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Abstract

Cost models predict the cost of executing given assembly code basic blocks on a
specific microarchitecture. Recently, neural cost models have been shown to be
fairly accurate and easy to construct. They can replace heavily engineered analytical
cost models used in compilers. However, their black-box nature discourages their
adoption. In this work, we develop the first framework, COMET, for generating
faithful, generalizable, and intuitive explanations for neural cost models. We
generate and compare COMET’s explanations for the popular neural cost model,
Ithemal against those for an accurate CPU simulation-based cost model, uiCA. We
obtain an empirical inverse correlation between the prediction errors of Ithemal
and uiCA and the granularity of basic block features in COMET’s explanations for
them, indicating potential reasons for Ithemal’s higher error with respect to uiCA.

1 Introduction

Cost models predict the cost (memory, time, energy, etc) that an assembly code basic block, a sequence
of assembly instructions with no jumps or loops, takes while executing on a specific microarchitecture.
They are used to guide compiler optimization [27, 10] and superoptimization [34]. They can be
simulation-based, static-analysis-based, or learned models. Simulation-based cost models, such as
uiCA [2] and LLVM-MCA [12], generate their predictions by simulating program execution for a
given CPU. They are hand-engineered using released documentation and micro-benchmarking the
CPU under study. As these models are traditional programs, domain experts can intuitively understand
and debug them, and hence they are commonly deployed. Static-analysis-based cost models, such as
IACA [16] and OSACA [21] use a model of the target CPU and static analysis methods to predict the
cost of a given basic block. The above types of cost models require significant engineering effort to
construct and must be manually re-engineered for different CPU microarchitectures.

Alternatively, machine learning can be used to learn a cost model [26, 17, 4, 37]. Developing ML-
based cost models requires the one-time effort of collecting a dataset of representative programs with
their execution costs on the target CPU and training a selected type of ML model. While simple
ML models could be used for constructing cost models, prior work [26, 37, 17, 4] has used neural
networks as cost predictors to precisely approximate the complex function mapping basic blocks to
their costs. An example is Ithemal [26], an LSTM model trained on the BHive [7] dataset of x86 basic
blocks to predict basic block throughput (average number of CPU clock cycles to execute the block
when looped in steady state). Ithemal is more accurate on the BHive dataset than most throughput
models [7]. It needs less manual effort to construct than any simulation-based or static-analysis-based
cost model. However neural models generally have the downside that they are uninterpretable [28].

This work. Our goal is to bring interpretability to inherently black-box but accurate neural cost
models, by developing a general framework that can generate trustworthy and intuitive explanations
of their predictions. Neural cost models could have arbitrary architectures [26, 37], requiring custom
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explanation methods, and could also be proprietary. To avoid engineering custom explanation methods
for each model, we develop a common explanation framework that is agnostic to the type or structure
of the model. Apart from saving manual engineering effort, a common framework would facilitate a
comparison between neural and other types of cost models with respect to the explanations of their
predictions. To achieve our goal, we develop our explanation framework to generate explanations
that (i) assume just query-access to the cost model, (ii) faithfully reflect the cost model’s behavior,
(iii) generalize across multiple basic blocks, and (iv) are simple and interpretable for domain experts.

Key challenges. For building trustworthy explanations, we need to formalize the desirable properties
of faithfulness, generalizability, and simplicity [8]. There is a tradeoff between the degree to which a
given explanation satisfies the above desirable properties and its computational cost. Therefore, we
need to design efficient algorithms that can balance this tradeoff. Prior works [30, 31] in domains such
as Vision or NLP have used locally-perturbed inputs to efficiently generate explanations with only
query access to the model. In the discrete domain of basic blocks, there is no well-defined concept of
locality. Hence, we need custom perturbation algorithms to handle this domain-specific challenge and
closely approximate the complex behavior of a given cost model in a reasonable number of queries.

Our approach. We focus on explaining a given model’s prediction for a target basic block. We
first formalize the ideal, query-based, block-specific explanations with desirable properties as an
optimization problem, which we observe to be intractable. Hence, we relax our requirements and
develop COMET, a perturbation-based explanation framework based on the design of (i) novel
primitives for explanations including both coarse-grained (e.g. instruction count) and fine-grained
(e.g., instructions and data dependencies) features of the basic block, and (ii) new custom perturbation
algorithms for generating a diverse set of basic blocks to gauge the complex behaviors of cost models.

Contributions. We make the following contributions:

1. We formalize the ideal, query-based, block-specific neural cost model explanations with desirable
properties as an optimization problem that is Instruction Set Architecture (ISA) agnostic.

2. We relax the problem to practically solve it. Building on our relaxation, we present COMET
(COst Model ExplanaTion framework), a novel and efficient explanation framework for neural
cost models. As COMET is ISA-dependent, we have implemented it for the popular x86 ISA,
and it can be extended to other ISAs with non-trivial engineering effort. We open-source our
implementation at https://github.com/uiuc-focal-lab/COMET. COMET’s explanations
identify the features of a target basic block that are important for a given cost model’s prediction.

3. We systematically analyze COMET’s accuracy and use it to gain insights into the working of
common cost models. We explain basic blocks in the popular BHive dataset [7]. We empirically
observe that COMET’s explanations for the neural cost model Ithemal more often consist of
coarser-grained features of the basic block, such as the block’s number of instructions, as compared
to the explanations for the lowest error simulation-based cost model uiCA, indicating potential
sources of the relatively higher error in Ithemal’s predictions with respect to uiCA.

COMET aims to help our stakeholders, i.e. compiler and performance engineers, develop an intuition
about and debug neural cost models in a simple yet precise way. We anticipate this work to go a long
way in developing better neural cost models and making them trustworthy.

2 Formalizing cost model explanations

In this section, we formalize query-based block-specific explanations for neural cost models and
discuss their desirable properties. An explanation is a minimal set of features of the input basic block
whose presence is sufficient for the cost model’s prediction to nearly be the original prediction.

We denote the cost model as a functionM that maps valid basic blocks in a given Instruction Set
Architecture (ISA) to real-valued costs. The smallest units (basic features) of an assembly basic block
are its tokens (opcodes and operands). Let Pβ be the set of all basic features and all functions of basic
features, which we cumulatively call features, of the basic block β. Some elements of Pβ for the
input basic block in Figure 1 are shown in Figure 1(iii). The rest of this paper describes our approach
for generating explanations for cost modelM’s prediction for a basic block β. To simplify notation,
unless mentioned otherwise, we will omitM and β from symbols, e.g., Pβ will be written as P .
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2.1 Ideal query-only explanation

Let the set of features F∗ ⊆ P be the ideal explanation forM(β) based on queries toM. The
desirable properties of F∗ are that it should be faithful to the cost model’s behavior, generalizable
across multiple basic blocks, and be simple to comprehend [8], which we formalize next. Let Π be
a perturbation function that is given a set of features F of basic block β as input, and returns a set
of valid assembly basic blocks BF , where each basic block β′ ∈ BF differs from β only by some
(possibly none) perturbations to the features in P \ F in β. Consider the block in Figure 1(i). If
the set {instruction 1: add rcx rax} is input into Π, then the basic block shown in Figure 1(iv) is an
element in the output set of basic blocks, as it perturbs some features not in the input set of features.

Faithfulness. Let T be an ϵ−ball aroundM(β), where ϵ > 0 is a small constant. A set of features
F ⊆ P will be a faithful explanation for the prediction ofM(β) if perturbations of features of β that
are not in F cannot change the cost prediction ofM significantly, i.e. their predictions are in T . (1)
captures faithfulness as a logical statement φ(F) that is satisfied by faithful explanation F .

φ(F) ≜ (F ⊆ P) and (∀α ∈ Π(F).M(α) ∈ T ) (1)

A trivially faithful set of features is P , as it would contain all the basic block features that are
important for cost prediction. But this explanation is not useful, as P can faithfully explain β for any
cost model but it does not precisely distinguish features according to the target cost model’s behavior.

Generalizability and simplicity. To overcome the above issue, we require that faithful explanations
of basic block β should also explain other blocks that contain the features in the explanation and where
the cost modelM makes predictions close toM(β) (generalizable). Every set F ⊆ P will have a
corresponding set of basic blocks (potentially empty), ΩF (2) containing basic blocks with similar
predictions as β and having F as faithful explanations. For faithful explanations with maximum
generalizability, we need to maximize the cardinality of ΩF over the set of faithful explanations.

For higher interpretability, ideal explanation F∗ should be simple. A common metric for sets of
features used as explanations is their cardinality [33, 28]. Hence, for simple, faithful, and generalizable
explanations F∗, we solve the optimization problem (3), where λ > 0 is a regularization parameter.

ΩF ≜ {α ∈ Π(F) andM(α) ∈ T and φα(F)} (2)
F∗ ≜ argmax

F s.t. φ(F)

(|ΩF | − λ.|F|) (3)

2.2 Practical query-only explanations

There are two levels of intractability in the above formulation of ideal explanations (3). First, the
evaluation of the faithfulness condition (1) for a given set of features F requires queryingM for
the cost prediction of all the basic blocks in the large set, Π(F). Appendix D contains examples
of cardinality estimates of Π(F). Second, the computation in (2) requires computing faithful
explanations for all basic blocks in Π(F). Hence, to practically solve (3), we relax it as follows.

Probabilistic faithfulness. To simplify the faithfulness condition in (1), we relax the requirement of
the cost prediction for all perturbed basic blocks to be in T with the requirement that the probability
of the cost of perturbed blocks being in T to be higher than a threshold. This threshold will denote the
degree of faithfulness of our explanations. This probability can be represented as Prα∼DF (M(α) ∈
T ), where DF is a distribution over all perturbed basic blocks that retain the features in F , Π(F).
We identify that the probability is analogous to precision (4) used in prior work [31], and hence we
adopt this terminology. Thus, probabilistic faithful explanations F must satisfy the condition φ̂(F),
given by (5), where 0 ≤ δ ≤ 1. As the distribution over basic blocks, DF in (4) should be such that
φ̂(F) closely approximates the ideal faithfulness condition (1) which has no prioritization over the
perturbed basic blocks, it should ideally be a uniform distribution over its sample space Π(F).

Prec(F) ≜ Prα∼DF (M(α) ∈ T ) (4)
φ̂(F) ≜ (F ⊆ P) and (Prec(F) ≥ (1− δ)) (5)

Probabilistic generalizability and simplicity. To relax the computation in (2) we overapproximate
it with the perturbed basic blocks’ set, Π(F). Thus, for higher generalizability, we maximize |Π(F)|.
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Note that Π is a monotonically decreasing function (proof in Appendix C). Thus, for simplicity of
explanations too we can maximize |Π(F)|. We normalize |Π(F)| with the number of all possible
perturbations of the basic block, |Π(∅)| where ∅ denotes an empty set of features to preserve. Π(∅)
is independent of F and hence the normalization will not affect the optimization problem’s output.
Intuitively, the resultant fraction in the optimization objective would denote the fraction of all possible
perturbations that preserve the feature set F . We relax this computation by replacing it with the
probability of finding the features in F in a randomly selected valid perturbation of the basic block.
We identify that this probability is analogous to coverage in prior work [31], and hence we adopt
this terminology. Coverage constitutes a probabilistic notion of generalizability and simplicity of
explanations, and hence we maximize the coverage in our optimization objective. (6) defines the
coverage of a set of features F , where D is a distribution over all perturbations of the input basic
block, Π(∅). To obtain an unbiased measure of coverage, D should ideally be a uniform distribution.
Thus, our optimization problem for practical and desirable explanation F̂∗ forM(β) becomes (7).

Cov(F) ≜ Prα∼D(F ⊆ Pα) (6)

F̂∗ ≜ argmax
F s.t. F⊆P

|Cov(F)| s.t. Prec(F) ≥ (1− δ) (7)

3 COMET: Neural cost model explanation framework

This section presents COMET, our novel framework for efficiently generating desirable explanations
for the predictions made by a given cost model for a target basic block. The core operation of
COMET is to efficiently solve the optimization problem in (7). As COMET leverages the features of
the underlying Instruction Set Architecture (ISA), we develop it for the popular ISA —x86. We note,
however, that COMET can be extended to other ISAs without significant conceptual modifications
and hence leave it to future work. An overview of COMET’s algorithm on an example x86 basic
block is shown in Figure 1. COMET first decomposes the input basic block β into its features.
We restrict P , which consists of all possible features of a basic block, to block features P̂ ⊂ P
[Section 3.1], to reduce the possible sets of features to evaluate in the optimization problem in (7).
To generate explanations from the obtained block features, COMET adapts the Anchors explanation
algorithm [31], which has a similar optimization objective and solves (7) [Section 3.2].

3.1 Extracting block features

COMET casts the input basic block into a multigraph G = (V, E). Figure 1(ii) shows the multigraph
for the example block. V consists of the vertices of G corresponding to the instructions annotated
with their positions in the block. E consists of directed edges between instructions that have data
dependencies, labeled by the dependency type. Please refer to Appendix E for different types of data
dependencies in assembly basic blocks. Figure 1(ii) shows the RAW data dependency in the example
block. We constitute P̂ with the instructions, data dependencies, and number of instructions of the
block. These features are important for the algorithms of common cost models [2, 26] and hence are
interpretable for our stakeholders. Figure 1(iii) shows P̂ for the example basic block.

3.2 Efficiently computing explanations

To efficiently compute explanations, COMET empirically estimates Prec(F) and Cov(F) with
samples from basic block distributions, DF and D respectively. We have designed basic block
perturbation algorithms to sample from DF and D, which essentially perturb basic block β to obtain
blocks β′ according to the corresponding distribution. As discussed in Section 2.2, we want both
DF and D to be uniform distributions over their respective sample spaces to compute unbiased
approximations of the ideal desirable explanations. Observe that, D is hence a special case of DF
with F = ∅. Thus, a common perturbation algorithm can be used for both DF and D.

Basic block perturbation algorithm. COMET’s core basic block perturbation algorithm Γ takes a
set of features F ⊆ P̂ of basic block β as input and randomly perturbs β to obtain β′ ∼ DF such
that β′ retains the features in F and has some of the other features in P̂ perturbed to valid values.
Figure 1(iv) shows an example perturbation of β created by Γ. While we ideally want DF to be a
uniform distribution, its underlying sample space of perturbed basic blocks which preserve features
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Figure 1: COMET is input a cost modelM and a basic block β. It first converts β to a multigraph
G in (a). G has the instructions and data dependencies of β as its vertices and edges respectively.
The features P̂ of β, are then extracted from G in (b). Sets of these features are fed into COMET’s
perturbation algorithm Γ (c) that generates several perturbations that preserve the features in the
corresponding input feature set F . COMET obtains the predictions of cost model M for each
perturbed basic block, which are then used for the estimation of the precision and coverage of a
feature set F . F having precision higher than (1− δ) with maximum coverage is identified by the
precision and coverage optimizer in (d) and is output as COMET’s explanation forM(β).

in F is large (Appendix D) and complex without a closed form characterization and is also defined
differently for individual F . This makes designing an algorithm to generate uniform samples for each
F hard. Hence, we relax the requirement of sampling from a uniform distribution to the ability of Γ
to produce diverse perturbed basic blocks so that the probability of obtaining a given basic block is
small. Algorithm 1 in Appendix F.2 presents the pseudocode of Γ to perturb a given basic block.

Γ perturbs the multigraph corresponding to the basic block, G to obtain G′, which uniquely corre-
sponds to the perturbed basic block, such that the features inF are preserved. To obtain G′, Γ attempts
to perturb every feature that is allowed to be perturbed, independent of the others. This is because
any dependence restricts the possible perturbed blocks and hence disproportionately increases the
probabilities of some perturbations. Γ perturbs the data dependency edges that do not have any vertex
in common, independent of each other. However when two data dependency edges have at least one
vertex in common, if they are caused by a common operand in the instruction corresponding to the
common vertex, then all perturbations to edges can not be made completely independent, otherwise
they are perturbed independently. Γ perturbs only the opcode of the corresponding instruction of a
vertex for vertex perturbation and only the operands of the instructions connected by an edge for edge
perturbation, for independence. Γ preserves the vertices corresponding to every data dependency
edge in F but can perturb other data dependency edges between those vertices. Γ perturbs individual
vertices by either deleting or replacing them with other valid vertices and individual data dependency
edges by deleting the corresponding dependency. The details of the perturbations are in Appendix F.1.

Computing explanations. Prec(F) and Cov(F) are empirically estimated for a given set of features
F ⊆ P̂ with Γ. Similar to the Anchors’ construction [31], COMET iteratively builds its explanation
feature set starting with an empty feature set, such that the maximum (estimated) precision feature sets
at each level are expanded to all possible and distinct feature sets made by adding a block feature not
present in them. Maximum precision feature sets are identified using the KL-LUCB [18] algorithm.
More details are provided in Appendix F.4. Among the feature sets that have precision > (1− δ), the
maximum coverage feature set is COMET’s explanation forM(β).

4 Evaluation

We evaluate COMET to answer two main questions:

Correctness. Do COMET’s explanations accurately reflect the given cost model’s behavior?

Utility. Can COMET’s explanations be used to understand the behavior of cost models?
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Table 1: Accuracy of COMET’s explanations.
Explanation Acc.(%) for CHSW Acc.(%) for CSKL

Random 26.56± 20.30 26.60± 20.34
Fixed 72.33 74.0
COMET 96.90± 0.92 98.00± 0.80

Experimental setup. Our experimental setup and hyperparameters are detailed in Appendix G.1. We
have developed and tested COMET for the x86 microarchitecture. We use x86 basic blocks from the
popular BHive dataset [7]. To analyze COMET’s explanations, we randomly pick 200 basic blocks
having 4 to 10 instructions from BHive, to make our explanation test set. We run each experiment for
5 different seeds and report the average results, with their standard deviations.

Computing the accuracy of COMET’s explanations. To evaluate COMET’s explanations, we have
developed a crude, but non-trivial, interpretable, analytical cost model, C. The advantage of such
a model is that it gives us the ground truth of explanations with which we can compare COMET’s
explanations and compute their accuracy. We are not aware of any actual intricate analytical cost
models having a closed-form representation that could give us ground truth explanations to objectively
compute COMET’s accuracy, which is why we had to design C for COMET’s evaluation. We define
costinst(inst), costdep(δij), and costη(n) as the costs of the instruction inst, data dependency δij
between instructions i and j, and number of instructions η = n respectively in a given basic block.
(8) presents the functional form of C. C computes its cost predictions as the maximum cost of a
feature over all the block features in the basic block, β. Our rationale behind C is derived from a
throughput prediction baseline analytical model in [2]. Thus, C serves as a realistic, interpretable cost
model, to measure the accuracy of COMET’s explanations. The exact, microarchitecture-dependent
forms of the 3 cost functions used in our experiments are given in Appendix I.

C(β) = max{costη(n),max
i
{costinst(insti)},max

δij
{costdep(δij)}} (8)

The ground truth explanation for C(β) is given by GT (β) (9), where type(f) is the type of the feature
f which would be one of inst, dep, and η. GT (β) essentially is the set of basic block features that
have the maximum cost among the costs for all the features.

GT (β) = {f | f ∈ P̂, cost⟨type(f)⟩(f) = C(β)} (9)

Note that GT (β) may not be a singleton set, as there can be multiple features that are equally
important and lead to the same C(β). We call an explanation accurate if and only if it is a non-empty
subset of GT (β). We are not aware of any other competent cost model explanation methods to
compare COMET’s accuracy against, hence we compare COMET’s explanations against those from
two natural baseline explanation algorithms: random and fixed, described in Appendix G.2.

4.1 Accuracy-based evaluation of COMET

Table 1 presents the explanation accuracy achieved by COMET and the explanation baselines over
C for the Haswell (HSW) and Skylake (SKL) microarchitectures. The accuracy values indicate a
significant improvement in the correctness of explanations given by COMET over the baselines and
testify the correctness of COMET’s explanations. Note that as the fixed explanation baseline does
not have any randomness, it does not have any uncertainty.

The high accuracy of COMET’s explanations over C, which makes its cost predictions using the same
set of features as COMET, indicates that COMET can faithfully identify the set of features that lead
to the prediction when they are within the set of features that it uses to compose explanations. Note
that this high accuracy has been achieved with just query access to the cost model. However, for
actual cost models, it may not be the case that COMET’s explanation features are used directly for
cost prediction. Generally, some complex functions of these basic features will be used to obtain the
cost. Hence, we next estimate the precision of COMET’s explanations for actual cost models.

4.2 Precision and coverage evaluation

Next, we study the average precision and coverage of COMET’s explanations for state-of-the-art
throughput-predicting cost models: neural model Ithemal [26], and simulation-based model uiCA [2]
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Table 2: Average Precision, Coverage, and Time for COMET’s explanations
Model Av. Precision Av. Coverage Av. Time (s)

Ithemal (HSW) 0.79± 0.005 0.19± 0.007 62.23± 2.0
Ithemal (SKL) 0.81± 0.004 0.19± 0.014 95.17± 38.7
uiCA (HSW) 0.78± 0.006 0.18± 0.012 96.88± 32.4
uiCA (SKL) 0.79± 0.006 0.18± 0.012 100.12± 23.6

over the basic blocks in the explanation test set. We selected Ithemal and uiCA as representative cost
models due to their high prediction accuracy and popularity among our stakeholders. COMET is
applicable to other models as well which facilitate query access to them. The average precision and
average coverage are metrics to indicate COMET’s potential for generating faithful and generalizable
explanations respectively of a target cost model for individual basic blocks in our explanation test
set. As these cost models are not analytical, they do not have ground-truth explanations, and hence
we use average precision and average coverage as proxies to evaluate the explanations, similar
to [31]. We also analyze the average time taken to explain a block for each model. Table 2
presents our findings for Ithemal and uiCA developed for Haswell (HSW) and Skylake (SKL)
microarchitectures. We observe that the explanations for all the cost models have fairly high average
precision (probability of faithfulness) and can be computed in a reasonable amount of time. The
coverage values (generalizability) obtained are similar to the coverage of explanations of NLP
models [31]. These results indicate that the high accuracy of COMET over our custom cost model C
transfers to state-of-the-art cost models as well and COMET can be deployed to obtain high-quality
explanations for common cost models. Next we show how COMET can become a useful analysis
tool for our stakeholders.

Figure 2: Variation of Mean Absolute Percentage Error (MAPE) in Ithemal and uiCA with the % of
explanations consisting: number of instructions η, specific instructions inst and data dependencies δ.

4.3 Evaluating utility of COMET

We show a use case of COMET wherein we investigate the variation in the prediction errors of Ithemal
and uiCA and empirically study its correlation with the dependence of the model’s output on different
types of block features. We hypothesize that as the error of the cost model decreases, its dependence
on the finer-grained block features will increase. Out of the 3 types of features over which COMET
composes its explanations, we identify the block’s instructions and data dependencies as finer-grained
features when compared to the feature corresponding to the block’s number of instructions. We use
COMET’s explanations to identify the block features on which the model’s prediction depends.

Figure 2 shows the results of our investigation. It shows the variation of mean absolute percentage
error of Ithemal and uiCA. Alongside the error, it shows the percentage of COMET’s explanations
over the entire explanation test set that contain features corresponding to the number of instructions
η, instructions inst, and data dependencies δ in the explained basic block. The trends in Figure 2 for
both Haswell and Skylake confirm our hypothesis. Interpret this insight as follows: as the cost model
becomes more accurate, it focuses more on the finer-grained features of the basic block, as indicated
by COMET’s explanations. Such insights can be used by cost model developers to enhance the
performance of their models. We discuss similar insights obtained for blocks derived from different
partitions of the BHive dataset in Appendix K.1. We present case studies illustrating COMET’s utility
in explaining the predictions of both cost models on individual basic blocks in Appendix K.2.
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A Related Work

Explanation techniques. Explanations for ML models consist of either building inherently inter-
pretable ML models [19] or creating post-hoc explanations for the models [30, 31, 20, 25]. Post-hoc
explanations are preferred as accurate cost modeling for the CPU’s pipelined architecture makes
complex models more suitable. These can either describe a model globally [23] or for specific
inputs [30, 31]. Explanation techniques can also be broadly classified as black-box [30, 31, 23]
and white-box techniques [36, 35]. Further classifications of explanation techniques can be as
perturbation/example-based [6, 22, 38] and symbolic explanation techniques [5, 24, 15, 3]. While
symbolic methods give formal guarantees on the explanations, they do not scale to complex mod-
els. Hence, we have developed a scalable perturbation-based explanation method for high-quality
explanations for cost models. [32] is a differential-testing tool to analyze the inconsistencies between
multiple cost models. This tool, unlike COMET, is not meant to explain a particular prediction of a
cost model to enable case analysis.

Input perturbation algorithms. For domains wherein the input is a sequence of discrete entities
such as NLP and code, the prior perturbation-based explanation algorithm by Ribeiro et al. [31]
has used generative models [11, 13] to obtain input perturbations. These perturbations might not
be syntactically correct and can result in erroneous explanations [9]. Hence, we have not used such
unconstrained perturbation techniques in our explanation framework. Moreover, as mentioned above,
there is no well-defined concept of locality in this domain. Thus, we can not use the perturbation
algorithms from prior work in other domains which generally perturb the input in some local regions.
Stoke [34] is a stochastic superoptimizer that perturbs input x86 assembly programs to optimize
them. While Stoke does not operate on embedding spaces, it can generate syntactically incorrect
perturbations.

B Discussions and future work

We demonstrated how COMET’s explanations can be used to gain both high-level [Section 4.3] and
case-specific [Appendix K.2] insights about cost models and compare their behaviors against other
cost models. These insights can be useful for repairing high-error neural models with domain-specific
insights and developing more generalizable models in the future. As indicated by these insights,
neural architectures that explicitly utilize the finer-grained features of blocks can achieve better cost
prediction performance. COMET’s explanations can be used to select a model from a collection of
similar performing neural models. COMET can be extended to run on GPUs to make it amenable
to integration with cost model training and inference procedures, in the future. COMET’s feedback
can be leveraged to update the model parameters during training to have the predictions rely on finer-
grained features. COMET can be augmented to existing cost models to guide compiler optimizations
with information on what parts of the basic block need to be optimized for better performance.

While explanation features employed by COMET currently capture the commonly used properties of
a block, it will produce approximations for the most important factors behind a model’s predictions
when they cannot be captured by the current features. We will investigate expanding the explanation
features in future work. Finally, COMET can be extended to other ISAs by replacing the x86 grammar
with that of the given ISA.

C Monotonicity of perturbation function

Theorem 1. Π is a monotonically decreasing function.

Proof. Let F1, F2 ∈ ℘(P) such that F1 ⊆ F2.

Π(F1) ={β′ | β′ ∈ B,F1 ⊆ Pβ′ ,Pβ′ \ F1 are obtained from P \ F1}
={β′ | β′ ∈ B,F2 ⊆ Pβ′ ,Pβ′ \ F2 are obtained from P \ F2}
∪ {β′ | β′ ∈ B,F1 ⊆ Pβ′ , F2 ̸⊆ Pβ′ ,Pβ′ \ F1 are obtained from P \ F1}

=Π(F2) ∪ {β′ | β′ ∈ B,F1 ⊆ Pβ′ , F2 ̸⊆ Pβ′ ,Pβ′ \ F1 are obtained from P \ F1}
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Hence, Π(F2) ⊆ Π(F1)

Π being a monotonically decreasing set function implies that the minimum cardinality input feature
set Fmin would have maximum cardinality output basic block set from Π, Π(Fmin).

Note that in the above proof, features in feature sets such as Pβ′ \ F1 are obtained by either retaining
or perturbing the features in P \ F1.

A similar proof can be used to prove the monotonicity of Π̂ as well.

D Perturbation function output sizes

The perturbation function, Πβ : ℘(Pβ)→ ℘(B) maps a given set of basic block features F to the set
of basic blocks BF that have F and where the other features are obtained from perturbations to the
features in Pβ \ F . In this section, we provide estimates of cardinalities of BF for some basic blocks
β and feature sets F . With this analysis, we allude to the practical intractability of generating ideal
black-box explanations for cost models.

Note that, as Pβ is the set of all features (all basic features and all of their functions) of β, it can be
an infinite set itself. P̂β ⊂ Pβ , hence for F ⊆ P̂β , Π̂β(F) ⊆ Πβ(F). Hence, |Π̂β(F)| ≤ |Πβ(F)|.
Thus, we provide estimates for |Πβ(F)| by reporting the rough values for |Π̂β(F)|.

First, consider the basic block β1 in Listing -1, for F = ∅. |Π̂β1
(∅)| ≈ 1.94× 1038. As we add more

elements to F , the size of |Π̂β1
(F)| will reduce due to the constraints introduced to the perturbations.

1 v d i v s s xmm0, xmm0, xmm6
2 vmulss xmm7, xmm0, xmm0
3 v xo rp s xmm0, xmm0, xmm5
4 v ad ds s xmm7, xmm7, xmm3
5 vmulss xmm6, xmm6, xmm7
6 v d i v s s xmm6, xmm3, xmm6
7 vmulss xmm0, xmm6, xmm0

Listing -1: Basic block β1 for perturbation function size estimation

Next, for F = {inst1} i.e. with no perturbations to instruction 1 in β1, |Π̂β1
(F)| ≈ 6.58× 1029.

Similarly, consider the basic block β2 in Listing 0, for F = ∅. |Π̂β2
(∅)| ≈ 1.63 × 1032. For

F = {inst2} i.e. with no perturbations to instruction 2 in β2, |Π̂β2(F)| ≈ 2.77× 1028.

1 s h l eax , 3
2 imul rax , r15
3 xor edx , edx
4 add rax , 7
5 shr rax , 3
6 l e a rax , [ rbp + r a x − 1]
7 div rbp
8 imul rax , rbp
9 mov rbp , qword ptr [ r s p + 8]

10 sub rbp , r a x

Listing 0: Basic block β2 for perturbation function size estimation

Thus, we find that the perturbation function’s output set can have very high cardinality, posing a
challenge for generating desirable explanations.
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E Types of data dependencies in basic blocks

While instructions are decomposed into microoperations and processed in parallel by the different
components of the CPU, an instruction instj’s execution can get stalled due to the requirement for a
previous instruction insti to be completed, creating a data dependency [29]. A Read-After-Write
(RAW) data dependency arises when instj reads the value in an operand that is written by insti.
instj can not get executed until insti ends to ensure correct execution. A Write-After-Read (WAR)
dependency occurs when instj writes to an operand that is read by insti. A Write-After-Write
(WAW) dependency arises when instj writes to an operand that is written to by insti. There can be
multiple data dependencies, possibly of different kinds, between a given pair of instructions.

F Specific details of COMET

F.1 Perturbations to individual components of G

Perturbing vertices of G. The basic block perturbation algorithm Γ perturbs vertices by either deleting
or replacing them with other valid vertices. Deletion is permissible when the number of instructions is
not required to be preserved. When a vertex is deleted, all incoming and outgoing edges of the vertex
are removed from G. To replace a vertex, the corresponding instruction’s opcode is replaced with
another opcode in the ISA that can produce a valid assembly basic block instruction (an instruction
that does not contain certain opcodes such as call or jmp) with the operands of the original instruction.
Overall, Γ independently perturbs or retains every vertex with equal probability, where a vertex is
perturbed by either deleting or replacing it, again with equal probability.

Perturbing edges of G. Γ perturbs data dependency edges by deleting the corresponding depen-
dency. The dependency is deleted by perturbing some operands corresponding to the dependency
to other operands of the same type and size. The type of an operand could be memory, register,
or immediate/constant, while its size could be any power of 2 between 8 − 512 bits. Hence, we
change the operand registers/memory addresses to other registers/memory addresses to break the
data dependencies. Overall, Γ either perturbs or retains a data dependency by similar probabilities.
The exact probabilities of perturbation and retention will be basic block specific and are discussed in
Appendix F.3.

F.2 Basic block perturbation algorithm

Algorithm 1 presents our stochastic perturbation algorithm Γ to conditionally perturb a given basic
block β to β′. The perturbation algorithm creates the graph G′ of β′ while preserving a set of
instructions/their corresponding vertices V , a set of data dependencies/their corresponding edges E
and possibly the number of instructions/the number of vertices, denoted by the boolean preserveη
which is set to true when the number of instructions η is to be kept constant. If the number of vertices
is to be kept constant, then the vertex/instruction deletion operation is forbidden [lines 1-1]. The
vertices at the ends of the edges in E are preserved as well [line 1] by adding them to V . Then
each vertex of G is perturbed with a probability of (1 − pI,ret) if it is not required to be retained
[lines 1-1]. If the deletion perturbation operation is in vertexPerturbationOps, then a vertex is deleted
or replaced with probabilities of pdel and (1 − pdel) respectively. Otherwise, it is replaced with a
valid vertex. The replacement of a vertex/corresponding instruction involves changing its opcode to
another opcode that can take the original operands and still constitute valid x86 syntax according
to the x86 Instruction Set Architecture. Similarly, each data-dependency edge is perturbed with a
probability of (1− pD,ret) if it is not required to be retained [lines 1-1], to form G′ [line 1]. The only
perturbation of any data dependency is its deletion, which is conducted by the perturbation of the
operands involved in the data dependency.

F.3 Case specificity of perturbation probabilities

COMET’s perturbation algorithm Γ consists of primarily 3 probability terms: pI,ret, pD,ret, and pdel
as described in Appendix F.2. pI,ret and pD,ret are the probabilities of retention of a given instruction
and a given data dependency respectively, in the perturbed basic block. pdel is the probability of
deletion of an instruction when the deletion perturbation operation is allowed for instructions. The
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Algorithm 1 Basic Block Perturbation Algorithm

1: Input: basic block graph G, vertices to preserve V , data-dependency edges to preserve E ,
preserveη , pI,ret, pD,ret, pdel

2: Output: perturbed basic block graph, G′
3: vertexPerturbationOps = {replacement, deletion}
4: if preserveη then
5: vertexPerturbationOps.remove({deletion})
6: end if
7: V ← addV erticesForPreservedDeps(V, E)
8: for v ∈ GetV ertices(β) do
9: if v ̸∈ V and rand([0, 1]) > pI,ret then

10: v ← PerturbV ertex(G, v, vertexPerturbationOps, pdel)
11: end if
12: end for
13: for ε ∈ GetDepEdges(β) do
14: if ε ̸∈ E and rand([0, 1]) > pD,ret then
15: ε← PerturbEdge(G, ε)
16: end if
17: end for
18: G′ ← G

deletion perturbation operation will not be allowed for instructions when the number of instructions
is to be kept constant.

Γ perturbs a basic block β by essentially perturbing every instruction while preserving certain tokens
of the instruction from getting perturbed. These preserved tokens correspond to the features that are
required to be preserved by Γ and also the features that Γ voluntarily does not attempt to perturb. Γ
has voluntary retention of randomly selected basic block features to output perturbed basic blocks
β′ that are very similar to the original basic block β. Γ attempts to perturb the other tokens of β to
obtain β′.

Γ can delete an instruction in case none of its tokens are required to be preserved. Otherwise, Γ
replaces a token with another token that can form a basic block with valid x86 syntax alongside
the other tokens. Thus, every token has a set of potential replacements. Perturbations to opcode
tokens are counted as changes to the instruction features, while perturbations to the operand tokens
are considered as changes to any data dependency features. As the perturbation space consists of
only valid basic blocks, the overall probabilities of the primitive perturbation operations (instruction
deletion, instruction replacement, and data dependency deletion) vary with the target basic block.

Following is an example of this variation. Several tokens of x86 assembly have no possible replace-
ments resulting in no probability of replacement, such as the opcode lea. This is a special opcode
that loads the effective memory address of its source operand into the destination register. There
is no other x86 opcode that shows similar behavior. Hence, the lea can not be replaced with any
other opcode. Such failed attempts at opcode replacement lead to the retention of the instruction,
thus leading to an increase in the probability of retention of specific features of the basic block. This
change in probabilities is specific to the basic blocks having the lea opcode in its instructions.

Another example of basic-block-specific probability settings occurs due to data dependencies. The
data dependencies in a basic block can be varied with changes in just the opcodes of the corresponding
instructions. Thus, while we keep the perturbation probability of a data dependency (1− pD,ret) to
be 0.5 in the general case, it can vary with the basic block. A basic block having all the potential
replacements for the opcodes involved in a data dependency with similar behavior as the original
opcodes will have 0.5 probability of perturbation of the data dependency, while the opcodes for which
we have potential replacements show variable behaviors, the data dependency perturbation probability
can be more than 0.5. (Opcodes add and sub have similar behavior as they read the value in the
source operand and read-write the value in the destination operand. They have different behavior
from mov that reads the source operand value and writes to the destination operand. All 3 opcodes
could be potential replacements for each other in instructions having certain pairs of operands.)
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F.4 Details on computing explanations

Similar to the Anchors’ construction [31], COMET iteratively builds its explanation feature set
starting with an empty feature set, such that the maximum (estimated) precision feature sets at each
iteration are expanded to all possible and distinct feature sets made by adding a block feature not
present in them. Maximum precision feature sets are identified using the KL-LUCB [18] algorithm.
We consider the candidate feature sets in each iteration as arms in a pure exploration multi-arm
bandit instance. Each pull of an arm is the same as preserving the corresponding set of features
when creating input perturbations. If a perturbation preserving the features set has a similar cost
prediction asM(β), then that counts towards the reward gained from using the arm. Note that the
cumulative reward of an arm is the precision of the corresponding set of features. This is because
precision can be equivalently written as in (10). Thus, precision becomes the expected reward of the
arm corresponding to a given set of features F .

Prec(F) = Eα∼DF (IM(α)∈T ) (10)

We use KL-LUCB to find the maximum reward arms and the corresponding maximum precision
feature sets with a predefined confidence level. We select the same KL-LUCB hyperparameters as
those in [31]. We continue expanding feature sets till the precision threshold is crossed or the feature
set with all the block features is obtained (which has precision = 1 > 1− δ). We can either output the
obtained feature set as further expansion will lower the coverage (Cov(F) is proportional to |Π(F)|
which is inversely proportional to |F| (Appendix C)) or if we are maintaining the top-k maximum
precision feature sets at each iteration, we can expand other feature sets till we get precision more
than the threshold for all, in which case we select the maximum coverage feature set from all the
candidates. Among the considered feature sets that have precision > (1− δ), the maximum coverage
feature set is COMET’s explanation forM(β).

G Experimental setup and baselines

G.1 Experimental setup

All our experiments were conducted on a 12th Gen 20-core Intel i9 processor. We set the precision
threshold (1 − δ) in (4) as 0.7. We have set the probabilities of retention and perturbation of
every feature in a basic block as 0.5. For instruction-type features where there are two possible
perturbations, deletion and replacement, we assign probabilities to the perturbation operations based
on an extensive hyperparameter study (Appendix H). We have used the default hyperparameters in
the Anchor algorithm [31] for the beam-search-based iterative explanation construction method. We
study the sensitivity of COMET to its hyperparameters in Appendix H.

G.2 Baseline explanation algorithms

We are not aware of any other competent cost model explanation methods to compare COMET’s
accuracy against, hence we design two natural baseline explanation algorithms: random and fixed.
The random explanation baseline includes features f of β based on the probability of occurrence of a
feature of type(f) in the set of all ground truth explanations of all basic blocks in the explanation test
set. The fixed explanation baseline identifies the most frequent feature type in the set of ground truth
explanations for all blocks in the explanation test set and assigns the first feature of that type in the
block to be the fixed explanation.

H Ablation and sensitivity studies

In this section, we study the variations in our results, with COMET’s hyperparameters and de-
sign choices. We use our explanation accuracy-based evaluation scheme based on our crude but
interpretable cost model that is presented in Section 4.1, to study the effects of the different hyper-
parameters and design choices. For this study, we have used the crude cost model for the Haswell
microarchitecture. We have randomly selected 100 basic blocks from the BHive dataset [7] for which
we generate COMET’s explanations with different settings. We have dropped the error bars for clarity
of the results, as we note from Table 1 that the standard deviations in our results are generally low.
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Figure 3: Variation in explanation accuracy with the precision threshold (1− δ) setting in COMET

Figure 4: Variation in explanation accuracy with the probability of instruction deletion in Γ

H.1 Precision threshold

In this section, we study the variation in the explanations’ accuracy with the precision threshold set
in COMET, above which we consider the explanation feature set to be approximately faithful to
the cost model’s predictions. We want the precision threshold to be high such that the most precise
and accurate explanations are given as output. Figure 3 presents the variation in the accuracy of
COMET’s explanations with various values for the precision threshold (1 − δ) in COMET. We
observe that 0.7 is the highest precision threshold that gives the highest accuracy and hence we have
set it as the precision threshold in our experiments.

H.2 Perturbation probabilities for instructions

Γ attempts to perturb a given instruction inst in a basic block β only when it is not required to
be preserved. Γ retains inst with a probability of pI,ret and perturbs it otherwise. There are 2
potential operations for perturbing inst: Deletion and Replacement (with valid x86 instruction), each
probabilities pdel and (1− pdel) respectively. We have set pdel = 0.33 based on a sensitivity study
that we conducted with respect to this hyperparameter, for all of our experiments. Figure 4 presents
our findings. We find that our choice of pdel = 0.33 leads to the maximum accuracy among other
candidates.

H.3 Perturbation probabilities for data dependencies

Similar to the case for instructions, Γ attempts to perturb a given data dependency δ in a basic
block β with probability (1 − pD,ret). As discussed in Section F.3, the exact probabilities of the
retention/deletion of data dependencies are basic-block-specific. However, we vary these probabilities
by varying the probability of explicit retention of a data dependency, i.e. the probability by which a
data dependency will be retained for sure. This probability is a lower bound for pD,ret and higher
values of this lower bound imply higher values for pD,ret for any given basic block. Figure 5 shows
our findings. We have shown the variation in explanation precision as well, as we observe precision
to have a trend different from explanation accuracy in this case. We find that a value of 0.1 for this
probability parameter leads to optimum values for both explanation accuracy and precision. Thus, we
have selected the explicit data dependency retention probability to be 0.1 in COMET.
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Figure 5: Variation in explanation accuracy and precision with the probability of explicit data
dependency retention

Figure 6: Variation in explanation accuracy with just opcode and whole instruction replacement
schemes.

H.4 Replacement of instructions

Γ considers only the changes to an instruction’s opcode as changes to the feature corresponding to
the instruction. However, another possibility could be to consider operand changes (such that their
types and sizes are preserved) as well as changes to the instruction feature. We analyze the effects
of the two instruction changing/replacement schemes in Figure 6. We observe that the accuracy of
the explanations is higher with just the opcode replacement method, justifying our choice of this
instruction replacement scheme.

An important hyperparameter that we have set according to our intuitive understanding is the ϵ error,
which marks the radius of the ball of acceptable cost predictions around the prediction of cost model
M for basic block β (M(β)). For our crude cost model C, we have kept ϵ to be a quarter of one unit
of its cost prediction, as the least change in its cost prediction can be a quarter unit (∆n

4 = 0.25).
For the practical cost models such as Ithemal and uiCA, we have set ϵ as 0.5 cycles of throughput
prediction, as that is the least, significant change in practically-useful throughput values.

I Crude interpretable cost model details

We define costinst(inst) as the throughput of the instruction inst on actual hardware. We obtain
the throughputs of instructions over actual hardware from https://www.uops.info/table.html.
We define costdep(δij) as in (11). Our intuition behind keeping the costs of WAR and WAW type
of dependencies to be 0 is that these dependencies are not true dependencies and can be generally
resolved by the compiler by register renaming [29]. The RAW data dependency, on the other hand, is
a true dependency. As the two instructions forming a RAW dependency will be executed sequentially
on hardware, the addition of their individual costs would be a good proxy for the actual throughput
cost brought in by the data dependency.

costdep(δij) =

{
0, δij = WAR/WAW
costinst(insti) + costinst(instj), δij = RAW

(11)
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We define the costη(n) = η/4 as the cost for having n number of instructions (denoted by η) in a
given basic block β. We derive the expression for the cost of number of instructions from the simple
baseline model presented in [2].

Our choice of C is microarchitecture-specific as the costs of individual instructions vary across
microarchitectures. We have developed C models for the Haswell and Skylake microarchitectures,
only for the purposes of evaluating COMET’s explanations.

J Studied dataset and cost models

J.1 BHive dataset

BHive dataset2 [7] is a benchmark suite of x86 basic blocks. It contains roughly 300,000 basic
blocks annotated with their average throughput over multiple executions on actual hardware for 3
microarchitectures: Haswell, Skylake, and Ivy Bridge. We have generated explanations for basic
blocks in this dataset.

The dataset can be partitioned by 2 criteria: by source and by category of its basic blocks. Partition by
source annotates each block with the real-world code base from which it has been derived. Examples
of BHive sources are Clang and OpenBLAS. Partition by category annotates each basic block by its
type, characterized by the semantics of the instructions in the block. There are 6 types of blocks:
Scalar, Vector, Scalar/Vector, Load, Store, and Load/Store.

J.2 Ithemal

Ithemal3 [26] is an ML-based cost model, which predicts the throughput of input x86 basic blocks
for a given microarchitecture. It is open-source and is currently trained for the Haswell, Skylake,
and Ivy Bridge microarchitectures on the BHive dataset. A separate instance of Ithemal needs to be
trained for every microarchitecture, due to the difference in the actual throughput values obtained
over different hardware. Ithemal’s throughput prediction is a floating point number, as it is trained on
the BHive dataset.

Ithemal consists of a hierarchical multiscale RNN structure. The first RNN layer takes embeddings
of tokens of the input basic block and combines them to create embeddings for the instructions in the
basic block. The second RNN layer takes the instruction embeddings as input and combines them
to create an embedding for the basic block. The basic block embedding is passed through a linear
regressor layer to compute the throughput prediction for the basic block.

Ithemal exhibits roughly 9% Mean Absolute Percentage Error for the Haswell microarchitecture on
the BHive dataset. As Ithemal outputs only its throughput prediction and no insights into why the
prediction was made, it can not be reliably deployed in mainstream compiler optimizations.

J.3 uiCA

uiCA4 [2] is an analytical simulation-based cost model for several latest microarchitectures released
by Intel over the last decade. uiCA’s simulation model is hand-engineered to accurately match the
model of each Intel microarchitecture and must be manually tuned to reflect new microarchitectures. It
can output detailed insights into its process of computing its throughput prediction of input x86 basic
blocks, such as where in the CPU’s pipeline its simulator identified a bottleneck for the execution of
the basic block.

2https://github.com/ithemal/bhive
3https://github.com/ithemal/Ithemal
4https://github.com/andreas-abel/uiCA
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K Additional experiments

K.1 BHive experiments on partitions

The experiments in this section continue to demonstrate the hypothesis in Section 4.3 on partitions of
the BHive dataset, which were explained in Appendix J.1. We omit the error bars for clarity, as the
standard deviations in our results are generally low [Figure 2].

Figure 7: Variation of Mean Absolute Percentage Error (MAPE) in Ithemal and uiCA with the % of
explanations consisting: number of instructions η, instructions inst and data dependencies δ. BHive
sources: (a) Clang, (b) OpenBLAS

BHive partitions by source. We study the explanations for blocks in BHive derived from the Clang
and OpenBLAS sources. We select 100 unique blocks from each source to separately analyze our
hypothesis. Figure 7 presents our findings and confirms our hypothesis for both partitions.

BHive partitions by category. We conduct a similar study on 50 unique basic blocks corresponding
to each category in the BHive dataset. Figure 8 presents our findings and confirms our hypothesis for
all categories. Interestingly, for the Store category, as the error in throughput predictions of both cost
models is similar, we observe similar prominence of all types of features in COMET’s explanations
for both cost models. This observation further supports our hypothesis.

K.2 Case studies

Next, we show another use case of COMET’s explanations —to conduct analyses of cost prediction
of individual basic blocks. Similar analyses can be useful to understand the cost model’s behavior
in corner cases. We discuss COMET’s explanations for the predictions of Ithemal and uiCA for the
Haswell microarchitecture on randomly picked blocks from the BHive dataset.

Case study 1. The block in Listing 1 is predicted to have a throughput of 2 cycles by both cost models
which matches the throughput on actual hardware reported in the BHive dataset. Instructions 2 and 3
write to the memory and are thus the highest throughput instructions [1, 14]. Hence intuitively, for
correct prediction, these instructions are important. COMET’s explanations for both cost models
match this intuition, thus suggesting that both cost models actually consider the intuitive set of
features to correctly predict throughput for this block.

1 l e a rdx , [ r a x + 1]
2 mov qword ptr [ r d i + 2 4 ] , rdx
3 mov byte ptr [ r a x ] , 80
4 mov r s i , qword ptr [ r14 + 32]
5 mov r d i , rbp

Prediction Explanation
Ithemal 2 cycles {inst2, inst3}
uiCA 2 cycles {inst2, inst3}

Listing 1: Case Study 1

Case study 2. The block in Listing 2 has a division instruction and many data dependencies
such as a RAW data dependency between instructions 3 and 6 due to register rax and a WAR
dependency between instructions 1 and 2 due to register edx. A div instruction is a very expensive
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Figure 8: Mean Absolute Percentage Error (MAPE) in Ithemal and uiCA and the % of explanations
having: number of instructions η, instructions inst and data dependencies δ. BHive categories: (a)
Load, (b) Load/Store, (c) Store, (d) Scalar, (e) Vector, (f) Scalar/Vector

instruction in general [1, 14]. The actual throughput of the basic block is 39 cycles. Thus, both
cost models have made incorrect predictions, but the prediction of Ithemal is more erroneous as
compared to uiCA. COMET’s explanation for Ithemal consists of just the feature corresponding to
the number of instructions in the basic block, while that for uiCA consists of the div instruction and
a data dependency. These explanations suggest that Ithemal does not sufficiently prioritize costly
instructions such as div and data dependencies, unlike the actual microarchitecture that Ithemal is
trained to mimic, thus indicating potential sources of its throughput-prediction error.

1 mov ecx , edx
2 xor edx , edx
3 l e a rax , [ r c x + r a x − 1]
4 div r c x
5 mov rdx , r c x
6 imul rax , r c x

Prediction Explanations
Ithemal 23 cycles {η(num_insts)}
uiCA 36 cycles {δRAW,3,6, inst4}

Listing 2: Case Study 2
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