

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARD UNDERSTANDING THE TRANSFERABILITY OF ADVERSARIAL SUFFIXES IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Discrete optimization-based jailbreaking attacks on large language models aim to generate short, nonsensical suffixes that, when appended onto input prompts, elicit disallowed content. Notably, these suffixes are often *transferable*—succeeding on prompts and models for which they were never optimized. And yet, despite the fact that transferability is surprising and empirically well-established, the field lacks a rigorous analysis of when and why transfer occurs. To fill this gap, we identify three statistical properties that strongly correlate with transfer success across numerous experimental settings: (1) how much a prompt without a suffix activates a model’s internal refusal direction, (2) how strongly a suffix induces a push away from this direction, and (3) how large these shifts are in directions orthogonal to refusal. On the other hand, we find that prompt semantic similarity only weakly correlates with transfer success. These findings lead to a more fine-grained understanding of transferability, which we use in interventional experiments to showcase how our statistical analysis can translate into practical improvements in attack success.

1 INTRODUCTION

Adversarial examples—carefully crafted input perturbations that can make models behave in undesirable ways—remain a fundamental obstacle to achieving robustness across deep learning tasks and data modalities (Goodfellow et al., 2015; Carlini and Wagner, 2017; Madry et al., 2017). A particularly puzzling property of these perturbations is their *transferability*—perturbations optimized for one input or model are often effective on others (Szegedy et al., 2014; Papernot et al., 2016).

Although initially discovered in the context of image classification (see, e.g., Salman et al. (2020); Tramèr et al. (2017)), transferability has resurfaced as a key aspect of *jailbreaking* large language models (LLMs) to elicit harmful responses (Wei et al., 2023). While jailbreaks are typically optimized for a particular model and input prompt, recent empirical findings conclusively show that jailbreaks often transfer between models, despite differing architectures and training data (Chao et al., 2023; Andriushchenko et al., 2024). Of particular note are discrete optimization-based jailbreaking algorithms that generate short, nonsensical suffixes that, when appended onto a prompt requesting harmful content, return a compliant response (Zou et al., 2023; Geisler et al., 2024; Wallace et al., 2021). And while the transferability of suffix-based attacks is empirically well-established, the field lacks a fine-grained understanding of when, why, and to what extent transfer occurs for these attacks.

In this paper, we identify features that are predictive of suffix-based transfer success by conducting a statistical and interventional study of the following questions: (1) Why are some prompts more susceptible to suffix-based attacks than others; (2) Which properties of a given suffix lead to successful transfer; and (3) What internal model mechanisms govern transfer success? Our study of these questions includes analysis of *intra-model transfer*—generalization across prompts within the same model—and *inter-model transfer*—generalization across models with the same prompt. Our main findings, which rely on notions related to *refusal directions* (Arditi et al., 2024), are as follows:

- **Prompt refusal connection:** Prompts corresponding to activations that are less aligned with a model’s refusal direction are easier to successfully jailbreak, leading to more transfer.
- **Suffix push and orthogonal shift:** Suffixes that successfully transfer tend to induce both antiparallel and orthogonal shifts away from a model’s refusal direction.

054 • **Prompt semantic similarity.** Prompt semantic similarity only weakly predicts transfer, which
 055 suggests that the geometry of suffix activation spaces is only loosely tied to linguistic form.
 056

057 Based on our large-scale statistical analysis, which involves the optimization of 10,000 adversarial
 058 suffixes per model, we find that three mechanistic factors contribute to transfer success: refusal
 059 connectivity (Def. 4), suffix push (Def. 5), and orthogonal shift (Def. 6). While variants of these
 060 quantities have appeared in prior work, our focus is to rigorously measure their effect on transferability
 061 through a statistical and interventional analysis. Moreover, we introduce algorithmic interventions
 062 that improve the success rates of existing attacks; we hope that this analysis informs the design of
 063 future attacks and defenses.

064 2 RELATED WORK

066 **Transferability of adversarial examples.** Over the past decade, the transferability of adversarial
 067 attacks has been observed across data modalities, architectures, and training schemes (Goodfellow
 068 et al., 2015; Neekhara et al., 2019; Carlini and Wagner, 2018; Taori et al., 2019; Ren et al., 2019). This
 069 finding has prompted various theories that seek to diagnose when and why transferability succeeds,
 070 particularly in the context of computer vision. While Tramèr et al. (2017) identify distributional
 071 conditions that lead to transfer in linear and quadratic models, Demontis et al. (2019) contend
 072 that other factors, including model complexity and gradient similarity, influence transferability.
 073 On the other hand, Ilyas et al. (2019) find that different models tend to learn similar non-robust
 074 features, making them susceptible to transfer attacks. In contrast to existing research, we provide a
 075 statistical and interventional study, which (a) concerns language, rather than images, and (b) identifies
 076 distinct features behind transferability based on a mechanistic interpretability analysis of activation
 077 spaces (Arditi et al., 2024).

078 **Transferability of jailbreaks.** The discovery that many distinct jailbreak strategies induce transfer
 079 across LLMs has renewed interest in model security (Jain et al., 2023; Robey et al., 2024; Zou et al.,
 080 2024). While these varied attack modalities have helped identify model blind spots, this diversity
 081 also complicates the task of identifying the principles underlying the success of transferability. To
 082 this end, we focus on *suffix-based* jailbreaks (Liu et al., 2023; Zhu et al., 2023; Jones et al., 2023),
 083 since they admit structure that facilitates decoupling the effect of the prompt and the suffix. Because
 084 attacks from this family are all structurally similar, in this paper, we focus on the most frequently
 085 used, well-studied variant: Greedy Coordinate Gradient (GCG) (Zou et al., 2023).

086 **Mechanistic analyses of model safety.** Our results focus on a mechanistic analysis of jailbreak
 087 transferability, building on previous works that give a mechanistic interpretation of model safety.
 088 Most relevant is the work of Ardit et al. (2024), who identify a “refusal vector”—a direction in
 089 activation space that, when subtracted, reduces refusal on harmful prompts and, when added, triggers
 090 refusal on harmless ones. Follow-up studies further demonstrate that different jailbreak strategies
 091 alter the model’s internal representation of harmfulness in distinct ways (Ball et al., 2024), often
 092 making harmful prompts appear more similar to benign prompts (Jain et al., 2024; Lin et al., 2024).
 093 By contrast, in this paper, we offer statistical and interventional analyses of the mechanisms behind
 094 transferability, which lead to a finer-grained understanding of when and why transfer succeeds.

095 3 SETTING THE STAGE: DEFINITIONS AND FEATURES

097 We next define preliminary quantities used throughout the paper, and formally define features of
 098 prompts and suffix that we analyze in this paper.

100 3.1 PRELIMINARIES

101 We consider two forms of transfer. *Intra-model transfer* measures whether an adversarial suffix s ,
 102 optimized for a particular prompt p , also succeeds when applied to different prompts p' on the same
 103 model. *Inter-model transfer* measures whether an adversarial suffix s , optimized for a particular
 104 prompt p and model m , also succeeds on a different model m' —either on the same prompt p or a
 105 new prompt p' . To measure these properties, we also define the following:

107 **Definition 1 (Attack success rate (ASR))** *Given a suffix s , let $n_{\text{jailbroken}}^s$ denote the number of
 108 prompts for which appending s results in a jailbroken response, and let n_{total}^s denote the total*

108 number of prompts tested with suffix s . We define the attack success rate (ASR) as: $ASR(s) := \frac{n_{\text{jailbroken}}^s}{n_{\text{total}}^s}$.
 109

110 **Definition 2 (Refusal direction (Arditi et al., 2024))** Given a set containing harmful and harmless
 111 prompts, let $\mathbf{a}_{\text{harm}}^{i,\ell}$ and $\mathbf{a}_{\text{harmless}}^{j,\ell}$ denote residual stream activation vectors for the final token at layer ℓ
 112 for the i -th harmful prompt and the j -th harmless prompt, respectively. The **refusal direction** $\mathbf{v}_{\text{refusal}}^l$
 113 at layer ℓ is defined as the difference between the average activations among the prompts, namely
 114

$$115 \quad \mathbf{v}_{\text{refusal}}^l = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{a}_{\text{harm}}^{i,\ell} \right) - \left(\frac{1}{m} \sum_{j=1}^m \mathbf{a}_{\text{harmless}}^{j,\ell} \right).$$

118 The refusal direction compares the activations of contrastive pairs of harmful and harmless prompts in
 119 order to extract a single vector in representation space that captures the model’s internal representation
 120 of harmfulness. Consistent with Ardit et al. (2024), we extract the refusal direction at the *optimal*
 121 layer (see Appendix A for details). Thus, for brevity, we often do not include the layer index.
 122

123 3.2 INTRODUCING THE FEATURES

124 Our aim is to study features of prompts and suffixes that correlate with successful transfer. Several
 125 of the features we consider are related to the geometry of LLM activation spaces via the so-called
 126 *refusal direction* (see Definition 2)—a direction in activation space that triggers refusal when added to
 127 harmless prompts and suppresses refusal when subtracted from harmful prompts (Arditi et al., 2024).
 128 Before formally defining each quantity in §3.3, we first informally define each quantity of interest.
 129

- 130 1. **Semantic similarity of prompts** (Definition 3). Does a suffix s optimized for a prompt p
 131 transfer more reliably to another prompt p' when their representations are similar?
- 132 2. **Refusal connectivity of the prompt** (Definition 4). Are some prompts more aligned with the
 133 refusal direction (e.g., prompts related to concepts emphasized in model alignment), and are
 134 prompts aligned with the refusal direction less susceptible to transfer?
- 135 3. **Suffix push** (Definition 5). Are suffixes that induce a larger shift in the opposite (antiparallel)
 136 direction from the model’s refusal direction more likely to transfer?
- 137 4. **Orthogonal shift of the suffix** (Definition 6). Are suffixes that induce a larger shift orthogonal
 138 to the model’s refusal direction more likely to transfer?

139 Following the large body of work evincing the existence of a refusal direction in various models, the
 140 latter three definitions correspond to the following intuitive hypotheses: (a) prompts aligned with the
 141 refusal direction are less likely to transfer, (b) suffixes that induce an antiparallel shift are more likely
 142 to transfer, and (c) prompts that induce an orthogonal shift are more likely to transfer. In §3.3, we
 143 formally define these quantities, which will serve as the central objects of study in §5.
 144

145 3.3 FORMAL DEFINITIONS

147 We next formalize the quantities informally introduced in §3.2. Note that all activations are extracted
 148 at the same layer as the refusal direction (see Appendix A for details).

149 **Definition 3 (Semantic similarity)** The semantic similarity $\text{sim}_{pp'}$ of two prompts p and p' is defined
 150 as the cosine similarity of some chosen embeddings $E(p)$ and $E(p')$, namely
 151

$$152 \quad \text{sim}_{pp'} := \frac{\langle E(p), E(p') \rangle}{\|E(p)\| \cdot \|E(p')\|}.$$

154 We calculate these embeddings in two different ways—with activations from the model itself and with
 155 embeddings extracted from the sentence embedding model “all-mpnet-base-v2” (UKPLab, 2025).
 156

157 **Definition 4 (Refusal connectivity)** Let $\mathbf{a}_i^{\text{base}}$ denote the residual stream activation vector at the
 158 end-of-instruction token for the i -th harmful prompt. Given a refusal direction $\mathbf{v}_{\text{refusal}}$ (as defined in
 159 Ardit et al. (2024)), the refusal connectivity is measured via the quantities

$$160 \quad s_i^{\text{base}} := \langle \mathbf{a}_i^{\text{base}}, \mathbf{v}_{\text{refusal}} \rangle \quad \text{and} \quad \cos(\mathbf{a}_i^{\text{base}}, \mathbf{v}_{\text{refusal}}) = \frac{\langle \mathbf{a}_i^{\text{base}}, \mathbf{v}_{\text{refusal}} \rangle}{\|\mathbf{a}_i^{\text{base}}\| \cdot \|\mathbf{v}_{\text{refusal}}\|}.$$

162 **Definition 5 (Suffix push)** Let a_{ij}^{suffix} denote the activations for the string $\langle p_i, s_j \rangle$, which represents
 163 the concatenation of prompt i with suffix j . For a prompt-suffix pair (i, j) , the suffix push quantifies
 164 the change in refusal connectivity when adding a suffix to the prompt, namely
 165

$$166 \Delta_{ij}^{push} := \langle \mathbf{a}_i^{base}, \mathbf{v}_{refusal} \rangle - \langle \mathbf{a}_{ij}^{suffix}, \mathbf{v}_{refusal} \rangle.$$

168 **Definition 6 (Orthogonal shift)** Let the projection of an activation vector \mathbf{a} onto the refusal direction
 169 $\mathbf{v}_{refusal}$ be defined as $\mathbf{p}(\mathbf{a}) := \frac{\langle \mathbf{a}, \mathbf{v}_{refusal} \rangle}{\|\mathbf{v}_{refusal}\|^2} \cdot \mathbf{v}_{refusal}$. The orthogonal shift for a prompt-suffix pair
 170 (i, j) measures the change in activations perpendicular to the refusal direction, namely
 171

$$173 \delta_{ij}^{\perp} := \left\| \left(\mathbf{a}_{ij}^{suffix} - \mathbf{p}(\mathbf{a}_{ij}^{suffix}) \right) - \left(\mathbf{a}_i^{base} - \mathbf{p}(\mathbf{a}_i^{base}) \right) \right\|_2.$$

175 4 EXPERIMENTAL SETUP

178 This section details the selection of models, the dataset of harmful prompts, the procedure for
 179 generating adversarial suffixes, and the approach for evaluating their jailbreaking success.

180 **Models.** We use Qwen-2.5-3B-Instruct (Qwen et al., 2025), Llama-3.2-1B-Instruct (Meta AI, 2024),
 181 Vicuna-13B-v1.5 (Chiang et al., 2023), and Llama-2-7B-Chat (Touvron et al., 2023). While these
 182 models are all safety-trained, this list includes models considered easy to jailbreak (e.g., Vicuna)
 183 and harder to jailbreak (e.g., Llama-2). This diversity is crucial for assessing the generalizability of
 184 our findings across models with different architectures and safety alignment characteristics. A table
 185 highlighting relevant aspects of these models is included in Appendix B.

186 **Data.** We use the JailbreakBench dataset (Chao et al., 2024), which contains 100 harmful questions
 187 and answer targets on topics spanning various risk categories as defined by OpenAI’s usage policies.

188 **Generation of adversarial suffixes.** We generate suffixes for each JailbreakBench prompt (Chao
 189 et al., 2024) using the GCG algorithm (Zou et al., 2023). For smaller models (Qwen2.5 and Llama
 190 3.2), to obtain stable measurements of the statistical quantities outlined above, we generate 100
 191 distinct suffixes per prompt (i.e., 10,000 suffixes per model) by varying GCG’s random seed. Due to
 192 computational constraints, for larger models (Vicuna and Llama 2), we use a single suffix per prompt,
 193 sourced from the JailbreakBench prompt archive (Chao et al., 2023).

194 **Evaluating jailbreak success.** To evaluate whether jailbreaks succeed, we use a Llama-3-Instruct-
 195 70B judge with the system prompt from JailbreakBench following the recommendation of (Chao
 196 et al., 2024, Table 1), who evaluated the effectiveness of six commonly used jailbreaking judges.

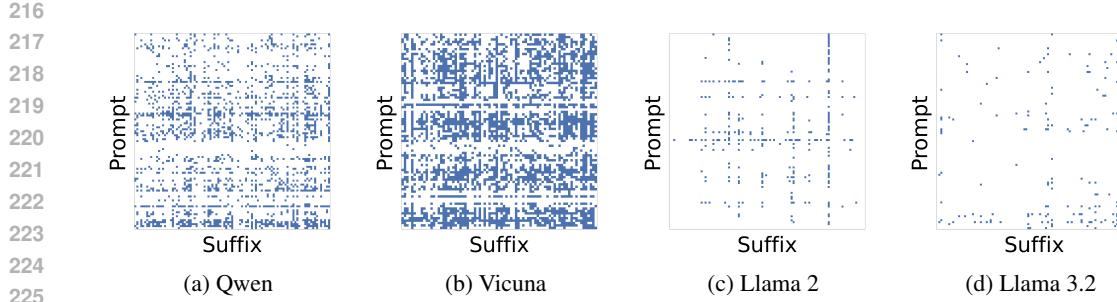
198 5 ANALYSIS OF THE FACTORS CORRELATED WITH TRANSFER

200 Toward understanding the effect of each quantity introduced in §3.2, we first record basic transfer
 201 statistics (§5.1). We next qualitatively and quantitatively analyze each quantity (§5.2, §5.3, and §5.4).
 202 We then provide a joint statistical analysis to estimate the *predictive strength* of the factors (§5.5). We
 203 conclude with an exploration of how these insights can be used to produce more transferable suffixes.

205 5.1 QUALITATIVE ANALYSIS OF TRANSFER STATISTICS

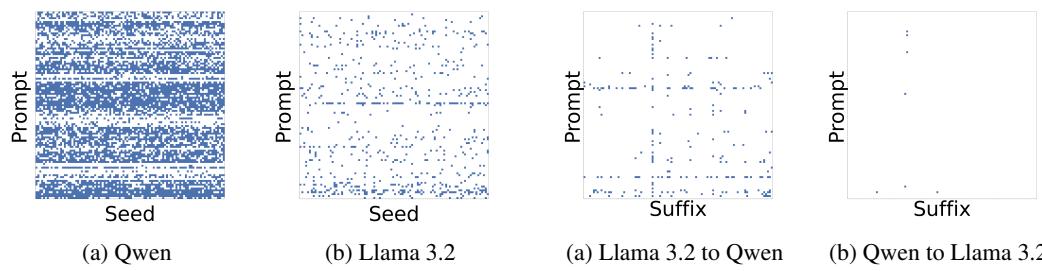
207 As a preliminary step, we highlight some illustrative properties of transfer that can be gleaned from
 208 the raw statistics of suffix-based transfer. We consider three scenarios: intra-model transfer (Figure 1),
 209 inter-model transfer (Figure 3), and the impact of multiple random initializations (seeds) on suffix
 210 generation and jailbreak success (Figure 2).

211 **Model susceptibility to jailbreaking.** Figure 1 reveals that models exhibit different susceptibilities
 212 to adversarial suffixes. Specifically, Vicuna and Qwen show substantially higher success rates for
 213 intra-model suffix transfer compared to the Llama models—suggesting varying levels of inherent
 214 vulnerability among these models. The use of multiple seeds for suffix generation (Figure 2) offers
 215 a more robust assessment of model jailbreakability. By generating 100 suffixes per prompt using
 different random initializations, we observe that Qwen consistently shows a higher density of



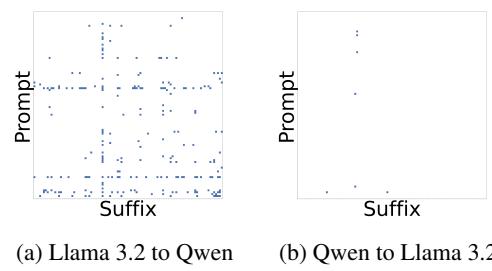
226
227
228
229
230
231
232
233
234
235
236
237
238

Figure 1: Intra-model transfer with one suffix per prompt for different models. Cells are colored when a suffix successfully jailbreaks a prompt.



239
240
241
242
243
244
245

Figure 2: Intra-model transfer with multiple suffixes per prompt. Cells are colored when the corresponding suffix of the seed jailbreaks a prompt.



246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 3: Inter-model transfer between Llama 3.2 and Qwen. Cells are colored when a suffix successfully jailbreaks a prompt.

successful jailbreaks compared to Llama 3.2. This approach mitigates the effect of single, potentially unrepresentative suffix generations and provides a more stable comparison of model vulnerability.

Intra-model transferability. Within individual models, the success of adversarial suffixes is not uniform. Both Figure 1 and Figure 2 highlight that certain prompts are consistently more vulnerable; these appear as horizontal bands with a higher density of successful jailbreaks in the figures. Conversely, some adversarial suffixes exhibit greater potency, successfully compromising a larger set of prompts within the same model. These are identifiable as denser vertical bands in Figure 1. A noteworthy phenomenon is the off-target efficacy of some suffixes: a suffix optimized for a specific prompt (i.e. its corresponding diagonal entry in Figure 1) may fail to jailbreak its prompt but successfully jailbreak other prompts (off-diagonal) within the same model.

Inter-model transferability. Suffixes also transfer across models (Figure 3). Using suffixes sampled from the multi-seed pool (Figure 2), we observe an asymmetry: suffixes optimized on a more aligned model (Llama 3.2) transfer better to a less aligned one (Qwen) than vice versa.

Takeaways. In sum, transfer occurs within and across models, but success depends on the model, the prompt’s vulnerability, and the potency of the suffix. The next sections analyze these factors.

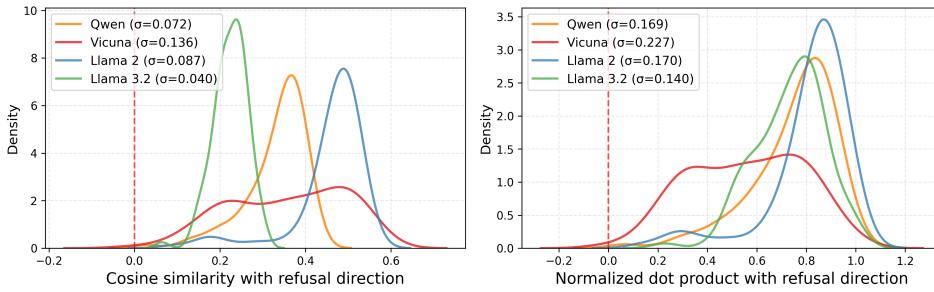
5.2 SEMANTIC SIMILARITY

As outlined in §3.2, we aim to determine whether the semantic similarity between the embeddings of two prompts p and p' is predictive of the transferability of a suffix originally optimized for p .

Statistical analysis setup. We set up a quantitative framework for estimating the effect of semantic similarity ($\text{sim}_{pp'}$, Definition 3) on transferability. For models with multiple suffixes per prompt (Qwen, Llama 3.2), we fit a linear regression model, which predicts the fraction of the average transfer success of a prompt pair (p, p') . Hence, we predict $y_{pp'} \in [0, 1]$ from the feature vector $\mathbf{x}_{pp'} := [1, \cos(E(p), E(p'))]$, where $y_{pp'} = 1$ if all suffixes optimized for p jailbreak p' and vice versa. The features are standardized to have mean 0 and variance 1. For models for which we have a single suffix per prompt (Vicuna, Llama 2), we fit an ordinal logistic regression model on the same

270
271 Table 1: Regression coefficients (standardized) predicting transfer success based on semantic similar-
ity of prompt embeddings.
272

273	Model	Embedding	N_{suffix} per prompt	Std. Coef (Odds Ratio)	N	Statistical model
275	Qwen	Model	100	0.10***	1.000.000	linear reg.
		Indep.	100	0.25***	1.000.000	linear reg.
277	Llama 3.2	Model	100	0.23***	1.000.000	linear reg.
		Indep.	100	0.09***	1.000.000	linear reg.
279	Vicuna	Model	1	0.34*** (1.41)	100.000	ordinal log. reg.
		Indep.	1	0.42*** (1.53)	100.000	ordinal log. reg.
281	Llama 2	Model	1	-0.15*** (0.86)	100.000	ordinal log. reg.
		Indep.	1	0.18*** (1.2)	100.000	ordinal log. reg.

284
285 *Note:* Coefficients are standardized; OR = Odds Ratio; Stars denote statistical significance levels. * $p < 0.05$,
** $p < 0.01$, *** $p < 0.001$.296 Figure 4: Distribution spread comparison of cosine similarity and (normalized) dot product activations
297 with refusal direction across models.
298300 feature vector but on $y_{pp'} \in \{0, 0.5, 1\}$ —0 if neither of the suffixes transfers, 0.5 if only one does,
301 and 1 if both do. Table 1 shows the resulting regression coefficients; following the standard statistical
302 rules-of-thumb (Cohen, 2013; Chen et al., 2010), we conclude that the effect sizes are small.304 5.3 QUALITATIVE ANALYSIS OF INDIVIDUAL FEATURE EFFECTS
305306 We next *qualitatively* identify key geometric features that are correlated with jailbreak success,
307 deferring a *quantitative* statistical analysis of these features until §5.4.308 **Refusal connectivity.** In Figure 4, we plot the density of the cosine similarities and (normalized)
309 dot products over the prompts with the refusal direction for the models we are considering. Vicuna,
310 the most jailbreakable model, has the largest spread, which could explain why the model is not
311 capable of refusing some of the harmful questions without appending a suffix. The distributions
312 are more concentrated for the other models, but there is still a reasonable spread in terms of the
313 component along the refusal direction. In the statistical analysis, we will see how this variance in
314 refusal connectivity is related to whether a suffix jailbreaks a prompt or not.315 **Suffix push.** In Figure 5, we plot the distribution spread of semantic similarity and refusal direction
316 alignment for each model. This reveals several clear patterns. First, the average harmful prompt
317 activation has the highest cosine similarity with the refusal direction (blue line). Furthermore, adding
318 the three *least* successful suffixes (orange lines) only marginally reduces this cosine similarity, while
319 adding the three *most* successful suffixes (green lines) significantly suppresses similarity with refusal.320 **Orthogonal shift.** Figure 6 shows a positive relationship between suffix transferability (measured as
321 the ASR over all tested prompts per suffix, see Definition 1) and both the orthogonal shift (Definition 6)
322 and the suffix push (Definition 5). This indicates that the likelihood of a successful transfer increases
323 the more a suffix pushes away from refusal and also if it changes activations orthogonal to refusal.
Similar patterns can be observed for the other models in Appendix C.

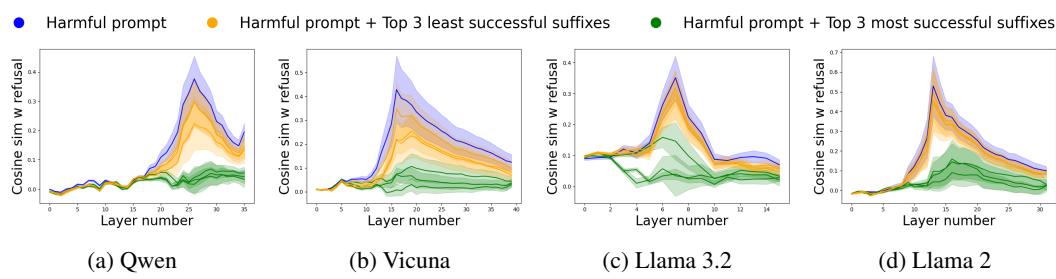


Figure 5: Cross-layer suppression of refusal direction by most and least powerful suffixes for different models, figure based on [Arditi et al. \(2024\)](#). Activations are taken at the end-of-instruction token.

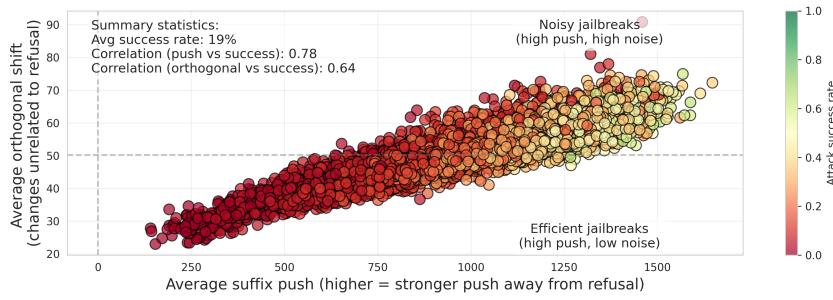


Figure 6: Qwen: Suffix effects on model representations (averaged across prompts for each suffix).

Table 2: Logistic regression coefficients (standardized) predicting transfer success.

Variable	Qwen	Vicuna	Llama 2	Llama 3.2
Refusal connec.	-0.12***	-0.28***	0.21**	-0.06***
Suffix push	1.21***	-0.05*	1.53***	0.93***
Orthogonal shift	0.97***	0.29***	2.00***	0.82***
<i>N</i>	800,000	8,000	8,000	800,000

Note: Stars denote statistical significance levels. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

5.4 QUANTITATIVE ANALYSIS OF FEATURE EFFECTS

To quantitatively assess the impact of specific geometric features (defined in §3.2) on transfer, we formulate a logistic regression problem where, for each prompt-suffix pair (i, j) , we predict whether the suffix jailbreaks the prompt *solely* from the features of interest. This differs from the semantic similarity setup in §5.2, in that the covariates are prompt-suffix pairs, not prompt-prompt pairs.

Statistical analysis setup. For each prompt-suffix pair (i, j) , we define a binary target variable $y_{ij} \in \{0, 1\}$, where $y_{ij} = 1$ if suffix j jailbreaks prompt i , and $y_{ij} = 0$ otherwise. We consider a logistic regression problem where the covariates are of the form $\mathbf{x}_{ij} := [1, v]$, where $v \in \{s_i^{\text{base}}, \Delta_{ij}^{\text{push}}, \delta_{ij}^{\perp}\}$. Here s_i^{base} is the refusal connectivity (Def. 4), $\Delta_{ij}^{\text{push}}$ is the suffix push (Def. 5), and δ_{ij}^{\perp} is the orthogonal shift (Def. 6). The features are standardized to have mean 0 and variance 1. The resulting coefficients indicate the direction of the individual effects on transfer success.

Results. The results of the statistical analysis are presented in Table 2. Refusal connectivity has a negative and highly significant effect across all models except Llama 2 (where there is a less statistically-significant positive effect). Hence, refusal connectivity tends to dampen the likelihood of a successful suffix transfer to the prompt. Greater suffix push is associated with higher probability of transfer success for all models but Vicuna (low statistical significance). Lastly, greater orthogonal shift is associated with higher probability of transfer success for all models.

378
379
380
381 Table 3: Logistic regression coefficients (standardized) predicting transfer success. Darker cell colors
382 indicate larger effect sizes.
383
384
385

Variable	Qwen	Vicuna	Llama 2	Llama 3.2	Llama 3.2 → Qwen	Qwen → Llama 3.2
Refusal connec.	-1.43***	-1.37***	-0.22	-0.30***	-1.43***	-0.12
Suffix push	2.46***	1.12***	1.34***	0.88***	1.12***	-0.12
Orthogonal shift	0.17***	0.27***	1.20***	0.46***	0.93***	0.63
Interaction effects	✓					
Constant	✓					
<i>N</i>	800,000	8,000	8,000	800,000	8,000	8,000
Pseudo <i>R</i> ²	0.28	0.069	0.21	0.13	0.27	0.16

386
387
388
389
390
391 *Note:* Stars denote statistical significance levels. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Interaction
392 effects include all pairwise interactions between main effects.
393
394

5.5 ANALYSIS OF JOINT EFFECTS FOR EXPLAINING ADVERSARIAL TRANSFER SUCCESS

395 In the previous section, we studied the effects of the individual factors of interest correlate with
396 transfer. In this section, we combine them all in a *joint* statistical analysis aimed at determining
397 how different features of the prompt and the suffix affect the likelihood that the suffix successfully
398 jailbreaks the prompt. The joint analysis will allow us to probe the explanatory power of *all* features
399 jointly, their relative effect magnitudes as well as the interdependencies between the features. The
400 analyses focus on all features except semantic similarity given its different covariate setup. However
401 a repetition of the analyses including a related similarity-based feature is in Appendix C.
402

403 **Statistical analysis setup.** For each prompt-suffix pair (i, j) , we define a binary outcome variable
404 $y_{ij} \in \{0, 1\}$, where $y_{ij} = 1$ if suffix j successfully jailbreaks prompt i , and $y_{ij} = 0$ otherwise. To
405 explain y_{ij} , we construct a feature vector \mathbf{x}_{ij} capturing the properties of the prompt and the suffix we
406 are interested in (defined in §3.3). Specifically, the feature vector \mathbf{x}_{ij} is given by
407

$$\mathbf{x}_{ij} := [1, s_i^{\text{base}}, \Delta_{ij}^{\text{push}}, \delta_{ij}^{\perp}, s_i^{\text{base}} \cdot \Delta_{ij}^{\text{push}}, s_i^{\text{base}} \cdot \delta_{ij}^{\perp}, \Delta_{ij}^{\text{push}} \cdot \delta_{ij}^{\perp}]^{\top},$$

408 where $s_i^{\text{base}} \in \mathbb{R}$ is the refusal connectivity of the prompt (Definition 4), $\Delta_{ij}^{\text{push}} \in \mathbb{R}$ is the suffix push
409 away from refusal (Definition 5), and $\delta_{ij}^{\perp} \in \mathbb{R}$ is the shift orthogonal to refusal (Definition 6). We
410 standardize the coordinates of the feature vector so that they have mean 0 and variance 1. Note that
411 the feature vector includes the individual factors as well as the pairwise products of these terms—this
412 is because we will track the *main effects* due to these factors (i.e. the strength of the dependence of
413 the $\{y_{ij}\}$ on these factors), as well as the *interaction effects* due to pairwise interactions between
414 these factors (i.e. the strength of the pairwise dependence between these factors). This follows
415 classical methodology in statistics (Hastie et al., 2009; Stock and Watson, 2015), according to which
416 the coefficients we fit corresponding to the pairwise interaction effects capture how the influence
417 of one variable changes depending on the value of another variable. This approach hence accounts
418 for non-linear interactions between the main effects. We fit a parameter vector $\beta \in \mathbb{R}^6$ via logistic
419 regression for this setup (i.e. we maximize the likelihood of the labels $\{y_{ij}\}$, such that for a choice of
420 parameters β , $\mathbb{P}(Y_{ij} = 1)$ is parametrized as $\exp(\beta^T \mathbf{x}_{ij}) / [1 + \exp(\beta^T \mathbf{x}_{ij})]$).
421

422 **Intra-model transfer results.** The main effects are in line with the single-factor results in §5.3 and
423 §5.4. Higher refusal connectivity is associated with a decreased probability of transfer success; the
424 effect is statistically significant for Qwen, Vicuna and Llama 3.2. Greater suffix push and orthogonal
425 shift are associated with higher probability of transfer success; the effect is statistically significant for
426 all models. Suffix push exhibits the largest effect, followed by refusal connectivity for Qwen and
427 Vicuna, while for the Llama models, refusal connectivity plays a less important role compared to the
428 orthogonal shift. Note that all models include all pairwise interaction effects and a constant. Given
429 that all interaction effects are relatively small compared to the main effects (all below 0.6), we focus
430 on interpreting the main effects. Detailed results are shown in Appendix C.
431

432 **Inter-model transfer results.** The logistic regression for inter-model transfer (last two columns in
433 Table 3) shows for Llama 3.2 to Qwen, that the main effects largely mirror the patterns observed in
434 Qwen’s intra-model analysis. For Qwen to Llama 3.2 no statistically significant effects were found.
435

432 This is likely attributable to the overall very low success rate of transfers in this direction (as seen in
 433 Figure 3b), providing insufficient variance for the model to capture significant relationships.
 434

435 **Takeaways.** In sum, these regression results point to broadly shared mechanisms influencing transfer
 436 success, with the suffix push being the most influential factor relative to other predictors (Table 3).
 437

438 5.6 INTERVENTIONAL ANALYSIS

439 This section shows how our statistical insights can be used as interventions to improve attack success.
 440

441 **Prompt rephrasing.** Our statistical analysis indicates that prompts more aligned with the refusal
 442 direction are harder to jailbreak, reducing suffix transfer. This suggests the following *interventional*
 443 experiment: testing whether rephrasing a prompt to be more or less aligned with refusal affects
 444 transfer. Using Vicuna, we generate 10 rephrases per prompt, compute their dot product with the
 445 refusal direction, and measure how dot product changes relate to ASR changes (see Appendix C for
 446 details). We expect a negative relationship as higher dot products should make it harder to transfer,
 447 lowering the ASR. Experiments with Qwen and Llama 3.2 confirm this for Qwen (correlation
 448 coefficient: -0.08, $p < 0.05$), but not for Llama 3.2 (correlation coefficient: 0.04, $p > 0.05$) due to
 449 low statistical significance.

450 The significant relationship for Qwen suggests that our
 451 statistical insights can successfully guide intervention
 452 design. For Llama 3.2, while the results were not sta-
 453 tistically significant, we note that our rephrasing pro-
 454 cedure produced only modest changes in dot products with
 455 the refusal direction. We believe more targeted prompt
 456 engineering—designed to optimize changes in refusal
 457 connectivity—could yield significant results across mod-
 458 els, representing a promising direction for future work.

459 **Altered GCG Loss.** Our statistical analysis indicates that
 460 suffixes inducing a larger *suffix push* or *orthogonal shift*
 461 are more likely to transfer. This suggests the following
 462 *interventional* experiment: modifying the GCG loss to in-
 463 clude regularizers favoring suffixes pushing away from or
 464 orthogonal to refusal. For these two settings, we evaluate
 465 Llama 3.2 with six non-zero regularization coefficients.
 466 We use 20 prompts—2 randomly taken from each of the
 467 10 JailbreakBench categories—none of which jailbreak
 468 the model without a suffix. For the suffix push regular-
 469 ization term, we generate 100 suffixes for each of the 20
 470 prompts, leading to 40,000 prompt/suffix pairs per coeffi-
 471 cient. For the orthogonal shift regularization term, due
 472 to computational constraints, we generate 5 suffixes per
 473 prompt, leading to 2,000 prompt/suffix pairs per coeffi-
 474 cient. We evaluate the ASR of the altered GCG algorithm
 475 using our jailbreak judge. We find that for both the suffix
 476 push and orthogonal shift regularization terms, the best coefficient is non-zero, corroborating our
 477 statistical analyses. Results are presented in Tables 4 and 5.
 478

479 6 CONCLUSION

480 Our work identifies prompt- and suffix-specific factors that correlate strongly with successful suffix-
 481 based transfer. Through fine-grained statistical analysis, we characterize both the direction and
 482 strength of these effects, as well as their interplay. Among suffix-centric factors, the suffix push—the
 483 amount of shift away from the refusal direction—plays the strongest role across models. Among
 484 prompt-centric factors, the refusal connection—the alignment of a prompt embedding with the refusal
 485 direction—plays a strong role for certain models. Together, these factors contribute to a broader
 486 conceptual picture linking activations to the mechanisms underlying suffix-based transfer. Finally,
 487 through interventional experiments, we also demonstrate that these insights can be used to design
 488 stronger attacks and hope they can be used for developing stronger defenses.

Table 4: Results for altered GCG loss
 (Llama 3.2 model): Suffix Push.

Coefficient	ASR	# jailbroken
0	0.0138	552
0.00001	0.0177	709
0.0001	0.0189	757
0.001	0.0214	855
0.01	0.0176	706
0.1	0.0093	373
0.5	0.0101	406

Table 5: Results for altered GCG loss
 (Llama 3.2 model): Orthogonal Shift.

Coefficient	ASR	# jailbroken
0	0.0145	29
0.00001	0.0265	53
0.0001	0.0195	39
0.001	0.0175	35
0.01	0.0115	23
0.1	0.0020	4
0.5	0.0010	2

486 ETHICS STATEMENT
487488 Our work contributes to a fundamental understanding of the vulnerabilites of LLM. While we also
489 show ways of making attacks more successful, we are convinced that our work will contribute to
490 developing technology that is safer to deploy and more aligned with societal benefits.
491492 REPRODUCIBILITY STATEMENT
493494 We provide extensive implementation details for all experiments—including which models, judges,
495 and datasets we use. We additionally provide the codebase in the supplementary materials file of this
496 submission.
497498 LLM USAGE STATEMENT
499500 We used Claude Sonnet 4 ([Anthropic, 2025](#)) and GPT 4 ([OpenAI, 2024](#)) for editing the text and
501 coding assistance.
502503 REFERENCES
504506 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
507 examples, 2015. URL <https://arxiv.org/abs/1412.6572>.508 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks, 2017.
509 URL <https://arxiv.org/abs/1608.04644>.
510511 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
512 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
513 2017.514 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
515 and Rob Fergus. Intriguing properties of neural networks, 2014. URL <https://arxiv.org/abs/1312.6199>.
516517 Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
518 phenomena to black-box attacks using adversarial samples, 2016. URL <https://arxiv.org/abs/1605.07277>.
519521 Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversari-
522 ally robust imagenet models transfer better? *Advances in Neural Information Processing Systems*,
523 33:3533–3545, 2020.524 Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The space of
525 transferable adversarial examples. *arXiv preprint arXiv:1704.03453*, 2017.526 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
527 *Advances in Neural Information Processing Systems*, 36:80079–80110, 2023.
528529 Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
530 Jailbreaking black box large language models in twenty queries. *arXiv preprint arXiv:2310.08419*,
531 2023.532 Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-
533 aligned llms with simple adaptive attacks. *arXiv preprint arXiv:2404.02151*, 2024.535 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
536 and transferable adversarial attacks on aligned language models. *ArXiv Preprint*, 2023. URL
537 <https://arxiv.org/abs/2307.15043>.538 Simon Geisler, Tom Wollschläger, MHI Abdalla, Johannes Gasteiger, and Stephan Günemann.
539 Attacking large language models with projected gradient descent. *arXiv preprint arXiv:2402.09154*,
2024.

540 Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
 541 triggers for attacking and analyzing nlp, 2021. URL <https://arxiv.org/abs/1908.07125>.

543 Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and
 544 Neel Nanda. Refusal in language models is mediated by a single direction. *arXiv preprint*
 545 *arXiv:2406.11717*, 2024.

547 Paarth Neekhara, Shehzeen Hussain, Prakhar Pandey, Shlomo Dubnov, Julian McAuley, and Farinaz
 548 Koushanfar. Universal adversarial perturbations for speech recognition systems, 2019. URL
 549 <https://arxiv.org/abs/1905.03828>.

550 Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on speech-to-text.
 551 In *2018 IEEE security and privacy workshops (SPW)*, pages 1–7. IEEE, 2018.

553 Rohan Taori, Amog Kamsetty, Brenton Chu, and Nikita Vemuri. Targeted adversarial examples for
 554 black box audio systems. In *2019 IEEE security and privacy workshops (SPW)*, pages 15–20.
 555 IEEE, 2019.

556 Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural language adversarial
 557 examples through probability weighted word saliency. In *Proceedings of the 57th annual meeting*
 558 *of the association for computational linguistics*, pages 1085–1097, 2019.

560 Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea,
 561 Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer? explaining transferability
 562 of evasion and poisoning attacks. *ArXiv Preprint*, 2019. URL <https://arxiv.org/abs/1809.02861>.

564 Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
 565 Madry. Adversarial examples are not bugs, they are features, 2019. URL <https://arxiv.org/abs/1905.02175>.

567 Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh
 568 Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
 569 for adversarial attacks against aligned language models. *arXiv preprint arXiv:2309.00614*, 2023.

571 Alexander Robey, Eric Wong, Hamed Hassani, and George J. Pappas. SmoothLLM: Defending large
 572 language models against jailbreaking attacks. *ArXiv Preprint*, 2024. URL <https://arxiv.org/abs/2310.03684>.

574 Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, J Zico
 575 Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with circuit
 576 breakers. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 577 2024.

579 Xiaogeng Liu, Nan Xu, Muhaoo Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
 580 prompts on aligned large language models. *arXiv preprint arXiv:2310.04451*, 2023.

581 Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani
 582 Nenkova, and Tong Sun. Autodan: interpretable gradient-based adversarial attacks on large
 583 language models. *arXiv preprint arXiv:2310.15140*, 2023.

585 Erik Jones, Anca Dragan, Aditi Raghunathan, and Jacob Steinhardt. Automatically auditing large
 586 language models via discrete optimization. In *International Conference on Machine Learning*,
 587 pages 15307–15329. PMLR, 2023.

588 Sarah Ball, Frauke Kreuter, and Nina Panickssery. Understanding jailbreak success: A study of latent
 589 space dynamics in large language models. *ArXiv Preprint*, 2024. URL <https://arxiv.org/abs/2406.09289>.

591 Samyak Jain, Ekdeep S Lubana, Kemal Oksuz, Tom Joy, Philip Torr, Amartya Sanyal, and Puneet
 592 Dokania. What makes and breaks safety fine-tuning? a mechanistic study. *Advances in Neural*
 593 *Information Processing Systems*, 37:93406–93478, 2024.

594 Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto Yamada, Hui Liu, and Jiliang Tang. To
 595 wards understanding jailbreak attacks in llms: A representation space analysis. *arXiv preprint*
 596 *arXiv:2406.10794*, 2024.

597

598 UKPLab. Pretrained models — sentence transformers documentation. https://www.sbert.net/docs/sentence_transformer/pretrained_models.html, 2025. Accessed:
 599 2025-05-14.

600

601 Qwen, ;, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 602 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 603 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 604 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 605 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 606 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 607 <https://arxiv.org/abs/2412.15115>.

608

609 Meta AI. Llama 3.2: Revolutionizing Edge AI and Vision with Open, Customizable Mod-
 610 els. Technical report, Meta AI, September 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>. Online; accessed 12
 611 May 2025.

612

613 Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 614 Siyuan Zhuang, Yonghao Zhuang, JosephE. Gonzalez, Ion Stoica, and EricP. Xing. Vicuna:
 615 An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. Technical report,
 616 LMSYSOrg, March 2023. URL <https://lmsys.org/blog/2023-03-30-vicuna/>.
 617 Online; accessed 12May2025.

618

619 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 620 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 621 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 622 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 623 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 624 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 625 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 626 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 627 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 628 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 629 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 630 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 631 2023. URL <https://arxiv.org/abs/2307.09288>.

632

633 Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
 634 Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J. Pappas, Florian Tramèr, Hamed
 635 Hassani, and Eric Wong. Jailbreakbench: An open robustness benchmark for jailbreaking large
 636 language models, 2024.

637

638 Jacob Cohen. *Statistical power analysis for the behavioral sciences*. routledge, 2013.

639

640 Henian Chen, Patricia Cohen, and Sophie Chen. How big is a big odds ratio? interpreting the
 641 magnitudes of odds ratios in epidemiological studies. *Communications in Statistics—simulation
 642 and Computation®*, 39(4):860–864, 2010.

643

644 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning: Data
 645 Mining, Inference, and Prediction*. Springer Series in Statistics. Springer, 2 edition, 2009. ISBN
 978-0-387-84857-0.

646

647 James H. Stock and Mark W. Watson. *Introduction to Econometrics*. Pearson, 3 edition, 2015.

648

649 Anthropic. Claude 4, 2025. URL <https://www.anthropic.com/news/clause-4>. Large
 650 language model.

651

652 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2024. URL <https://arxiv.org/abs/2303.08774>.

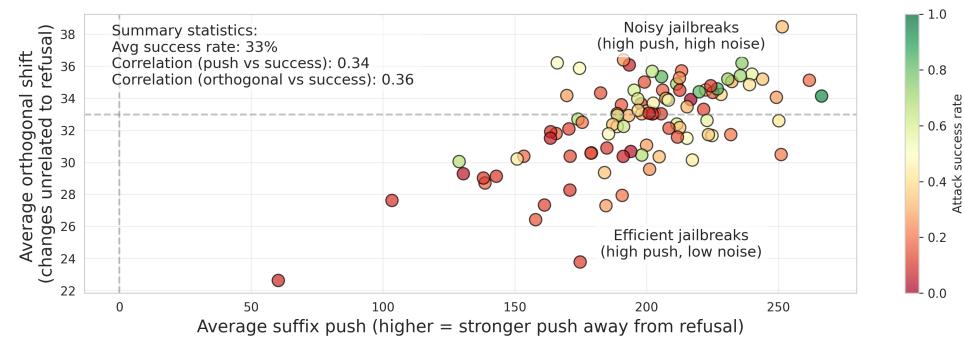
648 A RELEGATED DEFINITIONS FROM SECTION 3.3
649650 **Definition 7 (Optimal layer selection)** Let $l^* \in \{1, 2, \dots, L\}$ denote the optimal layer for extract-
651 ing the refusal direction, where L is the total number of layers in the model. The optimal layer l^* is
652 selected as:
653

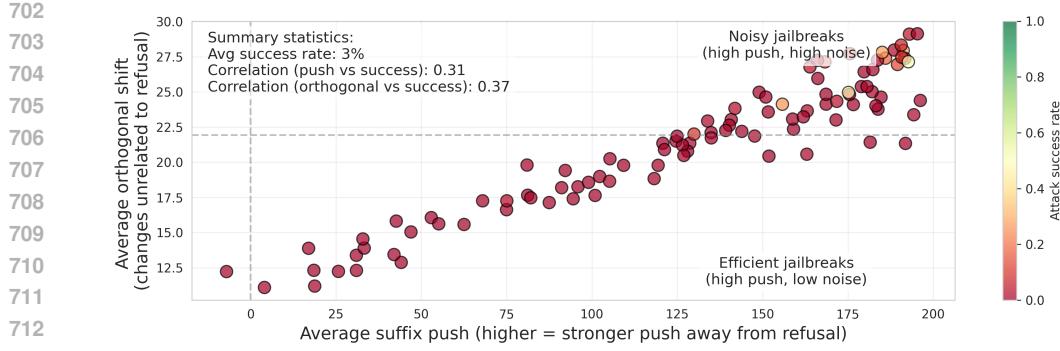
654
$$l^* = \arg \max_{l \in \{1, 2, \dots, L\}} \text{Effectiveness}(\mathbf{v}_{\text{refusal}}^l) \quad (1)$$

655

656 where $\text{Effectiveness}(\mathbf{v}_{\text{refusal}}^l)$ measures the success of the refusal direction at layer l in changing
657 model behavior, following Ardit et al. (2024).
658659 For brevity, in the paper we drop the layer superscript l^* when clear from context. All activations
660 and refusal directions $\mathbf{v}_{\text{refusal}}$, $\mathbf{a}_i^{\text{base}}$, and $\mathbf{a}_{ij}^{\text{suffix}}$ are computed at the optimal layer l^* unless explicitly
661 stated otherwise.
662663 B RELEGATED DETAILS FOR MODELS IN PAPER FROM SECTION 4
664665 Table 6: Comparison of model selection
666667

Attribute	Qwen 2.5	Llama 3.2	Vicuna 1.5	Llama 2 Chat
Alignment training	SFT, DPO, GRPO	SFT, DPO, RLHF	SFT	SFT, RLHF
Model size	3B	1B	14B	7B
# of generated suffixes	10.000	10.000	100	100

672 C ADDITIONAL QUALITATIVE AND QUANTITATIVE RESULTS RELEGATED
673 FROM SECTION 5
674675 **Additional qualitative results for orthogonal shift** The following figures show the positive
676 relationship between suffix transferability and both the orthogonal shift and suffix push features for
677 Vicuna (Figure 7), Llama 2 (Figure 8), and Llama 3.2 (Figure 9). The main text includes a similar
678 figure for Qwen (see Figure 6). For all models we observe a similar trend of higher suffix push and
679 higher orthogonal shift being correlated with suffix transferability, albeit with less strong signal for
680 the Llama models. This is because there are less examples of successful transfers in general. The
681 figures for Vicuna and Llama 2 are less dense, given that there is only one suffix per prompt.
682695 Figure 7: Suffix orthogonal shift and push effects on model representations (averaged across harmful
696 prompts for each suffix ID) for Vicuna.
697698
699
700
701



716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figure 8: Suffix orthogonal shift and push effects on model representations (averaged across harmful prompts for each suffix ID) for Llama 2.

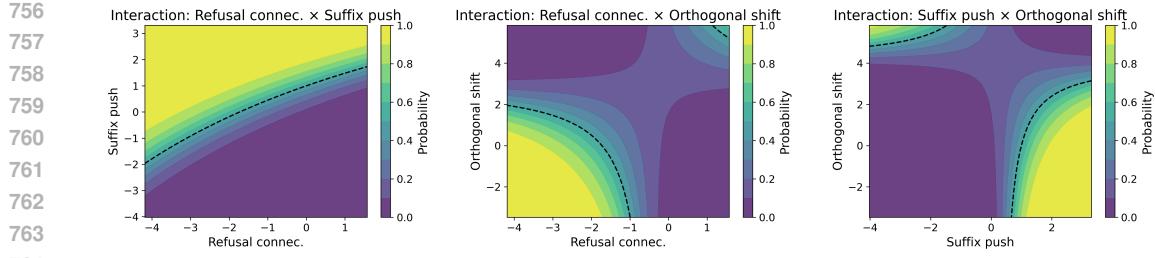
Additional results for the analysis of joint effects in Section 5.5 In Section 5.5, we calculate the joint effect of our features of interest in a logistic regression analysis. While Table 3 in the main text focuses on the main effects, Table 7 details the regression coefficients for all interaction effects and the constant.

Table 7: Detailed (standardized) logistic regression coefficients with interaction effects predicting transfer success.

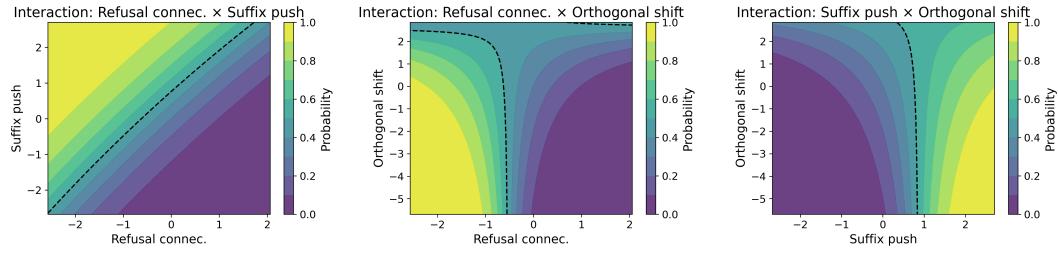
Variable	Qwen	Vicuna	Llama 2	Llama 3.2	Llama 3.2 → Qwen	Qwen → Llama 3.2
Refusal connec.	-1.43***	-1.37***	-0.22	-0.30***	-1.43***	-0.12
Suffix push	2.46***	1.12***	1.34***	0.88***	1.12***	-0.12
Orthogonal shift	0.17***	0.27***	1.20***	0.46***	0.93***	0.63
Refusal connec. × Suffix push	0.16***	0.04	-0.46***	-0.30***	0.06	-0.59
Refusal connec. × Orthogonal shift	0.47***	0.53***	-0.59*	0.17***	0.35***	0.28
Suffix Push × Orthogonal shift	-0.60***	-0.31***	0.41	-0.06***	-0.18*	0.34
Constant	-2.46***	-0.86***	-5.20***	-4.53***	-5.26***	-7.89***
<i>N</i>	800,000	8,000	8,000	800,000	8,000	8,000
Pseudo <i>R</i> ²	0.28	0.069	0.21	0.13	0.27	0.16

Note: Stars denote statistical significance levels. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Recall that smaller p values reflects stronger evidence for the hypothesis in question.

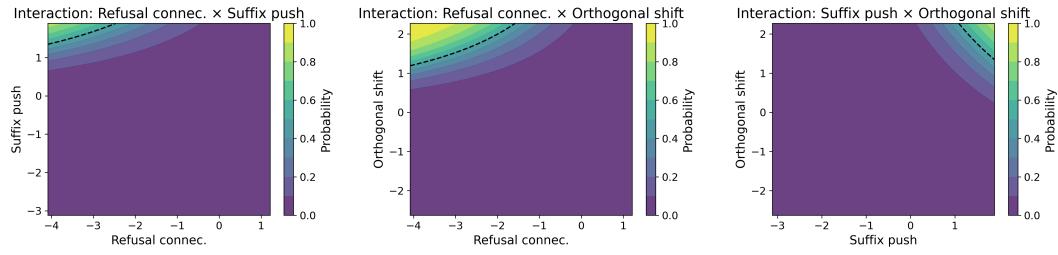
The interaction effects are mostly substantially smaller than the main effects—so one should be careful not to read too much into the specific sign patterns. Figures 10 to 13 visualize these interactions effects. From the figures we can conclude that for Qwen and Vicuna, the interaction effects are more relevant than for the Llama models.



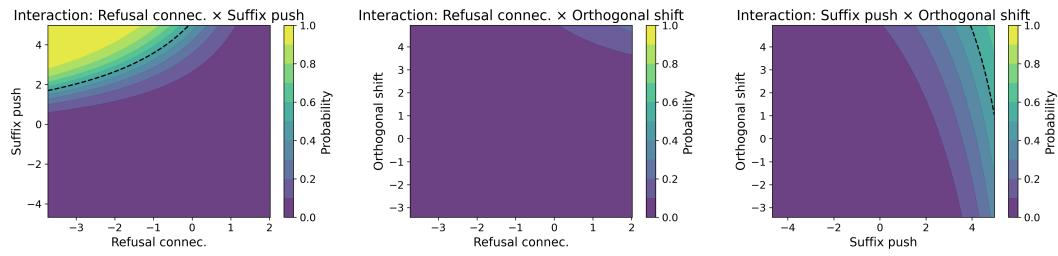
764
 765 Figure 10: Visualization of the interaction effects in Table 7 for Qwen. “Proability” denotes the
 766 likelihood of a successful transfer given different levels of the main effects.
 767



776
 777 Figure 11: Visualization of the interaction effects in Table 7 for Vicuna. “Proability” denotes the
 778 likelihood of a successful transfer given different levels of the main effects.
 779



788
 789 Figure 12: Visualization of the interaction effects in Table 7 for Llama 2. “Proability” denotes the
 790 likelihood of a successful transfer given different levels of the main effects.
 791



800
 801 Figure 13: Visualization of the interaction effects in Table 7 for Llama 3.2. “Proability” denotes the
 802 likelihood of a successful transfer given different levels of the main effects.
 803

804 Table 8 displays the same logistic regression model with an added coefficient for semantic similarity.
 805 Semantic similarity is calculated as the similarity of embeddings between two prompts (as described
 806 in Definition 3). In this regression analysis, we use the semantic similarity based on model internal
 807 activations on the last instruction token at the layer where the refusal direction is extracted.

808 We observe that semantic similarity has a positive and highly statistically significant effect on transfer
 809 success (except for Llama 2), which means that if two prompts have high similarity in activations, their
 810 suffixes are more likely to successfully transfer. However, compared to the size of the coefficients for

suffix push and refusal connectivity, the influence is relatively small especially for Qwen and Vicuna, while comparably large in Llama 3.2. Again, the interaction effects are small in size compared to the main effects, except for Llama 2. However, given that for this model, the main effect for semantic similarity is not statistically significant, one should be cautious to interpret interaction effects based on this feature.

Table 8: Logistic regression coefficients (standardized) predicting transfer success (intra-model) including semantic similarity based on model internal embeddings.

Variable	Qwen	Vicuna	Llama 2	Llama 3.2
Semantic sim. (model)	0.06***	0.51***	0.26	0.42***
Refusal connec.	-1.40***	-1.45***	-0.19	-0.43***
Suffix push	2.39***	0.93***	1.68***	0.86***
Orthogonal shift	0.22***	0.32***	1.32***	0.49***
Refusal connec. \times Suffix push	-0.08**	-0.10**	-0.31*	-0.27***
Refusal connec. \times Orthogonal shift	0.56***	0.49***	-0.78**	0.20***
Suffix push \times Orthogonal shift	-0.62***	-0.30***	0.21	-0.06***
Semantic sim. (model) \times Refusal connec.	-0.03***	0.38***	0.78***	-0.04***
Semantic sim. (model) \times Suffix push	0.36***	-0.04	-1.71***	0.00
Semantic sim. (model) \times Orthogonal shift	-0.14***	0.13**	0.92***	-0.08***
Constant	-2.43***	-0.95***	-5.46***	-4.61***
<i>N</i>	800,000	8,000	8,000	800,000
Pseudo R^2	0.288	0.117	0.227	0.140

Note: Stars denote statistical significance levels. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Recall that smaller p values reflects stronger evidence for the hypothesis in question.

Prompt rephrasing instructions In Section 5.6 we use Vicuna to rephrase the harmful questions without changing their meaning. To generate diverse rephrases of jailbreak prompts, we use the following template prompt:

In the following you will get a prompt. Please generate {num_rephrases} rephrases of this prompt that have the same meaning and will lead to a similar answer. You can add paraphrases that contain setting the prompt into a hypothetical scenario, too, like "hypothetically speaking, ...". Each of the {num_rephrases} rephrases should be unique.

Original prompt: {prompt}

Please provide exactly {num_rephrases} rephrases, each on a new line, numbered 1-{num_rephrases}:

In this template:

- {num_rephrases} is replaced with the desired number of rephrases to generate
- {prompt} is replaced with the original jailbreak prompt to be rephrased

This systematic approach ensures consistent generation of semantically equivalent variants while maintaining the adversarial intent of the original prompts.