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ABSTRACT

Cryo-electron tomography (Cryo-ET) is hindered by the missing wedge, a gap
in Fourier-space information caused by limited tilt-series angular coverage, lead-
ing to anisotropic resolution loss and artifacts. Current methods, such as IsoNet,
attempt to ”inpaint” missing frequencies in reconstructed tomograms but are con-
strained by their reliance on pre-degraded data, often producing non-physical fea-
tures. We present our proof-of-concept model, a generative latent back-projection
autoencoder that bypasses traditional tomogram reconstruction and directly syn-
thesizes novel projections from tilt-series data in the frequency domain. Our latent
back-projection network encoder-decoder architecture maps raw projections to a
3D Fourier volume, leveraging the Fourier slice theorem to generate high-fidelity
projections beyond the experimental tilt range. Evaluated on E. coli mini-cells
Ishemgulova et al. (2023), our model achieves a lower MSE and higher corre-
lation with ground-truth data. Crucially, our model robustly recovers withheld
tilts (0° or ±15°) without retraining, outperforming IsoNet in MSE and correlation
metrics. By mitigating the missing wedge through generating tilts at new angles,
our proof-of-concept can potentially advances high-resolution in situ structural
biology for radiation-sensitive specimens.

1 INTRODUCTION

Cryo-electron tomography (Cryo-ET) has emerged as a cornerstone technique for visualizing macro-
molecular complexes in their native cellular environments, offering unprecedented insights into
mechanisms of viral infection, protein aggregation, and organelle dynamics Dutta & Priyamvada
(2024); Nogales & Sjors (2015). The technique involves mechanically rotating the stage of the
electron microscope to capture micrographs at differing angles (termed a tilt series), allowing 3D
reconstruction of the imaged volume (Fig. 1A). During tilt series acquisition, the sample is incre-
mentally tilted around a single axis, typically in 1–3° increments, and imaged at each angle Young
& Villa (2023). These 2D projections (or tilts) are then computationally combined via tomographic
reconstruction algorithms, such as weighted back-projection (WBP), to reconstruct a 3D volume
Radermacher (2007); R et al. (2019).

However, the resolution of the technique is fundamentally constrained by the missing wedge, a gap
in Fourier-space information caused by limited angular coverage in the tilt series. Mechanical stage
restrictions, beam-induced sample warping, and cumulative radiation damage during imaging typ-
ically restrict tilt ranges to ±45°, resulting in anisotropic resolution loss and elongation artifacts
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that obscure critical structural features. Traditional reconstruction algorithms, such as WBP or si-
multaneous iterative reconstruction (SIRT), amplify these artifacts by back-projecting incomplete
frequency data. While deep learning tools like IsoNet attempt post-reconstruction “inpainting” of
missing frequencies, they operate on pre-reconstructed tomograms where the missing wedge has
already irreversibly distorted the 3D frequency spectrum Liu et al. (2022). Consequently, IsoNet’s
adversarial training framework can only hallucinate plausible textures rather than recover genuine
high-resolution information, often producing over-smoothed or non-physical results (Fig. 1B-C).

To address these limitations, we introduce our proof-of-concept model, a generative autoencoder
that directly synthesizes novel tilt projections to fill the missing wedge by learning angle-related
spatial relationship between input tilts series. Unlike existing generative approaches for Cryo-ET,
such as GANrec Yang et al. (2023), which uses adversarial training to inpaint missing sinogram
patches, our model operates as a latent reconstructor, learning a continuous mapping between 2D
tilt-series projections and a generative 3D Fourier latent space. This latent space encodes the fre-
quency spectrum of the imaged volume, enabling the synthesis of physically consistent projections
at arbitrary angles. Our latent back-projection model comprises three key components:

1. ResNet-style Encoder-Decoder: A symmetric architecture processes input projections through
a ResNet encoder, compressing spatial features by 16× while preserving high-frequency details via
residual connections. This ensures that critical structural information (e.g., membrane pores) is
retained for generative synthesis.

2. Differentiable Latent Back-Projection (DLBP): The encoder’s latent representations are fused
into a unified 3D Fourier volume via a differentiable back-projection layer. This volume is refined
by 3D convolutions that resolve missing wedge regions while enforcing consistency with the Fourier
slice theorem—a generative prior that prevents non-physical artifacts.

3. Angle-Conditioned Projection Generation: The decoder synthesizes new projections by slicing
the 3D Fourier latent at user-specified angles, then upsampling to native resolution while minimizing
a MSE loss. This ensures that generated projections are both novel (extending beyond observed
angles) and consistent with ground-truth tilts.

By training directly on tilt-series data rather than reconstructed tomograms, our model avoids irre-
versible information loss, recovering missing frequencies through structured generation in Fourier
space. Critically, our model generalizes to unseen specimens and angles without retraining, achiev-
ing lower MSE and higher correlation than IsoNet. This work establishes our proof-of-concept as a
sample-agnostic generative framework for high-resolution Cryo-ET, bridging the gap between ana-
lytical reconstruction and deep generative modeling. Overall, our model achieved lower MSE and
higher correlation than IsoNet, which relies on laborious per-sample adversarial optimization.

2 METHOD

Our proof-of-concept model is an autoencoder with differentiable latent back-projection (DLBP)
transformation operation designed to synthesize new 2D projections from limited-angle tilt-series
projections to mitigate missing-wedge artifacts. The encoder employs a ResNet-style architecture
with strided convolutions, down-sampling input projections (e.g., 1440×1024 pixels) by 16× to gen-
erate a latent representation of shape N×C×90×64, where N is the number of projections and C
denotes feature channels encoding spatial information. This latent space is then processed by a
DLBP module (Fig. 2A), which aggregates 2D latent representations into a 3D latent representing
the whole imaged volume (Appendix A.1). The DLBP refines this volume using 3D convolutions
to model inter-slice dependencies, effectively addressing artifacts from WBP and recovering miss-
ing frequencies. Novel projections are synthesized by rotating the 3D latent to target angles and
aggregating the latent content over the depth axis, simulating the physical projection operation that
produced the input tilt series. A symmetric ResNet-style decoder up-samples these slices to the
original resolution, preserving high-frequency details through residual connections and transposed
convolutions.

While IsoNet is a reconstruction post-processing approach, our method is a pre-processing approach.
The output synthesized projections can be incorporated into the input of any tomographic reconstruc-
tion algorithm as additional tilts. Although our method does incorporate latent-space reconstruction,
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Figure 1: Illustration of technique used for a 3D volume reconstruction from Cryo-EM tilts angle.
A) Cartoon showing process of image acquisition using Cryo-EM microscope. The sample is rotated
inside the microscope to produce projections throw the volume at specific angles. This projections
are than combine using algorithms like weighted back-projection to reconstruct a 3D volume of
imaged sample. B) Shows XZ slice of original tomogram volume. C) XZ slice through tomogram
volume corrected with IsoNet.

this is only used to ground the relationship between the input and generated tilts, not to directly pro-
duce a full reconstruction of the imaged volume.

For training, we optimized our model using the Adam optimizer with a learning rate of 0.00001,
mean squared error (MSE) loss, and 1,000 epochs. To evaluate generalizability of our approach,
we trained separate models on a single tomogram and five tomograms, mirroring IsoNet’s limited
tomogram training paradigm. We evaluated performance with mean MSE (MMSE) and correlation
(MCorr) error over all projections. Additionally, we also withhold specific tilts (0° or ±15°) during
training and quantified projection recovery accuracy. All experiments used a single NVIDIA A100
GPU.

3 RESULTS

3.1 GENERATING ORIGINAL TILT RANGE

We trained our model and IsoNet on both a single tomogram and five tomograms containing E.
coli mini-cells collected via a TFS Titan Krios microscope Ishemgulova et al. (2023), comparing
their ability to reconstruct projections within the original tilt range (±45°). We also generated new
projections at ±75° to visually assess angular generalization (b and Fig. 3). When trained on a
single tomogram, our model achieved a mean MSE of 0.69 and correlation of 0.65 for projections
at ±45°, outperforming IsoNet (MSE: 1.22, correlation: 0.39; Table 1). Training on five tomograms
further improved our model performance, reducing MSE to 0.66 and maintaining a correlation of
0.65, while IsoNet showed minimal improvement (MSE: 1.17, correlation: 0.41). These metrics are
computed on projections (for which ground truth is available), not volumes. While the data is not
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Figure 2: A) Our proof-of-concept model architecture. B) Comparison of projections digitally com-
puted from original tomogram, IsoNet corrected tomogram, and our model.

simulated, we do simulate the projection operation on the corrected volume output by IsoNet. These
results suggest our model benefits from multi-tomogram training, though future work could enhance
performance with structural-aware loss functions.

Table 1: Comparison of MSE error for predicted Cryo-EM projections

Method Train on 1 tomogram Train on 5 tomogram
MMSE MCorr MMSE MCorr

Our 0.69 0.65 0.66 0.65
IsoNet 1.22 0.39 1.17 0.41
Original tomogram 1.50 0.25 - -

3.2 GENERATING MISSING TILTS

Next, to evaluate robustness to incomplete data, we reconstructed tomograms with withheld tilts (0°
or ±15°) and retrained both models. For missing 0° tilts, our model retained stable performance
(MSE: 0.64, correlation: 0.76; Table 2), while IsoNet degraded significantly (MSE: 0.92, correla-
tion: 0.54). For withheld ±15° tilts, our model maintained accuracy (MSE: 0.64, correlation: 0.66),
whereas IsoNet failed catastrophically (MSE: 2.09, correlation: 0.05; Table 3), producing inco-
herent outputs (Fig. 3D). Notably, our model’s MSE for missing 0° tilts was slightly higher than
IsoNet’s (0.76 vs. 0.67), highlighting room for refinement in angle extrapolation.
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Table 2: Comparison of MSE and Correlation error for predicted Cryo-EM projections from tomo-
gram with withhold tilt at 0 degree angle.

Method MMSE MSE at 0 angle° MCorr Corr at 0°

Our 0.64 0.76 0.76 0.59
IsoNet 0.92 0.67 0.54 0.66
Original tomogram 1.13 0.88 0.42 0.54

Table 3: Comparison of MSE and Correlation error for predicted Cryo-EM projections from tomo-
gram with withhold tilt at -15 and 15 degree angle.

Method MMSE MSE at -15° MSE at 15° MCorr Corr at -15° Corr at 15°

Our 0.64 0.71 0.68 0.66 0.62 0.63
IsoNet 2.09 1.90 1.89 0.05 0.05 0.05
Original tomogram 2.53 2.33 2.32 0.05 0.05 0.05

3.3 GENERALIZATION TO UNSEEN TOMOGRAMS

We also wanted to test how our proof-of-concept framework generalize to unseen tomograms, a
task IsoNet was not designed to perform. When trained on five tomograms and tested on a held-out
specimen, our model synthesized ±45° projections with MSE 0.33 and correlation 0.83, significantly
outperforming IsoNet (MSE: 0.67, correlation: 0.66; Table 4).

Table 4: Comparison of MSE and correlation error for predicted Cryo-EM projections from new
tomogram for recovering of masked tilts (M) and seen tilts (S).

No masking Randomly masked tilts
Method MMSE MCorr MMSE (S) MCorr (S) MMSE (M) MCorr (M)

Our 0.33 0.83 0.33 0.83 0.34 0.82
IsoNet 0.67 0.66 - - - -

The higher performance of our model compared to IsoNet stems from its explicit modeling of 3D
Fourier geometry through a physics-aware inductive bias, encoded in the latent back-projection
module. Unlike IsoNet, which treats tomograms as generic 3D image volumes, our latent back-
projection module learns to aggregate 2D tilt-series projections into a unified 3D representation that
inherently adheres to the Fourier slice theorem. This geometric prior ensures that high-frequency
components are propagated orthogonally across slices, preserving spatial relationships critical for
resolving anisotropic features (e.g., membrane curvature, Fig. 3).

4 DISCUSSION

The experiments reveal the crucial conceptual difference between our approach and IsoNet. IsoNet
trains on reconstructed tomograms which already contain missing wedge artifacts, synthetically
introducing additional artifacts at different angles. By learning the pattern of artifacts induced by
the synthetic missing wedge, IsoNet iteratively infers what might have been in the position of the
actual missing wedge. By training on tomograms with synthetic missing wedges, IsoNet learns
to mimic artifacts rather than recover genuine structural information. This creates a self-reinforcing
cycle where artifacts from the initial reconstruction are amplified during inpainting. The discrepancy
between IsoNet published results and our findings is most likely due to the limited tilt range of ±45°
compared to the IsoNet benchmark dataset with a ±60° range. The use of tomograms as input meant
that this relative lack of information was embedded in the input data.
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In contrast, our approach operates on tilt series, where each tilt is a projection containing infor-
mation on the entirety of the imaged volume. Because the angles of the tilt series do not span a
complete rotation, retrieving this information precisely is ill-posed. Approximating solutions to ill-
posed problems is, however, a classic use for deep learning models and exactly how our model is
designed. Our encoder independently operates on the tilts and we combine them into a latent-space
representation of the imaged volume via weighted back-projection. Of course, this reconstructed
latent would have missing wedge artifacts and, like IsoNet, we utilize 3D convolution to correct
for these artifacts. However, unlike IsoNet, we then compute projections from this 3D latent which
are trained to match the original tilt series. By constraining the latent space in this way, our model
avoids the ad-hoc texture hallucination of IsoNet, instead extrapolating missing wedge frequencies
through structured interpolation in Fourier space. This inductive bias enables our model to gener-
alize to unseen tomograms and angles, tasks where IsoNet fails due to its reliance on local pixel
statistics rather than global geometric consistency.

This work is a proof of concept, outlining a scalable method for developing a deep-learning based
approach for up-sampling Cryo-ET tilt series. Initial evidence showing that our method is able to
benefit from training on a large number of tilt series to learn how to generally approximate rotation-
limited back-projection. As the output is synthesized projections, these can be concatenated to
the original tilt series and input into any Cryo-ET reconstruction algorithm to mitigate the missing
wedge artifacts in the final tomogram.
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A APPENDIX

A.1 MATHEMATICAL JUSTIFICATION FOR WBP IN LATENT SPACE

Back-projection in latent space is mathematically well-suited for Cryo-ET due to its ability to ad-
dress challenges such as noise, missing data, and the ill-posed nature of the reconstruction problem.
The Fourier projection slice theorem forms the foundation of back-projection, stating that the Fourier
transform of a 2D projection corresponds to a central slice of the 3D Fourier transform of the vol-
ume. Weighted back-projection (WBP) refines this process by compensating for uneven sampling
in Fourier space caused by limited tilt angles. Mathematically, WBP reconstructs the 3D volume
V (x, y, z) as:

V (x, y, z) =

∫
θ

W (k)Pθ(x, y) dθ,

where W (k) is a weighting function to correct geometric distortions, and Pθ(x, y) represents the 2D
projections at tilt angle θ. Additionally, Cryo-ET reconstruction is an ill-posed inverse problem due
to incomplete data and noise. This can be formulated as:

min
V

∥AV − P∥2 + λR(V ),

where A models the imaging process, P represents observed projections, R(V ) is a regulariza-
tion term (e.g., enforcing smoothness or sparsity), and λ > 0 controls regularization strength.
Latent space methods further enhance reconstruction by encoding noisy projections into a lower-
dimensional representation that captures biologically relevant features while discarding noise. Noise
reduction can be modeled as:

zθ = f(Pθ +N), f(Pθ +N) = f(Pθ),

where N ∼ N (0, σ2) represents additive Gaussian noise, and f(·) is an encoder function that
isolates meaningful signal components from noise. Together, these allows us for an effective gener-
alization of novel projections from reconstructed latent 3D volumes in Cryo-ET.
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A.2 SUPPLEMENTARY FIGURES

Figure 3: Synthesize tilts projection from different models. A) Tilts created by rotation of original
tomogram and pre-trained IsoNet or CryFFTNet model trained on 5 tomograms. B) The same tilts
angle as in A created by rotation of original tomogram and pre-trained IsoNet on 5 tomograms or
CryFFTNet model trained on 129 tomograms.
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