velocity scaling technique with a β2 warm-up.
Let (mA,mB) and (vA, vB) denote the momentum and velocity before restart, and (gA, gB) the
gradients after restart computed with respect to (Anew, Bnew). We define scaling factors

s
(v)
A =

∥gA∥2

∥vA∥
, s

(m)
A =

∥gA∥
∥mA∥

, s
(v)
B =

∥gB∥2

∥vB∥
, s

(m)
B =

∥gB∥
∥mB∥

,

which correct scale mismatches between the old optimization states and the new gradients. Here,
∥ · ∥ denotes the RMS norm. Momentum and velocity are then rescaled as

vA ← s
(v)
A vA, mA ← s

(m)
A mA, vB ← s

(v)
B vB , mB ← s

(m)
B mB .

This resolves scale mismatches, but an additional adjustment is needed: β2 = 0.999 (velocity
EMA) adapts much more slowly than β1 = 0.9 (momentum EMA). At initialization, bias correction
balances these, but after a restart we require extra correction. We therefore decrease β2 immediately
after a restart and gradually warm it back to 0.999 over a window T . If a restart occurs at iteration
tr, then for tr ≤ t ≤ tr + T we set

β2(t) = β2,min +
(
β2,final − β2,min

)
1
2

(
1− cos π(t−tr)

T

)
, β2,final = 0.999,

and for t > tr + T we use β2 = 0.999 as usual. In our experiments, we set β2,min = 0.95 and
T = ⌊K/3⌋.

E EXPERIMENTAL DETAILS

All experiments are conducted on NVIDIA RTX A6000 GPUs. For PESO-LoRA-R, to further
reduce computational cost, we restrict the exploration frequency to two times per epoch.

E.1 NATURAL LANGUAGE UNDERSTANDING

In Section 4.1, we present the results of our methods and various LoRA-based algorithms on natural
language understanding tasks, following the prompt tuning configuration of (Wang et al., 2024a).
The general hyperparameter settings are kept consistent across all algorithms which are shown in
Table 5. To ensure a fair comparison, we follow (Zhang et al., 2025) and tune the learning rates via
grid search over {1 × 10−4, 2 × 10−4, 5 × 10−4, 1 × 10−3}. Additionally, following the choices
of Zhang et al. (2025), the scale parameters for LoRA-One are set to be {128, 16, 128, 128, 64} for
{MNLI, SST-2, CoLA, QNLI, MRPC}.
For PESO-LoRA-R, we set the smoothing parameter τ1 = τ2 = 0.9, with frequency K chosen
as {2000, 500, 100, 500, 40} for {MNLI, SST-2, CoLA, QNLI, and MRPC} based on empirical
observations. When (k − 1) mod K = 0 and k ̸= 0, we set the scale parameter γ = 1; when
k = 0, the scale parameter is set the same as in LoRA-One. To further reduce computational cost,
we restrict the restart frequency to times per epoch. For PESO-LoRA-T, we set frequency K = 1
for all datasets.
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Table 5: Common hyperparameters for LoRA fine-tuning on T5-base model.

Epoch Optimizer (β1, β2) ϵ Batch Size Weight Decay LR Scheduler

1 AdamW (0.9, 0.999) 1× 10−8 32 0 cosine

Warm-up Ratio LoRA Alpha #Runs Sequence Length Adapt Precision Backbone Precision Gradient Batch Size

0.03 16 3 128 FP32 FP32 8

E.2 NATURAL LANGUAGE GENERATION

For natural language generation tasks in Section 4.2, we follow the configuration of prompt tuning
and strategy of hyperparameter tuning in (Zhang et al., 2025) to ensure fair comparison. We search
the best learning rate over {5×10−4, 2×10−4, 1×10−4, 5×10−5, 2×10−5, 1×10−5}, and the gen-
eral hyperparameter setting is summarized in Table 6. Additionally, following the choice of Zhang
et al. (2025), the scale parameters are set to {128, 16, 128} for LoRA-One and {64, 64, 64} for
LoRA-GA.

Table 6: Common hyperparameters for LoRA fine-tuning on Llama-2-7B model.

Epoch Optimizer (β1, β2) ϵ Batch Size Weight Decay LR Scheduler

1 AdamW (0.9, 0.999) 1× 10−8 32 0 cosine

Warm-up Ratio LoRA Alpha #Runs Sequence Length Adapter Precision Backbone Precision Gradient Batch Size

0.03 16 3 1024 FP32 BF16 8

For PESO-LoRA-R, we set the smoothing parameter τ1 = τ2 = 0.9, with frequency K = 500 for
all the experiments. When (k − 1) mod K = 0 and k ̸= 0, we set the scale parameter γ = 1; when
k = 0, the scale parameter is set the same as in LoRA-One. For PESO-LoRA-T, we set frequency
K = 1 for all datasets.

E.3 MULTI-EPOCH LOW-RANK ANALYSIS

In Section 4.3, we fine-tune the T5-base model on SST-2 dataset for 4 epochs. We vary the rank
of LoRA in {2, 4, 8}, keep the rank of PESO-LoRA-R as 2, and add full-parameter fine-tuning for
comparison. We keep all the other hyperparameter settings the same as in E.1.

F PROOFS

In this section, we provide the proofs of the theoretical results stated in Section 5. For completeness,
we begin with the deterministic case, i.e., when the gradients Gk accessed by PESO (Algorithm 1)
are exact, without stochastic noise. We then prove Theorem 5.1, which considers the stochastic
setting where only noisy gradients G̃k are available, satisfying Assumption 2.

F.1 DETERMINISTIC CASE

We first state the deterministic counterpart of Assumption 5:

Assumption 6. Opt and UpdateSubspace generate the updates satisfying ℓ(Wk) ≤ ℓ(W̃k +

Mk(ξk−1)) and ℓ(W̃k +Mk(ξk−1)) ≤ ℓ(Wk−1) for all k = 1, 2, · · · .

Assumption 6 requires that both Opt and UpdateSubspace act as descent methods, ensuring
that the loss is non-increasing. This is the deterministic analogue of Assumption 5, and it holds,
for example, when both are implemented as gradient descent with step size α ≤ 1/L, where L
is the Lipschitz constant from Assumption 1. In particular, one can take UpdateSubspace to
be a warm-start step that performs gradient descent on the subspace parameters with respect to the
original loss function. This is formalized below in a standard result from the optimization literature
(see, e.g., Nesterov, 2018).

Proposition F.1. Let Opt and UpdateSubspace be gradient descent schemes on ℓ with constant
learning rate α ≤ 1/L. Then Assumption 6 holds.

We now present the deterministic convergence result.
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Theorem F.2. Suppose Assumptions 1, 4, and 6 hold. With full gradient restart enabled and learning
rate ηk = 1

L , the iterates {Wk} generated by Algorithm 1 satisfy lim infk→∞ ∥Gk∥ ≤ limk→∞ δk.

Proof. We assume the frequency of the full gradient restart is K. By the descent lemma, whenever
k − 1 mod K = 0 (i.e., when a full gradient restart occurs), define

Ŵk := Wk−1 − 1
LPSk

(Gk). (13)
Performing a full gradient restart as UpdateSubspace, as discussed in (8), is thus equivalent to
moving from Wk−1 to Ŵk. It follows that

ℓ(Ŵk) = ℓ(Wk−1 − 1
LPSk

(Gk)) ≤ ℓ(Wk−1) +
〈
Gk,− 1

LPSk
(Gk)

〉
+ L

2 ∥
1
LPSk

(Gk)∥2

= ℓ(Wk−1)− 1
L∥PSk

(Gk)∥2 + L
2 ∥

1
LPSk

(Gk)∥2

= ℓ(Wk−1)− 1
2L∥PSk

(Gk)∥2,
(14)

where the second equality holds because projection onto a subspace is orthogonal.

Therefore, by Assumption 6, for iterates i = k, . . . , k+K − 1 (note that ℓ(Wk) ≤ ℓ(Ŵk) since Wk

is obtained by applying Opt to Ŵk),
1
2L∥PSk

(Gk)∥2 ≤ ℓ(Wk−1)− ℓ(Ŵk) ≤ ℓ(Wk−1)− ℓ(Wi). (15)
Importantly, (15) remains valid regardless of how frequently other types of UpdateSubspace are
applied between full gradient restarts, since all updates preserve the descent property by Assump-
tion 6. In particular, wheneverMk is updated without a full gradient restart, we have

ℓ(Wk−1)− ℓ(Wk) = ℓ(W̃k−1 +Mk−1(ξk−1))− ℓ(Wk)

≥ ℓ(W̃k−1 +Mk−1(ξk−1))− ℓ(W̃k +Mk(ξk−1))

≥ 0.

(16)

This ensures the chain of inequalities in (15) continues to hold when updates are performed by
OptM.

Hence, for any integer k ∈ N,
1
2L∥PSkK+1

(GkK+1)∥2 ≤ ℓ(WkK)− ℓ(W(k+1)K). (17)

Here kK and (k + 1)K denote integer products.

Since {ℓ(Wk)} is bounded below (Assumption 1) and monotonically decreasing (Assumption 6 to-
gether with the descent lemma at restart points), it converges by the monotone convergence theorem
and is Cauchy. Thus ℓ(Wk)− ℓ(Wk+1)→ 0, and

1
2L∥PSkK+1

(GkK+1)∥2 → 0. (18)
Finally, note that
∥GkK+1∥ ≤ dist(GkK+1,SkK+1) + ∥PSkK+1

(GkK+1)∥ ≤ δkK+1 + ∥PSkK+1
(GkK+1)∥ → δ,

(19)
where δ := limk→∞ δk. Therefore, lim infk→∞ ∥Gk∥ ≤ δ.

F.2 STOCHASTIC CASE

We begin by verifying the validity of Assumption 5. As an illustrative case, suppose Opt
and UpdateSubspace are implemented by SGD with diminishing step sizes {αk} satisfying∑

k αk < ∞. Let Ŵk denote the weight after such an update. By the descent lemma (see also
(Bottou et al., 2018, Lemma 4.4)), the expected decrease can be bounded as

E[ℓ(Ŵk)] ≤ E[ℓ(Wk)]− αk

(
1− Lαk

2

)
E∥Gk∥2 + L

2 α
2
kC. (20)

For αk ≤ 1/L, this simplifies to

E[ℓ(Ŵk)]− E[ℓ(Wk)] ≤ −αk

2 E∥Gk∥2 + L
2 α

2
kC. (21)

Taking positive and negative parts, we obtain[
E[ℓ(Ŵk)]− E[ℓ(Wk)]

]
+
≤ L

2Cα2
k,

[
E[ℓ(Wk)]− E[ℓ(Ŵk)]

]
+
≤ E[ℓ(Wk)]− E[ℓ(Ŵk)].

(22)
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Summing over all k,
∞∑
k=0

[
E[ℓ(Ŵk)]− E[ℓ(Wk)]

]
+
≤ L

2C

∞∑
k=0

α2
k < ∞,

∞∑
k=0

[
E[ℓ(Wk)]− E[ℓ(Ŵk)]

]
+
≤ sup

k
E[ℓ(Wk)]− ℓ(W ∗) < ∞.

(23)

Defining Ck := E[ℓ(Ŵk)]−E[ℓ(Wk)], we conclude that
∑

k |Ck| <∞, hence Assumption 5 holds.

We are now ready to present the proof of our main result, Theorem 5.1.

Proof of Theorem 5.1. Because Sk are subspaces, PSk
is a linear operator, which allows the ex-

changability with E. Therefore, one has

E(∥PSk
(G̃k)∥2) = ∥E(PSk

(G̃k))∥2 + V(PSk
(G̃k))

= ∥(PSk
(Gk))∥2 + E

(
∥PSk

(G̃k −Gk)∥2
)

≤ ∥(PSk
(Gk))∥2 + E

(
∥G̃k −Gk∥2

)
≤ ∥(PSk

(Gk))∥2 + C.

(24)

Similar to the deterministic case, We assume the frequency of the full gradient restart is K, and
consider k − 1 mod K = 0 (i.e., when a full gradient restart occurs). Again, we define

Ŵk := Wk−1 − 1
LPSk

(Gk). (25)
By the property of the full gradient restart, we have

E[ℓ(Ŵk)] ≤ E[ℓ(Wk−1)] +
〈
Gk, ηkE[PSk

(G̃k)]
〉
+

L

2
E[∥ηkPSk

(G̃k)∥2]

≤ E[ℓ(Wk−1)] + ηk∥PSk
(Gk)∥2 +

Lη2k
2

(∥(PSk
(Gk))∥2 + C)

= E[ℓ(Wk−1)]−
(
ηk −

Lη2k
2

)
∥PSk

(Gk)∥2 +
Lη2k
2

C,

(26)

where the first inequality follows from Assumption 1, and the second follows from the fact that Sk
is a subspace and (24).

Then by Assumption 5, suppose k − 1 mod K = 0, and for iterates i = k + 1, · · · , k +K − 1,
E[ℓ(Wi)] ≤ E[ℓ(Wi−1)] + 2Ci, (27)

where 2Ci comes from bounding the scenario where both Opt and UpdateSubspace operate at
i-th iterate. Then summing up the inequalities (26) and (27) for i = k + 1, · · · , k +K − 1, and use
the fact that E[ℓ(Wk)] ≤ E[ℓ(Ŵk)] + Ck since Wk is obtained by applying Opt to Ŵk, we have(

ηk −
Lη2k
2

)
E[∥PSk

(Gk)∥2]−
Lη2k
2

C − Ck − 2

k+K−1∑
i=k+1

Ci ≤ E[ℓ(Wk−1)− ℓ(Wk+K−1)]. (28)

By Assumption 3, ηk → 0 so without loss of generality, we can assume Lηk

2 ≤ 1
2 for any k ∈ N.

Therefore for all integer k ∈ N, we have

ηkK+1

2
E[∥PSkK+1

(GkK+1)∥2]−
Lη2kK+1

2
C−CkK+1−2

(k+1)K∑
i=kK+2

Ci ≤ E[ℓ(WkK)−ℓ(W(k+1)K)].

(29)
By Assumption 1, there exists a constant Cℓ so that Cℓ ≤ ℓ(W ) for any W . Summing up for
k ∈ {1, · · · , T} one has

T∑
k=1

ηkK+1

2
E[∥PSkK+1

(GkK+1)∥2] ≤
LC

2

T∑
k=1

η2kK+1 +

T∑
k=1

CkK+1 + 2

T∑
k=1

(k+1)K∑
i=kK+2

Ci

+ E[ℓ(WK)]− Cℓ.

(30)
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Taking T → ∞, and note that
∑

k η
2
k < ∞ and

∑
k |Ck| < ∞, the first and second series on the

right hand side of (30) are obviously bounded. For the third series, note that

∞∑
k=1

(k+1)K∑
i=kK+2

Ci ≤
∞∑
k=1

(k+1)K∑
i=kK+2

|Ci| ≤
∞∑
i=1

|Ci| <∞. (31)

Finally ∥E[ℓ(WK)]− Cℓ∥ is obviously bounded for a fixed K, and therefore, one has
∞∑
k=1

ηkK+1E[∥PSkK+1
(GkK+1)∥2] <∞. (32)

By
∑∞

k ηk = ∞ and a contradiction argument, one has lim infk→∞ E[∥PSk
(Gk)∥] = 0. Since

∥Gk∥ ≤ dist(Gk,Sk) + ∥PSk
(Gk)∥ ≤ δk + ∥PSk

(Gk)∥ → δ where δ := limk→∞ δk, the final
result follows.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in the conception of this work. The methodology, problem
formulation, and theoretical contributions are entirely original and developed independently by the
authors. We made limited use of general-purpose LLM tools (ChatGPT and Gemini) for writing pol-
ish and occasional code debugging support. No part of the research ideation, design, or substantive
writing relied on LLMs.
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