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Abstract

Real-time video dubbing that preserves identity consistency
while achieving accurate lip synchronization remains a
critical challenge. Existing approaches face a trilemma:
diffusion-based methods achieve high visual fidelity but
suffer from prohibitive computational costs, while GAN-
based solutions sacrifice lip-sync accuracy or dental details
for real-time performance. We present MuseTalk, a novel
two-stage training framework that resolves this trade-off
through latent space optimization and spatio-temporal data
sampling strategy. Our key innovations include: (1) During
the Facial Abstract Pretraining stage, we propose Informa-
tive Frame Sampling to temporally align reference-source
pose pairs, eliminating redundant feature interference while
preserving identity cues. (2) In the Lip-Sync Adversarial
Finetuning stage, we employ Dynamic Margin Sampling to
spatially select the most suitable lip-movement-promoting
regions, balancing audio-visual synchronization and dental
clarity. (3) MuseTalk establishes an effective audio-visual
feature fusion framework in the latent space, delivering 30
FPS output at 256×256 resolution on an NVIDIA V100
GPU. Extensive experiments demonstrate that MuseTalk
outperforms state-of-the-art methods in visual fidelity while
achieving comparable lip-sync accuracy. The code is made
available at https://github.com/TMElyralab/MuseTalk

1. Introduction

Virtual human generation [12, 17, 18, 41, 46, 49] is an im-
portant research field in computer vision. One significant
application is generating lip movements that match the pro-
nunciation of the target language for multilingual films or
animations [32].It removes the mismatch between lip move-
ments and speech in traditional dubbing, enhancing audi-
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Figure 1. The difference between the talking head generation and
the video dubbing. Zoom in to see the differences in the lip area.
MuseTalk can efficiently generate video frames in one step for
video dubbing task.

ence immersion without reshooting actors.
Recently, Image-to-Video (I2V) talking face generation

methods [53] have shown significant potential in creating
virtual actors by generating highly realistic avatars for spe-
cific identities. One-shot talking face generation methods
based on diffusion models [16, 34], such as EMO [41],
EchoMimic [5], and LOOPY [19], have gained popular-
ity. These methods allow users to create a video with
good audio-visual consistency by uploading just a single
image and an audio clip. However, their reliance on iter-
ative denoising processes restricts their suitability for real-
time applications. In the generated videos, the model au-
tonomously adjusts characters’ head and eye movements
based on the audio, as illustrated in Fig. 1.
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In this paper, we investigate one-shot video-dubbing, a
Video-to-Video (V2V) technique that focuses on preserv-
ing the original actor’s head and eye movements while se-
lectively modifying only the lip movements, without requir-
ing additional model retraining. Existing one-shot video-
dubbing methods can be broadly categorized into two main
paradigms: diffusion-based approaches [22, 25] and GAN-
based techniques [6, 32, 43, 52]. While diffusion mod-
els have demonstrated remarkable capabilities for video-
dubbing tasks, their reliance on extensive training data and
multi-step inference processes makes them computationally
expensive and impractical for local deployment by media
professionals and AI artists.

Existing GAN-based methods [6, 32, 43, 52] often fall
short in video quality, frequently producing blurry or dis-
torted regions that negatively impact visual fidelity. Addi-
tionally, these methods often fail to preserve the original
actor’s identity accurately, leading to noticeable changes in
facial appearance during the dubbing process. Such issues
significantly limit their practical applications. Despite well-
known training instabilities in GANs [9, 27], their ability
to generate outputs in a single step provides a promising
solution to real-time application. Driven by the compu-
tational efficiency and cost-effectiveness of GANs, we in-
vestigate novel one-shot lip-sync generation methods that
achieve high-quality results while maintaining efficiency.

This paper introduces MuseTalk, a GAN-based real-time
one-shot video-dubbing framework. Specifically, to re-
duce user costs, we design a one-step face generator in the
VAE [21] latent space. MuseTalk addresses key training
challenges in GAN-based video-dubbing through a care-
fully designed two-stage training process. A novel spatio-
temporal sampling strategy is proposed to improve identity
consistency and lip movement accuracy. We first implement
mild pretraining using latent space inpainting to enhance
the model’s ability for facial abstract prediction. During
this stage, we introduce Informative Frame Sampling to se-
lect key frames. Subsequently, we incorporate audio-visual
synchornize loss and GAN loss, with the latter focusing on
optimizing the mouth region. Here, Dynamic Margin Sam-
pling is employed to spatially select critical facial regions
that promote better lip movement learning.

In summary, our contributions are three-fold: (i) We pro-
pose MuseTalk, a GAN-based video-dubbing framework
based on latent space inpainting, which enables real-time
generation of high-fidelity lip-synced videos; (ii) We in-
troduce a comprehensive two-stage training framework that
resolves the conflict between GAN loss and audio-visual
synchornize loss, achieving a balance between lip move-
ment accuracy and teeth clarity; (iii) We propose a novel
spatio-temporal sampling strategy. Specifically, we design
Informative Frame Sampling at the frame level to bridge
the gap between training and inference, and Dynamic Mar-

gin Sampling at the region level to promote lip movement
learning in adversarial training. Extensive experimental re-
sults demonstrate the efficacy of MuseTalk, even compared
to diffusion-based methods.

2. Related Work

2.1. Talking Head Generation
In recent years, audio-driven talking head generation meth-
ods have attracted significant attention and provide valuable
insight for video dubbing techniques. Talking head gener-
ation can be categorized into NeRF-based [13, 23, 31, 40],
GAN-based [4, 7, 28, 55, 56], and diffusion-based [2, 5, 19,
41, 47, 48] approaches.

NeRF-based methods require identity-specific videos for
training and additional rendering [29] time, with early
methods like AD-NeRF [13] taking several seconds per
frame. Despite the real-time rendering achieved by integrat-
ing Instant-NGP [30, 40], retraining is needed for new iden-
tities. Diffusion-based methods, such as EMO Portrait [41],
employ a two-stage training process by integrating Refer-
enceNet [17], temporal layers [14], and audio attention lay-
ers into Stable Diffusion models [34]. Similar strategies
are used in LOOPY [19], Hallo [47], and EchoMimic [5].
These methods allow for one-shot vivid talking head gener-
ation from images, but are computationally expensive.

In contrast, GAN-based methods generate images in one
step. Early methods [3, 4, 55] fail to maintain identity con-
sistency and accurate lip movement. To address this, meth-
ods like MakeItTalk [57] and SadTalker [50] adopt multi-
stage inference, separating audio-to-motion and motion-to-
video modeling. Although this improves the results, it in-
creases the computational overhead and complexity.

2.2. Video Dubbing
Video dubbing focuses on replacing the mouth region of a
source face based on driving audio. The most common ap-
proach [32] involves using a mask in the lower half of the
face or the lip region to guide the model to create new vi-
sual effects only in these areas, as shown in Fig. 2. Early
methods [6, 10, 32, 38, 43, 52, 54] predominantly relied on
GANs. Although these methods achieved lip movements
that were relatively consistent with the audio content, they
often struggled with maintaining identity consistency and
reconstructing clear teeth details. DI-Net [52] attempted to
train models on high-resolution data, which compromised
lip accuracy. StyleSync [10] highlighted this dilemma, not-
ing that forcing the model to restore too many lip-relevant
details might interfere with learning.

Recently, methods such as LatentSync [22] and
DiffTalk [36] have leveraged the strong detail generation
capabilities of the Latent Diffusion paradigm [34] for video
dubbing tasks. LatentSync integrates the SyncNet loss [32]
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Figure 2. Illustration of MuseTalk’s framework. We first encode a reference facial image and an occluded lower half target image into
perceptually equivalent latent space. Subsequently, we employ a multimodal U-Net to effectively fuse audio and visual features at various
scales. Consequently, the decoded results from the latent space yield more realistic and lip-synced talking face visual content.

to enhance lip motion-audio alignment during the one-
step denoising process. Despite improvements in audio-
visual synchornize and clarity, these methods suffer from
the heavy inference burden.

3. Method
3.1. Overview
We propose MuseTalk, a GAN-based one-step generation
framework operating in the VAE latent space, building on
insights from prior work. This section outlines the technical
implementation and design principles of MuseTalk.

Through experimentation, we found that simultaneously
optimizing the SyncNet loss [32] and GAN loss in a sin-
gle training stage for a randomly initialized model leads to
training instability. We further discuss this issue in the sup-
plementary materials. In contrast, MuseTalk introduces a
novel two-stage training strategy to mitigate this problem.

The first stage, Facial Abstraction Pretraining, estab-
lishes foundational visual representations using our pro-
posed Informative Frame Sampling (IFS) mechanism. In
the second stage, Lip-Sync Adversarial Finetuning, we
introduce Dynamic Margin Sampling (DMS) to balance
adversarial training objectives with lip-synchronization
constraints, enabling effective optimization of both aspects.

3.2. Network Pipelines
MuseTalk is designed to seamlessly integrate audio and vi-
sual information while maintaining efficient one-step infer-
ence capabilities. Unlike conventional GAN-based meth-
ods [32, 43], which use independent encoders for audio
and visual data, we leverage a multimodal U-Net architec-
ture [35] as the backbone of the generator. To further en-
hance computational efficiency, we refer to the Latent Dif-

fusion approach [34], shifting the learning task from the
pixel domain to the latent space.
Identity Feature Handling. For video dubbing, the gen-
erated video must retain the identity of the original refer-
ence image, which necessitates integrating identity infor-
mation into the network. Previous diffusion-based meth-
ods [19, 41] achieve this by incorporating a ReferenceNet
that adjusts each attention layer to inject identity informa-
tion. While this approach is effective for multi-step denois-
ing processes, it can be overly computationally expensive
for one-step predictions. Instead, we simplify the process
by concatenating identity information along the channel di-
mension at the U-Net input.

Specifically, we pass the upper half of the source image
at time t and the full-face reference image (captured at a
different moment) through a VAE encoder. The encoded
features are then concatenated along the channel dimen-
sion to form a comprehensive image feature representation
vw×h×2c, where w and h denote the width and height of the
feature, respectively. As illustrated in Fig. 2, an occluded
lower half of the ground truth image Its and a reference iden-
tity image Itref at time t are each passed through the VAE en-
coder, producing outpus vw×h×c

ref and vw×h×c
m . Experimen-

tal results in Tab. 1 demonstrate that this straightforward yet
effective design provides robust identity control.

During inference, only a single input frame at time t is
required. This frame is used as both Itref and Its. The gen-
erated Ito is subsequently overlaid onto the original image
using advanced face parsing and blending techniques. De-
tailed descriptions are provided in the supplementary ma-
terials. The construction of reference and source images
during training is elaborated upon in subsequent sections.
Audio Feature Handling. Following established prac-
tices [5, 19, 41], we utilize a pre-trained audio encoder [1,
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Figure 3. The illustration of proposed Informative Frame Sam-
pling mechanism. We calculate the pose and lip similarity based
on Euclidean distance between facial landmarks.

33] to extract audio features and inject them into the U-Net
through its cross-attention layers. To optimize inference
speed, we employ the lightweight Whisper-Tiny model [33]
to process an audio segment centered at time t with dura-
tion T . The selected audio segment is first resampled to
16,000 Hz and converted into an 80-channel log-magnitude
Mel spectrogram, denoted as At

mel ∈ RT×80. The resulting
audio feature has dimensions aT×d, where d = 384.

3.3. Facial Abstract Pretraining
Observation. We observed that joint optimization of mul-
tiple losses during early training stages leads to unstable
convergence, particularly when combined with adversarial
objectives. To address this challenge, we adopt a phased
training approach where the first stage focuses on cultivat-
ing facial abstract inpainting capabilities through mild opti-
mization strategies.
Loss Function. At this stage, we employ stable reconstruc-
tion losses instead of adversarial training objectives. To
focus the model’s attention as much as possible on the fa-
cial region, we crop the images along the edges of the face,
thereby reducing the interference from background inpaint-
ing tasks on the model, as illustrated in Fig. 5. Given a
synthesized talking face image Ito and its ground truth coun-
terpart Itgt, we formulate the optimization target as:

Lstage1 =
∥∥Ito − Itgt

∥∥
1
+ λvgg

∥∥V(Ito)− V(Itgt)
∥∥
2
, (1)

where V denotes the feature extractor of VGG19 [37]. Uti-
lizing solely the L1 loss tends to produce overly smoothed
facial reconstructions. In contrast, perceptual loss [20] fa-
cilitates the learning of high-frequency visual patterns, par-
ticularly in capturing transitional facial features such as
sideburn textures and incipient dental structures.
Informative Frame Sampling. Previous GAN-based ap-
proaches [6, 32, 52] rely on random sampling to obtain the
reference image Itref . However, this method introduces
a significant gap between training and inference phases.
Specifically, during training, the reference image Itref and
the ground truth image Itgt often exhibit different head
poses. In contrast, during inference, Itref and Itgt share the

same pose. This discrepancy makes it challenging for mod-
els to generalize well across different scenarios. We intro-
duce a novel Informative Frame Sampling (IFS) strategy to
address the training-inference discrepancy by focusing the
model on lip movement generation. The IFS strategy aims
to construct data pairs Itref and Itgt that retain relevant tex-
ture details while filtering out redundant or distracting infor-
mation. As illustrated in Fig. 3, the process involves three
key steps:
1. Pose Alignment: We calculate head pose similarity us-

ing chin landmark distances and select the most similar
frames to form the Pose-Aligned Set Epose.

2. Distinct Lip Movement: We compute inner-lip land-
mark differences to identify frames with distinct lip
movements, forming the Lip Motion Dissimilarity Set
Emouth.

3. Intersection Selection: We choose the intersection
Epose ∩ Emouth as the Sampled Reference Image Set E ,
sort it by similarity, and select the top k subset as Itref.
We later describe the optimal value of k in Tab. 3.

3.4. Lip-Sync Adversarial Finetuning
Optimization Objective. The primary goal of this stage
is to enhance the model’s capability in generating realistic
dental details while ensuring precise lip movements. Build-
ing upon the initial training phase, where the model learns
to extract facial abstract information from audio inputs, we
observe that the outputs tend to exhibit overly smoothed
teeth and replicated lip motions from reference images, as
demonstrated in Fig. 4(b). To overcome these limitations,
we incorporate two loss functions: an adversarial loss [26]
and a SyncNet loss [32].
Adversarial Loss. The adversarial loss [11] is designed to
enable the generator to capture intricate details by compet-
ing against two discriminators: one focused on the entire
face Dface and another specifically targeting the lip region
Dlip. For the lip discriminator Dlip, the input region is care-
fully cropped based on the lip landmarks, expand to a fixed
size of and fed into the network without any resizing oper-
ations. We chose the expand method over resizing because
resizing degrades lip generation quality, resulting in inaccu-
rate and unrealistic mouth shapes. The optimization objec-
tive for the adversarial loss is formulated as:

Ladv = Ladv,face + Ladv,lip, (2)

where

Ladv,face = −EAt
mel,I

t
ref

[Dface(I
t
o)], (3)

Ladv,lip = −EAt
mel,I

t
ref

[Dlip(I
t
lip)]. (4)

Sync Loss. The SyncNet loss promotes lip movement
learning by aligning the generated frames with the au-
dio [22, 32]. Specifically, we apply a SyncNet S that takes
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Audio Input: [Ha]

(a) ID Input (b) First Stage (c) w/ (d) w/ (e) w/ DMS

Figure 4. (a) Identity image during Inference. (b) First-stage
model generates smooth teeth. (c) SyncNet loss promotes accu-
rate lip movements but causes blurring. (d) GAN loss enhances
clear teeth but replicates the original lip. (e) After applying DMS,
both accurate lip movements and clear teeth are generated.

N pairs of audio and image frames as input. The output
features are then used to calculate the cosine similarity. The
optimization objective is:

Lsync =
1

N

N∑

i

− log[CosSim(S(Ai
mel, I

i
o))]. (5)

The overall optimization objective for this stage is:

Lstage2 = Lstage1 + λadvLadv + λsyncLsync. (6)

Dynamic Margin Sampling. When optimizing Lstage2, we
observe conflicts between the adversarial loss and the Sync-
Net loss. Specifically, optimizing the adversarial loss alone
can produce clear teeth but causes the model to replicate the
reference lip movements, especially when the reference im-
age shows teeth, as illustrated in Fig. 4(d). Conversely, as
shown in Fig. 4(c), optimizing the SyncNet loss alone en-
ables the model to close the mouth during silent periods but
results in blurry lip movements when speaking. When both
losses are optimized simultaneously, the SyncNet loss be-
comes difficult to converge, and the model’s behavior tends
towards that shown in Fig. 4(d).

Prior works [19, 42, 47] have noted that the mapping
from audio to lip movements is inherently weak. Stronger
conditions, such as identity constraints or other more dom-
inant learning tasks, can easily overshadow lip-sync learn-
ing. Additionally, we have identified and localized a pre-
viously overlooked issue in previous methods [32, 54]: the
leakage of lip movement information in training data pairs.
The left side of Fig. 5 illustrates this issue. This may lead
to the model directly copying the reference’s lip movements
and ignoring the actual changes in lip movements, as shown
in Fig. 4(d).

We propose Dynamic Margin Sampling (DMS) to dis-
rupt this implicit “hint” from the data. Specially, we in-
troduce random margins around the chin area when crop-
ping Itref and Itgt. It is crucial that the margins for Itref and

𝐼𝑟𝑒𝑓
𝑡 𝐼𝑠

𝑡 𝐼𝑔𝑡
𝑡

Hint: 
different lip

Hint: 
similar lip

Ref margin Source margin

Hint:
 ?

Hint: 
?

𝐼𝑟𝑒𝑓
𝑡 𝐼𝑠

𝑡 𝐼𝑔𝑡
𝑡

w/o DMS w/ DMS

Ref margin Source margin

Figure 5. The principle of Dynamic Margin Sampling (DMS) in
promoting lip movement learning. Without DMS, the model can
easily infer the general lip shape of Itgt from the relative position
of the nose in the input images Itref and Its. With DMS, this cue is
weakened, forcing the model to learn the lip movements.

Itgt are independently and randomly generated; otherwise,
the hint remains. As shown in Fig. 5, after applying DMS,
the information from unmasked regions (e.g., the nose area)
no longer directly indicates the degree of mouth opening,
thereby forcing the model to rely on the audio input to gen-
erate accurate lip movements.

4. Experiments

4.1. Experimental Setup

Model Architecture. MuseTalk’s implementation adopts
the pre-trained VAE model and the multimodal U-Net ar-
chitecture from Latent Diffusion [34]. For the audio en-
coder, we opt for the lightweight Whisper-Tiny model [33],
which provides effective audio feature extraction. The au-
dio features are integrated into the U-Net through cross-
attention layers after undergoing reshaping and reorganiza-
tion to match the required dimensions.

Training Details. We use 8 NVIDIA H20 GPUs for train-
ing. In the Facial Abstract Pretraining stage, the model
is trained with loss function Lstage1 (described in Eq. (1))
for 200,000 steps using the batch size of 32 per GPU. The
AdamW optimizer [24] with a learning rate of 2 × 10−5 is
employed. This stage costs 60 hours.

During the Lip-Sync Adversarial Finetuning stage, the
model undergoes further refinement with the loss function
Lstage2 (described in Eq. (6)) for additional 20,000 steps.
The parameter N in Lsync (described in Eq. (5)) is set to
16, and the batch size per GPU is reduced to 2 to accommo-
date the increased computational demands of the adversarial
training. The learning rate is adjusted to 5 × 10−6 to facil-
itate fine-grained updates. This finetuning stage completes
in approximately 30 hours. The loss hyper-parameters are
set as follows: λvgg = 0.01, λadv = 0.1, λsync = 0.05.
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Method Type HTDF VFHQ

FID ↓ CSIM ↑ LSE-C ↑ FID ↓ CSIM ↑ LSE-C ↑
Wav2Lip [32] GAN 11.55 0.84 7.42 14.99 0.82 5.84
VideoRetalking [6] GAN 11.29 0.80 7.59 15.83 0.79 6.13
DI-Net [52] GAN 6.94 0.80 5.96 15.03 0.71 3.37
IP-LAP [54] GAN 10.16 0.86 4.47 10.95 0.85 3.88
LatentSync [22] Diffusion 8.41 0.84 7.90 9.89 0.82 6.79
SyncLab [39] – 10.85 0.86 6.37 9.85 0.85 5.22

Ground Truth – 0.00 1.00 7.73 0.00 1.00 6.93

MuseTalk GAN 6.52 0.86 6.53 7.07 0.85 4.77

Table 1. Performance metrics for HDTF [51] and VFHQ [45]. We omit the face restoration procedure from the original methods for fair
comparison. SyncLab [39] is a commercial software with unknown technical details. The best results are highlighted in bold.

Dataset Preparation. We collected publicly available
talking head datasets [45, 51]. To ensure high-quality data,
we employed a rigorous data filtering pipeline. The final
dataset spans approximately 24 hours in total duration. De-
tails of the data filtering process are provided in the supple-
mentary materials. For evaluation, we randomly selected 26
videos from HDTF and 10 videos from VFHQ, using the re-
mainder for training. All videos were segmented into clips
for both training and testing phases. For preprocessing, we
detected faces in each frame as Regions of Interest (ROIs),
which were subsequently cropped and resized to 256× 256
pixels. The parameter k in the IFS was set to 50% of the
video length. The input size of discriminator Dlip is set to
64× 128.

During testing, we adopted a protocol mirroring real-
world scenarios, where the video and audio inputs are
sourced independently, and the reference image is extracted
from the current frame. This unpaired evaluation protocol
aligns with that used by Wav2Lip [32] and VideoRetalk-
ing [6], ensuring a fair comparison.

Evaluation Metrics. The experiments are designed to as-
sess the method’s visual fidelity, identity preservation, and
lip synchronization capabilities. To evaluate visual quality,
we use the Frechet Inception Distance (FID) [15], which
measures the similarity between generated and real image
distributions, providing a robust metric for visual fidelity
without ground-truth talking videos. Identity preservation is
evaluated using cosine similarity (CSIM) between the iden-
tity embeddings [8] of the source and generated images.
Lip synchronization is evaluated using lip-sync-error con-
fidence (LSE-C) [32].

Compared Baselines. We benchmark MuseTalk against a
range of SOTA video dubbing approaches. For fair compar-

ison, we omit the face restoration [44] procedure if required
in the original methods. Each of them representing distinct
technical advancements in the field: (1) Wav2Lip [32]:
Pioneering work using a robust lip-sync discriminator for
realistic synchronization; (2) VideoRetalking [6]: Three-
stage pipeline for high-quality lip synchronization; (3)
DI-Net [52]: Dual-encoder framework with facial action
units for photo-realistic and emotion-consistent talking face
videos; (4) IP-LAP [54]: Two-stage framework combining
Transformer-based landmarks with multi-reference align-
ment for identity preservation; (5) LatentSync [22]: In-
tegrates pixel-space SyncNet into latent diffusion for effi-
cient, high-fidelity lip-sync generation; (6) SyncLab [39]:
Commercial software for lip-syncing models, focusing on
cutting-edge AI video solutions.

4.2. Quantitative Evaluation
Benchmark. Table 1 presents the quantitative analysis on
the HDTF and VFHQ datasets. MuseTalk demonstrates su-
perior performance, achieving the lowest FID scores (6.52
on HDTF and 7.07 on VFHQ) and the highest CSIM scores
(0.86 on HDTF and 0.85 on VFHQ), outperforming exist-
ing methods. While its LSE-C scores are slightly lower than
some competitors, MuseTalk strikes a remarkable balance
between visual fidelity and lip-synchronization accuracy.

Analyzing the baseline methods, Wav2Lip [32] and
VideoRetalking [6] exhibit relatively lower visual quality,
as evidenced by their higher FID scores (e.g., 11.55 vs.
6.52 on HDTF for MuseTalk). This discrepancy stems from
their training on downscaled face regions (96 × 96 pix-
els), which compromises image clarity. In contrast, DI-
Net [52] achieves the second-lowest FID score on HDTF
(6.94) through its deformation-based approach, which ef-
fectively preserves high-frequency texture details. How-
ever, its identity preservation capability is notably limited,
as reflected in its subpar CSIM score (0.80 on HDTF and
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Figure 6. Qualitative comparisons on HDTF [51] (left) and VFHQ [45] (right). The first two rows show the input video frames and the lips
corresponding to the audio. The arrow shows the lip movement trend (zoom in for finer details). Additional video results are provided in
the supplementary materials.

0.71 on VFHQ). This weakness arises from its reliance on
random reference image sampling, which introduces redun-
dancy and hinders natural lip movements, ultimately affect-
ing its LSE-C performance.

Among GAN-based approaches, IP-LAP [54] stands out
with the highest CSIM score (0.86) on HDTF, showcas-
ing exceptional identity preservation. However, it suffers
from low visual quality and lip-synchronization capabili-
ties. Turning to diffusion models, LatentSync [22] achieves
the best LSE-C score (7.90 on HDTF), indicating superior
lip-synchronization capabilities. However, its non-real-time
nature limits its practicality for real-world applications. In
contrast, MuseTalk runs in real-time, achieving 30 FPS
at a 256×256 resolution on an NVIDIA V100 GPU with
preloaded data.

In summary, MuseTalk is the most balanced solution,
achieving great performance across multiple metrics while
maintaining real-time capabilities. Its lip-sync accuracy is
on par with that of the commercial software SyncLab [39].

User Study. To assess the quality of lip synchronization,
human judgment is relied upon. A user study was con-
ducted to further evaluate the performance of our proposed
method. For this study, dubbed videos were created by dif-
ferent methods using 36 unsynced audio-video pairs from
the HDTF datasets and the VFHQ datasets. Ten participants
were asked to rate each video based on visual quality, iden-
tity consistency, and lip-sync accuracy. They were provided
with a five-point scale (with 1 being the lowest and 5 be-
ing the highest) for their evaluations. A total of 360 ratings
were collected.

In the subjective evaluation, method names were hid-
den and videos were randomly shuffled to ensure unbiased
assessment. Annotators saw labels like “Method 1” and
“Method 2” without knowing their specific methods, and
the same label across different pairs did not correspond to
the same method. This ensured fairness and prevented bias.

As indicated in Tab. 2, the majority of participants
awarded higher scores to MuseTalk in terms of visual qual-
ity, lip-sync quality, and identity consistency. More visual-
ization can be found in the supplementary materials.
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Method VQ↑ IC↑ LSQ↑
Wav2Lip [32] 2.19 3.07 2.70
VideoRetalking [6] 3.35 3.14 3.58
DINet [52] 2.92 2.40 2.57
LatentSync [22] 3.71 3.93 4.07
SyncLab [39] 3.87 3.71 3.49
MuseTalk 4.26 4.15 3.77

Table 2. User Study. The best results are shown in bold. VQ:
Visual Quality; IC: Identity Consistency; LSQ: Lip-Sync Quality.

4.3. Qualitative Evaluation
Two illustrative examples are included in Fig. 6.
Wav2Lip [32] often produces synthesized mouth regions
that appear blurry. VideoRetalking [6] results in jagged ar-
tifacts around the lip area and overly smooths the face re-
gion. DI-Net [52] induces noticeable changes in the sub-
ject’s identity within the generated results. IP-LAP [54]
maintains identity relatively well but generates inconsistent
lip movements. LatentSync [22] and SyncLab [39] gener-
ate clear facial and dental details but require longer com-
putation times compared to other methods. In contrast,
MuseTalk achieves a better balance in lip movement con-
sistency, identity preservation, and efficiency.

4.4. Ablation Studies
Informative Frame Sampling. We tested various values
of k across different percentages (25%, 50%, and 75%) of
the total candidate frames to identify its optimal value. The
results are shown in Tab. 3, highlighting the effects of dif-
ferent k values on overall performance.

As seen in the table, the IFS strategy achieves peak per-
formance when k is set to 50% of the candidate frames.
Specifically, the Fréchet Inception Distance (FID) reaches
its minimum at 6.52, indicating the smallest discrepancy be-
tween generated and real images, and thus the highest image
quality. Meanwhile, the Cosine Similarity (CSIM) reaches
its maximum at 0.86, reflecting the highest similarity be-
tween generated and real images. Additionally, the LSE-C
value is maximized at 6.53, further confirming the superior
performance of the IFS strategy under this setting. In con-
trast, random sampling yields significantly inferior results,
with an FID of 9.24, a CSIM of 0.79, and an LSE-C of 4.41.

Dynamic Margin Sampling. Dynamic Margin Sampling
(DMS) generates random margins for the chin-to-boundary
distance from a normal distribution N (µ, σ) within one
standard deviation. We investigate two critical design
choices: (1) the optimal margin magnitude and (2) whether
to share margins between reference (Itref) and source (Its)

Sampling strategy FID↓ CSIM↑ LSE-C↑
Random 9.24 0.79 4.41
IFS (k=25%) 8.31 0.83 2.94
IFS (k=50%) 6.52 0.86 6.53
IFS (k=75%) 11.22 0.72 3.27

Table 3. Ablation study for sampling method on HDTF [51]
benchmark. The best results are shown in bold.

DMS setting FID↓ CSIM↑ LSE-C↑
N (20, 20) + idp margin 11.95 0.81 5.78
N (10, 10) + shared margin 6.43 0.85 4.95
N (10, 10) + idp margin 6.52 0.86 6.53

Table 4. Ablation study for different DMS settings on HDTF [51]
benchmark. The “idp” means independent.

images. These choices significantly affect lip generation
quality.

To explore these factors, we evaluated three configura-
tions: (i) a margin drawn from N (20, 20) with indepen-
dent margins for each image; (ii) a margin drawn from
N (10, 10) with shared margins between the reference and
source images; and (iii) a margin drawn from N (10, 10)
with independent margins for each image.

Table 4 shows that the larger margin setting (i) achieves
lower FID and CSIM scores. This is because the highly
variable margins force the model to focus more on back-
ground information, making it difficult to accurately deter-
mine the chin position and resulting in numerous artifacts
in the generated images. The margin-sharing setting (ii) de-
grades lip accuracy because when the margins of Itref and
Its are identical, the model can infer the mouth shape of Itgt
based on the nose position, thereby reintroducing informa-
tion leakage (described in Fig. 5). The configuration (iii)
achieves optimal performance by adopting a more moderate
margin that effectively addresses information leakage with-
out compromising FID and CSIM scores.

We use the optimal setting identified from these experi-
ments for all evaluations described in Sec. 4.

5. Conclusion
This paper introduces MuseTalk, a novel framework for
real-time, high-quality lip-synced generation for video
dubbing. By modeling the audio-visual relationship in the
VAE latent space, MuseTalk bypasses the computationally
intensive diffusion process and outperforms existing
state-of-the-art methods. Its framework integrates two key
innovations: Informative Frame Sampling and Dynamic
Margin Sampling, which address the inherent trade-offs
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in GAN-based video dubbing methods, enhancing both
the accuracy of lip movements and the fidelity of the
generated videos. Comprehensive evaluations highlight
MuseTalk’s effectiveness, achieving the lowest FID,
highest CSIM, and competitive LSE-C scores. MuseTalk
shows promise for transforming digital communication
and multimedia applications, with future work exploring
multilingual support and broader virtual content creation.
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Supplement Material for MuseTalk: Real-Time High-Fidelity Video Dubbing via
Spatio-Temporal Sampling

Dataset Original Dataset Filtered Dataset

HDTF [8] 15.75 15.32
VFHQ [7] 18.36 8.43

Table 1. The variation in the duration of the dataset before and
after filtering. The units in the table are measured in hours.

1. Data Filtering
We’ve discovered that the audio-visual consistency of the
original video is crucial for model training of video-dubbing
task, making data filtering an essential step. For instance,
the VFHQ dataset contains numerous interview videos
where the audio originates from someone off-camera, while
the person on-screen remains silent. This type of “dirty”
data can significantly impair the effectiveness of video dub-
bing methods.

Our filtering approach involves calculating scores based
on SyncNet, and subsequently eliminating data with low
confidence and high offset. For a comparison of the datasets
before and after filtering, please refer to Tab. 1.

2. Ablation Study for Multi Stage Training
As mentioned in the Section 3 in main text, optimizing Ladv
and Lsync simultaneously in a single training stage for a less
capable (randomly initialized) model leads to severe train-
ing instability. We illustrate this issue through qualitative
results. As shown in Fig. 1, single-stage training introduces
significant artifacts, including white spots at the corners of
the mouth, missing mouth corners, and jagged teeth.

In contrast, the two-stage training strategy employed by
MuseTalk first employs a more moderate training regimen
in first stage to equip the model with initial face inpainting
capabilities. This approach stabilizes the model, enabling
it to achieve higher-quality results during the adversarial
training in the scoond stage. These findings demonstrate
the necessity of our proposed two-stage training strategy.

ID Diversity in Different Stage. The diagram in Fig. 2
demonstrates our application of different data sampling
strategies at various training stages.

Figure 1. Artifacts observed in the generation results from single-
stage training.
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Figure 2. Data sampling strategies for different training stages.

In the first stage, our goal is to expose the model to a
wide array of unique identities. This exposure enables the
model to learn a diverse range of facial details, thereby en-
hancing its capacity for facial abstraction. To accomplish
this, we employ a larger batch size and sample only one
frame per video (identity).

In the second stage, we shift our focus towards optimiz-
ing the consistency of lip movements for a specific identity.
This stage is pivotal as it ensures the model’s proficiency
in accurately synchronizing lip movements with the corre-
sponding audio, a critical aspect of video dubbing.

During the initial stage, we can configure the batch size
per GPU to 32. However, in the second stage, due to the
necessity of concurrently sampling N frames to compute the
sync loss (where N equals 16 in our case), the batch size per
GPU is set to 2.

1

ar
X

iv
:2

41
0.

10
12

2v
3 

 [
cs

.C
V

] 
 2

6 
M

ar
 2

02
5



𝐼𝑟𝑒𝑓
𝑡 𝐼𝑠

𝑡

𝐼𝑔𝑡
𝑡

Figure 3. Comparison between random sampling and Informative
Frame Sampling (IFS).

3. Details for Spatial-Temporal Sampling
Visualization for IFS. We visualize the sampled data us-
ing Informative Frame Sampling (IFS) in Fig. 3. As shown,
IFS is capable of selecting Itref frames that are consistent in
pose but inconsistent in lip movement with the ground-truth
frame Itgt. In contrast, random sampling may yield input
data with large pose variations but similar lip movements
compared to Itgt.

4. Details for Loss Function
SyncNet Loss. The commonly used SyncNet model for
evaluating audio-driven video generation is derived from
Wav2Lip [4] training, which is trained on very low-
resolution images (96 × 96 pixels). After reviewing prior
works [3, 5], we found that this model tends to pro-
duce higher lip-sync-error confidence (LSE-C) [4] for low-
resolution generation methods, which does not strictly re-
flect the lip-sync quality of the model.

Consequently, we sought a more effective audio-visual
synchronization guidance model. Recently, LatentSync [2]
proposed a more effective SyncNet training strategy, train-
ing a SyncNet with N = 16 to handle 256× 256 image in-
puts. This SyncNet has approximately ten times the number
of parameters compared to the model provided by Wav2Lip.
Upon manual inspection, we found that this model provides
more accurate audio-visual synchornize scores, which we
integrated into our training pipeline.

It is crucial to note that MuseTalk’s contribution lies not
in providing a superior SyncNet or a more innovative loss
function, but rather in harmonizing these classical losses to
achieve higher-quality generation.

Adversarial Loss. During the training process, we uti-
lize two distinct discriminators: Dface, which concentrates
on the entire face, and Dlip, which specifically targets
the lip region. The adversarial loss is incorporated using
the WGAN (Wasserstein Generative Adversarial Network)
framework [1], offering a more stable training experience

compared to conventional GANs. For the generator, the ad-
versarial loss’s objective is to deceive both discriminators
into accepting the generated images as authentic. Specifi-
cally, the generator’s goal is to minimize:

Ladv = Ladv,face + Ladv,lip, (1)

where

Ladv,face = −EAt
mel,I

t
ref

[Dface(I
t
o)], (2)

Ladv,lip = −EAt
mel,I

t
ref

[Dlip(I
t
lip)]. (3)

For the discriminators, their objectives are to differentiate
between real and generated samples. The loss functions for
the discriminators are defined as:

Ldis = Ldis,face + Ldis,lip, (4)

where

Ldis,face = EIt
real,face

[Dface(I
t
real,face)]

+ EAt
mel,I

t
ref

[Dface(I
t
o)] (5)

Ldis,lip = EIt
real,lip

[Dlip(I
t
real,lip)]

+ EAt
mel,I

t
ref

[Dlip(I
t
lip)] (6)

The discriminator operates on images of a fixed resolu-
tion. For Dface, we’ve matched the input region to that of
MuseTalk. However, for Dlip, the lip region’s size varies
from frame to frame.

We explored numerous strategies to handle this fluctua-
tion and found that simply resizing the lip region could lead
to distorted mouth shapes. This distortion could negatively
impact the synchronization of audio and visuals, and com-
promise the overall realism. To tackle this problem, we de-
vised the expansion strategy. This method entails pinpoint-
ing the longer side of the mouth based on its landmarks, and
then using half of this length to define the shorter side. We
subsequently expand outwards to set the upper and lower
breakpoints in a symmetrical manner. Following this ex-
pansion, the area is resized to a standard region, thereby
safeguarding the preservation of the original mouth open-
ing size. As illustrated in Fig. 4, the expansion operation
guarantees that the lip region maintains its natural propor-
tions. This results in superior mouth shape generation and
improved audiovisual consistency.

5. Blending based on Face Parsing
We recognize that minor seams might be visible at the in-
tersection of the generated region and the original video. To
address this, we utilize a blending strategy based on face
parsing.
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Figure 4. Visualization of the differences in processing methods for different lip regions.
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Figure 5. Illustration of the blending process used in MuseTalk.

The procedure starts by enlarging the bounding box of
the identified face in the source image to create a square
region. Within this area, we implement face parsing meth-
ods to generate a multi-class label map 1. This map offers
semantic segmentation of facial components such as eyes,
mouth, nose, and so on.

Using these labels, we preserve the lower half of the face,
excluding the nasal region. This choice aids in maintaining
natural facial features while circumventing intricate transi-
tions around the nose. Furthermore, we apply a Gaussian
blur to the boundaries of the chosen region to ensure seam-
less transitions during the blending process, thereby creat-
ing a blending mask.

With this mask, we seamlessly integrate the generated
region from MuseTalk with the original video content. The
blending mask governs the contribution from each source.

For real-time applications, we precalculate the blending
mask during the preprocessing phase as it relies solely on
the original video content. This optimization considerably
minimizes computational overhead during runtime, facili-
tating efficient processing for real-world deployment.

Figure 5 depicts the entire blending process, showcas-
ing how the proposed method delivers visually consistent

1https://github.com/zllrunning/face-parsing.PyTorch

results while maintaining computational efficiency.

6. Ethical Considerations

Technologies like MuseTalk, which facilitate video dub-
bing, contribute significantly to advancements in multime-
dia communication and entertainment. However, they also
raise potential ethical concerns, particularly regarding their
misuse for creating deepfakes and other forms of decep-
tive content. The synthesized results from MuseTalk, while
highly realistic, may still display certain visual artifacts.
These artifacts could serve as indicators for detecting deep-
fakes, thereby providing a layer of transparency and assist-
ing in the identification of manipulated content. Further-
more, the development and deployment of such technolo-
gies should be accompanied by robust measures to prevent
unauthorized use and ensure that the generated content is
used ethically and legally.

In summary, while MuseTalk and similar technologies
provide powerful tools for video dubbing and digital con-
tent creation, their use must be approached with caution
and responsibility. It is essential to implement necessary
safeguards to mitigate potential misuse and uphold ethical
standards in the digital domain.
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7. Limitation and Future work
While MuseTalk demonstrates a notable improvement in
face region resolution (256× 256) compared to other state-
of-the-art methods, it has yet to reach its full resolution po-
tential. Additionally, certain facial details—such as mus-
taches, lip shape, and color—are not always well-preserved,
which can affect identity consistency. Lastly, occasional jit-
ter is observed due to the single-frame generation process,
compromising smoothness.

To address these limitations, future work will focus on
incorporating higher-quality training data and integrating a
temporal module to reduce jitter and ensure smoother tran-
sitions. These enhancements aim to improve both resolu-
tion and overall visual consistency. Moreover, incorporat-
ing super-resolution models like GFP-GAN [6] as a post-
processing step could further elevate output quality in real-
world applications.
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