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ABSTRACT

Large Vision-Language Models (LVLMs) have achieved remarkable success in
multimodal reasoning by jointly processing visual and textual information. How-
ever, efficient inference in practical applications remains challenging due to the
substantial computational and memory overhead of LVLMs. Existing token prun-
ing strategies often face a trade-off: they either prioritize token importance while
neglecting semantic diversity, or enforce diversity at the expense of critical to-
kens. To overcome this limitation, we propose STP (Smart Token Pruning), a
novel framework that balances both objectives. We formulate token pruning as
a bi-criteria optimization problem that jointly maximizes semantic diversity, to
preserve broad coverage of visual concepts, and token importance, quantified via
a new gradient-based saliency score that integrates feature sensitivity and acti-
vation strength. STP introduces a unified token selection strategy that adaptively
prunes tokens based on their joint diversity-importance score, ensuring both ef-
ficient computation and reliable visual-textual reasoning. Extensive experiments
across 11 diverse benchmarks show that STP achieves significant reductions in
computation and memory usage while maintaining competitive accuracy. This en-
ables scalable and resource-efficient deployment of LVLMs.

1 INTRODUCTION

In recent years, Large Vision-Language Models (LVLMs) Liu et al. (2023a); Zhu et al. (2023) have
achieved remarkable success in multimodal understanding and reasoning by jointly processing tex-
tual and visual inputs. Typically, these models tokenise an input image into a large set of visual
tokens that are concatenated with textual tokens and fed into a Large Language Model (LLM). This
approach enables powerful cross-modal interactions, allowing the model to generate rich and con-
textually grounded outputs. However, the number of visual tokens, often much larger than textual
tokens, leads to significant computational overhead and memory consumption Choromanski et al.
(2020); Katharopoulos et al. (2020). Consequently, the increased inference cost hinders the deploy-
ment of LVLMs in resource-constrained environments and limits their scalability to high-resolution
or video inputs. To this end, token pruning strategies that can reduce the number of unnecessary
visual tokens during inference time without degrading the performance of the LVLM are essential
to enable practical and scalable LVLM applications.

Existing token pruning methods generally focus on selecting tokens solely on their importance Chen
et al. (2024); Shang et al. (2024) or maximizing diversity Alvar et al. (2025) among selected tokens.
Methods emphasizing importance tend to overlook semantic redundancy, leading to the retention of
visually similar tokens that provide little additional information. Conversely, approaches prioritizing
diversity may discard tokens that are crucial for accurate model predictions or fail to capture salient
features necessary for downstream tasks. Moreover, many existing strategies Cai et al. (2024); Lin
et al. (2025) rely on fixed or heuristic selection criteria that do not dynamically adapt to the internal
state of the underlying model or token-level sensitivities. Such rigidity often results in suboptimal
pruning performance, where redundant tokens persist or important visual cues are lost, causing de-
graded accuracy and inconsistent multimodal reasoning. This limitation becomes increasingly pro-
nounced as LVLMs scale to higher resolutions and more complex prompts, where the interaction
between visual and textual modalities amplifies the cost of processing redundant tokens. Addition-
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Figure 1: Overview of the STP framework for Large Vision-Language Models (LVLMs). Our
method jointly optimizes diversity and importance of visual tokens through a novel bi-criteria op-
timization strategy, producing a compact yet semantically rich subset of visual tokens. The pruned
tokens are then fed into the LLM alongside textual tokens, leading to faster inference and lower
memory usage while preserving or improving multimodal reasoning performance.

ally, most prior methods operate under static assumptions about token relevance, failing to leverage
model feedback signals (e.g., gradients or attention dynamics) that could guide more informed prun-
ing decisions. To this end, effectively balancing token importance and diversity, while adapting to
the evolving computational pathways of LVLMs, remains a fundamental yet unresolved challenge
in the design of robust and efficient token pruning.

To address these challenges, We propose a novel token-pruning method that jointly optimizes di-
versity and importance to select a compact yet semantically representative subset of visual tokens.
Framing pruning as a bi-criteria optimization, our approach balances selecting diverse tokens with
those most influential to the model’s internal representations. As shown in Figure 1, we introduce an
importance score based on feature sensitivity and activation strength, combined with a Max–Min di-
versity strategy to ensure broad semantic coverage. A flexible weighting scheme adapts to different
application needs and inputs, while an efficient greedy algorithm scales to large token sets with-
out sacrificing selection quality. Our model-agnostic framework integrates seamlessly with LVLMs,
supports adaptive pruning ratios based on image complexity and task requirements, and preserves
critical information in challenging scenarios. We provide a lightweight implementation with negli-
gible overhead, achieving faster inference and lower memory usage while maintaining or improving
multimodal task accuracy across diverse benchmarks.

Our contributions are summarised as follows:

• We introduce STP, a unified and model-agnostic token pruning framework for LVLMs that
jointly optimizes semantic diversity and token importance.

• We propose a novel gradient-based importance scoring that integrates feature sensitivity
and activation strength with a Max-Min coverage strategy, enabling adaptive and context-
aware token selection without the need for retraining or architectural modifications.

• Through comprehensive evaluations on 11 multimodal benchmarks, we show that STP
achieves significant reductions in computational cost and memory usage while preserving
or even improving task performance.

2 RELATED WORK

Large Vision-Language Models: Large Vision-Language Models (LVLMs) such as BLIP-2 Li et al.
(2023b), InstructBLIP Dai et al. (2023), MiniGPT-4 Zhu et al. (2023), LLaVA Liu et al. (2023b),
mPLUG-Owl2 Ye et al. (2024), and Qwen-VL Bai et al. (2023) have demonstrated strong multi-
modal reasoning capabilities. BLIP-2 uses a Query Transformer to extract informative visual tokens
from a frozen encoder, enabling efficient alignment with a frozen LLM. InstructBLIP extends this
with instruction tuning, while MiniGPT-4 and LLaVA rely on linear projections and weak supervi-
sion, risking semantic misalignment. More recent models like mPLUG-Owl2 and Qwen-VL intro-
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duce adaptive fusion and broader instruction tuning to improve grounding. Despite these advances,
hallucination remains a challenge due to limited grounding, frozen backbones, and next-token train-
ing objectives Li et al. (2023c); Rohrbach et al. (2018). Benchmarks such as CHAIR Rohrbach et al.
(2018), POPE Li et al. (2023c), and MMHalBench Sun et al. (2023) highlight persistent grounding
failures. Recent efforts like LLaVA-RLHF Sun et al. (2023) demonstrate that reinforcement learning
can improve factual alignment.

Token Pruning: Advanced computer vision models increasingly rely on computationally intensive
transformer architectures Vaswani et al. (2017). To mitigate this, token pruning has emerged as a
key optimization strategy, enhancing inference efficiency by dynamically selecting a subset of in-
formative tokens. Initial work on Vision Transformers (ViTs) Dosovitskiy et al. (2021), such as
DynamicViT Rao et al. (2021) and SPViT Heo et al. (2022), focused on adaptive selection and
sparsification to discard redundant tokens. This concept was further refined by methods like Token-
Learner Ryoo et al. (2021) and ToMe Pilanci et al. (2022), which learn to merge or drop tokens
based on their importance or similarity. More recent approaches minimize the performance degra-
dation associated with pruning. For instance, some techniques fuse information from pruned tokens
back into the retained ones to preserve valuable context Wei et al. (2023). Another state-of-the-art
method uses a fast post-training framework with dynamic programming to reduce FLOPs without
accuracy loss across diverse architectures, including CNNs and ViTs Xu et al. (2025). The princi-
ple extends beyond static images, with methods like ADAPTOR Peruzzo et al. (2025) leveraging
temporal redundancy to reduce the computational load in video pruning.

Token Pruning in Large Vision-Language Models: Token pruning in large vision-language mod-
els (LVLMs) is challenging due to the complex interplay between visual and textual inputs, with
visual tokens often dominating input length and driving up inference costs. Early methods rely on
attention scores for pruning Shang et al. (2024); Chen et al. (2024). PruMerge Shang et al. (2024)
clusters and merges visual tokens based on attention sparsity in the vision encoder, while FastV Chen
et al. (2024) prunes tokens in a specific LLM layer using attention magnitudes from earlier layers.
However, attention-based pruning is suboptimal, particularly at high pruning ratios Guo et al. (2024).
In other hand, Calibration-based methods offer another line of work, where pruning layers and/or ra-
tios are determined by analyzing the LLM outputs for a calibration dataset Ye et al. (2025); Lin et al.
(2025). For example, FitPrune Ye et al. (2025) calculates a pruning recipe based on the observed
attention divergence before and after pruning. VTW Lin et al. (2025) argues that visual tokens can
be entirely removed after a certain layer within LLM. To address the challenges of previous method,
Diversity-aware methods such as DivPrune Alvar et al. (2025) ensure broad semantic coverage by
maximizing the diversity of selected tokens. However, most existing approaches optimize either to-
ken importance or diversity in isolation, often relying on heuristic criteria. Our work addresses these
limitations by formulating token pruning as a bi-criteria optimization problem that jointly balances
token importance—measured via gradient-based saliency—and diversity using a Max-Min heuris-
tic. This principled approach enables efficient and semantically rich token selection, substantially
reducing inference costs in LVLMs without sacrificing accuracy.

3 METHOD

3.1 PRELIMINARY

Large Vision-Language Models: Let an input pair (q, I) denote the textual and visual inputs, re-
spectively. The textual input q is tokenized into a sequence of N tokens T = [t1, . . . , tN ], where
each token ti ∈ Rd is a d-dimensional embedding. Similarly, the visual input I is processed by
a vision encoder (e.g., ViT Dosovitskiy et al. (2021)) to extract features, which are then projected
into the language embedding space. This yields a sequence of M visual tokens X = [x1, . . . ,xM ],
where each xj ∈ Rd.

The combined input to the large language model (LLM) is the concatenation of textual and visual
tokens, E = [T;X] ∈ R(N+M)×d, where [·; ·] denotes concatenation along the sequence dimen-
sion. The LLM then autoregressively generates an output sequence Y = (y1, . . . ,yN̂ ), where the
probability of generating the sequence is given by the chain rule:

P (Y | E) =

N̂∏
i=1

P (yi | y<i,E), (1)
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Figure 2: Given an image I and a query q, we extract vision tokens X from a vision encoder Ve and
text tokens T from a text encoder Te. STP prunes vision tokens based on diversity and importance
scores. Specifically, each token is processed by diversity and importance modules, yielding scores
zxi and hxi , which are then combined using a hyperparameter α. The combined scores guide a token
selection module that outputs a pruned set X̂. Finally, X̂ and T are concatenated and fed into an LLM
to generate output tokens.

where P (·) is the model’s output probability distribution, conditioned on the input E and the previ-
ously generated tokens y<i = (y1, . . . ,yi−1).

Token Pruning: In typical LVLMs Liu et al. (2023a), the number of visual tokens significantly
exceeds the number of text tokens (M ≫ N ). This imbalance leads to significant memory and
computational costs. To mitigate this, we propose pruning the visual token sequence by selecting a
compact subset X̃ ⊂ X of size k ≪ M , while preserving the model’s output behavior. We define
the token selection as a function f : X → X̃. The objective is to find a function f that minimizes
the discrepancy between the output distributions of the original and pruned models:

min
f

L (P (Y | [T;X]), P (Y | [T; f(X)])) s.t. |f(X)| = k, (2)

where L(·, ·) is a distance metric (e.g., KL divergence) and |f(X)| denotes the number of tokens in
the pruned sequence. The goal is to retain a minimal yet semantically rich set of visual tokens to
enable efficient and accurate multimodal reasoning.

3.2 SMART TOKEN PRUNING

We propose STP, a novel visual token pruning framework that preserves tokens that are both se-
mantically important and structurally diverse. Compared to previous methods that focus solely on
either the importance of visual tokens or their structural diversity, STP formulates token selec-
tion as a dual-objective optimization problem, integrating gradient-based saliency estimation with
a diversity-aware dissimilarity criterion. STP is fully plug-and-play, model-agnostic, and can be
seamlessly applied to any pretrained LVLM model without requiring additional fine-tuning or cali-
bration data. The pipeline of our proposed token pruning strategy, STP, is illustrated in Figure 2 and
will be detailed in the following sections.

3.2.1 OPTIMIZATION OBJECTIVE:

To address the dual challenges of preserving semantic content and reducing redundancy, STP formu-
lates visual token pruning as a joint optimization over two core principles: diversity, which ensures
broad spatial and semantic coverage across the image, and token-level importance, which prioritizes
the retention of tokens that are most critical to the model’s final prediction. By jointly considering
both factors, STP aims to maintain the expressiveness of the input representation while significantly
reducing computational overhead.

We formalize the token selection process as a subset maximization problem over a combined
diversity–importance objective:

S∗ = arg max
S⊂V
|S|=k

[(1− α) · D(S) + α · I(S)] , (3)

where α ∈ [0, 1] is a balancing parameter that controls the trade-off between the diversity and im-
portance terms. The diversity score D(S) encourages selection of tokens that are mutually dissimilar
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in feature space, promoting coverage of distinct spatial and semantic regions. The importance score
I(S) captures the aggregate influence of the selected tokens on the model’s output, computed using
task-aware saliency signals such as gradient-based relevance and activation strength.

3.2.2 DIVERSITY TERM:

To ensure semantic coverage, we define a diversity objective that selects tokens maximally dissimilar
in feature space, quantified as:

D(S) = min
xi,xj∈S

i̸=j

d(xi, xj), (4)

where d(xi, xj) = 1− x⊤i xj
∥xi∥∥xj∥ represents the cosine distance between tokens xi and xj . This dissim-

ilarity criterion ensures that the selected tokens span a wide region of the feature space, discouraging
redundancy and promoting semantic coverage.

Diversity scoring: At the conclusion of this stage, we compute a per-token diversity score for each
vision token zxi :

zxi = min
xj∈S\{xi}

d(xi, xj), (5)

which measures how much unique semantic content token i contributes relative to others. These
diversity scores are later combined with importance scores in our joint token pruning framework,
guiding the retention of tokens that are both semantically informative and non-redundant.

3.2.3 IMPORTANCE VIA GRADIENT-BASED SALIENCY:

To complement the diversity objective, we define an importance term I(S) that quantifies the col-
lective saliency of a token subset S. This term is designed to measure the total contribution of the
selected tokens to the model’s representational capacity. We formulate the aggregate importance as
the sum of the individual saliency scores of the tokens within the subset:

I(S) =
∑
xi∈S

h(xi), (6)

where h(xi) is a per-token saliency score reflecting the significance of token xi. A higher I(S)
indicates that the subset S contains tokens that are, in aggregate, more critical for the model’s task.
The following sections detail computing the individual saliency score h(xi) for each token.

Saliency Framework: Identifying which tokens contribute most to an image’s representation is
essential for effective pruning and downstream reasoning. We propose a gradient-based saliency
framework that scores tokens in two stages: (1) measuring each token’s deviation from the global
semantic distribution, and (2) weighting this deviation by its strongest activation response to priori-
tize semantically distinctive and highly informative tokens.

Semantic Deviation: To establish a semantic reference point, we compute the global mean and vari-
ance of the token representations:

µ =
1

M

M∑
i=1

xi, σ =

√√√√ 1

M

M∑
i=1

(xi − µ)2. (7)

Here, µ captures the semantic “center” of the representation, while σ characterizes the spread of to-
kens. Each token is then normalized with respect to these statistics to reveal its contextual deviation:

x̃i =
xi − µ

σ + ϵ
. (8)

This normalization yields a gradient-like signal emphasizing tokens distinct from the overall feature
distribution; we then use each token’s L2 norm to quantify its deviation:

g(xi) = ∥x̃i∥2. (9)

Tokens with higher g(xi) values are interpreted as carrying more unique or discriminative informa-
tion relative to the global feature space.

Importance Score Calculation: To further refine our understanding of token relevance, we incor-
porate activation strength into the saliency measure. Specifically, we compute the final per-token
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importance score h(xi) by weighting the gradient-based saliency g(xi) by the token’s most domi-
nant feature activation:

h(xi) = g(xi) ·max
j

|xi,j |. (10)

This weighting highlights tokens that both diverge from the global context and show strong activa-
tions, emphasizing those most informative for downstream tasks.

3.2.4 TOKEN SELECTION:

At this stage, for each vision token, we combine the diversity score zxi
and the importance score

hxi using a weighting coefficient α ∈ [0, 1]:

uxi = α zxi + (1− α)hxi . (11)

Finally, the unified scores uxi are passed to the token selection module, which ranks vision tokens
and retains the top-k based on a predefined pruning ratio. This lightweight ranking requires only one
pass after score computation, yielding a condensed yet representative token subset for subsequent
model layers. In the next section, we provide experimental results highlighting the benefits of STP.

4 EXPERIMENTS

Baselines and Models: We compare STP against three baselines: FastV Chen et al. (2024),
VTW Lin et al. (2025), and DivPrune Alvar et al. (2025), which represent recent state-of-the-art
approaches for visual token pruning or selection. To evaluate the robustness and generalizability
of our approach, we benchmark STP and all baselines across multiple popular Large Multimodal
Models (LMMs), including LLaVA 1.5-7B Liu et al. (2023a), LLaVA 1.5-13B Liu et al. (2023a),
and LLaVA 1.6-7B (also referred to as LLaVA-NeXT Liu et al. (2024a)). These models vary in
size, architecture, and visual token processing strategies, making them suitable testbeds for assess-
ing performance across diverse configurations. Specifically, all LMMs use a CLIP-based vision en-
coder Radford et al. (2021) to extract visual features. LLaVA 1.5 encodes each image into a fixed-
length sequence of 576 visual tokens, while LLaVA 1.6 adopts a more flexible strategy, converting
images into variable-length token sequences that are 3–5× longer, by using adaptive patching. For
each model-task pair, we include only the relevant baselines that are compatible or directly applica-
ble. This ensures fair comparisons while highlighting the adaptability and performance gains of our
method across varying model sizes and token granularities.

Datasets, Tasks, and Metrics: We evaluate our method on a diverse suite of 11 image-language
datasets designed to assess multimodal reasoning and understanding. These datasets cover a broad
spectrum of tasks, including image captioning, multiple-choice question answering (QA), and open-
ended QA grounded in both text and image/video inputs. Following established benchmarks, we
adopt CIDEr Vedantam et al. (2015) for captioning evaluation, and use Exact Match (EM), Accuracy
(Acc), F1, Perception Score (P-score) Yin et al. (2024), and GPTScore Fu et al. (2023) for QA tasks.
For open-ended QA, we further incorporate Wu-Palmer Similarity (WUPS) Wu & Palmer (1994)
to capture semantic alignment. Higher values in all metrics indicate better performance. All exper-
iments were conducted using 8 NVIDIA A100 GPUs (80GB VRAM). We utilize the lmmsevals
package Zhang et al. (2024) to ensure standardised evaluation across all models and baselines. Un-
less otherwise specified, a batch size of 1 is used for all reported results.

4.1 VISION-LANGUAGE UNDERSTANDING

In this section, we evaluate our proposed method, STP, against baseline methods across a range of
image-language understanding tasks, including open-ended and closed-ended question answering,
visual reasoning, and image captioning. Specifically, we use the following datasets: ScienceQA-
IMG (SQA) Lu et al. (2022), POPE Li et al. (2023c), MME Yin et al. (2024), MMB Liu et al.
(2024b), GQA Hudson & Manning (2019), MMMU Yue et al. (2024), Flickr30k Plummer et al.
(2015), SeedBench (SEEDB) Li et al. (2023a), Nocaps Agrawal et al. (2019), OKVQA Marino
et al. (2019), and COCO-2017 Lin et al. (2014). All the experiments are shown in Table 1.

LLaVA 1.5-7B. For the 7B variant of LLaVA 1.5, our method achieves a strong efficiency–accuracy
trade-off, operating at only 15.63% of the original computational cost while maintaining consistent
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Method TFLOP COCO Flickr GQA MMB MME MMMU Nocaps OKVQA POPE SQA SEEDB
(ratio %) CIDEr CIDEr EM Acc P-score Acc CIDEr EM F1 EM Acc

LLaVA 1.5-7B

Original 3.228 (100.00) 1.10 0.75 61.96 64.09 1506 36.44 1.06 53.39 85.84 69.41 66.17
VTW 0.603 (18.46) 0.05 0.03 38.94 21.31 681 32.60 0.03 18.64 25.35 65.29 36.13
FastV 0.514 (15.69) 0.06 0.03 38.73 20.62 696 32.00 0.04 18.32 32.84 65.15 35.69
Divprune 0.512 (15.63) 0.96 0.62 56.85 59.19 1328 35.89 0.92 46.98 86.02 68.27 59.47
Ours 0.512 (15.63) 0.97 0.64 57.64 59.45 1306 34.33 0.93 47.84 85.25 68.37 59.64

LLaVA 1.5-13B

Original 6.281 (100.00) 1.16 0.80 63.33 68.64 1522 35.67 1.09 58.28 85.99 72.88 66.82
VTW 1.030 (16.16) 0.08 0.05 39.71 21.91 622 32.10 0.05 22.49 0.40 66.24 38.59
FastV 1.003 (15.73) 0.38 0.18 44.98 37.80 942 35.11 0.33 32.14 30.02 69.96 44.95
Divprune 1.002 (15.71) 1.00 0.66 57.29 63.40 1407 34.89 0.95 53.29 83.43 72.34 62.04
Ours 1.002 (15.71) 1.02 0.67 57.64 64.17 1438 36.22 0.97 53.10 84.68 71.44 61.78

LLaVA 1.6-7B

Original 11.849 (100.00) 1.00 0.68 64.28 67.01 1520 36.44 0.88 44.20 86.38 70.15 70.16
VTW 1.318 (11.23) 0.06 0.03 38.62 19.76 606 31.30 0.03 8.66 7.13 65.74 37.48
FastV 1.327 (11.30) 0.06 0.03 38.79 20.36 619 32.56 0.04 8.80 7.78 65.49 37.62
Divprune 1.266 (10.79) 0.89 0.61 58.69 63.49 1362 37.11 0.76 41.92 82.97 68.57 64.11
Ours 1.266 (10.79) 0.9 0.62 59.77 63.83 1364 37.00 0.78 42.17 84.37 67.48 64.31

Table 1: Comparison results of our method with multiple baselines on image understanding tasks.

performance across all benchmarks. Unlike VTW and FastV, which show large drops on reasoning-
heavy tasks (e.g., GQA: 38.94/38.73 vs. 57.64; MMB: 21.31/20.62 vs. 59.45), our approach pre-
serves visual–linguistic signals more effectively. It also surpasses DivPrune under similar FLOP
constraints with gains on COCO (0.97 vs. 0.96), Flickr (0.64 vs. 0.62), OKVQA (47.84 vs. 46.98),
and SEED-Bench (59.64 vs. 59.47). These results demonstrate our ability to retain semantically
informative visual tokens under extreme computational efficiency without additional fine-tuning,
highlighting robustness across tasks and scalability to larger LVLMs and real-world scenarios.

LLaVA 1.5-13B. On the 13B variant of LLaVA 1.5, our method retains its efficiency advantage
(15.71% of original FLOPs) while outperforming all baselines on most tasks. VTW and FastV
again show sharp drops on key benchmarks (e.g., COCO: 0.08/0.38 vs. 1.02; GQA: 39.71/44.98
vs. 57.64), reflecting limited semantic retention under pruning. While DivPrune performs competi-
tively, our method yields further gains on reasoning-intensive tasks such as MMB (64.17 vs. 63.40),
MMMU (36.22 vs. 34.89), and POPE (84.68 vs. 83.43). These consistent improvements indicate
that our pruning strategy scales effectively with larger model capacities, leveraging richer feature
hierarchies without retraining or calibration. Note that, our approach maintains performance close
to the original model while reducing compute by over 84%, showing it not only generalizes across
model sizes but also benefits from the expanded representational space of larger LVLMs.

LLaVA 1.6-7B. Applied to the latest LLaVA 1.6-7B, our method sustains superior performance un-
der stricter compute limits, operating at only 10.79% of original FLOPs. VTW and FastV degrade
sharply (e.g., OKVQA: 8.66/8.80 vs. 42.17; POPE: 7.13/7.78 vs. 84.37), showing poor generaliza-
tion in highly compressed regimes. DivPrune remains competitive, yet our approach consistently
surpasses it with gains on GQA (59.77 vs. 58.69), OKVQA (42.17 vs. 41.92), and POPE (84.37 vs.
82.97), while matching or slightly exceeding performance elsewhere. These results show our method
generalizes to newer architectures, preserving low-level visual grounding and high-level multimodal
reasoning even under aggressive pruning. Crucially, its robustness under extreme FLOP reductions
highlights seamless adaptation to evolving LVLMs without architectural changes, positioning it as
a future-proof solution for next-generation multimodal systems with rising efficiency demands.

4.2 TIME AND EFFICIENCY ANALYSIS

We evaluate STP across three LLaVA variants (LLaVA-1.6-7B, LLaVA-1.5-7B, and LLaVA-1.5-
13B) to demonstrate its effectiveness and generalizability. As shown in Figure 3, STP consis-
tently improves memory efficiency and inference speed. The largest gains occur on LLaVA-1.6-7B,
with 13.6% memory reduction (15.75 GB to 13.61 GB) and 34.1% faster inference (483.28 ms
to 318.48 ms). LLaVA-1.5-13B achieves 3.3% memory and 20.4% latency improvements, while
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Figure 3: STP performance across LLaVA variants. Left: memory reduction; Right: latency im-
provement. Consistent gains are observed for all models, with LLaVA-1.6-7B achieving the largest
improvements (13.6% memory reduction, 34.1% faster inference).

LLaVA-1.5-7B shows 4.1% memory and 4.6% speed gains. On average, STP reduces memory by
7.0% and latency by 19.7% across all models, demonstrating robust generalization without perfor-
mance loss. These results highlight STP’s value for edge deployment, enabling faster, more efficient
large-vision-language models in resource-constrained settings.

4.3 ABLATION STUDY

The impact of α in terms of diversity and importance: To assess the generalization capability
of STP across different task categories (see Figure 4), we analyze performance patterns grouped by
task type: Visual Question Answering (VQA: GQA, OK-VQA, ScienceQA), Multimodal Reasoning
(MMBench, MMMU, SeedBench), and Specialized Evaluation (POPE). Our analysis reveals that all
three categories maintain consistently high performance retention (94–100%) across the entire range
of α values (0.20–0.37), demonstrating the method’s robustness across diverse task domains. The
VQA category shows the most stable performance with minimal variance, while the Reasoning cat-
egory exhibits slightly higher variability, potentially due to the more complex cognitive demands
of these tasks. The Specialized category, represented by POPE (hallucination detection), maintains
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Figure 4: Task category robustness showing performance by type (VQA, Reasoning, Specialized) as
α varies. Category averages (colored lines with shaded regions) and overall average (black dashed)
indicate consistent performance, demonstrating robust pruning.
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(a) (b)

Figure 5: STP robustness across varying α on seven benchmarks. Performance stays above 94% even
under extreme pruning, demonstrating stable diversity–importance trade-offs. Reasoning-heavy
tasks show slightly more variance, while VQA and specialized tasks maintain near-flat trends, un-
derscoring STP’s consistency.

stable performance despite its unique evaluation criteria. The overall average performance across
all categories follows a similar trend to individual tasks, confirming that DivPrune preserves model
capabilities uniformly across different types of vision-language understanding tasks, regardless of
their specific evaluation metrics or cognitive requirements. Interestingly, this consistency suggests
that α serves as a largely architecture-agnostic balancing knob, enabling a smooth trade-off between
diversity and importance without destabilizing performance. Moreover, the narrow optimal range of
α values implies that STP requires minimal hyperparameter tuning, making it practical for deploy-
ment across heterogeneous multimodal pipelines.

Robustness analysis: We conduct a comprehensive sensitivity analysis to evaluate how the merging
factor α (balancing diversity versus importance in STP) affects model performance across diverse
vision-language tasks. As shown in Figure 5, our analysis focuses on seven accuracy-based bench-
marks including GQA, MMBench, MMMU, OK-VQA, POPE, ScienceQA, and SeedBench, rep-
resenting visual question answering, multimodal reasoning, and specialized evaluation tasks. The
results demonstrate that performance retention remains consistently high (94–100%) across all tasks
as α varies from 0.20 to 0.37, indicating the robustness of our pruning approach. Notably, individual
tasks exhibit distinct sensitivity patterns: reasoning tasks (MMBench, MMMU, SeedBench) show
slightly higher variance compared to VQA tasks (GQA, OK-VQA, ScienceQA), while specialized
tasks (POPE) maintain stable performance. The average performance across all tasks reveals a sub-
tle but consistent trend, suggesting that α values between 0.25–0.31 provide an optimal balance
between computational efficiency and performance retention, with minimal degradation even at the
most aggressive pruning levels (α = 0.20). This resilience shows that STP’s weighting mechanism
is inherently stable, ensuring predictable behavior even when α deviates from its optimal range.

5 CONCLUSION

In this work, we proposed a principled and efficient token pruning framework for Large Vision-
Language Models (LVLMs) that balances the dual objectives of token importance and semantic
diversity. By formulating the pruning process as a bi-criteria optimization problem and introducing
a novel gradient-based saliency score, our method effectively identifies a compact subset of visual
tokens that preserves essential multimodal information. Extensive experiments across 11 large-scale
benchmarks demonstrate that our approach achieves significant reductions in inference time and
memory usage, with minimal performance degradation. Our method not only advances the efficiency
of LVLMs but also provides a generalizable strategy applicable to a wide range of multimodal ar-
chitectures. Future work includes extending the framework to dynamic token selection during train-
ing, incorporating task-specific adaptive pruning, and exploring cross-modal token interactions for
deeper reasoning.
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