
Revisiting Action Failures Through the Lens of Cooperative Games

Sarath Sreedharan1, David Smith2

1Computer Science Department, Colorado State University, Fort Collins, USA
2PS Research, Los Altos Hills, CA, USA

ssreedh3@colostate.edu, david.smith@psresearch.xyz

Abstract

This paper will revisit the question of explaining action or
plan failures in the context of numeric planning problems.
As we will see, the existing methods used in classical plan-
ning for explaining plan failures fall short in this setting, and
we need a novel paradigm to handle this question. To model
such explanation methods, we turn to cooperative games as
a framework to capture such explanation generation prob-
lems. Then we look at two possible methods, namely, Shap-
ley values and Banzhaf values, to identify the role played by
each action in the resulting failure. While such methods have
been previously used in explaining machine learning mod-
els, we see that their deployment in planning reveals novel
challenges. As we will see, we will need to modify how these
values are calculated for the planning setting. Finally, through
a running example, we will see how explanations may be cal-
culated using each of these methods, and how they may result
in different explanations. This points to how more work needs
to be done to evaluate which of these methods may be better
suited for planning settings.

Introduction
Explaining plan or action failures is crucial when analyzing
plans provided by humans or other agents. When an action
condition fails, it is easy to identify the failing condition,
but this doesn’t explain why the condition is not satisfied.
A more informative and helpful explanation involves identi-
fying previous action(s) that resulted in this condition being
violated1. For classical planning, this corresponds to identi-
fying the action that deleted the fact subsequent to the last
point at which the fact may have been true. Now, one could
disagree on the finer points, like whether a better explanation
might be the first action that deletes the fact or the delet-
ing action that is closest to the failing action. Regardless of
the specific action identified as the cause, identification of
the explanation remains both conceptually and computation-
ally relatively simple. After all, the worst-case complexity
of identifying this explanation is polynomial in the length of
the plan.

However, as one leaves the realm of classical planning and
enters that of numeric planning, the problem of explaining

1One could use this paradigm to capture cases where a fact was
never true to start with, by creating an action a0 that would stand-in
for setting the initial state.

action failures takes on new dimensions. To illustrate this,
consider the following example, where we have a rover mov-
ing to a crater, taking pictures, collecting soil samples, and
communicating them to the lander. Now, the exact plan is
given as follows:

π = ⟨move to crater, scan for rocks,
take picture of crater,pickup soil sample,

communicate image⟩
Assume that the rover starts with a full battery. The first
move action (referred henceforth as Mv) uses up 30% of the
battery level, while the scan action (Scn) uses up 5%, and
the next two actions use up 20% each (Tk and Pup). Finally,
the communicate image action (Comm) requires the bat-
tery level to be at least 52%. Comm would therefore fail, as
the battery level would only be 25% at the start of the action.
Which prior action was responsible for this failure? A quick
scan through the plan shows that it’s difficult to pinpoint a
single cause for failure because all of the actions preceding
Comm reduce the battery level. Simply citing all of the ac-
tions that influence the battery level is also not very helpful,
as it could be a very long list for a larger plan. While one
could point to Mv as a potential reason, due to the high bat-
tery usage, that action on its own doesn’t reduce the battery
to the degree that Comm can no longer be performed. One
could instead argue that Tk is the responsible action since
it first reduces the battery level below the required level of
52%. However, removing that action doesn’t necessarily fix
the failure, as Pup would still lead to the failure. The only
thing we could say with certainty is that Scn had very little
role to play in the failure , after all, removing it or adding it
back makes no difference in the context of the other actions.
In this case, what we need is a mechanism that will allow us
to assign a degree of blame to each preceding action and use
this to understand the role each action plays in the resulting
failure.

This brings us to the focus of this paper: looking at the
problem of explaining plan failures through the lens of coop-
erative games (Driessen 2013). Here, each action becomes a
player working towards the objective of causing the target
precondition to be violated. Any coalition of players that re-
sults in such a failure receives a value of 1 and 0 otherwise.
We will see how methods for attributing player contributions
could be used here to identify the role played by each action



in the resulting failure. While mapping explanations to out-
come attributions in cooperative games has been studied in
the context of machine learning models (Sundararajan and
Najmi 2020), to the best of our knowledge, this presents the
first attempt at mapping action failure explanation to a co-
operative game. We will see how the applications of these
methods in planning introduce novel challenges not present
in traditional one-shot machine learning prediction settings.
The Shapley value (Winter 2002) is the most popular value
attribution method used in explainable prediction settings,
but we will also consider the Banzhaf value (Lehrer 1988).
We believe these two different attribution methods capture
two primary ways in which one could think of plans, namely,
as a totally ordered action sequence or as a partially ordered
set of actions. These will be described in greater detail in the
next section.

Background
In this section, we set up some of the foundational notations
we will need to discuss how one could map plan failure
to a generalized cooperative game. To start with, we will
represent our planning problem or model using the tuple
M = ⟨F,A, I,G⟩, where F represents the set of fluents,
A the actions, I the initial state, and G the goal. Since we
are interested in numeric planning problems, our fluent set
will be represented as F = ⟨Fp, Fn⟩, where Fp captures the
propositional fluents and Fn the numeric ones. Our initial
state, goal description, and action definitions will be defined
over both the propositional and numeric fluents. In particu-
lar, for action definitions, the preconditions of the actions
defined over numeric fluents will either take the form of
(f ⋄ i) or (f ⋄ g), where f, g ∈ Fn, i ∈ R is a real constant,
and ⋄ is a relational operator in {<,≤,=,≥, >, ̸=}. The ef-
fects of the actions defined over numeric fluents are given as
(f ← expr), where f ∈ Fn, and expr is an arithmetic opera-
tion defined over numeric fluents and real-valued constants.
Abusing the notation, we will denote the effect of executing
action a in state s as a(s) if the preconditions of action a are
satisfied in s. Similarly, we will denote the value of a flu-
ent f in state s as s(f). A solution to a planning problem is
a plan π, whose execution in the initial state I , results in a
state that satisfies the goal, namely π(I) |= G. In addition to
plans, we will also leverage the notion of an executable ac-
tion sequence, which is an action sequence whose execution
in the initial state will result in a valid state. In other words,
there exists no action in the sequence whose preconditions
aren’t satisfied by preceding actions.

Another core concept we will use in this paper is al-
ternative representations of plans or plan prefixes. Firstly,
we will consider the totally ordered representation, where
a plan is represented by an action sequence of the form
π = ⟨a1, ..., ak⟩. We will also consider a partially ordered
representation, where a plan is represented by a tuple of the
form π≺ = (A,≺). Here, A is a set of unique steps of the
plan. Here, each step of the plan maps over to an action in
the set A, but multiple steps may refer to the same action.
Next, ≺ is a precedence ordering between elements in A.
π≺ is considered a valid plan if there exists a total ordering
for elements in A, denoted as π′, such that π′ satisfies≺ and

π′(I) |= G. We will extend the notion to also support exe-
cutable action sequences. A partially ordered set of actions
π̃≺ = ⟨Ã,≺⟩ is said to be executable if there exists a total
ordering for the elements in A that is executable.

Cooperative Games. In a cooperative game (Driessen
2013), a set of players works together towards a common
objective or payoff. Within the game, a set of players is
expected to form groups or coalitions, where the players
within the coalitions are expected to work together towards
the shared objective. The games also include a characteristic
function or a value function that determines the total payoff
achieved by the coalition. Here, the value function assigns
a numeric value to the coalition, with the assumption that a
higher value means a higher pay-off. Since in this game all
the players are cooperating, a common question one could
ask is, what is the share of the total pay-off each player
deserves? Such allocations are usually done through means
like Shapley or Banzhaf values (Chalkiadakis, Elkind, and
Wooldridge 2011).

More formally, we define the cooperative game Γ =
⟨N ,V⟩, whereN is the set of all players, such that |N | = n
and V is the value function that assigns a value to coalitions
formed by a set of players. Here, each coalition C corre-
sponds to a subset of players. Here, a coalition containing
all players, i.e., C = N , is referred to as the grand coalition.

An important subcategory of cooperative games is that of
simple games or win-or-lose games (Maschler, Zamir, and
Solan 2020). Two important characteristics of such games
are the fact that either a given coalition can win (getting a
pay-off of 1) or lose (getting a payoff of 0). Additionally,
these games are monotonic. Here, monotonicity refers to the
fact that adding more players to a winning team or coali-
tion cannot turn it into a losing one. Or more formally, if
V(C) = 1, then for any C ′ ⊇ C, V(C ′) = 1. These capture
many natural cases where bringing more members into the
coalition won’t make it weaker. A related but distinct con-
cept is that of zero-sum games (Von Neumann and Morgen-
stern 1947). Zero-sum games usually represent competitive
game settings, where one player gets all the pay-off. For ex-
ample, in many cases, the possible utility of the players in
such games might be represented as ‘0’ or ‘1’, but there is
no notion of coalitions, and at the end, only one of those
players might receive the non-zero utility (as such it’s also
referred to as winner-takes-all games). On the other hand,
for a simple game, while the coalition may get a pay-off of
1, this pay-off is distributed across each of the players. The
amount they receive is proportional to the role played by the
player in reaching the outcome. In this paper, we will look
at cooperative games, which have a binary pay-off but aren’t
monotonic (for reasons we will see later).

As discussed, one of the popular ways of distributing the
total payoff across players is through Shapley values (Sun-
dararajan and Najmi 2020), denoted as ϕi, which is given
by

ϕi(V) =
∑

C⊆N\i

|C|!(n− |C| − 1)!

n!
∗ (V(C ∪ {i})− V(C))

(1)



Here V(C∪i)−V(C) is the marginal contribution of adding
player i to the coalition C (i.e., does the total pay-off in-
crease when we add this player to the team). The term |C|!
captures the ways to order the members of the current coali-
tion, and (n − |C| − 1)! represents all the ways the players
excluding i and the ones in C could be arranged. This means
each term in the sum is considering the fraction of permu-
tations, where the player i follows some ordering over the
current coalition, and is followed by all the remaining play-
ers. As such, an important aspect of the Shapley value is that
it considers all possible permutations in which the overall
team can be formed and averages the contributions across all
possible permutations. One of the important properties that
Shapley values have is the efficiency property, namely that
it should distribute the values across the different players.∑

i

ϕi(V) = V(N )

An alternative to the Shapley value is the Banzhaf value.
While the Banzhaf value has historically been used primarily
in simple games, it provides a formulation that ignores the
individual permutations possible for coalitions. The Banzhaf
value for a player i is given by:

βi(V) =
1

2n−1
∗

∑
C⊆N\i

(V(C ∪ {i})− V(C)) (2)

The main difference is that the Banzhaf value doesn’t con-
sider how many permutations can be formed from each
coalition, and hence isn’t multiplying the marginal contri-
bution by the number of permutations. As we will see, for
cases where not all permutations are possible, this will re-
sult in extremely divergent results on the ordering between
Banzhaf and Shapley value-based ordering of players. Ad-
ditionally, the Banzhaf value doesn’t try to satisfy the ef-
ficiency axiom since the individual Banzhaf values do not
need to add up to the total pay-off. Instead, this formula-
tion only requires that the values add up to the power of the
game, where power P(N ,V) is proportional to the sum of
all marginal contributions, i.e.,

P(N ,V) = 1

2n−1
∗
∑
i

∑
C⊆N\i

(V(C ∪ {i})− V(C))

With these basic concepts in place, we can move on to the
main proposal of our work.

Mapping Action Failures to Generalized
Cooperative Games

The primary contribution of this paper is to show how one
might cast the explanation of an action condition failure as
a generalized cooperative game. To start with, let’s consider
a planning modelM = ⟨F,A, I,G⟩, and a sequence of ac-
tions π = ⟨a1, ...., ak⟩, such that the execution of π results
in the failure of action ak, i.e., if π̂ = ⟨a1, ...., ak−1⟩, then
π̂(I) ̸|= pre(ak), where pre(ak) is the preconditions of the
action ak. To be more specific, let the failing condition be
fk ⋄k M , where fk ∈ FN , ⋄k is a relational operator, and M

is a real-valued constant.2 Now, we define the correspond-
ing game as Γπ = ⟨N̂ , V̂⟩, where N̂ contains a player for
each index in π̂. Here, a coalition could be thought of as a
partially ordered set of actions with no ordering constraints.
The objective of the game is to bring about a state where the
target conditions fk ⋄k M fail. As such, our value function
returns 1 for coalitions or action sets, which could lead to
the failure of the condition. More formally, the value for a
coalition C is defined as

V̂(C) =

{
1 if C ̸|= fk ⋄k M

0 otherwise

The players in the game consist of actions from the exe-
cutable prefix π̂ before the failing action ak. As a result, we
are looking for an executable partially ordered set of actions
from that sequence that leads to a state where the condition
fk ⋄k M doesn’t hold. More specifically, C ̸|= fk stands for
the fact that there exists an executable linearization π′ for C
such that π′ is a valid action sequence whose execution re-
sults in a state where the condition fk ⋄k M does not hold.
Now, let us look at the individual values. Note that while
our game formulation has a 1 or 0 value, it isn’t a simple
game since the monotonicity property is violated. Specifi-
cally, in certain cases, adding a new action to the coalition
could make a winning coalition (one that violates the condi-
tion) move to a losing one (one that satisfies the condition).
For example, let’s consider a variation of our rover exam-
ple with a recharge (RC) action that sets the battery back to
100%. Here, a coalition consisting of actions {Mv,Tk} is a
winning coalition because it violates the condition that the
battery should be above 52%. Now, if we were to add the
action RC to the coalition, it turns into a losing coalition.

Shapley Values As one attempts to look at Shapley val-
ues in the context of planning, the first fact that stands out
is that not every permutation of any given coalition is feasi-
ble for the given planning model M . This means that to find
the Shapley value, we need to find all possible feasible per-
mutations of the grand coalition, i.e., the ones containing all
actions denoted by ΠN , and all permutations of the actions
that start with the elements in a given coalition C before a
player i, denoted by ΠC

i . As such, the new Shapley value for
player i becomes

ϕi(V̂) =
∑

C⊆N̂\i

|ΠC
i |

|ΠN |
∗ (V̂(C ∪ {i})− V̂(C)) (3)

A proof that our updated method still satisfies this property
is given in the appendix. It is worth noting that this notion
that certain permutations of the players aren’t a common
consideration in cooperative games, and to the best of our
knowledge, has never been considered in the context of the
use of Shapley values in explanations for machine learning.
However, this is a very natural notion within the context of

2Please note that our focus on real-valued constants is made
purely to simplify the discussion. We can easily support cases
where the precondition is defined over other numeric fluents or
even more complex expressions.



planning problems, where we are always talking about inter-
dependencies between the actions.

Revisiting our example, suppose that there is a precondi-
tion on Mv, such that it cannot be executed after any of the
following actions. Also suppose that once the rover reaches
the crater, it can perform the other three actions in any or-
der. Since Shapley values consider the permutations of all
actions, the total number of sequences is given as |ΠN | = 6.
Specifically, the possible permutations are as follows:

[⟨Mv,Scn,Tk,Pup⟩, ⟨Mv,Scn,Pup,Tk⟩,
⟨Mv,Tk,Scn,Pup⟩, ⟨Mv,Tk,Pup,Scn⟩,
⟨Mv,Pup,Tk,Scn⟩, ⟨Mv,Pup,Scn,Tk⟩]

Here, there are 16 possible coalitions that correspond
to all possible subsets of {Mv,Scn,Tk,Pup}. Let’s as-
sume that all of them are executable, in the sense
that there exists a linearization for the correspond-
ing partially ordered set that is executable. Now, the
only winning coalitions, i.e., the ones that return 1
are {Mv,Scn,Tk,Pup}, {Mv,Scn,Tk}, {Mv,Scn,Pup},
, {Mv,Tk,Pup}, {Mv,Tk}, and {Mv,Pup} . Note that in
the Shapley value, for each coalition, we are multiplying the
marginal contribution of the player by the number of per-
mutations where the players from that coalition precedes the
current player. For any player i, the number of permutations
where C precedes i (|ΠC

i |) has a non-zero value only for
coalitions that correspond to the empty set or ones contain-
ing Mv. This is because every valid permutation starts with
Mv, which can be said to precede the empty set by default.
For player Mv, since we are iterating over coalitions formed
from subsets of N̂ , \{Mv}, it turns all coalitions not corre-
sponding to the empty set into zero. Thus, the Shapley value
for Mv becomes:

ϕMv(V̂) =
|1
|ΠN |

∗ (V̂(∅ ∪ {Mv})− V̂(∅)) = 0

The above value is zero, because neither the empty set of
players nor Mv on its own violates the condition. This means
according to Shapley value Mv gets no credit for violating
the condition. It never turns a losing coalition into a winning
one, over the valid action sequences. Suppose we were to
calculate the Shapley values for the rest of the players in a
similar fashion, we will see:

ϕScn(V̂) = 0

ϕTk(V̂) = 1/2

ϕPup(V̂) = 1/2

Again, Scn gets zero value because it never turns a losing
coalition into a winning one, and the rest of the value is dis-
tributed equally among the other players.

Banzhaf Values For the Banzhaf value, we again need to
update the calculation. Here, rather than considering all pos-
sible subsets, we only consider the subsets that correspond
to an executable partially ordered set of action that excludes
the current action (i.e., for which there exists a valid total

ordered plan). Let’s denote this as Π−i
≺ . The Banzhaf value

calculation becomes:

βi(V̂) =
1

|Π−i
≺ |
∗

∑
C⊆Π≺

(V̂(C ∪ {i})− V(C))

The proof that this still satisfies the property that it adds up
to the power can be trivially seen to be true.

Revisiting the example, we see that the Banzhaf value
gives a surprisingly different result. The main differ-
ence is that Banzhaf iterates over the winning coalitions,
which as we pointed out earlier are {Mv,Scn,Tk,Pup},
{Mv,Scn,Tk}, {Mv,Scn,Pup}, , {Mv,Tk,Pup},
{Mv,Tk}, and {Mv,Pup}. As we discussed, all possible
subsets correspond to an executable partially ordered set of
actions, thus |Π−i

≺ | = 8 for every player i. Now, calculating
the Banzhaf value, we see the individual values to be:

βMv(V̂) = 3/4

βScn(V̂) = 0

βTk(V̂) = 1/4

βPup(V̂) = 1/4

This identifies Mv as the most important action (unlike
Shapley values) and correctly attributes zero value to Scn.
The other two actions again are considered to be equally im-
portant.

Comparison Between the Two Options Now, given the
two quite different results emerging from the two value cal-
culations, one could naturally ask the question: which is a
better way to attribute failure contributions? The two forms
of calculation correspond to two ways of looking at the plan
prefix that led to the failure. Shapley value requires us to
look at all the actions and consider only ways in which we
can permute them in a valid way. These look at counterfac-
tual plan prefixes where all the plans were used. Banzhaf,
on the other hand, looks at subsets of the plans that are part
of the plan prefix. Under these counterfactuals, we are con-
sidering cases where certain actions are removed. The result
is that, in our example, the Shapley values seem to iden-
tify the more recent action effects that finally push battery
charge below the limit needed for the condition. In contrast,
the Banzhaf values identify actions according to how much
they contribute to the charge deficit. It would be useful to
run user studies to establish which of these counterfactual
cases are more intuitive to a user.

In addition to the intuition, we can also see a difference
in computational overhead. If one were to use naive tech-
niques, Shapley value calculation in the worst case could
require iterating over (k − 1)! sequences in the worst case.
However, in the case of Banzhaf, we only need to consider
2k−1 subsets. However, checking for the existence of a valid
action sequence that uses all k − 1 actions and results in the
failure of fk ⋄k M could be more expensive. We need to do
additional work to evaluate which of the methods allows for
more effective algorithms.



Conclusion
This paper presents a novel game-theoretic analysis for how
one could explain plan failures, particularly in its more gen-
eralized form, in the context of numeric planning problems.
Instead of presenting a single method, we wanted to present
how this formulation could give rise to different ways one
could provide explanations. As shown, through our example,
we see how the two different attribution methods, namely
Shapley values and Banzhaf values, could end up identify-
ing extremely different candidates for the main cause of the
failure. It is worth noting that other conditions could produce
very different results, including cases where the choices con-
verge. As such, if we are to identify which value may be
a better fit for plan explanations, we might need to test
whether specific assumptions made by the two methods line
up with the user intuitions. For example, do people require a
notion of efficiency in the context of blame attribution in the
context of plan failures? Or, when considering alternatives,
would they only consider permutations of the entire action
sequences? While we briefly touched on some differences
between explanations for planning and machine learning set-
tings, there are more differences we didn’t discuss. One of
them is the notion of causal links. While in our example, we
consider a case where many actions delete the preconditions
of one action, there might also be cases where one action
contributes causal links to many subsequent actions. Such
relationships aren’t usually found within machine learning
contexts. Additionally, this scenario might also have asym-
metric effects on the two values. Because one could foresee
cases where such settings would reduce the number of pos-
sible winning coalitions more than the number of permuta-
tions. Finally, there is the question of computational com-
plexity. As we discussed, there is a difference in the compu-
tations needed to calculate the two values. If people are open
to both explanation types, we might want to prioritize based
on the availability of more efficient algorithms.

Acknowledgements
The authors would like to thank Dr. Toby Walsh and Dr.
Edith Elkind for helpful discussions and comments on the
formulations and ideas used in the paper.

References
Chalkiadakis, G.; Elkind, E.; and Wooldridge, M. 2011.
Computational aspects of cooperative game theory. Mor-
gan & Claypool Publishers.

Driessen, T. S. 2013. Cooperative games, solutions and ap-
plications, volume 3. Springer Science & Business Media.

Lehrer, E. 1988. An axiomatization of the Banzhaf value.
International Journal of Game Theory, 17(2): 89–99.

Maschler, M.; Zamir, S.; and Solan, E. 2020. Game theory.
Cambridge University Press.

Sundararajan, M.; and Najmi, A. 2020. The many Shapley
values for model explanation. In International conference
on machine learning, 9269–9278. PMLR.

Von Neumann, J.; and Morgenstern, O. 1947. Theory of
games and economic behavior, 2nd rev. Princeton univer-
sity press.
Winter, E. 2002. The shapley value. Handbook of game
theory with economic applications, 3: 2025–2054.

Appendix
Theorem 1. The modified Shapley value defined in Equa-
tion 3 still satisfies the efficiency property, i.e., the value of
individual players adds up to the value of the grand coalition∑

i

ϕi(V̂) = V̂(N̂ )

Proof Sketch. For a given player i, we could rewrite Equa-
tion 3, such that it reads

ϕi(V̂) =
1

|ΠN |
∗

∑
π∈ΠN

(V̂(Pre(π, i) ∪ {i})− V̂(Pre(π, i)))

That is, we rearrange the sum, now that it’s explicitly over
all permutations, and the function Pre(π, i) gives the set of
players that appear before i in the sequence π. Now moving
on to the sum of these individual players, we see∑

i

ϕi(V̂) =
1

|ΠN |
∗
∑
i

∑
π∈ΠN

(V̂(Pre(π, i) ∪ {i})

−V̂(Pre(π, i)))

Rearranging the sum we get∑
i

ϕi(V̂) =
1

|ΠN |
∗

∑
π∈ΠN

∑
i

(V̂(Pre(π, i) ∪ {i})

−V̂(Pre(π, i)))

If we are to expand the inner sum, we will see that all terms
except V̂(N̂ )−V̂(∅), will remain. Since V̂(∅) is zero, we get∑

i

ϕi(V̂) =
1

|ΠN |
∗

∑
π∈ΠN

N̂ = N̂

Hence proving the statement.


