
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARAMETER-EFFICIENT SUBSPACE OPTIMIZATION
FOR LLM FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper develops a new perspective on parameter-efficient training for LLMs,
inspired by the classical theory of subspace minimization. We introduce a unify-
ing framework, Parameter-Efficient Subspace Optimization (PESO), which not
only recovers many existing methods such as LoRA but also bridges them with
the principled algorithmic and theoretical foundations of subspace optimization.
This connection highlights a natural “exploration–exploitation” view of subspace
methods, guiding the design of new algorithms that achieve strong convergence
performance while still preserving memory efficiency. Importantly, our frame-
work establishes the first convergence in the full-parameter space, resolving a crit-
ical gap in the current literature where low-rank updates lack such guarantees. We
further instantiate the framework into a practical algorithm named PESO-LoRA,
based on LoRA-type parameterization. Our algorithm achieves notable improve-
ments over existing methods on standard benchmarks.

1 INTRODUCTION

Pre-training and fine-tuning deep neural networks are the cornerstones of modern AI, powering the
success of large-scale foundation models such as Large Language Models (LLMs) (Brown et al.,
2020). At their core, both procedures reduce to solving a high-dimensional optimization problem
over weight matrices:

∆W ∗ := argmin∆W ℓ
(
W0 +∆W

)
, (1)

where ℓ(·) is the loss function, W0 is the initialization, and ∆W the increment. In practice, (1) is typ-
ically solved by first-order methods such as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov
& Hutter, 2017), which are the workhorses of large-scale training. However, these methods re-
quire storing additional optimizer states (e.g., momentum and velocity), and for LLMs this overhead
places enormous pressure on memory resources, making parameter-efficient strategies appealing.

In the realm of fine-tuning, we often have limited labeled data for a downstream task but still wish
to adapt the pretrained weights effectively and efficiently. Therefore, updating the entire parameter
set is both memory-intensive. This motivates the study of Parameter-Efficient Fine-Tuning (PEFT)
methods (Han et al., 2024; Houlsby et al., 2019; Hu et al., 2022), where optimization is restricted to
a smaller set of parameters initialized from pretrained weights. In other words, W0 denotes weights
obtained from a large-scale pretraining phase, and ∆W is not updated freely but instead follows an
efficient parameterization that constrains the search space.

A popular PEFT method is low-rank adaptation (LoRA, Hu et al. (2022)), where matrices in ∆W
are expressed as the product of two low-rank factors. LoRA has shown strong empirical success,
reducing memory costs while achieving competitive downstream performance. However, it suffers
from two key limitations: 1) performance often lags behind full-parameter fine-tuning (Figure 1, left:
MetaMathQA); 2) theoretical guarantees are limited, with convergence typically shown only for the
low-rank factors (Figure 1, middle: a synthetic example illustrating LoRA’s potentially unbounded
loss gap). To address these issues, many LoRA variants (Hayou et al., 2024; Wang et al., 2024a;b;
Zhang et al., 2023; 2025) have been proposed, yet they largely inherit the same shortcomings and
leave the following fundamental question open:

Can we design fine-tuning methods that maintain the memory footprint of LoRA while still enjoying
the convergence and optimality of full-parameter fine-tuning?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000
Steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Full-Parameter
LoRA
PESO-LoRA-R

0 25 50 75 100 125 150 175 200
Steps

0

25

50

75

100

125

150

175

200

Lo
ss

Full-Parameter
LoRA
PESO-LoRA-R

0 5 10 15

0

5

10

15

Full-Parameter
LoRA
PESO-LoRA-R
PESO-LoRA-R Restart
Target Minimum

Figure 1: Comparison of full-parameter tuning, LoRA, and our method (PESO-LoRA). Left: Meta-
MathQA. Middle: synthetic example minW ∥W −M∥2F with M = 10 · diag(1, . . . , 1, 0, . . . , 0)
(r+1 ones); see Appendix A. Right: optimization trajectories. PESO-LoRA bridges the loss gap of
LoRA while preserving memory and computation efficiency.

To address this question, we reveal an inherent connection between parameter-efficient training and
the classical idea of subspace minimization, a long-standing nonlinear optimization strategy dat-
ing back to Conn et al. (1994); Cragg & Levy (1969). The central philosophy is to decompose
a large-scale problem like (1) into iterative, simpler subproblems constrained to carefully chosen
subspaces. This view resonates naturally with modern PEFT methods, which restrict updates to
structured low-rank forms for better efficiency. Interestingly, subspace minimization historically
received less attention in the optimization society, since full-parameter information were often af-
fordable in traditional applications. However, it is especially well suited to LLM training, where
massive dimensionality calls for memory-efficient methods.

Formally, we build on the notion of intrinsic dimensionality in LLM training (Aghajanyan et al.,
2020; Li et al., 2018), recognized in (Hu et al., 2022) as the origin of LoRA: there exists a dimension-
lifting mapM : Rd → Rm×n, with d≪ m×n, such that the optimal solution ∆W ∗ of (1) satisfies

∆W ∗ ≈M(ξ∗), ξ∗ := argminξ∈Rd ℓ(W0 +M(ξ)). (2)

Here, d stands for the number of trainable parameters, and this characterization implies that it suf-
fices to optimize within the reduced space defined byM to approximate ∆W ∗. For clarity, we focus
on a single weight matrix ∆W ∈ Rm×n (multi-layer extensions are straightforward) and represent
ξ as a d-dimensional vector. This is without loss of generality, since tensor parameters can always
be flattened via vectorization into an isomorphic Euclidean space. For example, LoRA adopts the
simple formM(A,B) = AB with A ∈ Rm×r, B ∈ Rr×n, and d = (m+n)r. However, it remains
unclear whether such a simpleM is sufficient to capture the complexity of LLM training dynamics.

Our framework approximatesM adaptively through a sequential subspace approximation, provid-
ing a more effective capture of (2). We construct a sequence of maps {Mk}, each with a simple
representation,

∆W ∗ ≈
∑

kMk(ξ
∗
k), ξ∗k := argminξ∈Rd ℓ(W0 +

∑k−1
i=1 Mi(ξ

∗
i) +Mk(ξ)). (3)

where eachMk approximates a subspace and ξ∗k is its low-dimensional coordinate. In essence, the
complexity ofM is captured by a sequence of piecewise-linear subspaces. This philosophy parallels
classical approximation schemes in numerical analysis such as finite element methods (Bathe, 2006).

Guided by this perspective, we develop a principled framework for PEFT grounded in subspace
minimization, named Parameter-Efficient Subspace Optimization (PESO). A key insight is to view
the problem (3) through an exploration–exploitation lens: exploration designs new subspaces that
capture full gradient information, while exploitation optimizes efficiently within the current sub-
space. This resolves LoRA’s two central limitations: lack of full-parameter convergence guarantees
and inefficiency from rigid low-rank parameterization; see Figure 1.

Contributions. Our contributions can be summarized at three levels. Although our focus is on
PEFT, many of the ideas developed here naturally extend to pre-training.

I. Perspective Level. We introduce a novel framework PESO for memory-efficient training in-
spired by classical subspace minimization (Conn et al., 1994), unifying existing PEFT approaches
such as LoRA variants (Hu et al., 2022; Wang et al., 2024a;b; Zhang et al., 2023; 2025) and GaLore
(Zhao et al., 2024). This framework allows us to explore the rich algorithmic techniques in subspace
methods, providing systematic guidance to improve memory-efficient methods. In particular, we
highlight two complementary directions: exploration of new subspaces through information from
the full gradient, and exploitation of the current subspace via streaming SVD representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

II. Theoretical Level. Our exploration mechanism, full gradient restart, enables the framework to
effectively guide training dynamics. The resulting algorithm is, to our knowledge, the first memory-
efficient method for LLM training with provable convergence to full-parameter optimality up to
small errors, without additional assumptions such as explicit low-rankness of the solution.

III. Empirical Level. Guided by our PESO framework, we show that two practical instantia-
tions of our framework—PESO-LoRA-R and PESO-LoRA-T—achieve improved performance
while preserving the memory efficiency of state-of-the-art PEFT methods across benchmarks such
as GLUE, mathematical reasoning, code generation, and instruction tuning.

Related Work. LoRA (Hu et al., 2022) is perhaps the most widely known PEFT method, and
numerous variants have been proposed to enhance its performance. For instance, LoRA+ (Hayou
et al., 2024) introduces imbalanced learning rates; PiSSA (Meng et al., 2024) proposes an SVD-
based initialization of pretrained weights; and AdaLoRA (Zhang et al., 2023) maintains an adaptive
SVD-based low-rank representation. Other extensions focus on gradient scaling (Tastan et al., 2025;
Zhang & Pilanci, 2024). More recent work leverages information from the full gradient: LoRA-
GA (Wang et al., 2024a) and LoRA-Pro (Wang et al., 2024b) propose memory-efficient gradient
approximations, projection-based methods are studied in (Liang et al., 2024; Zhao et al., 2024;
Zhu et al., 2024), and LoRA-One (Zhang et al., 2025) employs the SVD of the full gradient for
initialization.

Convergence guarantees for PEFT algorithms remain scarce, and existing results typically address
only the low-dimensional parameters (Jiang et al., 2024). A related line of work studies subspace
descent methods (Chen et al., 2025; Kozak et al., 2019; Liang et al., 2024), which constrain updates
to Wk+1 ← Wk − ηkPkP

⊤
k Gk, where Pk is the projection matrix, ηk the learning rate, and Gk

the full gradient. These approaches establish convergence in the full-parameter space, but under
extra structural assumptions. For example, Liang et al. (2024) analyze a continuous-time variant
via Lyapunov arguments, but require P⊤G = 0 ⇒ G = 0, which holds only if P has full column
rank—an unrealistic condition when r < m. Likewise, Chen et al. (2025); Kozak et al. (2019) rely
on random projection theory, assuming E[PP⊤] = Im and P⊤P = Ir, conditions not needed in
our analysis. Closer to LoRA, Jang et al. (2024) provide a convergence analysis, but only within the
Neural Tangent Kernel (NTK) regime, limiting its applicability.

Subspace minimization is a classical theme in nonlinear optimization (Conn et al., 1994; Cragg &
Levy, 1969; Yuan, 2014). It was historically overshadowed by full-parameter algorithms such as
L-BFGS (Liu & Nocedal, 1989) and conjugate gradient methods (Nocedal & Wright, 2006, Ch.
5), since many traditional applications could afford storing full gradients and quasi-Newton pairs.
More recently, however, subspace-based strategies have re-emerged in large-scale derivative-free
optimization (Cartis & Roberts, 2023; Dzahini & Wild, 2024; Menickelly, 2024; Nozawa et al.,
2025; Zhang, 2025), where gradients are unavailable and low-dimensional surrogates are crucial.

2 PESO: A FRAMEWORK FROM SUBSPACE MINIMIZATION

In this section, we provide a novel perspective of PEFT methods with insights from subspace min-
imization. We summarize an algorithmic framework Parameter-Efficient Subspace Optimization
(PESO) in Algorithm 1, and discuss how it unifies many benchmarks such as LoRA and GaLore.

To build an iterative scheme, a central question is how to represent the weight W at each iteration
using low-dimensional representation ξ. In (3), the optimization is expressed through evolving
subspaces. At iteration k, we define the anchored state W̃k := W0 +

∑k−1
i=1 Mi(ξ

∗
i) to encode

historical progress, and represent

Wk = W̃k +Mk(ξk). (4)

Following the design of subspace minimization, PESO considers eachMk to admit a simple image
in the form of a subspace: Sk := {Mk(ξ) : ξ ∈ Rd}.
Under representation (4), the evolution of Wk can be viewed as three complementary operations: 1)
exploration: updatingMk to select a new subspace Sk, (line 5 of Algorithm 1) 2) exploitation: op-
timizing ξk within the current subspace (line 7-8 of Algorithm 1), and 3) updating W̃k to absorb past
progress into the anchored weights. These operations mirror the classical paradigm of subspace
minimization (Conn et al., 1994), where a large-scale problem is solved by iteratively: (i) con-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 PESO: Generic Framework of Parameter-Efficient Subspace Optimization

Require: Initialization W0 ∈ Rm×n, ξ0 ∈ Rd, and M0; an algorithmic subroutine
UpdateSubspace, an optimizer Opt, frequency K.

1: Set k ← 1 and W̃0 ←W0.
2: while stopping criteria not satisfied do
3: (Mk, W̃k)← (Mk−1, W̃k−1).
4: if k − 1 mod K = 0 then ▷ Exploration to new Sk
5: (Mk, W̃k)← UpdateSubspace(Mk−1, W̃k−1).
6: end if
7: ∆ξk ← Opt(ξk−1,Mk) ▷ Exploitation of current Sk
8: ξk ← ξk−1 +∆ξk.
9: k ← k + 1.

10: end while

structing a subspace based on local information such as gradients, (ii) solving a reduced subproblem
within that subspace, and (iii) updating the iterate to incorporate the subspace solution.

In our design, exploration and exploitation directly parallel subspace selection and subproblem op-
timization, while the anchored state W̃k retains progress from earlier subspaces. In LoRA, W̃ is
fixed at W0, confining progress to the active subspace. In contrast, updating W̃ absorbs accumu-
lated contributions back into the parameter space, giving rise to two distinct exploration strategies:
warm-start and restart, which we detail below in Section 2.1.

Leveraging this connection to subspace minimization, we present our generic framework PESO
in Algorithm 1. It is important to note that, by selecting corresponding parameterization of Mk,
UpdateSubspace, and Opt, we are able to recover a variety of existing benchmarking methods
in parameter-efficient training; see representatives in Table 1. We also remark that Algorithm 1 is
equivalent to the classical two-loop subspace minimization scheme (Conn et al., 1994), which we
defer to Appendix B in Algorithm 4.

2.1 SUBSPACE EXPLORATION-EXPLOITATION IN PESO

Now let us discuss two main components of our framework, subspace exploration and exploitation.

Subspace Exploration. Exploring new subspaces is essential for navigating the full-parameter
space under memory restriction. Algorithm 1 carries out exploration by UpdateSubspace, which
updates bothMk and W̃k. Such updates are often performed lazily every K iterations, as in prior
works (Liang et al., 2024; Zhang et al., 2023; Zhao et al., 2024; Zhu et al., 2024).

Depending on how much Mk is changed, two philosophies arise for how exploration inter-
acts with the low-dimensional ξk: warm-start and restart. These are simply two modes of
UpdateSubspace:

• Warm-start. Preserve ξk and keep W̃k fixed. Formally,

Wk+1 = W̃k +Mk+1(ξk +∆ξk). (5)

• Restart. Absorb the previous contribution into the baseline, W̃k+1 ← W̃k +Mk(ξk), and
start the new subspace from ξnew (often 0):

Wk+1 = W̃k+1 +Mk+1(ξnew +∆ξk). (6)

Intuitively, warm-start provides smoother transitions when consecutive subspaces remain similar,
while restart marks a new phase, useful when the optimization geometry changes sharply. In prac-
tice, these two modes naturally lead to two main approaches for designing UpdateSubspace.
A warm-start typically updates the parameterization of Mk smoothly along an optimization tra-
jectory—for example, by applying an Adam step on subspace parameters as in LoRA vari-
ants—yielding a gradually evolving subspace. Restart, on the other hand, often reassigns Mk

directly using local information such as gradients. This strategy is common in classical optimiza-
tion; for example, in line search (a one-dimensional subspace method) each iteration resets the step
size initialization when a new direction is chosen (Nocedal & Wright, 2006, Ch. 3). It is also used

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Examples of memory-efficient training methods as instances of PESO.

Methods ξ Mk(ξ) Sk UpdateSubspace Init.

LoRA (A,B) AB {AkB +ABk : A∈
Rm×r, B∈Rr×n}

Adam for Ak, Bk warm-start

AdaLoRA Λ PkΛQk {PkΛQk : Λ ∈
Rr×r diagonal}

SGD for Pk, Qk warm-start

GaLore R PkR {PkR : R ∈ Rr×n} Pk: left r-SVD of Gk restart

Kozak et al. (2019) R PkR {PkR : R ∈ Rr×n} randomly sample Pk restart

Liang et al. (2024) R PkR {PkR : R ∈ Rr×n} online PCA of Pk warm-start

in LLM training, as in GaLore (Zhao et al., 2024), which periodically resets the subspace via the
SVD of the full gradient. Concrete examples of both approaches are summarized in Table 1, and
Section 3.1 introduces a new restart scheme leveraging full gradients.

Subspace Exploitation. Between two updates of UpdateSubspace, our framework performs
K iterations of Opt within the current subspace Sk. This amounts to solving the subproblem

minξ∈Rd ℓ(W̃k +Mk(ξ)) (7)

approximately for K steps. In practice, Opt is often chosen as Adam.

The philosophy relies on a common belief in classical optimization: during an optimization pro-
cedure, once an effective subspace is identified, repeatedly exploiting it for multiple iterations im-
proves efficiency. This principle underlies many classical optimization methods, such as trust-region
methods (Nocedal & Wright, 2006, Ch. 4) and L-BFGS-B (Byrd et al., 1995).

2.2 CONNECTION TO EXISTING BENCHMARKS

While (4) may strike to be abstract, many existing benchmarks for LLM training can naturally fit in
it by considering specific subspaces. Here we summarize several notable methods in Table 1.

• Projected subspace. A simple way to define a memory-efficient subspace is through low-rank pro-
jection, whereMk : R ∈ Rr×n 7→ PkR is parameterized by a left-projection matrix Pk ∈ Rm×r.
This formulation can be extended to right-sided or two-sided projections. By applying the chain rule
to ∇Rℓ(W̃k + PkR), one obtains the projected subspace schemes analyzed in (Kozak et al., 2019;
Liang et al., 2024; Zhao et al., 2024; Zhu et al., 2024); see Appendix C for details. Within PESO,
GaLore (Zhao et al., 2024), APOLLO (Zhu et al., 2024), and stochastic subspace descent (Kozak
et al., 2019) correspond to a restart strategy by reassigning Pk, while online subspace descent (Liang
et al., 2024) adopts a warm-start update of Pk via online PCA.

• Low-rank subspace. The LoRA family defines the subspace {AkB + ABk : A ∈ Rm×r, B ∈
Rr×n}, where the adapters (A,B) jointly serve as both ξ and the parameterization ofMk. Conse-
quently, a single Adam update of (A,B) simultaneously updates the subspace and its coordinates,
effectively realizing a warm-start scheme with K = 1. Many LoRA variants can be viewed as
modifications of this generic template: LoRA-Pro (Wang et al., 2024b) applies a different precon-
ditioner, and PiSSA (Meng et al., 2024), LoRA-GA (Wang et al., 2024a), and LoRA-One (Zhang
et al., 2025) adjust initialization strategies, while other works modify learning rates or scaling rules.
Our framework unifies these designs by interpreting them as specific choices of Opt or initialization
within the same subspace structure.

• SVD subspace. A principled way to extract low-dimensional structure from matrices (such as ∆W)
is through Singular Value Decomposition (SVD), leading to the representation Mk : λ ∈ Rr 7→
Udiag(λ)V . Here, (U, V) define the subspace (exploration), while λ is the low-dimensional coor-
dinates (exploitation). This separation fits directly into Algorithm 1, enabling flexible optimization
strategies for (U, V) and λ. AdaLoRA (Zhang et al., 2023) exemplifies this parameterization, and
our framework clarifies the roles of (Pk,Λk, Qk) in their notation. We build on this principle in
Section 3, where we propose a practical SVD-based variant PESO-LoRA-T.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Together, these three subspace categories illustrate how PESO unifies existing PEFT methods under
a single framework, setting the stage for designing new practical algorithms and proving conver-
gence in the following sections.

3 PESO-LORA: PRACTICAL ALGORITHMS FROM THE FRAMEWORK

The previous section establishes a conceptual link between PEFT methods and classical subspace
minimization, providing a unifying interpretation. Building on this perspective, we now develop
a concrete algorithm PESO-LoRA, which extends LoRA using guidance from our PESO frame-
work. We present two variants: PESO-LoRA-R leverages a full gradient restart strategy to improve
exploration of subspaces, and PESO-LoRA-T is a SVD-based method that enhances exploitation
through more effective optimization within each subspace.

3.1 FULL GRADIENT RESTART

We now introduce an important variant of the UpdateSubspace subroutine in the restart cat-
egory (see (6)) that enables convergence to stationarity in the full-parameter space. We design
UpdateSubspace so that each new subspace Sk induced byMk remains well aligned with the
current full gradient Gk. We call this scheme full gradient restart:

Full Gradient Restart. Given learning rates {ηk}, whenever k − 1 mod K = 0:

1) Absorb history: W̃k ← W̃k−1 +Mk−1(ξk−1).

2) Compute the (stochastic) full gradient Gk = ∇W ℓ(W̃k).
3) Choose a low rank subspace SFG

k depending on Gk.
4) Restart with ξk ← ξnew

k such thatMk(ξ
new
k) = −ηkPSFG

k
(Gk).

Here, PSFG
k
(Gk) denotes the projection of Gk onto SFG

k . This procedure effectively redefinesMk so
that the new adapter is initialized by a projected gradient step:

Wk ←Wk−1 − ηkPSFG
k
(Gk). (8)

Thus, each restart ensures that Sk captures information from full gradients, with initial progress
comparable to a standard SGD step. In the literature on subspace methods, incorporating the full
gradient into {Sk} is critical for convergence guarantees (Conn et al., 1994; Zhang, 2025). In par-
ticular, one can show that ∥∇W ℓ∥ → 0 provided that Gk := ∇W ℓ(Wk) lies in Sk. Building on this,
we demonstrate in Section 5 that full gradient restart ensures convergence to a stationary point of
the original problem (1) by interleaving projected steepest-descent steps with subspace updates.

Algorithm 2 PESO-LoRA-R: PESO with LoRA and Subspace ExploRation

Require: Pre-trained parameters W0 ∈ Rm×n, frequency K, scale parameter γ.
1: Set k ← 1, W̃0 ←W0, A0 ← 0 and B0 ← 0.
2: while stopping criteria not satisfied do
3: if k − 1 mod K = 0 then
4: W̃k ← W̃k−1 +Ak−1Bk−1.
5: Compute stochastic full gradient Gk.
6: (Uk,Λk, Vk)← SVD(−Gk). ▷ Top-r SVD of Gk

7: Set Ak−1 ← 1√
γUk

√
Λk and Bk−1 ← 1√

γ

√
ΛkVk.

8: end if
9: (Ak, Bk)← AdamW(Ak−1, Bk−1). ▷ One AdamW step on (Ak−1, Bk−1)

10: k ← k + 1.
11: end while
12: return W̃k +AkBk.

A practical construction of SFG
k is to compute a rank-r SVD of Gk and define the subspace as the

span of its top singular directions. This ensures that SFG
k captures the main structure of Gk, while the

approximation error ∥Gk − PSFG
k
(Gk)∥ is governed by the spectral tail of Gk. Crucially, this tail is

independent of the rank gap in the objective, underscoring a key distinction between representation
deficiency (e.g., LoRA) and update efficiency. In practice, given (Uk, Vk) from the rank-r SVD of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Gk, one can also restart with Mk(ξ
new
k) = −ηkUkVk, which corresponds to the update from the

recent training benchmark Muon (Jordan et al., 2024), providing improved stability over (8).

One practical advantage of full gradient restart is that it acts as a “plug-and-play” mechanism for
existing PEFT methods. It can be applied with a moderate frequency K to reduce the cost of SVD
while still guiding subspace exploration effectively. Recent work, such as GaLore (Zhao et al., 2024)
and LoRA-One (Zhang et al., 2025), has demonstrated the empirical benefits of leveraging the full
gradient. In particular, the recent variants LoRA-GA (Wang et al., 2024a) and LoRA-One (Zhang
et al., 2025) can be interpreted as special cases of LoRA with full gradient restart applied only
at initialization. To achieve convergence in the full-parameter space, we propose PESO-LoRA-R
(Algorithm 2), which embeds LoRA with a repeated restart mechanism every K iterations.

To implement Algorithm 2, directly assigning (Ak−1, Bk−1)← 1/
√
γ(Uk

√
Λk,
√
ΛkVk) can cause

instability due to mismatches in optimization states. For robustness, we propose alignment tech-
niques to maintain consistency of subspace bases, momentum, and velocity; details are provided in
Appendix D. Finally, we remark both empirical evidence and theoretical results suggest that gradi-
ents Gk in deep learning often have strong low-rank structure, making them especially suitable for
efficient SVD-based approximations (Cosson et al., 2023; Yang et al., 2023; Zhao et al., 2024).

3.2 EXPLOITATION VIA SVD SUBSPACE

Having discussed exploration techniques inspired by subspace minimization, we now turn to the
complementary philosophy: exploitation within the current subspace.

As outlined in Section 2.2, an SVD-based parameterization provides a clean and principled way to
define Mk. Specifically, we approximate the target mapping M(ξ∗) by a sum of rank-r compo-
nents,

∑
k Ukξ

∗
kVk, where each pair (Uk, Vk) defines an SVD subspace of rank r. Because SVD

naturally captures the dominant gradient directions, this parameterization ensures that exploitation
is focused on the most informative directions in the weight space.

Within each subspace, we optimize the low-dimensional coordinate ξ for K steps using Adam. This
design can be viewed as an extension of LoRA, with the key difference that the SVD structure
explicitly decouples subspace exploitation (through ξ) from exploration (through (U, V)). The prac-
tical variant is summarized in Algorithm 3. A small frequency K (e.g., 1 or 2) often suffices for
strong performance without significant overhead.

Algorithm 3 PESO-LoRA-T: PESO with LoRA and Subspace ExploiTation

Require: Pretrained weights W0 ∈ Rm×n, initial subspace matrices U0 ∈ Rm×r, V0 ∈ Rr×n,
initial coordinate ξ0 ∈ Rr, frequency K.

1: Set k ← 1.
2: while stopping criterion not met do
3: Keep (Uk, Vk)← (Uk−1, Vk−1).
4: if k − 1 mod K = 0 then
5: (Uk, Vk)← AdamW(Uk−1, Vk−1). ▷ One AdamW step on (Uk−1, Vk−1)
6: end if
7: ξk ← AdamW(ξk−1). ▷ One AdamW step on ξk−1

8: k ← k + 1.
9: end while

10: return W0 + Uk diag(ξk)Vk.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate our methods across diverse tasks and models,
comparing with standard LoRA-based approaches and full fine-tuning. We first assess natural lan-
guage understanding on the GLUE benchmark (Wang et al., 2018) by fine-tuning T5-base (Raffel
et al., 2020). We then evaluate natural language generation on Llama-2-7B (Touvron et al., 2023)
for tasks including mathematical reasoning, code generation, and general instruction tuning. Finally,
we demonstrate that LoRA-PESO-R remains effective even under strict memory constraints when
trained for more epochs. Implementation details are provided in Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1 NATURAL LANGUAGE UNDERSTANDING TASKS

We fine-tune the T5-base model on a subset of GLUE, including MNLI, SST-2, CoLA, QNLI, and
MRPC, and evaluate performance using test accuracy (%). Following the setting in (Zhang et al.,
2025), we compare our method against several LoRA variants, including LoRA (Hu et al., 2022),
LoRA+ (Hayou et al., 2024), P-LoRA (Zhang & Pilanci, 2024), PiSSA (Meng et al., 2024), LoRA-
GA (Wang et al., 2024a), LoRA-Pro (Wang et al., 2024b), and LoRA-One (Zhang et al., 2025). For
fairness, hyperparameters are tuned individually for each method.

The results are summarized in Table 2. PESO-LoRA-R and PESO-LoRA-T achieve the best per-
formance on three of the five GLUE tasks (MNLI, SST-2, and QNLI), which are also the larger
datasets. On the remaining tasks, PESO-LoRA-T ranks second. This demonstrates the over-
all efficiency and robustness of our approaches, with advantages most evident on larger datasets
that demand longer training and stronger exploration–exploitation. Moreover, PESO-LoRA-T
generally outperforms PESO-LoRA-R, but at the cost of 1.4× more computation time, whereas
PESO-LoRA-R runs at nearly the same speed as standard LoRA. Memory costs are comparable
across all methods, so the choice ultimately depends on whether performance or efficiency is prior-
itized.
Table 2: Performance of fine-tuned T5-base on natural language understanding tasks with rank set
to 8. Results are reported as accuracy (%) over 3 runs. Bold and underline indicate the highest and
second-highest accuracies excluding PESO-LoRA-T, which is shaded in gray and omitted from
direct comparison due to its longer runtime.

Method MNLI SST-2 CoLA QNLI MRPC

LoRA 85.30±0.04 94.04±0.09 72.84±1.25 93.02±0.07 68.38±0.01

LoRA+ 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39

P-LoRA 85.28±0.15 93.88±0.11 79.58±0.67 93.00±0.07 83.91±1.16

PiSSA 85.75±0.07 94.07±0.06 74.27±0.39 93.15±0.14 76.31±0.51

LoRA-GA 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24

LoRA-Pro 86.03±0.19 94.19±0.13 81.94±0.24 93.42±0.05 86.60±0.14

LoRA-One 85.89±0.08 94.53±0.13 82.04±0.22 93.37±0.02 87.83±0.37

PESO-LoRA-R 86.08±0.15 94.61±0.09 81.50±0.16 93.43±0.06 86.36±0.11

PESO-LoRA-T 86.09±0.04 94.76±0.19 82.01±0.30 93.45±0.03 87.59±0.46

4.2 NATURAL LANGUAGE GENERATION TASKS

Following prior work (Wang et al., 2024a; Zhang et al., 2025), we fine-tune the Llama-2-7B model
on three datasets and evaluate on the corresponding downstream tasks. For mathematical reason-
ing, we use a 100k subset of MetaMathQA (Yu et al., 2023) and evaluate on GSM8K (Cobbe
et al., 2021). For general instruction tuning, we fine-tune on Alpaca (Taori et al., 2023) and eval-
uate on MMLU (Hendrycks et al., 2020). For code generation, we use a 100k subset of Code-
Feedback (Zheng et al., 2024) and evaluate on HumanEval (Chen et al., 2021), reporting PASS@1.
To ensure fairness, all datasets are preprocessed to exclude overlaps with test sets. Results are shown
in Table 3. Remarkably, our methods outperform baselines on two of the three tasks—mathematical
reasoning and code generation—both involving larger training datasets, highlighting the substantial
gains enabled by subspace exploration and exploitation in handling complex tasks.

4.3 MULTI-EPOCH LOW-RANK ANALYSIS

To demonstrate the effectiveness of subspace exploration, we extend T5-base fine-tuning on SST-
2 from one epoch (Section 4.1) to four. This longer schedule enables more thorough exploration
and reduces the intrinsic low-rank bottleneck. As shown in Table 4, PESO-LoRA-R with r = 2

Table 3: Performance of fine-tuned Llama-2-7B on natural language generation tasks with rank set
to 8. Results are reported as accuracy (%) over 3 runs. Bold and underline indicate the highest and
second-highest accuracies excluding PESO-LoRA-T.

LoRA LoRA-GA LoRA-One PESO-LoRA-R PESO-LoRA-T

GSM8K 59.26±0.99 56.44±1.15 60.44±0.17 60.55±0.34 60.82±0.77

MMLU 45.73±0.30 45.15±0.57 47.24±0.20 46.16±0.58 46.44±0.37

HumanEval 25.85±1.75 26.95±1.30 28.66±0.39 31.70±1.30 30.85±1.18

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Performance of fine-tuned T5-base (4 epochs) on the SST-2 dataset. Results are reported as
accuracy (%) over 3 runs. Bold and underline indicate the highest and second-highest accuracies.

Method Epoch 1 Epoch 2 Epoch 3 Epoch 4

LoRA (r = 2) 93.02±0.44 93.47±0.51 93.41±0.12 93.52±0.17

LoRA (r = 4) 94.23±0.30 94.42±0.15 94.46±0.10 94.61±0.25

LoRA (r = 8) 93.85±0.30 94.03±0.09 94.54±0.05 94.54±0.23

PESO-LoRA-R (r = 2) 94.30±0.15 94.47±0.08 94.84±0.25 95.14±0.15

Full fine-tuning 94.42±0.11 94.70±0.10 94.85±0.11 94.90±0.06

consistently outperforms standard LoRA even at higher ranks (r = 4, 8), showing that it overcomes
the low-rank limitation, achieves full-parameter optimality, and delivers stronger performance even
under highly restricted memory budgets.

5 CONVERGENCE ANALYSIS

In this section, we establish convergence of PESO with the full gradient restart. For general non-
convex losses, the optimality measure E∥Gk∥ converges to zero up to controlled inexactness. To
our knowledge, this is the first convergence result for memory-efficient training that guarantees full-
parameter stationarity under standard assumptions. We begin by stating the regularity assumptions.
Assumption 1. The loss ℓ is nonconvex, bounded from below, and has L-Lipschitz gradients.

Assumption 2. Stochastic gradients G̃k of the full gradient Gk satisfy E(G̃k) = Gk and there exists
C > 0 such that V(G̃k) ≤ C.
Assumption 3. The learning rates for full gradient restart in (8) satisfies

∑
ηk =∞ and

∑
η2k <∞.

Assumption 4. There exists a sequence {δk} ≥ 0 such that dist(Gk,Sk) ≤ δk for k where full
gradient restart is implemmented. Furthermore, limk→∞ δk <∞.
Assumption 5. Opt and UpdateSubspace generate the updates satisfying E[ℓ(Wk)] ≤
E[ℓ(W̃k+Mk(ξk−1))]+Ck and E[ℓ(W̃k+Mk(ξk−1))] ≤ E[ℓ(Wk−1)]+Ck where

∑
k |Ck| <∞.

Assumptions 1–3 are standard in stochastic optimization; see, e.g., (Bottou et al., 2018). Assump-
tion 4 requires the subspace at full gradient restart to be sufficiently aligned with Gk, allowing
approximation errors, e.g., from low-rank SVD. Assumption 5 is mild and holds, for example, when
both Opt and UpdateSubspace use SGD with diminishing learning rates; see Appendix F.

We now state the main convergence result; the proof and its deterministic counterpart are de-
ferred to Appendix F. Importantly, the result holds for any choice of UpdateSubspace, whether
warm-start or restart, and at any frequency. In particular, Algorithm 1 may combine different
UpdateSubspace strategies at varying frequencies, and the guarantee remains valid.
Theorem 5.1. Suppose all assumptions hold. With full gradient restart, the iterates {Wk} generated
by Algorithm 1 satisfy lim infk→∞ E[∥Gk∥] ≤ limk→∞ δk.
Remark. If SFG

k is chosen such that Gk ∈ SFG
k , then δk = 0 and the optimality measure converges to

zero. In PESO-LoRA-R, SFG
k is the top-r SVD subspace of G̃k, so δk reflects both SVD truncation

error and a noise term of order O(
√
C). When Gk is effectively low rank and variance-reduction

(e.g., online PCA or EMA) is used, limk→∞ δk can be made small.

6 CONCLUSIONS AND LIMITATIONS

This paper bridges classical methodology from nonlinear optimization with the practical challenge
of memory-efficient LLM training. It highlights two key perspectives: 1) practical constraints in
LLM training, such as memory limits, can motivate specialized optimization designs; 2) principles
from nonlinear optimization can in turn guide the development of practical algorithms for LLMs.
We believe this opens promising directions for principled and scalable LLM training, while under-
scoring a broader philosophy: the rapid progress in LLMs can be enriched by classical foundations
in computation and optimization. Our study has certain limitations. Due to limited resources, our ex-
periments are restricted to medium-scale settings and do not yet reach the largest practical regimes.
Extending our framework to full-scale pre-training remains an important future work, and we expect
the methodology developed here to provide a solid foundation for such efforts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research fully adheres to the ICLR Code of Ethics. We did not use any human or animal subjects.
All datasets and models were acquired and used in accordance with their respective usage guidelines,
and no private data was compromised. This work is free from bias and discriminatory outcomes,
avoids using personally identifiable information, and presents no risks to privacy or security. We are
committed to conducting this research with complete transparency and integrity.

REPRODUCIBILITY STATEMENT

We take reproducibility seriously and are willing to provide necessary materials to support it. All
theoretical results are presented with explicit assumptions, and full proofs are provided in Ap-
pendix F. Additionally, experimental settings and implementation details are documented in Ap-
pendix A, D and E. Together, these resources allow our claims and results to be verified and repro-
duced.

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Klaus-Jürgen Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.

Coralia Cartis and Lindon Roberts. Scalable subspace methods for derivative-free nonlinear least-
squares optimization. Mathematical Programming, 199(1):461–524, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yiming Chen, Yuan Zhang, Yin Liu, Kun Yuan, and Zaiwen Wen. A memory efficient ran-
domized subspace optimization method for training large language models. arXiv preprint
arXiv:2502.07222, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

AR Conn, Ph L Toint, A Sartenaer, and NIM Gould. On iterated-subspace minimization methods
for nonlinear optimization. Technical report, P00024646, 1994.

Romain Cosson, Ali Jadbabaie, Anuran Makur, Amirhossein Reisizadeh, and Devavrat Shah. Low-
rank gradient descent. IEEE Open Journal of Control Systems, 2:380–395, 2023.

EE Cragg and AV Levy. Study on a supermemory gradient method for the minimization of functions.
Journal of Optimization Theory and Applications, 4(3):191–205, 1969.

Kwassi Joseph Dzahini and Stefan M Wild. Stochastic trust-region algorithm in random subspaces
with convergence and expected complexity analyses. SIAM Journal on Optimization, 34(3):2671–
2699, 2024.

Athanasios Glentis, Jiaxiang Li, Qiulin Shang, Andi Han, Ioannis Tsaknakis, Quan Wei, and Mingyi
Hong. Scalable parameter and memory efficient pretraining for llm: Recent algorithmic advances
and benchmarking. arXiv preprint arXiv:2505.22922, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Uijeong Jang, Jason D Lee, and Ernest K Ryu. Lora training in the ntk regime has no spurious local
minima. arXiv preprint arXiv:2402.11867, 2024.

Zhanhong Jiang, Nastaran Saadati, Aditya Balu, Minh Pham, Joshua Russell Waite, Nasla Saleem,
Chinmay Hegde, and Soumik Sarkar. A unified convergence theory for large language model
efficient fine-tuning. In OPT 2024: Optimization for Machine Learning, 2024.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. Stochastic subspace descent.
arXiv preprint arXiv:1904.01145, 2019.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient llm training with online
subspace descent. arXiv preprint arXiv:2408.12857, 2024.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038–121072, 2024.

Matt Menickelly. Augmenting subspace optimization methods with linear bandits. arXiv preprint
arXiv:2412.14278, 2024.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Jorge. Nocedal and Stephen J. Wright. Numerical optimization. Springer Series in Operations
Research. Springer, New York, 2nd ed. edition, 2006. ISBN 0387303030.

Ryota Nozawa, Pierre-Louis Poirion, and Akiko Takeda. Zeroth-order random subspace algorithm
for non-smooth convex optimization. Journal of Optimization Theory and Applications, 204(3):
53, 2025.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Nurbek Tastan, Stefanos Laskaridis, Martin Takac, Karthik Nandakumar, and Samuel Horvath. Loft:
Low-rank adaptation that behaves like full fine-tuning. arXiv preprint arXiv:2505.21289, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
Advances in Neural Information Processing Systems, 37:54905–54931, 2024a.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters
properly optimized? arXiv preprint arXiv:2407.18242, 2024b.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Ya-xiang Yuan. A review on subspace methods for nonlinear optimization. In Proceedings of the
International Congress of Mathematics, pp. 807–827, 2014.

Fangzhao Zhang and Mert Pilanci. Riemannian preconditioned lora for fine-tuning foundation mod-
els. arXiv preprint arXiv:2402.02347, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Yuanhe Zhang, Fanghui Liu, and Yudong Chen. One-step full gradient suffices for low-rank fine-
tuning, provably and efficiently. arXiv preprint arXiv:2502.01235, 2025.

Zaikun Zhang. Scalable derivative-free optimization algorithms with low-dimensional subspace
techniques. arXiv preprint arXiv:2501.04536, 2025.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z
Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance.
arXiv preprint arXiv:2412.05270, 2024.

12

https://github.com/tatsu-lab/stanford_alpaca

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 4 Classical Iterated-Subspace Minimization

Require: Initialization W0 ∈ Rm×n, ξ0 ∈ Rd, M0, an algorithmic subroutine
UpdateSubspace, an optimizer Opt, frequency K.

1: Set k ← 1 and W̃0 ←W0.
2: while stopping criteria not satisfied do
3: Update the subspace (Mk, W̃k)← UpdateSubspace(Mk−1, W̃k−1).
4: Approximately solve the subspace minimization by Opt using K inner-loop iterations:

ξ∗k ← approx argmin
ξ

ℓ(W̃k +Mk(ξ)) (10)

5: Wk ← W̃k +Mk(ξ
∗
k).

6: k ← k + 1.
7: end while

A SYNTHETIC EXAMPLE OF LORA DEFICIENCY

One critical limitation in the literature is the absence of convergence guarantees toward valid op-
timality conditions of (1). Most existing works establish convergence only with respect to the
low-dimensional parameters—such as the factors A and B in LoRA—but do not address conver-
gence with respect to the full-parameter matrix W . For instance, Jiang et al. (2024) shows that
∇Aℓ(W0 + AkBk) and ∇Bℓ(W0 + AkBk) vanish as k → ∞, while leaving the behavior of ∇W ℓ
uncharacterized. This gap is not merely technical: it highlights a fundamental deficiency of PEFT
methods compared to standard full-parameter training. In fact, the optimal loss attained by LoRA
can be arbitrarily worse than the true optimal loss of (1). To illustrate this, consider the following
simple synthetic example in matrix optimization:

min
W∈Rn×n

∥W −M∥2F , where M = a · diag(1, . . . , 1, 0, . . . , 0), (r+1 ones). (9)

The optimal solution is clearly W ∗ = M with f(W ∗) = 0. However, applying LoRA with rank r
to (9) can at most achieve a rank-r approximation of M , and attains f(A∗B∗) = a2. As a increases,
or as the rank mismatch between the LoRA adapters and the true solution grows, the optimality gap
between LoRA and full gradient methods can become arbitrarily large.

This example underscores the cost of memory restrictions: while low-rank parameterizations save
memory, they may fundamentally limit convergence to the true optimum. In the middle and right
panels of Figure 1, we show that LoRA with exploration (PESO-LoRA-R) can effectively converge
to the true optimal solution while LoRA would not. Note in this implementation of PESO-LoRA-R
(Algorithm 2), the SVD of the full gradient is a rank-r SVD and therefore the low-rankness of this
computational scheme would not affect the convergence.

B REVIEW ON SUBSPACE MINIMIZATION

It is worth noting that Algorithm 1 is essentially equivalent to the classical two-loop subspace mini-
mization scheme (Conn et al., 1994), summarized in Algorithm 4.

The key distinction between warm-start and restart, discussed in (5) and (6) of Section 2.1, lies in
how the subproblem (10) is initialized within each outer iteration of Algorithm 4.

C PROJECTED SUBSPACE AND MEMORY EFFICIENCY

One-sided projected subspaces in PESO can offer stronger memory efficiency than LoRA. This idea
is exemplified by GaLore (Zhao et al., 2024), which we now place in the PESO framework. GaLore
requires memory of order mn+mr+2nr (assuming m ≤ n), compared to LoRA’s mn+3mr+3nr.

With the projected subspace representation in Table 1, optimization reduces to ξ := R ∈ Rr×n. By
the chain rule,

∇Rℓ(Wk) = ∇ξℓ(W̃k + PkRk) = P⊤
k ∇W ℓ(Wk) = P⊤

k Gk. (11)

Once Pk is computed and stored, subspace gradients are obtained directly from Gk with no extra
overhead, though computing the full Gk each iteration is more costly than subspace-only gradients.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Then, an exploitation step in the subspace by gradient descent with learning rate ηk gives

Wk+1 = W̃k +Mk(Rk − ηkP
⊤
k Gk)

= W̃k + Pk(Rk − ηkP
⊤
k Gk)

= Wk − ηkPkP
⊤
k Gk,

(12)

which matches the classical projected subspace descent step (Kozak et al., 2019).

In GaLore, Pk is chosen as the rank-r left SVD of the full gradient at fixed intervals. PESO recovers
GaLore when the subspace gradient∇Rℓ(Wk) = P⊤

k Gk in (12) is replaced with its Adam update.

This shows how GaLore saves memory: gradients of ξk are derived directly from Gk, and updates
are written back into W via (12), reusing the stored pretrained weights W0. Thus explicit storage
of ξk is unnecessary. Further savings arise because GaLore omits optimizer states forMk (i.e., for
Pk), instead updating Pk by direct reassignment in a restart manner. However, smoother transitions
of subspace parameters often yield greater stability, as observed in our experiments; we discuss
smoothing techniques for restart strategies in the next section.

D IMPLEMENTATION OF PESO-LORA-R

We discuss several implementation details of PESO-LoRA-R that are critical for practical stability
and performance.

D.1 SMOOTHING THE SUBSPACES

A potential issue with restart methods (see (6)) is that they directly reassign the subspace parameter-
ization from new information, which can introduce sharp changes and instability, especially in LLM
training where stochastic noise is significant.

To mitigate this, we adopt an Exponential Moving Average (EMA) of old and new subspaces, similar
in spirit to how Adam (Kingma & Ba, 2014) stabilizes noisy updates. However, this is nontrivial in
PESO-LoRA-R (Algorithm 2), since the pre-restart adapters (Ak, Bk)—evolved through Adam dy-
namics—may differ significantly in scale and coordinates from the restarted pair (Uk

√
Λk,
√
ΛkVk)

obtained from rank-r SVD. A naive EMA would mismatch these terms and discard valuable explo-
ration information.

We resolve this by performing basis and scaling alignment. For clarity, we omit the subscript k.
Given current adapters (A,B), we first compute thin QR factorizations:

A = QARA, B = RBQ
⊤
B , Q⊤

AQA = Ir, Q
⊤
BQB = Ir,

to extract bases (QA, QB) and decouple scaling. Next, let the rank-r SVD of the full gradient be
−G ≈ U ΣV ⊤. We align (U, V) to (QA, QB) by applying SVD to Q⊤

AU and Q⊤
BV :

Q⊤
AU = PUΣUQ

⊤
U , RU := PUQ

⊤
U , Q⊤

BV = PV ΣV Q
⊤
V , RV := PV Q

⊤
V ,

yielding aligned bases
Û := UR⊤

U , V̂ := V R⊤
V .

Here RU solves
min
R
∥UR−QA∥F , RR⊤ = I,

so Û best aligns U with QA in Frobenius norm; the same holds for V̂ . This produces the best
alignment by classical low-rank SVD guarantees.

We then smooth the bases via EMA:

Uema := τ1QA + (1− τ1)Û , Vema := τ1QB + (1− τ1)V̂ ,

for smoothing parameter τ1. To smooth the scaling, we project the old adapter into the new bases
and combine with the gradient:

Snew := τ2 [U
⊤
ema(AB)Vema]− (1− τ2) [U

⊤
emaGVema],

with parameter τ2. Since this merges the scaling of A and B, we refactorize Snew using polar
decomposition (Glentis et al., 2025):

Snew = RL ΣR⊤
R,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

and define the new adapters via balanced splitting:
Anew := Uema RL Σ1/2, Bnew := Σ1/2 R⊤

R V ⊤
ema.

Finally, although empirically less effective, we also rotate the momentum vectors according to the
new basis. Specifically, we compute

TA := Q⊤
AUema, TB := Q⊤

BVema,

and update the pre-restart momentum (mA,mB) as
mA ← mATA, mB ← T⊤

BmB .

Training then proceeds with the new adapters (Anew, Bnew) in PESO-LoRA-R.

D.2 MOMENTUM AND VELOCITY ALIGNMENT

Even with basis and scaling alignment from the previous subsection, another stability issue arises:
the new adapters (Anew, Bnew) can induce gradients of very different magnitudes compared to the
old (A,B). Since restarts are based on the SVD of the full gradient, the new adapters align with
top gradient directions, so the gradients with respect to (Anew, Bnew) are typically larger. This
mismatch can leave the velocity “too cold”: historical states (vA, vB) may underestimate the new
gradient magnitudes, leading to an excessively large normalized step and unstable behavior, often
observed as jumps in the loss curve.

To address this, we propose a combined momentum/velocity scaling technique with a β2 warm-up.
Let (mA,mB) and (vA, vB) denote the momentum and velocity before restart, and (gA, gB) the
gradients after restart computed with respect to (Anew, Bnew). We define scaling factors

s
(v)
A =

∥gA∥2

∥vA∥
, s

(m)
A =

∥gA∥
∥mA∥

, s
(v)
B =

∥gB∥2

∥vB∥
, s

(m)
B =

∥gB∥
∥mB∥

,

which correct scale mismatches between the old optimization states and the new gradients. Here,
∥ · ∥ denotes the RMS norm. Momentum and velocity are then rescaled as

vA ← s
(v)
A vA, mA ← s

(m)
A mA, vB ← s

(v)
B vB , mB ← s

(m)
B mB .

This resolves scale mismatches, but an additional adjustment is needed: β2 = 0.999 (velocity
EMA) adapts much more slowly than β1 = 0.9 (momentum EMA). At initialization, bias correction
balances these, but after a restart we require extra correction. We therefore decrease β2 immediately
after a restart and gradually warm it back to 0.999 over a window T . If a restart occurs at iteration
tr, then for tr ≤ t ≤ tr + T we set

β2(t) = β2,min +
(
β2,final − β2,min

)
1
2

(
1− cos π(t−tr)

T

)
, β2,final = 0.999,

and for t > tr + T we use β2 = 0.999 as usual. In our experiments, we set β2,min = 0.95 and
T = ⌊K/3⌋.

E EXPERIMENTAL DETAILS

All experiments are conducted on NVIDIA RTX A6000 GPUs. For PESO-LoRA-R, to further
reduce computational cost, we restrict the exploration frequency to two times per epoch.

E.1 NATURAL LANGUAGE UNDERSTANDING

In Section 4.1, we present the results of our methods and various LoRA-based algorithms on natural
language understanding tasks, following the prompt tuning configuration of (Wang et al., 2024a).
The general hyperparameter settings are kept consistent across all algorithms which are shown in
Table 5. To ensure a fair comparison, we follow (Zhang et al., 2025) and tune the learning rates via
grid search over {1 × 10−4, 2 × 10−4, 5 × 10−4, 1 × 10−3}. Additionally, following the choices
of Zhang et al. (2025), the scale parameters for LoRA-One are set to be {128, 16, 128, 128, 64} for
{MNLI, SST-2, CoLA, QNLI, MRPC}.
For PESO-LoRA-R, we set the smoothing parameter τ1 = τ2 = 0.9, with frequency K chosen
as {2000, 500, 100, 500, 40} for {MNLI, SST-2, CoLA, QNLI, and MRPC} based on empirical
observations. When (k − 1) mod K = 0 and k ̸= 0, we set the scale parameter γ = 1; when
k = 0, the scale parameter is set the same as in LoRA-One. To further reduce computational cost,
we restrict the restart frequency to times per epoch. For PESO-LoRA-T, we set frequency K = 1
for all datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Common hyperparameters for LoRA fine-tuning on T5-base model.

Epoch Optimizer (β1, β2) ϵ Batch Size Weight Decay LR Scheduler

1 AdamW (0.9, 0.999) 1× 10−8 32 0 cosine

Warm-up Ratio LoRA Alpha #Runs Sequence Length Adapt Precision Backbone Precision Gradient Batch Size

0.03 16 3 128 FP32 FP32 8

E.2 NATURAL LANGUAGE GENERATION

For natural language generation tasks in Section 4.2, we follow the configuration of prompt tuning
and strategy of hyperparameter tuning in (Zhang et al., 2025) to ensure fair comparison. We search
the best learning rate over {5×10−4, 2×10−4, 1×10−4, 5×10−5, 2×10−5, 1×10−5}, and the gen-
eral hyperparameter setting is summarized in Table 6. Additionally, following the choice of Zhang
et al. (2025), the scale parameters are set to {128, 16, 128} for LoRA-One and {64, 64, 64} for
LoRA-GA.

Table 6: Common hyperparameters for LoRA fine-tuning on Llama-2-7B model.

Epoch Optimizer (β1, β2) ϵ Batch Size Weight Decay LR Scheduler

1 AdamW (0.9, 0.999) 1× 10−8 32 0 cosine

Warm-up Ratio LoRA Alpha #Runs Sequence Length Adapter Precision Backbone Precision Gradient Batch Size

0.03 16 3 1024 FP32 BF16 8

For PESO-LoRA-R, we set the smoothing parameter τ1 = τ2 = 0.9, with frequency K = 500 for
all the experiments. When (k − 1) mod K = 0 and k ̸= 0, we set the scale parameter γ = 1; when
k = 0, the scale parameter is set the same as in LoRA-One. For PESO-LoRA-T, we set frequency
K = 1 for all datasets.

E.3 MULTI-EPOCH LOW-RANK ANALYSIS

In Section 4.3, we fine-tune the T5-base model on SST-2 dataset for 4 epochs. We vary the rank
of LoRA in {2, 4, 8}, keep the rank of PESO-LoRA-R as 2, and add full-parameter fine-tuning for
comparison. We keep all the other hyperparameter settings the same as in E.1.

F PROOFS

In this section, we provide the proofs of the theoretical results stated in Section 5. For completeness,
we begin with the deterministic case, i.e., when the gradients Gk accessed by PESO (Algorithm 1)
are exact, without stochastic noise. We then prove Theorem 5.1, which considers the stochastic
setting where only noisy gradients G̃k are available, satisfying Assumption 2.

F.1 DETERMINISTIC CASE

We first state the deterministic counterpart of Assumption 5:

Assumption 6. Opt and UpdateSubspace generate the updates satisfying ℓ(Wk) ≤ ℓ(W̃k +

Mk(ξk−1)) and ℓ(W̃k +Mk(ξk−1)) ≤ ℓ(Wk−1) for all k = 1, 2, · · · .

Assumption 6 requires that both Opt and UpdateSubspace act as descent methods, ensuring
that the loss is non-increasing. This is the deterministic analogue of Assumption 5, and it holds,
for example, when both are implemented as gradient descent with step size α ≤ 1/L, where L
is the Lipschitz constant from Assumption 1. In particular, one can take UpdateSubspace to
be a warm-start step that performs gradient descent on the subspace parameters with respect to the
original loss function. This is formalized below in a standard result from the optimization literature
(see, e.g., Nesterov, 2018).

Proposition F.1. Let Opt and UpdateSubspace be gradient descent schemes on ℓ with constant
learning rate α ≤ 1/L. Then Assumption 6 holds.

We now present the deterministic convergence result.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem F.2. Suppose Assumptions 1, 4, and 6 hold. With full gradient restart enabled and learning
rate ηk = 1

L , the iterates {Wk} generated by Algorithm 1 satisfy lim infk→∞ ∥Gk∥ ≤ limk→∞ δk.

Proof. We assume the frequency of the full gradient restart is K. By the descent lemma, whenever
k − 1 mod K = 0 (i.e., when a full gradient restart occurs), define

Ŵk := Wk−1 − 1
LPSk

(Gk). (13)
Performing a full gradient restart as UpdateSubspace, as discussed in (8), is thus equivalent to
moving from Wk−1 to Ŵk. It follows that

ℓ(Ŵk) = ℓ(Wk−1 − 1
LPSk

(Gk)) ≤ ℓ(Wk−1) +
〈
Gk,− 1

LPSk
(Gk)

〉
+ L

2 ∥
1
LPSk

(Gk)∥2

= ℓ(Wk−1)− 1
L∥PSk

(Gk)∥2 + L
2 ∥

1
LPSk

(Gk)∥2

= ℓ(Wk−1)− 1
2L∥PSk

(Gk)∥2,
(14)

where the second equality holds because projection onto a subspace is orthogonal.

Therefore, by Assumption 6, for iterates i = k, . . . , k+K − 1 (note that ℓ(Wk) ≤ ℓ(Ŵk) since Wk

is obtained by applying Opt to Ŵk),
1
2L∥PSk

(Gk)∥2 ≤ ℓ(Wk−1)− ℓ(Ŵk) ≤ ℓ(Wk−1)− ℓ(Wi). (15)
Importantly, (15) remains valid regardless of how frequently other types of UpdateSubspace are
applied between full gradient restarts, since all updates preserve the descent property by Assump-
tion 6. In particular, wheneverMk is updated without a full gradient restart, we have

ℓ(Wk−1)− ℓ(Wk) = ℓ(W̃k−1 +Mk−1(ξk−1))− ℓ(Wk)

≥ ℓ(W̃k−1 +Mk−1(ξk−1))− ℓ(W̃k +Mk(ξk−1))

≥ 0.

(16)

This ensures the chain of inequalities in (15) continues to hold when updates are performed by
OptM.

Hence, for any integer k ∈ N,
1
2L∥PSkK+1

(GkK+1)∥2 ≤ ℓ(WkK)− ℓ(W(k+1)K). (17)

Here kK and (k + 1)K denote integer products.

Since {ℓ(Wk)} is bounded below (Assumption 1) and monotonically decreasing (Assumption 6 to-
gether with the descent lemma at restart points), it converges by the monotone convergence theorem
and is Cauchy. Thus ℓ(Wk)− ℓ(Wk+1)→ 0, and

1
2L∥PSkK+1

(GkK+1)∥2 → 0. (18)
Finally, note that
∥GkK+1∥ ≤ dist(GkK+1,SkK+1) + ∥PSkK+1

(GkK+1)∥ ≤ δkK+1 + ∥PSkK+1
(GkK+1)∥ → δ,

(19)
where δ := limk→∞ δk. Therefore, lim infk→∞ ∥Gk∥ ≤ δ.

F.2 STOCHASTIC CASE

We begin by verifying the validity of Assumption 5. As an illustrative case, suppose Opt
and UpdateSubspace are implemented by SGD with diminishing step sizes {αk} satisfying∑

k αk < ∞. Let Ŵk denote the weight after such an update. By the descent lemma (see also
(Bottou et al., 2018, Lemma 4.4)), the expected decrease can be bounded as

E[ℓ(Ŵk)] ≤ E[ℓ(Wk)]− αk

(
1− Lαk

2

)
E∥Gk∥2 + L

2 α
2
kC. (20)

For αk ≤ 1/L, this simplifies to

E[ℓ(Ŵk)]− E[ℓ(Wk)] ≤ −αk

2 E∥Gk∥2 + L
2 α

2
kC. (21)

Taking positive and negative parts, we obtain[
E[ℓ(Ŵk)]− E[ℓ(Wk)]

]
+
≤ L

2Cα2
k,

[
E[ℓ(Wk)]− E[ℓ(Ŵk)]

]
+
≤ E[ℓ(Wk)]− E[ℓ(Ŵk)].

(22)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Summing over all k,
∞∑
k=0

[
E[ℓ(Ŵk)]− E[ℓ(Wk)]

]
+
≤ L

2C

∞∑
k=0

α2
k < ∞,

∞∑
k=0

[
E[ℓ(Wk)]− E[ℓ(Ŵk)]

]
+
≤ sup

k
E[ℓ(Wk)]− ℓ(W ∗) < ∞.

(23)

Defining Ck := E[ℓ(Ŵk)]−E[ℓ(Wk)], we conclude that
∑

k |Ck| <∞, hence Assumption 5 holds.

We are now ready to present the proof of our main result, Theorem 5.1.

Proof of Theorem 5.1. Because Sk are subspaces, PSk
is a linear operator, which allows the ex-

changability with E. Therefore, one has

E(∥PSk
(G̃k)∥2) = ∥E(PSk

(G̃k))∥2 + V(PSk
(G̃k))

= ∥(PSk
(Gk))∥2 + E

(
∥PSk

(G̃k −Gk)∥2
)

≤ ∥(PSk
(Gk))∥2 + E

(
∥G̃k −Gk∥2

)
≤ ∥(PSk

(Gk))∥2 + C.

(24)

Similar to the deterministic case, We assume the frequency of the full gradient restart is K, and
consider k − 1 mod K = 0 (i.e., when a full gradient restart occurs). Again, we define

Ŵk := Wk−1 − 1
LPSk

(Gk). (25)
By the property of the full gradient restart, we have

E[ℓ(Ŵk)] ≤ E[ℓ(Wk−1)] +
〈
Gk, ηkE[PSk

(G̃k)]
〉
+

L

2
E[∥ηkPSk

(G̃k)∥2]

≤ E[ℓ(Wk−1)] + ηk∥PSk
(Gk)∥2 +

Lη2k
2

(∥(PSk
(Gk))∥2 + C)

= E[ℓ(Wk−1)]−
(
ηk −

Lη2k
2

)
∥PSk

(Gk)∥2 +
Lη2k
2

C,

(26)

where the first inequality follows from Assumption 1, and the second follows from the fact that Sk
is a subspace and (24).

Then by Assumption 5, suppose k − 1 mod K = 0, and for iterates i = k + 1, · · · , k +K − 1,
E[ℓ(Wi)] ≤ E[ℓ(Wi−1)] + 2Ci, (27)

where 2Ci comes from bounding the scenario where both Opt and UpdateSubspace operate at
i-th iterate. Then summing up the inequalities (26) and (27) for i = k + 1, · · · , k +K − 1, and use
the fact that E[ℓ(Wk)] ≤ E[ℓ(Ŵk)] + Ck since Wk is obtained by applying Opt to Ŵk, we have(

ηk −
Lη2k
2

)
E[∥PSk

(Gk)∥2]−
Lη2k
2

C − Ck − 2

k+K−1∑
i=k+1

Ci ≤ E[ℓ(Wk−1)− ℓ(Wk+K−1)]. (28)

By Assumption 3, ηk → 0 so without loss of generality, we can assume Lηk

2 ≤ 1
2 for any k ∈ N.

Therefore for all integer k ∈ N, we have

ηkK+1

2
E[∥PSkK+1

(GkK+1)∥2]−
Lη2kK+1

2
C−CkK+1−2

(k+1)K∑
i=kK+2

Ci ≤ E[ℓ(WkK)−ℓ(W(k+1)K)].

(29)
By Assumption 1, there exists a constant Cℓ so that Cℓ ≤ ℓ(W) for any W . Summing up for
k ∈ {1, · · · , T} one has

T∑
k=1

ηkK+1

2
E[∥PSkK+1

(GkK+1)∥2] ≤
LC

2

T∑
k=1

η2kK+1 +

T∑
k=1

CkK+1 + 2

T∑
k=1

(k+1)K∑
i=kK+2

Ci

+ E[ℓ(WK)]− Cℓ.

(30)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Taking T → ∞, and note that
∑

k η
2
k < ∞ and

∑
k |Ck| < ∞, the first and second series on the

right hand side of (30) are obviously bounded. For the third series, note that

∞∑
k=1

(k+1)K∑
i=kK+2

Ci ≤
∞∑
k=1

(k+1)K∑
i=kK+2

|Ci| ≤
∞∑
i=1

|Ci| <∞. (31)

Finally ∥E[ℓ(WK)]− Cℓ∥ is obviously bounded for a fixed K, and therefore, one has
∞∑
k=1

ηkK+1E[∥PSkK+1
(GkK+1)∥2] <∞. (32)

By
∑∞

k ηk = ∞ and a contradiction argument, one has lim infk→∞ E[∥PSk
(Gk)∥] = 0. Since

∥Gk∥ ≤ dist(Gk,Sk) + ∥PSk
(Gk)∥ ≤ δk + ∥PSk

(Gk)∥ → δ where δ := limk→∞ δk, the final
result follows.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in the conception of this work. The methodology, problem
formulation, and theoretical contributions are entirely original and developed independently by the
authors. We made limited use of general-purpose LLM tools (ChatGPT and Gemini) for writing pol-
ish and occasional code debugging support. No part of the research ideation, design, or substantive
writing relied on LLMs.

19

	Introduction
	PESO: A Framework From Subspace Minimization
	Subspace Exploration-Exploitation in PESO
	Connection to Existing Benchmarks

	PESO-LoRA: Practical Algorithms from the Framework
	Full Gradient Restart
	Exploitation via SVD Subspace

	Experiments
	Natural Language Understanding Tasks
	Natural Language Generation Tasks
	Multi-Epoch Low-Rank Analysis

	Convergence Analysis
	Conclusions and Limitations
	Synthetic Example of LoRA Deficiency
	Review on Subspace Minimization
	Projected Subspace and Memory Efficiency
	Implementation of PESO-LoRA-R
	Smoothing the Subspaces
	Momentum and Velocity Alignment

	Experimental Details
	Natural Language Understanding
	Natural Language Generation
	Multi-Epoch Low-Rank Analysis

	Proofs
	Deterministic Case
	Stochastic Case

