
Orientation Matters: Making 3D Generative Models
Orientation-Aligned

Yichong Lu1,2* Yuzhuo Tian1* Zijin Jiang1* Yikun Zhao1 Yuanbo Yang1,2

Hao Ouyang2 Haoji Hu1 Huimin Yu1 Yujun Shen2 Yiyi Liao1†

1Zhejiang University 2Ant Group

https://xdimlab.github.io/Orientation_Matters

Abstract

Humans intuitively perceive object shape and orientation from a single image,
guided by strong priors about canonical poses. However, existing 3D generative
models often produce misaligned results due to inconsistent training data, limiting
their usability in downstream tasks. To address this gap, we introduce the task
of orientation-aligned 3D object generation: producing 3D objects from single
images with consistent orientations across categories. To facilitate this, we con-
struct Objaverse-OA, a dataset of 14,832 orientation-aligned 3D models spanning
1,008 categories. Leveraging Objaverse-OA, we fine-tune two representative 3D
generative models based on multi-view diffusion and 3D variational autoencoder
frameworks to produce aligned objects that generalize well to unseen objects across
various categories. Experimental results demonstrate the superiority of our method
over post-hoc alignment approaches. Furthermore, we showcase downstream ap-
plications enabled by our aligned object generation, including zero-shot object
orientation estimation via analysis-by-synthesis and efficient arrow-based object
rotation manipulation.

1 Introduction

Humans possess a remarkable ability to imagine the 3D structure of an object (“synthesis”) and
infer its properties, such as orientation (“analysis”), from a single image. We intuitively recognize
the correct orientation of a car on the road, know how to grasp a cup by its handle, or decide
how to place a chair in a room. In cognitive science, this ability is linked to the concept of object
constancy—the capacity to mentally reconstruct a canonicalized object despite changes in viewpoint
or other variations [26, 16]. This synthesis of an internal object representation enables analysis of its
pose, a process often described as analysis by synthesis.

Replicating this perceptual capability has long been a central pursuit in computer vision. Recent
progress in generative AI has significantly advanced single-view 3D object generation, making it
both accessible and effective. This advancement in “synthesis” offers a rapid and adaptable means
of constructing 3D models from everyday images, enabling a wide range of applications in AR/VR
content creation, robotic simulation, etc.

Despite these strides, a critical challenge remains: orientation alignment. Existing methods often
neglect this aspect, largely due to inconsistencies in large-scale 3D datasets [6, 57]. As a result,
generated models frequently lack standardized canonical orientations—chairs may face different
directions, mugs may appear tipped over, and vehicles may be misaligned. This disparity between
human perceptual consistency and the output of generative models poses a significant obstacle for

*Equal contribution. †Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://xdimlab.github.io/Orientation_Matters/


Figure 1: Objaverse-OA for Orientation-Aligned Generation. We construct a new dataset named
Objaverse-OA, which contains orientation-aligned 3D models across 1008 categories (top). Using
Objaverse-OA, we make existing 3D generative models orientation-aligned, which can further be
used for zero-shot model-free orientation estimation (bottom left) and efficient arrow-based 3D object
rotation manipulation (bottom right).

downstream tasks such as analysis-by-synthesis, e.g., orientation estimation. To bridge this perceptual
gap, it is essential that 3D generative models not only reconstruct object geometry but also generate
objects in consistent, semantically meaningful orientations.

In this paper, we introduce a novel task: orientation-aligned 3D object generation—the generation
of a 3D object from a single image such that its orientation is consistently aligned both within and
across categories, in accordance with common-sense priors. While no existing methods explicitly
address this task, a possible workaround involves first generating a 3D object and then applying
pose estimation to align its orientation. However, achieving robust and generalizable orientation
alignment across diverse object categories remains a significant challenge. Most 3D pose estimation
approaches [54, 29, 40] focus on predicting relative poses with respect to predefined 3D CAD models
or multi-view reference images. In contrast, our task demands absolute orientation prediction —
aligning objects to a canonical coordinate frame that corresponds to intuitive understandings of
front, top, and upright directions. While some prior works explore absolute pose estimation [47, 3],
they are typically constrained to a limited set of categories, primarily due to the substantial manual
effort required to curate orientation-aligned training data. Recent efforts to scale such methods have
relied either on labor-intensive human annotations [15, 24] or on the use of Vision-Language Models
(VLMs) [52]. However, the former approach remains category-restricted, while the latter is subject to
the inherent inaccuracies of VLM-based orientation predictions. Moreover, these strategies necessitate
complex post-processing after 3D generation, which not only introduces potential inaccuracies but
also reduces user-friendliness and practical applicability.

To address this, we propose to learn canonical 3D object generation by directly fine-tuning pre-trained
3D generative models, thereby avoiding the limitations of such two-stage pipelines. Our key insight
is that a sufficiently diverse set of orientation-aligned 3D models can effectively adapt existing
generative models from producing arbitrarily oriented outputs to generating objects with consistent,
canonical orientations, while maintaining strong generalization capabilities to unseen objects across
various categories. To support this, we introduce Objaverse-OA, a new dataset comprising 14,832
3D models spanning 1,008 categories, each aligned to a consistent, common-sense orientation.
Leveraging Objaverse-OA, we fine-tune two representative 3D generative models [57, 23] to produce

2



Trellis-OA and Wonder3D-OA, allowing for generating well-aligned 3D objects across a broad
spectrum of categories, including those not included in the fine-tuning set.

We further demonstrate the utility of orientation-aligned 3D generative models through two down-
stream applications: zero-shot 3D object orientation estimation and efficient arrow-based object
rotation manipulation. For orientation estimation, our canonically generated 3D models serve as
templates to estimate object poses from single images, generalizing well across categories. Moreover,
we develop a user-friendly interface for object rotation manipulation in the augmented reality applica-
tions and 3D software, allowing users to specify the desired orientation via drawing an arrow, thereby
facilitating precise placement without tedious pose adjustments.

Our contributions are as follows: 1) We introduce the novel task of orientation-aligned 3D object
generation across a wide range of categories. 2) We construct Objaverse-OA, the largest orientation-
aligned 3D dataset in terms of category coverage. 3) We fine-tune existing 3D generative models
on Objaverse-OA to enable canonical object generation with robust generalization to unseen objects
across various categories. Experimental results across multiple datasets demonstrate that our method
achieves superior orientation alignment compared to existing baselines. 4) We showcase the practical
benefits of our orientation-aligned models in two key applications: zero-shot orientation estimation
and efficient object rotation manipulation via intuitive user interaction.

2 Related Work

3D Generative Models: Early 3D generation methods [55, 36, 1, 28, 4] typically employed
GANs [46] to model 3D distribution, while these methods generate orientation-aligned objects, they
are limited to a single category. The recent breakthroughs in 2D diffusion models [5, 11] provide
new solutions for 3D generation. Pioneering works DreamFusion [33] and SJC [48] propose to
generate 3D models by distilling from a 2D text-to-image generation model. However, these methods
and their follow-ups [18, 19, 43, 42, 51] always suffer from low efficiency and multi-face problems
due to per-shape optimization and lack of explicit 3D supervision. Recently, methods based on
multi-view diffusion models [23, 21, 49, 37, 41, 38, 44, 60] have succeeded in efficiently producing
multi-view consistent images via 3D attention. More recently, [25, 57, 64, 62, 59] utilize 3D latent
spaces to further improve the geometry quality of the 2D-assisted approaches. However, despite
huge progress on quality and efficiency, they all produce 3D models with uncanonical orientations
due to orientation misalignment in their 3D training data, like Objaverse [6], Objaverse-XL [7], and
TRELLIS-500K [57].

Object Orientation Estimation: One feasible approach to align 3D model orientations is to render
the 3D models from a fixed camera and estimate the object orientations in the renderings. Although
image-based 3D object pose estimation has been widely researched, most methods [54, 29, 40, 17, 22,
61] focus on predicting relative poses based on known 3D CAD models or reference images. Since the
orientation-aligned 3D CAD models and reference images are not available, they cannot estimate the
object orientations aligned with common sense. Category-level object pose estimation methods [47,
3, 53, 20, 9, 45] address this problem by generating 3D shape priors from the input images. However,
most of them are limited to category-level due to heavy labor effort in constructing orientation-aligned
3D datasets [47, 2, 15, 24]. In contrast, our method can generate orientation-aligned 3D objects across
a large number of categories. Concurrently, Orient Anything [52] realizes zero-shot object orientation
estimation by automatically constructing large orientation-aligned 3D datasets using advanced Vision
Language Models (VLMs). However, it still suffers from generalizability and accuracy due to a lack
of training on the object orientation estimation task. Besides, post-processing after 3D generation is
costly compared to directly generating orientation-aligned 3D models. Concurrently, [13] proposes
an intra-category object pose canonicalization method and constructs Canonical Objaverse Dataset,
which contains 3D objects with canonical poses within categories. However, our work focuses on
inter-category object pose canonicalization.

3 Objaverse-OA Dataset

In this section, we introduce the construction of our dataset, Objaverse-OA. Dataset diversity plays a
crucial role in achieving strong generalization capability. To the best of our knowledge, the existing
orientation-aligned 3D dataset [24] with the largest category number includes only 200 categories

3



Figure 2: VLM’s Performance in Orientation Estimation. We utilize our manually curated dataset
as ground truth (GT) and show the error rate of VLM’s estimation across different categories. We
observe that (1) the VLM demonstrates particular difficulty in recognizing front-facing orientations
for stick-like objects, and (2) a significant portion of recognition errors occur when processing objects
with inherently unclear or ambiguous frontal views. These challenges highlight the necessity of our
manual curation.

and fewer than 2,000 3D objects. In contrast, our Objaverse-OA dataset contains 14,832 orientation-
aligned 3D objects across 1008 categories, which will be made publicly available to the research
community. To build this large-scale dataset while maintaining both efficiency and accuracy, we
employ a hybrid pipeline that combines Vision-Language Model (VLM) pre-processing with manual
correction.

VLM pre-processing: As discovered by Orient Anything [52], advanced VLMs demonstrate the
ability to recognize object front views without task-specific training. Since most models in Objaverse
primarily vary in the horizontal (yaw) axis, we follow the strategy proposed in Orient Anything:
we render each 3D object from four horizontal viewpoints—front, back, left, and right—and use a
VLM to identify the correct front view. Based on the identified view, we then rotate the 3D model
accordingly to align it to a canonical orientation. Our data processing begins with the Objaverse-LVIS
dataset, and we use Gemini-2.0 [32] as the VLM for view recognition. From a total of 46,219 3D
models, Gemini successfully identifies front views for 20,664 objects. However, we observe that
VLM-based recognition, while promising, still falls short of human-level accuracy due to the absence
of fine-tuning and challenges associated with ambiguous or difficult cases. We illustrate the error rate
of VLM’s prediction across different categories in Fig. 2. One of the challenging cases is stick-like
objects, like spears, keys, and forks, since many of them are not aligned in roll and pitch angles in the
Objaverse. Another challenge involves geometrically narrow or thin objects such as fish, bicycles, and
water faucets. In such cases, VLM struggles to identify the correct orientation, as it relies solely on
visible front-view features without reasoning from side-view context, unlike humans. What’s more,
objects with ambiguous front views, like teapots, extinguishers, and cups, can result in inconsistent
orientation predictions. To address these issues, we introduce a manual correction step described
below.

Manual correction: Starting from the VLM-based alignment, we manually filter or correct the
wrong recognition results of the VLM and canonicalize objects with the ambiguous front-view
definition. Moreover, to preserve category diversity, we reintroduce objects that were incorrectly
filtered out by the VLM, particularly in cases where a category has too few correctly aligned instances.
As illustrated in the Figure 2, we manually correct the orientations for about 600 object categories,
especially the stick-like objects and objects with ambiguous orientation or unclear front view features.
Note that some objects have orientation ambiguity, especially tools like spoons, mugs, and fire
extinguishers. During the manual correction process, we refer to the object orientations defined in
prior work, specifically ImageNet3D [24], for the categories it covers. For example, for spoons,

4



Figure 3: Trellis-OA and Wonder3D-OA.We fine-tune two representative methods: Trellis [57],
based on a 3D-VAE backbone (top), and Wonder3D [23], based on a multi-view diffusion backbone
(bottom). For the 3D-VAE, we find that fine-tuning only the sparse structure generator is sufficient
to produce orientation-aligned objects. For the multi-view diffusion model, we adopt LoRA as a
lightweight domain adapter to enable the generation of orientation-aligned target images.

which are included in ImageNet3D, we align their poses in our dataset accordingly. For ambiguous
objects only included in our dataset, we define canonical poses based on semantic part structures,
geometric features, and common knowledge, following the principles established by ImageNet3D
and our supplementary material Section A.1. What’s more, we also filter objects with low geometry
quality and scenes with multiple objects. Experiments show that the pre-trained 3D generative models
can further improve geometry quality after fine-tuning on our dataset.

4 Orientation-Aligned 3D Object Generation

Based on our curated Objaverse-OA (Section 3), we fine-tune existing 3D generative models to
generate orientation-aligned objects. To demonstrate that orientation-aligned object generation
benefits a variety of architectural backbones, we implement our approach on two widely used single-
view image-to-3D reconstruction frameworks: a 3D VAE-based generative model (see Section 4.1)
and a multi-view diffusion model (see Section 4.2).

4.1 3D-VAE Based Generative Model

We choose a state-of-the-art 3D-VAE-based generative model, Trellis [57], as our base model, which
can produce fine-grained geometry and appearance aligned with the input image.

Preliminary: As shown in the Figure 3, Trellis [57] adopts three modules for 3D asset generation
during inference including sparse structure generator GS, structured latents generator GL, and 3D
decoder D. Given the input image I, sparse structure generator GS produces dense binary 3D
grid O ∈ {0, 1}N×N×N : O = GS(I, ε3d), where N is the length of the grid and ε3d is the
3D noise sampled from N (0,1), which is further converted into active voxels {(pi)}Ni=1 defined
as sparse structure. After that, sparse latents generator GS is used to generate structured latents
z = {(z i,pi)}Ni=1: z = GL(I, znoised), where znoised is the noised sparse structure {(εi,pi)}Ni=1.
Finally, the 3D representation M is obtained via 3D decoding: M = D(z ).

Trellis-OA: The original Trellis model [57] is unable to produce orientation-aligned 3D outputs due
to the orientation inconsistencies present in its training data. To address this, we fine-tune Trellis
using our Objaverse-OA dataset, resulting in Trellis-OA, which generates 3D objects with aligned
orientations. Although Trellis comprises several modules for 3D generation, we find that fine-tuning
only the sparse structure generator GS is sufficient for achieving orientation alignment. This is likely
because Trellis inherently generates object poses randomly sampled from four orthogonal directions,
and our aligned pose distribution resides within this range. As a result, both the pre-trained structured
latent generator GL and the 3D decoder D remain compatible with the aligned orientations and do

5



not require additional fine-tuning. Specifically, our fine-tuned sparse structure generator G′
S generates

canonical sparse structure {(p ′
i)}Ni=1, which shares aligned orientations. Afterwards, pre-trained

structured latents generator GL generates canonical structured latents and 3D decoder D produces
final canonical 3D models MOAwith orientation aligned. Our experiments demonstrate that we can
efficiently fine-tune Trellis to an orientation-aligned one while preserving its 3D priors.

4.2 Multi-view Diffusion Model

We choose Wonder3D [23] as our base multi-view diffusion model since it is one of the most
representative works based on multi-view diffusion frameworks. Note that the recipe for Wonder3D
can also be used by other multi-view diffusion based methods.

Preliminary: Multi-view diffusion models are typically fine-tuned from large-scale pre-trained
text-to-image models [35] and achieve multi-view consistent via 3D-aware attention mechanisms.
Specifically, given an input image I, the multi-view diffusion model MV generates N multi-view
images {Iimv}Mi=1 = MV (I, ε), where ε ∈ N (0, 1) is a sampled noise vector. Here, the poses of
the ground truth of the multi-view images {Iimv}Ni=1 are dependent on the input image I, where I1mv
is set to predict the input image I. After that, Wonder3D adopts an optimization method based on
NeuS [50] to lift {Imv} to 3D representation M.

Wonder3D-OA: Wonder3D [23] cannot produce orientation-aligned 3D models due to its misaligned
training data and input-image related camera settings. To address this, we implement Wonder3D-OA,
leveraging our orientation-aligned Objaverse-OA dataset. Given an input image I, Wonder3D-OA first
generates orientation-aligned, multi-view consistent images Imv

OA, which are then lifted to orientation-
aligned 3D representations MOA. Our key change is in the supervision setup: instead of using
input-view-dependent ground truth, we render six canonical views (front, front-left, front-right, left,
right, back) from fixed camera poses based on Objaverse-OA. This provides consistent orientation
references. We adopt LoRA [12] as a lightweight domain adapter to fine-tune the pre-trained
Wonder3D, preserving its learned 3D priors from non-canonical data while enabling alignment.
Additionally, we make architectural adjustments for improved performance. Originally, Wonder3D
aligns the input image with one of the predicted views to inject local features, which fails to work in
our canonical camera setting. Inspired by ImageDream [49], we instead employ a pixel injector to
integrate local features into the multi-view diffusion model. Specifically, Wonder3D employs a 3D
dense self-attention mechanism with a shape of (bz , 6, c, hl, wl) across six views within a transformer
layer, where bz is the batch size, c is the number of feature channel, hl and wl are the image resolution.
Our pixel controller modifies this to (bz , 7, c, hl, wl), incorporating the input image as an additional
view. We further improve efficiency by replacing Wonder3D’s test-time optimization-based 3D lifting
module (NeuS) with LGM [44], a recent model tailored for sparse-view 3D reconstruction. Since
LGM is trained using 4-views as input, we feed the front, left, right, and back views into LGM for
3D lifting. Finally, as our lifting module performs effectively without the need for normal maps, we
omit fine-tuning the cross-domain attention module in Wonder3D, simplifying the pipeline without
sacrificing quality.

5 Downstream Applications

To further demonstrate why making the 3D generative models orientation aligned is important, we
implement two downstream applications, including zero-shot model-free object orientation estimation
Section 5.1 and efficient arrow-based object rotation manipulation Section 5.2.

5.1 Zero-shot Model-free Object Orientation Estimation

One popular class of solutions to 3D object orientation estimation is based on analysis-by-
synthesis [47, 3, 10], but most of them are limited to category-level due to the difficulty in synthesizing
orientation-aligned 3D models across categories. Another line of methods [29, 54] estimates poses
relative to a given CAD model, limiting practical use since a corresponding model must be available
for each input image. While one could replace CAD models with generated 3D shapes (e.g., from
Trellis), the misaligned outputs of existing generative models result in unreliable pose references.
In contrast, our method generates orientation-aligned 3D shapes directly from a single image, en-
abling the prediction of absolute poses in a canonical frame by treating the generated 3D shape as

6



3D Generation Pose Refinement Pose Selection

Input Image

Initial Pose Refined Pose

Reference Feature

Best CandidatesTemplate Features

Orientation Aligned
3D Generative Model

Orientation Aligned
3D Generative Model
Pose Refinement DINO

Figure 4: Zero-Shot Orientation Estimation. Our orientation-aligned 3D object acts as a template
for pose estimation by rendering it from multiple views, refining each, and selecting the best-matching
viewpoint. Note that we do not perform training for this downstream task, where the pose refinement
module is directly from FoundationPose [54], and the pose selection module directly utilizes the
pre-trained DINO feature extractor [27].

a per-object template. Specifically, we build on a state-of-the-art template-based pose estimation
method, FoundationPose [54], which has strong generalizability due to training on a large synthetic
dataset. It renders templates from a fixed set of viewpoints, refines each pose, and then selects the
best match. Although FoundationPose is trained with accurate CAD models and depth maps, we find
that its pose refinement module remains effective even with our generated 3D shapes and without
depth input. However, its pose selection performance degrades when templates differ slightly in
geometry or appearance. To address this, we retain the pose refinement module but replace the pose
selection stage with a DINOv2 [27]-feature-based similarity metric, as shown in Figure 4. This
is achieved by computing the L2 distance between DINOv2 patch feature maps of each refined
rendering and the target image, and selecting the view with the highest similarity. Note that when
estimating orientations of objects in scene-level images, we need to extract objects’ masks via the
image segmentation method [14] before 3D generation.

5.2 Efficient Arrow-based Object Rotation Manipulation

Efficient manipulation of 3D model rotation within simulation systems is crucial, yet challenging,
especially when models are initialized in non-canonical poses. This difficulty arises because users
typically aim to orient a model toward a desired direction, but conventional 3D simulation systems
only record the model’s pose relative to its initial state. As a result, users must manually compensate
for any misalignment in the initial pose, complicating the interaction process. In contrast, our
generated orientation-aligned 3D models enable a more direct and user-friendly rotation manipulation
approach due to their aligned initial orientations. With this alignment, users can simply draw an arrow
indicating the desired forward-facing direction, without needing to consider the model’s original pose.
This arrow-based interaction paradigm enhances usability and is compatible with both augmented
reality (AR) applications and general-purpose 3D software. In AR applications, users draw an arrow
in the 2D image plane, which is subsequently lifted into 3D space using monocular depth estimation
techniques (e.g., [31]). The system then rotates the model so that its forward-facing axis aligns with
the specified arrow, while ensuring the object remains grounded on the background plane. Note that
because our models are normalized in scale, their size must still be specified, either through a large
language model (LLM) or direct user input. In general 3D software, users draw the arrow directly in
3D space. The system then applies Rodrigues’ rotation formula to align the model’s orientation with
the user-specified direction. Additional implementation details are provided in the supplementary
materials Section A.3.

Input Images Wonder3D Wonder3D-OA (Ours) GT Input Images Wonder3D Wonder3D-OA (Ours) GT

Figure 5: Qualitative Results on multi-view diffusion backbone, Wonder3D. For each input image,
we show two views with the same index from the multi-view predictions.

7



GSO [8] Toys4k [39]
CD↓ LPIPS↓ CLIP↑ CD↓ LPIPS↓ CLIP↑

Wonder3D 0.0894 0.2799 76.37 0.0932 0.2859 87.10
Wonder3D + PCA 0.0788 0.2554 77.80 0.0858 0.2691 87.58
Wonder3D + VLM (Gemini-2.0) [32] 0.0850 0.2752 76.30 0.0880 0.2804 87.53
Wonder3D + Orient Anything (ViT-L) [52] 0.1015 0.2600 77.50 0.1079 0.2699 88.12

Wonder3D-OA (ours w/o LGM) 0.0609 0.2300 80.22 0.0571 0.2351 91.33
Wonder3D-OA (ours) 0.0564 0.2270 80.30 0.0548 0.2317 92.09

Table 1: Quantitative Comparison of geometry and appearance on Multi-view Diffusion back-
bone [23]. We highlight the best, second-best, and third-best scores achieved on any metrics.

6 Experiment

6.1 Implementation Details

Dataset. Orientation-aligned 3D generative models Trellis-OA and Wonder3D-OA are trained on our
Objaverse-OA dataset, which is curated from Objaverse-LVIS [6]. The base multi-view diffusion
model is trained on Objaverse [6], and the base 3D-VAE-based model is trained on TRELLIS-
500K [57]. To demonstrate the generalizability and accuracy of our method’s orientation alignment
ability, we evaluate on two unseen datasets, GSO [8] and Toys4k [39]. To further demonstrate the
sim-to-real generalizability, we also evaluate on the real-world dataset Imagenet3D [24].

Baselines. For the task of aligned object generation, there are no existing baselines for this task.
Therefore, we design baselines that perform this task in two stages: 1) object generation with
misaligned orientations, and 2) orient them to aligned poses based on pose estimation using different
variants: (i) Principal Component Analysis (PCA); (ii) advanced Vision Language Model (VLM)
Gemini-2.0 [32]; and (iii) zero-shot model-free orientation estimation method, Orient Anything [52].
For the task of zero-shot orientation estimation, we compare our method with Orient Anything [52]
and FSDetView [58]. Note that FSDetView doesn’t support zero-shot estimation. Therefore, we
evaluate its performance only on its supported categories.

Metrics. To evaluate the orientation alignment ability, we rotate reconstructed 3D models using
different kinds of methods and calculate Chamfer Distance (CD), LPIPS [63], and CLIP [34] scores
to measure the orientation alignment quality. To evaluate the performance of our zero-shot orientation
estimation method, we calculate Acc@30 and orientation absolute error (Abs) according to the
rotation error. We follow NOCS to calculate the rotation eR defined by: eR = arccosTr(R̃·RT )−1

2 ,
where Tr represents the trace of the matrix. Note that for stick-like objects, top and side directions
typically have ambiguity. Therefore, we only calculate the rotation error in the front direction.

Training and inference time. To fine-tune Trellis-OA, we use a total batch size of 64 for training
30000 steps, which takes only about 10 hours on the cluster of 8 Nvidia Tesla A100 GPUs. To
fine-tune Wonder3D-OA, we use a total batch size of 512 for training 40000 steps, which takes about
3 days on the cluster of 8 Nvidia Tesla A100 GPUs.. For the 3D object generation, Trellis-OA takes
32.93s and Wonder3D-OA takes 6.69s for multi-view generation, 2.53s for fused 3DGS generation,
and 45.37s for mesh extraction. Given the generated 3D models, our pose refinement module takes
6.54s and the pose selection module takes 7.47s, which are comparable with the SOTA template-based
pose estimation method FoundationPose [54].

6.2 Orientation-Aligned Object Generation

Comparison with baselines: We first evaluate the performance of orientation-aligned object
generation. As shown in the Table 1 and Table 2, our fine-tuned models, Wonder3D-OA and Trellis-
OA, surpass most two-stage baselines in geometry and appearance on both GSO and Toys4k datasets.
Note that our method is suboptimal in appearance on the GSO dataset compared to the VLM baseline.
It is probably because the GSO dataset has more objects with irregular geometry and appearance,
which is challenging for our fine-tuned generator to handle. We present more qualitative results
in the Figure 5 and Figure 6. As shown in Figure 6, PCA cannot handle objects with different
shape features and has difficulty in distinguishing the direction of estimated principal axes. VLM

8



GSO [8] Toys4k [39]
CD↓ LPIPS↓ CLIP↑ CD↓ LPIPS↓ CLIP↑

Trellis 0.0770 0.2502 82.88 0.0951 0.2722 92.31
Trellis + PCA 0.0798 0.2771 78.84 0.0911 0.2758 88.09
Trellis + VLM (Gemini-2.0) [32] 0.0421 0.1998 89.97 0.0564 0.2137 95.19
Trellis + Orient Anything (ViT-L) [52] 0.0604 0.2193 88.61 0.0725 0.2313 94.81

Trellis-OA (ours small) 0.0448 0.2224 82.46 0.0465 0.2055 93.74
Trellis-OA (ours) 0.0407 0.2118 88.41 0.0393 0.1932 95.71

Table 2: Quantitative Comparison of geometry and appearance on 3D-VAE backbone [57].

Input images Trellis + PCA Trellis + VLM Trellis + Orient Anything Trellis-OA (Ours) GTTrellis

Figure 6: Qualitative Results based on the 3D-VAE backbone, Trellis. For each input image,
we render the reconstructed object from two consistent views. Note that our method consistently
generates objects in their canonical space.

has trouble recognizing objects with unclear front-view features, like dolphins and boats. Orient
Anything is still not that accurate, and typically rotates objects into leaning poses. In contrast, our
method accurately aligns the orientation of the generated 3D models without obvious geometry and
appearance degradation. Besides, our method can handle real world internet images and multi-objects
images as shown in Figure 7 and Figure 8. Furthermore, due to the high geometry quality of our
Objaverse-OA, Trellis-OA eliminates the production of plane-like geometries. Please refer to the
supplementary materials Section B for more qualitative results.

Ablation Study: To assess the importance of using an orientation-aligned dataset with diverse
categories, we conduct an ablation study by fine-tuning 3D generative models on a reduced set of 100
categories with 5720 objects, see (ours small) in Table 1 and Table 2. The results show that reducing
the number of training categories degrades both geometric and visual quality, highlighting the value
of large category diversity in our Objaverse-OA dataset.

Figure 7: Qualitative Results of Trellis-OA on real
world internet images.

Figure 8: Qualitative Results of Trellis-
OA on multi-objects images.

6.3 Zero-Shot Object Orientation Estimation

Comparison with baselines: As shown in Table 3, without specific training, our method is already
comparable with the SOTA orientation estimation method [52] with the ViT-large architecture and
surpasses [52] with the ViT-small architecture by a large margin. Besides, our method can handle
challenging stick-like objects collected from the real-world dataset while baselines all fail to work,
which further demonstrates our utility in coping with long-tailed situations.

9



Toys4k [39] Stick-like Obj. from ImageNet3D [24]
Acc@30↑ Abs↓ Acc@30↑ Abs↓

FSDetView [58] (Few-shot) 20.90 91.66 10.29 84.25
Orient Anything [52] (Vit-S) 42.05 52.72 2.63 81.70
Orient Anything [52] (Vit-L) 63.18 36.37 9.8 78.19

Ours (Vit-S) 51.15 53.94 60.78 40.12
Ours (ViT-L) 52.87 46.76 62.25 34.20

Table 3: Quantitative Comparison of zero-shot orientation estimation on Toys4k [39] and stick-like
objects from ImageNet3D [24].

Orient Anything (ViT-Large)

Ours

Figure 9: Orientation Estimation Comparison
on stick-like objects from ImageNet3D [24].

Figure 10: Orientation Estimation Results of
our method on Toys4k [39].

6.4 Efficient Arrow-based Object Rotation Manipulation

Figure 11: Qualitative results of our efficient arrow-based object rotation manipulation method in
augmented reality applications.

Figure 1 and Figure 11 illustrate our arrow-based object rotation manipulation method in augmented
reality applications. Given an image of an object, we generate the corresponding object in its
canonical pose using Trellis-OA, and then manipulate it in the reference image with the target
orientation indicated by a user-specified arrow. This allows for efficient object manipulation without
adjusting the object’s orientation in a post-hoc fashion. We present more qualitative results of our
method in the general 3D software in the video of supplementary materials, which demonstrate the
usage of our approach.

7 Conclusion and Limitation

In this paper, we aim to align the orientations of the 3D generative models for downstream orientation
estimation and efficient object rotation manipulation in 3D simulation systems. Towards this goal,
we construct Objaverse-OA, a dataset covering orientation-aligned 3D models across the largest
number of categories. Based on Objaverse-OA, we align the orientations of 3D generative models
based on two popular 3D generation frameworks, including multi-view diffusion and 3D-VAE. Built
upon the orientation-aligned 3D generative models, we develop a simple but effective orientation
estimation approach following the analysis-by-synthesis paradigm and an efficient arrow-based object
manipulation method. While our method achieves promising zero-shot orientation estimation without
task-specific training, future work could further improve performance by training a dedicated model
that leverages the generated 3D objects as templates.

8 Acknowledgement

This work is supported by NSFC under grant 62441223 and 62202418, and partially by Ant Group.

10



References
[1] Eric Chan, Connor Z. Lin, Matthew Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,

Leonidas J. Guibas, Jonathan Tremblay, S. Khamis, Tero Karras, and Gordon Wetzstein. Efficient geometry-
aware 3d generative adversarial networks. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16102–16112, 2021.

[2] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, L. Yi, and Fisher Yu. Shapenet:
An information-rich 3d model repository. ArXiv, abs/1512.03012, 2015.

[3] Xu Chen, Zijian Dong, Jie Song, Andreas Geiger, and Otmar Hilliges. Category level object pose estimation
via neural analysis-by-synthesis. In European Conference on Computer Vision, 2020.

[4] Xinya Chen, Hanlei Guo, Yanrui Bin, Shangzhan Zhang, Yuanbo Yang, Yue Wang, Yujun Shen, and Yiyi
Liao. Learning 3d-aware gans from unposed images with template feature field. In European Conference
on Computer Vision, 2024.

[5] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in vision:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45:10850–10869, 2022.

[6] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig Schmidt,
Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of annotated 3d objects. 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 13142–13153, 2022.

[7] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan Fan,
Christian Laforte, Vikram S. Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha Kembhavi, Carl
Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-xl: A universe of
10m+ 3d objects. ArXiv, abs/2307.05663, 2023.

[8] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Michael Hickman, Krista Reymann,
Thomas Barlow McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of
3d scanned household items. 2022 International Conference on Robotics and Automation (ICRA), pages
2553–2560, 2022.

[9] Zhaoxin Fan, Zhenbo Song, Jian Xu, Zhicheng Wang, Kejian Wu, Hongyan Liu, and Jun He. Object level
depth reconstruction for category level 6d object pose estimation from monocular rgb image. In European
Conference on Computer Vision, 2022.

[10] Jiaxin Guo, Fangxun Zhong, Rong Xiong, Yunhui Liu, Yue Wang, and Yiyi Liao. A visual navigation
perspective for category-level object pose estimation. In European Conference on Computer Vision, 2022.

[11] Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv, abs/2006.11239,
2020.

[12] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685, 2021.

[13] Li Jin, Yujie Wang, Wenzheng Chen, Qiyu Dai, Qingzhe Gao, Xueying Qin, and Baoquan Chen. One-shot
3d object canonicalization based on geometric and semantic consistency. 2025 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 16850–16859, 2025.

[14] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick. Segment
anything. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pages 3992–4003, 2023.

[15] Akshay Krishnan, Abhijit Kundu, Kevis-Kokitsi Maninis, James Hays, and Matthew Brown. Omninocs: A
unified nocs dataset and model for 3d lifting of 2d objects. ArXiv, abs/2407.08711, 2024.

[16] Rebecca Lawson. Achieving visual object constancy across plane rotation and depth rotation. Acta
psychologica, 102 2-3:221–45, 1999.

[17] Taeyeop Lee, Bowen Wen, Minjun Kang, Gyuree Kang, In-So Kweon, and Kuk-Jin Yoon. Any6d:
Model-free 6d pose estimation of novel objects. ArXiv, abs/2503.18673, 2025.

[18] Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang Xu, and Yingcong Chen. Luciddreamer:
Towards high-fidelity text-to-3d generation via interval score matching. 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6517–6526, 2023.

11



[19] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,
Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 300–309, 2022.

[20] Jiehong Lin, Zewei Wei, Changxing Ding, and Kui Jia. Category-level 6d object pose and size estimation
using self-supervised deep prior deformation networks. In European Conference on Computer Vision,
2022.

[21] Yuan Liu, Chu-Hsing Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wenping Wang.
Syncdreamer: Generating multiview-consistent images from a single-view image. ArXiv, abs/2309.03453,
2023.

[22] Yibo Liu, Zhaodong Jiang, Binbin Xu, Guile Wu, Yuan Ren, Tongtong Cao, Bingbing Liu, Rui Heng Yang,
Amir Rasouli, and Jinjun Shan. Hippo: Harnessing image-to-3d priors for model-free zero-shot 6d pose
estimation. ArXiv, abs/2502.10606, 2025.

[23] Xiaoxiao Long, Yuanchen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai
Zhang, Marc Habermann, Christian Theobalt, and Wenping Wang. Wonder3d: Single image to 3d using
cross-domain diffusion. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9970–9980, 2023.

[24] Wufei Ma, Guanning Zeng, Guofeng Zhang, Qihao Liu, Letian Zhang, Adam Kortylewski, Yaoyao
Liu, and Alan L. Yuille. Imagenet3d: Towards general-purpose object-level 3d understanding. ArXiv,
abs/2406.09613, 2024.

[25] Quan Meng, Lei Li, Matthias Nießner, and Angela Dai. Lt3sd: Latent trees for 3d scene diffusion. ArXiv,
abs/2409.08215, 2024.

[26] Scott O. Murray, Daniel J. Kersten, Bruno A. Olshausen, Paul Schrater, and David L. Woods. Shape
perception reduces activity in human primary visual cortex. Proceedings of the National Academy of
Sciences of the United States of America, 99:15164 – 15169, 2002.

[27] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Q. Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas,
Wojciech Galuba, Russ Howes, Po-Yao (Bernie) Huang, Shang-Wen Li, Ishan Misra, Michael G. Rabbat,
Vasu Sharma, Gabriel Synnaeve, Huijiao Xu, Hervé Jégou, Julien Mairal, Patrick Labatut, Armand Joulin,
and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision. ArXiv, abs/2304.07193,
2023.

[28] Dario Pavllo, David Joseph Tan, Marie-Julie Rakotosaona, and Federico Tombari. Shape, pose, and
appearance from a single image via bootstrapped radiance field inversion. 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4391–4401, 2022.

[29] Sida Peng, Yuan Liu, Qi-Xing Huang, Hujun Bao, and Xiaowei Zhou. Pvnet: Pixel-wise voting network for
6dof pose estimation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4556–4565, 2018.

[30] Pakkapon Phongthawee, Worameth Chinchuthakun, Nontaphat Sinsunthithet, Amit Raj, Varun Jampani,
Pramook Khungurn, and Supasorn Suwajanakorn. Diffusionlight: Light probes for free by painting a
chrome ball. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
98–108, 2023.

[31] Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc van Gool, and Fisher Yu.
Unidepth: Universal monocular metric depth estimation. 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10106–10116, 2024.

[32] Sundar Pichai, Demis Hassabis, and Koray Kavukcuoglu. Gemini-2.0. https://blog.google/technology/
google-deepmind/google-gemini-ai-update-december-2024. Accessed: 2025-05-14.

[33] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
ArXiv, abs/2209.14988, 2022.

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, pages 8748–8763. PMLR,
2021.

12

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024


[35] Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10674–10685, 2021.

[36] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields for
3d-aware image synthesis. ArXiv, abs/2007.02442, 2020.

[37] Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen, Chong
Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base model. ArXiv,
abs/2310.15110, 2023.

[38] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and X. Yang. Mvdream: Multi-view diffusion
for 3d generation. ArXiv, abs/2308.16512, 2023.

[39] Stefan Stojanov, Anh Thai, and James M. Rehg. Using shape to categorize: Low-shot learning with an
explicit shape bias. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1798–1808, 2021.

[40] Jiaming Sun, Zihao Wang, Siyu Zhang, Xingyi He He, Hongcheng Zhao, Guofeng Zhang, and Xiaowei
Zhou. Onepose: One-shot object pose estimation without cad models. 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6815–6824, 2022.

[41] Stanislaw Szymanowicz, C. Rupprecht, and Andrea Vedaldi. Viewset diffusion: (0-)image-conditioned 3d
generative models from 2d data. 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 8829–8839, 2023.

[42] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. ArXiv, abs/2309.16653, 2023.

[43] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen. Make-it-
3d: High-fidelity 3d creation from a single image with diffusion prior. 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 22762–22772, 2023.

[44] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm: Large
multi-view gaussian model for high-resolution 3d content creation. In European Conference on Computer
Vision, 2024.

[45] Meng Tian, Marcelo H. Ang, and Gim Hee Lee. Shape prior deformation for categorical 6d object pose
and size estimation. ArXiv, abs/2007.08454, 2020.

[46] Individualized Treat and Jinsung Yoon. Generative adversarial nets. 2018.

[47] He Wang, Srinath Sridhar, Jingwei Huang, Julien P. C. Valentin, Shuran Song, and Leonidas J. Guibas.
Normalized object coordinate space for category-level 6d object pose and size estimation. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2637–2646, 2019.

[48] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Gregory Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation. 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 12619–12629, 2022.

[49] Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation. ArXiv,
abs/2312.02201, 2023.

[50] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. ArXiv, abs/2106.10689, 2021.

[51] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer:
High-fidelity and diverse text-to-3d generation with variational score distillation. ArXiv, abs/2305.16213,
2023.

[52] Zehan Wang, Ziang Zhang, Tianyu Pang, Chao Du, Hengshuang Zhao, and Zhou Zhao. Orient anything:
Learning robust object orientation estimation from rendering 3d models. ArXiv, abs/2412.18605, 2024.

[53] Jiaxin Wei, Xibin Song, Weizhe Liu, Laurent Kneip, Hongdong Li, and Pan Ji. Rgb-based category-level
object pose estimation via decoupled metric scale recovery. 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 2036–2042, 2023.

[54] Bowen Wen, Wei Yang, Jan Kautz, and Stanley T. Birchfield. Foundationpose: Unified 6d pose estimation
and tracking of novel objects. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 17868–17879, 2023.

13



[55] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Joshua B. Tenenbaum. Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling. In Neural Information Processing
Systems, 2016.

[56] Tianhao Wu, Chuanxia Zheng, Frank Guan, Andrea Vedaldi, and Tat-Jen Cham. Amodal3r: Amodal 3d
reconstruction from occluded 2d images. ArXiv, abs/2503.13439, 2025.

[57] Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin Tong,
and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. ArXiv, abs/2412.01506,
2024.

[58] Yang Xiao, Vincent Lepetit, and Renaud Marlet. Few-shot object detection and viewpoint estimation for
objects in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45:3090–3106, 2020.

[59] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli, Gor-
don Wetzstein, Zexiang Xu, and Kai Zhang. Dmv3d: Denoising multi-view diffusion using 3d large
reconstruction model. ArXiv, abs/2311.09217, 2023.

[60] Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng, Yujun Shen, and Gordon
Wetzstein. Grm: Large gaussian reconstruction model for efficient 3d reconstruction and generation. In
European Conference on Computer Vision, 2024.

[61] Yuanhong Yu, Xingyi He He, Chen Zhao, Junhao Yu, Jiaqi Yang, Ruizhen Hu, Yujun Shen, Xing Zhu,
Xiaowei Zhou, and Sida Peng. Boxdreamer: Dreaming box corners for generalizable object pose estimation.
2025.

[62] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan Xu,
and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d assets. ACM
Transactions on Graphics (TOG), 43:1 – 20, 2024.

[63] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 586–595, 2018.

[64] Zibo Zhao, Zeqiang Lai, Qin Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng, Mingxin Yang,
Sheng Zhang, Xianghui Yang, Huiwen Shi, Si-Ya Liu, Junta Wu, Yihang Lian, Fan Yang, Ruining Tang,
Ze-Bao He, Xinzhou Wang, Jian Liu, Xuhui Zuo, Zhuo Chen, Biwen Lei, Haohan Weng, Jing Xu, Yi Zhu,
Xinhai Liu, Lixin Xu, Chang-Ping Hu, Tianyu Huang, Lifu Wang, Jihong Zhang, Mengya Chen, Liang
Dong, Yi yong Jia, Yu-Xin Cai, Jiaao Yu, Yi Jun Tang, Hao Zhang, Zhengfeng Ye, Peng He, Runzhou
Wu, Chao Zhang, Yonghao Tan, Jie Xiao, Yang-Dan Tao, Jian-Xi Zhu, Ji Xue, Kai Liu, Chongqing Zhao,
Xinming Wu, Zhi wei Hu, Lei Qin, Jian-Yong Peng, Zhan Li, Minghui Chen, Xipeng Zhang, Lin Niu,
Paige Wang, Yingkai Wang, Hao Kuang, Zhongyi Fan, Xu Zheng, Weihao Zhuang, Yin-Yin He, Tian-Hai
Liu, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, Jingwei Huang, and Chunchao Guo. Hunyuan3d 2.0:
Scaling diffusion models for high resolution textured 3d assets generation. ArXiv, abs/2501.12202, 2025.

14



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim in the abstract and Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 7.

15



Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We don’t have a theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present our experimental results in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.

16



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We don’t provide code in the submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail our experimental setting in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiment doesn’t involve error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

18



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss in the appendix in the supplementary materials.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Our paper poses no such risks.
Guidelines:

19

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We list the Licenses in the appendix in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

20

paperswithcode.com/datasets


Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We declare the usage of Gemini in Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


Appendix
In this appendix, we detail our dataset curation, experiment implementations, and method implementa-
tions in Section A. Besides, we provide more results of our efficient arrow-based object manipulation,
orientation-aligned object generation, orientation estimation, and failure cases in Section B.

A Implementation Details

A.1 Dataset Curation

Data Processing Pipeline. We first apply Vision Language Model (VLM) recognition across
the entire dataset, followed by manual identification and correction of failure cases. Specifically,
four images were rendered for each 3D object using an orthogonal camera setup. The front view
was identified using the VLM (Gemini 2.0 [32]), and the objects were subsequently rotated to their
canonical poses based on the recognition results. Note that objects recognized as without front-view
orientation are automatically excluded from the dataset. After this initial step, the orientations of the
processed objects were manually refined using Blender software.

VLM Pre-processing. Different from Orient Anything, we further enhance the text prompt by
adding more recognition rules for different kinds of objects, as shown in Figure 13. We find this
operation can further improve the robustness of VLM via in-context learning.

Stick-like Objects Unclear Front-View Feature Ambiguous Front-View Definition

Figure 12: Failure cases in VLM-based front-view recognition. The four images are rendered from
four orthogonal cameras following our VLM-based recognition method.

Manual Corrrection Details. Despite advancements, VLMs still face challenges in accurately
recognizing objects’ orientations due to a lack of training. Three particular object categories are
prone to errors, as shown in Figure 12: (1) stick-like objects (e.g., forks, spoons), (2) objects
lacking distinctive front-view features (e.g., seahorses, water faucets), and (3) objects with inherently
ambiguous front-view definitions (e.g., mugs, fire extinguishers). VLMs struggle with stick-like
objects since they are not aligned in roll and pitch angles. For objects without clear front-view features,
distinguishing the front from the back often requires side-view inference, which hasn’t been achieved
by existing VLMs. Ambiguity in defining a canonical front view further complicates recognition for
certain object types. To address these issues, we implemented the following corrections: stick-like
objects were aligned parallel to the global X-axis, positioning the handle toward the negative X-axis
and the functional end toward the positive X-axis. Objects without distinct front-view cues were
manually rotated in Blender. For objects with ambiguous front-view definitions, we aligned the
component typically associated with human interaction (e.g., handles) to the negative X-axis.

22



Figure 13: Text prompt for the Vision Language Model.

VLM Error Analysis After obtaining the orientation-aligned dataset, we conducted a comprehensive
error analysis by comparing the VLM’s predictions with our manually validated ground truth. For
each 3D model, we computed the Chamfer Distance (CD) between the 3D models after VLM-based
recognition and our manually corrected 3D models. Each model was uniformly sampled with 10,000
surface points to facilitate CD computation. Since CD values are influenced by object geometry
and do not perfectly reflect orientation accuracy, we adopted a threshold-based approach to quantify
recognition accuracy. Through empirical analysis, we found that rotating a model by 90° around
its principal axis typically resulted in a CD > 0.01. This threshold, γ = 0.01, was therefore used to
flag recognition errors: any model with a CD exceeding this value between VLM and ground-truth
orientations was considered wrongly recognized. Notably, this threshold may produce wrong results
for perfectly cylindrical or cubical shapes due to their inherent symmetry. However, such cases
represent a negligible minority in our dataset and were therefore excluded from our error statistics to
maintain analytical integrity.

A.2 Experiment Implementations

Evaluation Data. We evaluate our method on three unseen datasets: GSO [8], Toys4k [39], and
Imagenet3D [24]. For the GSO dataset, we randomly collected 48 objects with clearly defined front
views. Each object was rendered into four images, sampled from the upper hemisphere with azimuth
angles uniformly distributed within [0◦, 360◦], polar angles within [0◦, 60◦], and rotation angles
within [-30◦, 30◦]. For the Toys4k dataset, we randomly selected 439 objects across 47 categories.
Each object was rendered into a single image using the same camera configuration as applied to

23



Figure 14: Correct VLM recognition results.

Figure 15: Wrong VLM recognition results.

24



the GSO dataset. For the Imagenet3D dataset, we focused on seven stick-like object categories,
comprising a total of 204 objects. Please refer to Table 4 and Table 5 for details.

airplane bicycle boat bunny bus car cat chair

9 10 9 9 5 5 9 20

chicken cow crab deer moose dinosaur dog dolphin dragon

8 6 10 10 10 9 10 10

elephant fish fox frog giraffe guitar helmet helicopter

10 10 9 10 10 10 7 8

horse laptop lion lizard monkey motorcycle mouse panda

10 6 10 10 10 8 10 7

PC mouse penguin piano pig radio robot shark sheep

3 16 6 10 2 8 10 8

shoe sofa tractor train truck violin whale

10 20 16 4 10 10 9

Table 4: Object numbers of each category in Toys4k [39] evaluation data.

fork knife pen rifle scissors screwdriver spoon

22 24 30 31 33 29 38

Table 5: Object numbers of each category in Imagenet3D [24] evaluation data.

Baselines. To implement the PCA-based baseline, we first calculate the three principal axes by
eigen-decomposing the 3D models’ geometries. The object is then rotated to align these principal
axes with the global coordinate system’s x-, y-, and z-axes. For the VLM-based baseline, we follow
the same method used in the dataset curation, utilizing Gemini-2.0 [32] for orientation recognition.
To implement the baseline based on Orient Anything [52], we use the official checkpoint based on the
ViT-large architecture and adopt its data augmentation module. The object orientation is estimated
from an image rendered using a fixed camera, and the object is subsequently rotated according to the
predicted orientation. For the pre-trained 3D generative models based on multi-view diffusion and
3D-VAE, we utilize the official Wonder3D++ and Trellis checkpoints. For the orientation estimation
baseline based on FSDetView [58], we restrict evaluation to the object categories supported by the
method.

Metrics. For the calculation of Chamfer Distance, we don’t perform PCA for both predicted 3D
models and GT models (except the PCA baseline), in order to measure the pose canonicalization
performance. As for the calculation of CLIP and LPIPS, for the 3D-VAE backbone, we render four
orthogonal views with the camera elevation angle of 0 for both the generated and GT 3D models, and
computed the LPIPS and CLIP scores based on these renderings at matched camera poses, while for
the Multi-view Diffusion backbone, we randomly sample views on a unit sphere for evaluation to
avoid unfairness, since the orthogonal views are aligned with the camera setting of our Wonder3D-OA,
but not aligned with the Wonder3D baselines.

A.3 Method Implementations

Efficient Arrow-based Object Rotation Manipulation. For the arrow-based object rotation
manipulation in the augmented reality application, we define this arrow-based interaction using a 2D
start point Pstart and a 2D end point Pend, forming a direction vector Vtarget = Pend −Pstart.
Then we use Unidepth [31] to estimate the camera intrinsic and depth map. With camera intrinsic,
we calculate the 3D camera rays Rstart and Rend for the corresponding 2D points Pstart and

25



Figure 16: More results of our efficient arrow-based object manipulation method.

Pend. With the depth map, we calculate the plane P via the least square method. After that,
we calculate the 3D intersection points P3d

end and P3d
start between the corresponding camera rays

Rstart, Rend and the extracted plane P . Finally, 3D direction vector V3d
target can be calculated:

V3d
target = P3d

end −P3d
start. Since each generated model is aligned to a known forward vector V3d

init,
we can directly compute and apply the rotation that aligns V3d

init with V3d
target, allowing the object

to be placed in the correct orientation without any manual adjustment. Note that the 3D start point
P3d

start is also the 3D location of the inserted 3D object, the 3D models need to rotate along V3d
target

to ensure verticality to the ground and the object size still needs to be set via VLM or user interaction,
since our generated models share a normalized scale. Specifically, to automatically estimate the size
of the object to insert, we can directly ask the VLM to estimate the common size of the object in the
real world with the single-view image as input, since our method estimates metric depth with the
scale aligned with the real world for insertion. Besides, to make the insertion results realistic, we set
a plane as a shadow catcher and estimate the environment lighting using DiffusionLight [30]. For
the arrow-based object rotation manipulation in the generic 3D software, we define this arrow-based
interaction using a 3D start point P3d

start and a 3D end point P3d
end, forming a 3D direction vector

V3d
target = P3d

end −P3d
start. The rotation transformation is calculated by aligning V3d

init with V3d
target

using Rodrigues’ formula and users can further rotate the objects along V3d
target if needed.

B More Results

B.1 Efficient Arrow-based Object Manipulation

We present more results of our efficient arrow-based object manipulation method in the Figure 16.

26



Figure 17: More qualitative results of our Trellis-OA and orientation estimation on Toys4k [39]. Note
that the images correspond to the input image, two renderings of the generated 3D model, and the
orientation estimation results, respectively.

Chamfer Distance ↓ LPIPS ↓ CLIP ↑
Trellis (Manually corrected) 0.0377 0.1723 88.33

Trellis-OA (Ours) 0.0280 0.1574 88.77

Table 6: Quantitative comparison of geometry and appearance quality between Trellis with manually
corrected orientations and Trellis-OA (Ours). The results demonstrate that our orientation-alignment
fine-tuning can enhance the performance of the pre-trained checkpoint, likely attributable to the high
quality of our Objaverse-OA dataset.

B.2 Orientation-aligned Object Generation

We present more qualitative results of our Trellis-OA and orientation estimation method in Figure 17,
Figure 18, Figure 19, Figure 20, and Figure 21. We also present more qualitative comparisons
between Wonder3D and our Wonder3D-OA in Figure 22 and Figure 23. Besides, we present more
results of Trellis-OA and Wonder3D-OA in our demo video. Please check the video for details.

To investigate whether our orientation alignment fine-tuning affects the performance of the original
pre-trained checkpoint, we randomly select 46 objects across 46 categories in the Toys4k [39] dataset.
As shown in Table 6, our method not only maintains performance but may even enhance the quality
of the pre-trained 3D generative models. This improvement is likely due to the high fidelity of our
manually corrected Objaverse-OA dataset.

B.3 Orientation Estimation

We detail orientation estimation results of baselines and our method at the category level in Table 7
and Table 8.

B.4 Impact of Occlusion

As illustrated in Figure 24, our object generation module is capable of producing reasonable results
under partial occlusion, with minimal performance degradation. However, in scenarios involving
severe occlusion, we recommend using the method proposed in [56], which is specifically designed

27



Figure 18: More qualitative results of our Trellis-OA and orientation estimation on Toys4k [39].

28



Figure 19: More qualitative results of our Trellis-OA and orientation estimation on Toys4k [39].

29



Figure 20: More qualitative results of our Trellis-OA and orientation estimation on Toys4k [39].

30



airplane bicycle boat bunny bus car

FSDetView [58] - / - 40.00 / 58.52 11.11 / 114.89 - / - 20.00 / 75.71 40.00 / 58.07

Orient Anything [52] (Vit-S) 30.00 / 70.48 20.00 / 63.91 44.44 / 73.69 33.33 / 47.79 100.00 / 11.64 80.00 / 29.49

Orient Anything [52] (Vit-L) 80.00 / 39.03 40.00 / 74.73 44.44 / 87.91 88.89 / 15.63 80.00 / 20.32 80.00 / 18.73

Ours (ViT-S) 66.67 / 55.99 80.00 / 40.28 55.56 / 66.21 44.44 / 50.77 100.00 / 9.52 60.00 / 74.66

Ours (ViT-L) 77.78 / 34.96 80.00 / 18.76 44.44 / 58.47 44.44 / 45.00 100.00 / 10.55 100.00 / 17.15

cat chair chicken cow crab deer moose

FSDetView [58] - / - 10.00 / 96.30 - / - - / - - / - - / -

Orient Anything [52] (Vit-S) 55.56 / 35.79 55.00 / 39.50 25.00 / 59.75 33.33 / 61.73 10.00 / 75.44 50.00 / 29.89

Orient Anything [52] (Vit-L) 77.78 / 19.83 90.00 / 15.53 50.00 / 34.62 50.00 / 40.90 50.00 / 42.89 100.00 / 17.54

Ours (ViT-S) 22.22 / 54.68 45.00 / 59.01 37.50 / 73.32 33.33 / 41.42 40.00 / 69.11 50.00 / 30.04

Ours (ViT-L) 33.33 / 65.48 40.00 / 49.99 75.00 / 28.66 33.33 / 63.09 60.00 / 46.70 60.00 / 34.98

dinosaur dog dolphin dragon elephant fish

FSDetView [58] - / - - / - - / - - / - - / - - / -

Orient Anything [52] (Vit-S) 50.00 / 32.32 22.22 / 53.95 30.00 / 86.84 20.00 / 69.35 50.00 / 45.98 20.00 / 59.59

Orient Anything [52] (Vit-L) 70.00 / 22.11 88.89 / 16.71 30.00 / 50.37 50.00 / 48.06 70.00 / 28.76 40.00 / 47.36

Ours (ViT-S) 10.00 / 54.34 55.56 / 47.04 70.00 / 34.27 10.00 / 76.13 50.00 / 56.19 20.00 / 82.77

Ours (ViT-L) 40.00 / 38.01 44.44 / 46.88 60.00 / 34.52 20.00 / 59.41 70.00 / 35.56 20.00 / 89.96

fox frog giraffe guitar helicopter helmet

FSDetView [58] - / - - / - - / - 0.00 / 110.48 - / - 28.57 / 49.01

Orient Anything [52] (Vit-S) 77.78 / 31.87 50.00 / 48.89 0.00 / 51.62 30.00 / 67.83 0.00 / 101.22 14.29 / 53.71

Orient Anything [52] (Vit-L) 66.67 / 22.15 90.00 / 21.53 80.00 / 24.69 50.00 / 35.85 50.00 / 74.92 14.29 / 54.06

Ours (ViT-S) 55.56 / 47.99 50.00 / 63.22 50.00 / 32.03 40.00 / 39.72 25.00 / 111.61 57.14 / 70.63

Ours (ViT-L) 44.44 / 39.19 60.00 / 64.88 60.00 / 32.85 30.00 / 64.50 25.00 / 67.30 42.86 / 62.73

horse laptop lion lizard monkey motorcycle

FSDetView [58] - / - 62.50 / 42.29 - / - - / - - / - - / -

Orient Anything [52] (Vit-S) 20.00 / 73.80 75.00 / 19.83 50.00 / 36.90 10.00 / 56.94 90.00 / 19.91 25.00 / 101.14

Orient Anything [52] (Vit-L) 80.00 / 36.15 50.00 / 70.09 70.00 / 28.20 40.00 / 38.71 70.00 / 21.11 50.00 / 51.71

Ours (ViT-S) 70.00 / 31.55 50.00 / 72.41 30.00 / 65.78 50.00 / 45.07 60.00 / 40.70 50.00 / 72.01

Ours (ViT-L) 60.00 / 48.74 50.00 / 32.11 40.00 / 33.39 50.00 / 36.63 60.00 / 49.30 62.50 / 68.29

mouse panda PC mouse penguin piano pig

FSDetView [58] 10.00 / 80.55 - / - - / - - / - 33.33 / 102.13 - / -

Orient Anything [52] (Vit-S) 20.00 / 43.97 57.14 / 30.07 0.00 / 116.94 50.00 / 49.04 50.00 / 64.67 30.00 / 50.62

Orient Anything [52] (Vit-L) 40.00 / 29.71 71.43 / 14.63 0.00 / 89.58 56.25 / 33.90 50.00 / 61.28 80.00 / 30.68

Ours (ViT-S) 20.00 / 73.00 57.14 / 79.84 33.33 / 69.42 56.25 / 58.98 50.00 / 68.89 20.00 / 72.01

Ours (ViT-L) 40.00 / 51.85 57.14 / 55.52 0.00 / 74.86 31.25 / 57.58 50.00 / 56.13 40.00 / 67.66

radio robot shark sheep shoe sofa

FSDetView [58] - / - - / - - / - - / - 40.00 / 98.08 15.00 / 107.20

Orient Anything [52] (Vit-S) 50.00 / 66.47 62.50 / 63.46 20.00 / 50.26 75.00 / 34.54 50.00 / 62.30 75.00 / 33.12

Orient Anything [52] (Vit-L) 50.00 / 23.66 87.50 / 32.48 40.00 / 45.30 100.00 / 16.06 50.00 / 32.59 65.00 / 39.84

Ours (ViT-S) 50.00 / 26.10 37.50 / 48.90 60.00 / 46.41 75.00 / 23.73 60.00 / 39.92 85.00 / 33.35

Ours (ViT-L) 0.00 / 94.76 37.50 / 75.79 70.00 / 24.69 100.00 / 18.32 80.00 / 34.58 85.00 / 33.35

tractor train truck violin whale

FSDetView [58] - / - 0.00 / 93.15 - / - - / - - / -

Orient Anything [52] (Vit-S) 75.00 / 32.67 0.00 / 117.58 80.00 / 23.95 0.00 / 95.34 44.44 / 47.62

Orient Anything [52] (Vit-L) 75.00 / 37.13 50.00 / 70.34 100.00 / 11.94 30.00 / 45.89 44.44 / 39.14

Ours (ViT-S) 87.50 / 31.52 25.00 / 119.20 90.00 / 23.30 50.00 / 69.62 44.44 / 57.50

Ours (ViT-L) 68.75 / 34.80 50.00 / 76.18 100.00 / 14.03 30.00 / 65.17 44.44 / 49.80

Table 7: Category level quantitative results of orientation estimation on Toys4k [39] dataset in terms
of Acc@30 ↑ and Abs ↓.

31



Figure 21: More qualitative results of our Trellis-OA and orientation estimation on Imagenet3D [24]
dataset.

fork knife pen rifle scissors

FSDetView [58] 9.09 / 90.67 4.76 / 81.40 0.00 / 81.72 54.84 / 40.24 0.00 / 93.31

Orient Anything [52] (Vit-S) 4.55 / 83.23 0.00 / 78.44 6.67 / 74.79 3.23 / 87.56 3.03 / 74.11

Orient Anything [52] (Vit-L) 9.09 / 78.51 0.00 / 78.95 13.33 / 76.79 6.45 / 81.73 3.03 / 85.85

Ours (ViT-S) 54.55 / 37.43 37.50 / 56.61 50.00 / 59.02 61.29 / 33.89 48.48 / 47.15

Ours (ViT-L) 54.55 / 34.98 54.17 / 29.82 56.67 / 52.50 54.84 / 27.90 57.58 / 35.68

screwdriver spoon

FSDetView [58] 0.00 / 96.13 0.00 / 103.08

Orient Anything [52] (Vit-S) 0.00 / 90.53 2.63 / 76.98

Orient Anything [52] (Vit-L) 17.24 / 70.88 15.79 / 68.49

Ours (ViT-S) 79.31 / 21.93 78.95 / 26.04

Ours (ViT-L) 68.97 / 25.18 76.32 / 30.10

Table 8: Category level quantitative results of orientation estimation on stick-like objects from
Imagenet3D [24] dataset in terms of Acc@30 ↑ and Abs ↓.

for occlusion-robustness, as the pre-trained checkpoint prior to applying our orientation-alignment
fine-tuning. It is also important to note that our orientation estimation approach has not been designed
to handle occluded inputs. Further research is necessary to extend its applicability to occlusion-prone
scenarios.

B.5 Failure Cases

Our method may fail in certain scenarios, as illustrated in Figure 25. For instance, when the input
image is captured from the rear of an object, the synthesized 3D model may exhibit suboptimal
results in the front view (first row). Additionally, when applied to unseen categories, the generated
3D model may incorrectly incorporate features from other categories present in the training dataset
(second row).

32



(a) Wonder3D

Viewpoint 1

Viewpoint 2

(b) Wonder3D-OA

Viewpoint 1

Viewpoint 2

Figure 22: More qualitative comparison between (a) Wonder3D [23] and (b) our Wonder3D-OA.

33



Viewpoint 1

Viewpoint 2

(a) Wonder3D

Viewpoint 1

Viewpoint 2

(b) Wonder3D-OA

Figure 23: More qualitative comparison between (a) Wonder3D [23] and (b) our Wonder3D-OA.

34



Figure 24: Impact of occlusion

Input Images Generated 3D Models

Figure 25: Failure cases.

C License and Border Impact

The licensing details are provided in Table 9. Our method is suitable for generating orientation-aligned
3D objects for downstream applications in 3D perception and augmented reality, which may benefit
both scientific research and commercial development. However, it is important to acknowledge
potential risks: the method could be misused to generate hazardous 3D objects, such as weapons,
which may lead to societal concerns.

35



Assets License URL

Blender 4.2.8 GNU General Public License (GPL) texthttps://www.blender.org/
Objaverse [6] ODC-By v1.0 license texthttps://objaverse.allenai.org/

Trellis [57] MIT License texthttps://github.com/microsoft/TRELLIS
Wonder3D [23] MIT License texthttps://github.com/xxlong0/Wonder3D/tree/main

FoundationPose [54] NVIDIA Source Code License texthttps://github.com/NVlabs/FoundationPose
LGM [44] MIT License texthttps://github.com/3DTopia/LGM

Table 9: License

36


	Introduction
	Related Work
	Objaverse-OA Dataset
	Orientation-Aligned 3D Object Generation
	3D-VAE Based Generative Model
	Multi-view Diffusion Model

	Downstream Applications
	Zero-shot Model-free Object Orientation Estimation
	Efficient Arrow-based Object Rotation Manipulation

	Experiment
	Implementation Details
	Orientation-Aligned Object Generation
	Zero-Shot Object Orientation Estimation
	Efficient Arrow-based Object Rotation Manipulation

	Conclusion and Limitation
	Acknowledgement
	Implementation Details
	Dataset Curation
	Experiment Implementations
	Method Implementations

	More Results
	Efficient Arrow-based Object Manipulation
	Orientation-aligned Object Generation
	Orientation Estimation
	Impact of Occlusion
	Failure Cases

	License and Border Impact

