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Abstract
The real world naturally has dimensions of time
and space. Therefore, estimating the counterfac-
tual outcomes with spatial-temporal attributes is
a crucial problem. However, previous methods
are based on classical statistical models, which
still have limitations in performance and gener-
alization. This paper proposes a novel frame-
work for estimating counterfactual outcomes with
spatial-temporal attributes using the Transformer,
exhibiting stronger estimation ability. Under mild
assumptions, the proposed estimator within this
framework is consistent and asymptotically nor-
mal. To validate the effectiveness of our approach,
we conduct simulation experiments and real data
experiments. Simulation experiments show that
our estimator has a stronger estimation capability
than baseline methods. Real data experiments pro-
vide a valuable conclusion to the causal effect of
conflicts on forest loss in Colombia. The source
code is available at this URL.

1. Introduction
Causal inference plays a vital role in various fields, such
as epidemiology (Lawlor et al., 2008; Robins et al., 2000)
and economics (Baum-Snow & Ferreira, 2015; Dague &
Lahey, 2019). Understanding and utilizing causality helps
us reveal the mechanisms of the physical world, predict
the occurrence of events in the real world, and manipulate
their outcomes. Counterfactual outcome prediction (Pros-
peri et al., 2020; Wang et al., 2025) is a promising direction
in causal inference. In practice, some causal problems have
spatial-temporal attributes, such as the well-known “But-
terfly Effect”: a butterfly flapping its wings in Brazil may
eventually lead to a tornado in the United States. As we
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know, time and space are closely entangled and inseparable
(Einstein, 1915; 1922), and the physical world naturally
possesses spatial-temporal attributes. Thus, it is crucial to
perform counterfactual outcomes estimation with spatial-
temporal attributes.

However, the classical causal inference frameworks (Pearl,
2010; Rubin, 1974) cannot be directly applied to estimate
counterfactual outcomes with spatial-temporal attributes.
A few studies Christiansen et al. (2022); Papadogeorgou
et al. (2022) have initially explored causal inference meth-
ods for spatial-temporal data based on classical statistical
models. Christiansen et al. (2022) propose to use the struc-
tural causal models for spatial-temporal data. However, in
their setting, current outcomes are mainly affected by cur-
rent treatment. Thus, their estimands primarily focus on the
causal effects simultaneously, which does not fully address
the issue of temporal carryover effects. Papadogeorgou
et al. (2022) extend the potential outcomes framework to the
spatial-temporal setting. Although they propose the spatial-
temporal potential outcomes framework, they don’t explic-
itly propose a method for the computation of propensity
scores with spatial-temporal attributes, which is essential
for outcomes estimation. Besides, they use classical statis-
tical methods, such as kernel methods, which could suffer
from complicated data patterns. The kernel methods rely on
correctly specified kernel functions and smoothing parame-
ters to ensure optimal performance. Thus, previous works
still have limitations in performance and generalization.

In this work, we propose a novel framework for the esti-
mation of counterfactual outcomes with spatial-temporal
attributes using deep learning. An overview of the studied
problem is shown in Figure 1, the studied spatial-temporal
data is the time series of point patterns. Our objective is
to estimate the expected number of occurrences of the out-
come events within a specific region under a counterfactual
treatment assignment strategy. The counterfactual treatment
assignment strategy refers to a strategy that does not exist
in the observational data. In other words, we aim to investi-
gate “what will happen to outcome events when we employ
other treatment strategies?”. Accordingly, we propose deep-
learning-based estimators within a spatial-temporal causal
inference framework motivated by Papadogeorgou et al.
(2022). The proposed estimators account for the effects
of past treatments on current outcomes, thus capturing the
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(a) Studied spatial-temporal data. (b) Causal structure of the studied problem

Figure 1. Overview of the studied problem. The left figure demonstrates the studied spatial-temporal data. Each layer in the cube
represents a spatial point pattern in a time step. The blue blocks represent the outcomes that occurred, while the orange blocks indicate
the treated locations. The point patterns at multiple time steps from the past to the present constitute spatial-temporal data, which can
be viewed as high-dimensional tensors. The right figure illustrates the causal structure of the studied problem, where s refers to spatial
location and t represents time.

temporal causal effects. Besides, under mild assumptions,
our estimators are based on inverse probability weighting
and two innovations. First, based on convolutional neural
networks (CNNs), we propose an efficient method to com-
pute propensity scores when both treatment and covariates
are high-dimensional, such as point pattern series. Sec-
ond, we employ a Transformer-based model to estimate
the intensity functions of point processes that characterize
spatial-temporal data. Moreover, our deep-learning-based
estimators within this framework exhibit excellent statistical
properties, such as consistency and asymptotic normality.

To validate the effectiveness of our approach, we conduct
simulations and real data experiments. Simulation experi-
ments demonstrate that our deep-learning-based estimator
exhibits lower estimation bias than the four baseline meth-
ods. Real data experiments study the causal effect of con-
flicts on forest loss in Colombia from the year 2002 to the
year 2022. The results conclude that the longer duration
and more intensity of conflicts will cause more forest loss
in response.

Overall, our contributions are summarized as follows:

● We study counterfactual outcomes estimation with the
spatial-temporal attribute, a more general setting, and
propose an effective deep-learning-based solution.

● We propose an efficient CNN-based method to address
the calculation of propensity scores when both treat-
ment and covariates are high-dimensional, such as
point patterns. In addition, we use the Transformer
to model the intensity functions of point processes,
used to characterize spatial-temporal data.

● We empirically demonstrate the effectiveness of our

approach by both simulated and real experiments. The
real data experiments study the cause-and-effect of con-
flicts on forest loss in Colombia, revealing a valuable
conclusion: longer and more intense conflicts lead to
an increase in forest loss.

2. Related Works
2.1. Temporal Causal Inference

Temporal causal inference aims to investigate the causal re-
lationships among time series data. Several studies have fo-
cused on estimating counterfactual outcomes or treatment ef-
fects of time-varying treatments. Examples include Granger
Causality (Granger, 1969), Marginal Structural Models
(MSMs) (Robins et al., 2000), and Recurrent Marginal
Structural Networks (RMSNs) (Lim, 2018). However, time-
varying confounders may lead to bias in the estimation.
To address the problem of the time-varying confounders,
several deep learning-based methods, such as Causal Trans-
former, were proposed (Bica et al., 2020a;b; Li et al., 2020;
Liu et al., 2020; Melnychuk et al., 2022; Vo et al., 2021).
There exist methods targeting other types of sequential data,
such as natural language (Chi et al., 2024) and temporal
omics data (Zhang et al., 2024). While these methods pro-
vide strong theoretical foundations for temporal causal in-
ference, their models do not include spatial dimensions.

2.2. Temporal Counterfactual Prediction

Temporal counterfactual prediction refers to performing
counterfactual outcome prediction under time-varying set-
tings. Seedat et al. (2022) propose TE-CDE, a neural-
controlled differential equation approach for counterfac-
tual outcome estimation in irregularly sampled time-series
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data. Wu et al. (2024) introduce a conditional gener-
ative framework for counterfactual outcome estimation
under time-varying treatments, addressing challenges in
high-dimensional outcomes and distribution mismatch.
El Bouchattaoui et al. (2024) propose an RNN-based ap-
proach for counterfactual regression over time, focusing on
long-term treatment effect estimation.

2.3. Spatial Causal Inference

Spatial data is commonly found in the environment, such
as air quality data in a region and the incidence rate of a
disease in a region (Cressie & Wikle, 2015). Spatial data
often includes spatial correlation and heterogeneity, which
challenge treatment effect estimation (Akbari et al., 2023;
Ning et al., 2018). To address the problem of spatial cor-
relation, Jarner et al. (2002) eliminate the effect of known
covariates by matching the treatment group and the control
group and estimating the latent spatial confounding under
this design. Concerning the heterogeneity treatment, Causal
Forest (Wager & Athey, 2018) is a non-parametric random
forest-based method for heterogeneity treatment effects esti-
mation. The above methods ignore the temporal dimension,
while we focus on spatial-temporal data.

2.4. Spatial-Temporal Causal Inference

Spatial-temporal data refers to the data consisting of spa-
tial and temporal information (Cressie & Wikle, 2015). In
the real world, spatial-temporal data, such as temperature
variation over time in a region, is ubiquitous, and many of
them are time series of remote-sensing images. However,
there has been limited research on the causal inference of
spatial-temporal data until now. Christiansen et al. (2022)
extended the structure causal model to make it applicable
to spatial-temporal data. However, in their settings, cur-
rent outcomes are mainly affected by the current treatments,
which does not fully solve the temporal carryover effect.
Papadogeorgou et al. (2022) extended the potential outcome
framework on spatial-temporal data and employed kernel
functions to estimate the treatment effects. However, they
didn’t explicitly propose a method to compute propensity
scores with spatial-temporal attributes, which is essential for
treatment effects estimation. In practice, spatial-temporal
causality is effective for better understanding multi-modal
data, such as video (Li et al., 2023; 2022) and market data
(Li et al., 2024).

3. Background
Now we introduce the important concepts used in this frame-
work and estimators.

Spatial Point Patterns. The point patterns describe the
locations where events occur within a given region and are

often characterized using point process models (Baddeley
et al., 2008). The rectangle layer with colored blocks in
Figure 1a illustrates an example of a spatial point pattern.
We employ spatial point patterns to describe the treatments
and outcomes in a time step.

Spatial Point Process and Intensity Function. The spa-
tial point process is a statistical model that describes the
spatial distribution of the locations of events in a given re-
gion. Formally, let N (⋅) denote the counting measure, and
Ds ⊂ Rd is a measurable subset of Rd. A spatial point
process can be defined as a collection of random variables
{N (A)∣A ⊂ Ds}, where N (A) represents the number of
events occurring in a specific spatial region A. An im-
portant characteristic of the spatial point process is the ex-
pected number of events occurring within a region A, i.e.,
E[N (A)]. It can be calculated by an intensity function,
which represents the average density of events occurring
within a unit region. Let s denote a location and ds denote
a small region located at location s with area v(ds), the
definition of the intensity function λ(⋅) is:

λ(s) = lim
v(ds)→0

E[N (ds)]

v(ds)
.

Then we have E[N (A)] = ∫A λ(s)ds, A ⊂ Ds. Intensity
functions are crucial to characterize spatial point processes,
which can be utilized to generate spatial point patterns.

Spatial Poisson Point Process. An important spatial point
process is the spatial Poisson point process, which is also
the primary focus of this paper. We continue to use λ(s) to
denote the intensity function of a Poisson point process. An
important property of a Poisson point process is N (A) ∼
Poisson(λA), and λA = ∫A λ(s)ds. Poisson(⋅) denotes the
Poisson distribution. According to the properties of the
Poisson distribution, E[N (A)] = λA. The detailed proof is
in Appendix E.

4. Method
We first introduce the potential outcome framework for
spatial-temporal data. Based on this framework, we describe
the estimands of interest. Finally, we derive the estimators
and implement them with deep learning models.

4.1. Potential Outcome Framework for
Spatial-Temporal Data

Before formalizing our problem setting and estimands,
we introduce the potential outcome framework for spatial-
temporal data (Papadogeorgou et al., 2022). Specifically,
denote Zt(s) as a binary treatment variable, and Zt(s) = 1,
Zt(s) = 0 represent the presence and absence of treatment
at time t and location s, respectively. Let γ = {1,2, . . . , T}
denote the time index set, and Ω denote a spatial region.
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Then Zt = {Zt(s)∣s ∈ Ω} is the collection of binary treat-
ment variables of all the locations in the region Ω. Zt can
be regarded as a spatial point pattern generated by a spatial
point process, with Zt(s) = 1 indicating the presence of a
point and Zt(s) = 0 indicating its absence. Z = {Zt∣t ∈ γ}
is the collection of treatments in time index set γ. By taking
a subset of Z, we construct a historical treatment set up
to time t, i.e., Z≤t = {Z1, Z2, . . . , Zt}. By assigning Z≤t
as z≤t, we have the historical treatment realization z≤t =
{z1, z2, . . . , zt}, where z1, z2, . . . , zt are the assignments of
Z1, Z2, . . . , Zt. Then, we denote Szt = {s ∈ Ω∣zt(s) = 1}
as the set of locations that have received treatment in time t.

Similarly, we can formalize the outcome. Specifically,
denote Yt(Z≤t)(s) as a binary outcome variable, and
Yt(Z≤t)(s) = 1, Yt(Z≤t)(s) = 0 represent the occur-
rence and non-occurrence of the target event at time t
and position s under a treatment Z≤t, respectively. Let
Yt(Z≤t) = {Yt(Z≤t)(s)∣s ∈ Ω} denote the potential out-
come in a region Ω given the historical treatment Z≤t, by as-
signing Z≤t as z≤t, and we can distinguish Yt(Z≤t) from the
notion of observed outcome Y ob

t (z≤t) = Yt(Z≤t)∣Z≤t=z≤t .
Y ob
t (z≤t) represents a spatial point pattern generated by

a spatial point process, with Yt(z≤t)(s) = 1 indicating
the presence of a point and Yt(z≤t)(s) = 0 indicating its
absence. Likewise, Y≤t and Y ob

≤t represent the potential
outcome and observed outcome up to time t, respectively.
SY ob

t (z≤t)
= {s ∈ Ω∣Y ob

t (z≤t)(s) = 1} is the collection of
the locations whose target outcomes occur in time t.

Let Xt denote the covariates at time t and X≤t =
{X1,X2, . . . ,Xt} denote the covariates up to time t, and
x≤t{x1, x2, . . . , xt} is its realization. Finally, by combin-
ing the treatment, outcome, and covariates, we obtain the
historical information. Let h≤t = {z≤t, Y ob

≤t , x≤t} be the
observed historical information up to time t, and H≤t =
{Z≤t, Y≤t,X≤t} be the potential historical information up to
time t. Clearly, h≤t ⊂ H≤t. We summarize all notations in
Appendix A.

4.2. Counterfactual Outcomes

We aim to estimate the expected number of outcome-
occurring locations in an area under a counterfactual treat-
ment assignment mechanism. First, we introduce the
method for treatment intervention.

Treatment Intervention. We consider stochastic treat-
ment intervention, making treatment follow a specific in-
tervention distribution. Let Fh(⋅) denote a spatial point
pattern distribution drawn from a spatial Poisson point
process with intensity function h. Then Fh(zt) repre-
sents we assign treatment realization zt following the
distribution Fh(⋅). For a historical treatment realization
z≤t = {z1, z2, . . . , zt}, we can apply Fh(⋅) to the last
element of z≤t (the latest treatment), i.e., z≤t(Fh) ∶=

{z1, z2, . . . , Fh(zt)}, to intervene the treatment. Similarly,
let FH(⋅) = Fh1(⋅) × Fh2(⋅) × . . . × FhM

(⋅) denote a joint
distribution with M independent ones, and z[t −M + 1, t] =

(zt−M+1, zt−M+2, . . . , zt) denote the last M elements of z≤t.
We can apply FH(⋅) to z[t −M + 1, t] to obtain z≤t(FH) ∶=

{z1, . . . , zt−M , Fh1(zt−M+1), . . . , FhM
(zt)}. It is noted

that the proposed treatment intervention method is an im-
provement of the method in (Papadogeorgou et al., 2022).
Specifically, Papadogeorgou et al. (2022) assume the in-
tervention distributions within FH are all the same (Fh),
while we allow the distributions in FH to be diverse and
change with time (i.e., Fht). Recall that FH denotes the
intervened distributions of previous treatments. Therefore,
the estimands in our setting are more general than those
in (Papadogeorgou et al., 2022).

Estimands. Based on the treatment intervention method,
we define the expected number of outcomes in time t and
a region ω as the estimand of interest Nω

t (FH). Under the
intervention distribution FH(⋅), we have

Nω
t (FH) = ∫

ZM
∣SY ob

t (z≤t(FH))
∩ ω∣dFH(z[t −M + 1, t]).

(1)
Furthermore, taking the mean values of Nω

t (FH) over time
t =M,M + 1, . . . , T , we obtain,

Nω(FH) =
1

T −M + 1

T

∑
t=M

Nω
t (FH). (2)

It is noted that the treatments of M periods follow the
intervention distribution FH we specified, which does
not necessarily exist in the observable data. Thus, the
proposed estimands are counterfactual. To better demon-
strate the estimands, we provide a running example that
walks through each term of the estimands in Appendix B.

4.3. Assumptions

To identify the above estimands, we introduce the necessary
mild assumptions.

Assumption 1. (Unconfoundedness) We assume that con-
dition on h≤t, Zt is not dependent on H≤t: Zt á H≤t∣h≤t.
This assumption is also known as ignorability (Rubin, 1978),
which is commonly used in causal inference, indicating the
absence of unmeasured covariates.

Assumption 2. (Poisson Assumption) We assume that Zt,
Yt(Z≤t) and Zt∣h≤t−1 are generated from spatial Poisson
point processes. This assumption is reasonable since the
spatial Poisson point processes are widely used to character-
ize the distribution of discrete events in a region (Cressie &
Wikle, 2015).

Additional assumptions and their explanations can be found
in Appendix C. We provide the proof of identifiability for
the estimands in Appendix D.
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4.4. Estimators

With the above assumptions, we derive estimators for the
corresponding estimands. The proposed estimators are
based on inverse probability weighting (IPW). As a key
component of IPW, we first introduce the propensity score
within the framework used in this work.

Propensity Score. The propensity score within this frame-
work is the probability of treatment Zt given historical in-
formation h≤t−1, denoted as et(zt) = P(Zt = zt∣h≤t−1).

Counterfactual Probability. We define the counterfactual
probability of treatment Zt as ph(zt), i.e., ph(zt) = fh(Zt =

zt). fh(⋅) denotes the probability density function of the
intervention distribution Fh(⋅). A detailed explanation of
why ph(zt) is “counterfactual” is in Appendix H.

Intensity Function. In section 4.1, we have defined
Y ob
t (z≤t) = {Y

ob
t (z≤t)(s)∣s ∈ Ω}. Y ob

t (z≤t) is a discrete
spatial point pattern generated by a spatial Poisson point
process. We denote the intensity function of this latent
spatial Poisson point process as λY ob

t (z≤t)
(s), this intensity

function is assumed to be continuous, serving as a spatial
smoothing of Y ob

t (z≤t).

Inverse Probability Weighting Estimator. With the above
components, the inverse probability weighting estimator
Ŷt(FH , s) is derived as follows:

Ŷt(FH , s) =
t

∏
j=t−M+1

phj(zj)

ej(zj)
λY ob

t (z≤t)
(s). (3)

Ŷt(FH , s) can be viewed as the intensity function of a spa-
tial Poisson point process that generates Y ob

t (z≤t(FH)).
According to the definition of intensity function in Section
3, the expected number of outcome-occur points in a re-
gion ω is obtained by integrating Ŷt(FH , s) over region ω.
Therefore, the estimator of Nω

t (FH) is shown as follows:

N̂ω
t (FH) = ∫

ω
Ŷt(FH , s)ds. (4)

Then we obtain the estimator of Nω(FH), N̂ω(FH) =
1

T−M+1 ∑
T
t=M N̂ω

t (FH).

We briefly outline the derivation of our estimator. It is built
upon the Inverse Probability Weighting (IPW) approach
from Marginal Structural Models (MSMs) (Robins et al.,
2000). In particular, the term λY ob

t (z≤t)
(s) in Eq. (3) denotes

the intensity function of the observed outcome at time t and

location s, while the product ∏t
j=t−M+1

phj
(zj)

ej(zj)
serves as

a weighting factor analogous to that used in MSMs. The
method extends the IPW-based weighting mechanism from
MSMs to a spatial-temporal framework.

4.5. Theoretical Properties

Now we introduce the important theoretical properties of
the propensity score and estimator.

Proposition 1. The propensity score is a balancing score.
For any t ∈ γ,

Zt á h≤t∣et(zt).

Proposition 2. Dimensional reduction property of the
propensity score: if Zt áH≤t∣h≤t then Zt áH≤t∣et(zt).

Proposition 3. (The consistency and asymptotic normal-
ity of the estimator) Let V ar denote the Variance, Nω(Yt)

denote the number of the observed outcome Yt in region ω.
If all assumptions hold, and T →∞, we have that

√
T (N̂ω(FH) −Nω(FH))

d
Ð→ N(0, v),

where v = limT→∞
1

T−M+1 ∑
T
t=M vt and vt =

V ar[∏
t
j=t−M+1

phj
(zj)

ej(zj)
Nω(Yt)∣H≤t−M ].

The proofs of the above propositions are in Appendix C.

4.6. Deep-Learning-Based Realization

This subsection introduces how we employ neural networks
to realize the above estimators. Figure 2 shows the full
architecture of our model.

4.6.1. CALCULATE THE PROPENSITY SCORE

Challenges. We first discuss the challenges that high-
dimensional data brings and why the classical classification-
based method cannot address this problem. In the classical
setting, treatments take limited values (e.g., binary treat-
ments). Thus, we can utilize covariates to train a classi-
fier of treatments and employ this classifier to predict the
propensity scores. However, in our setting, the treatment Zt

is high-dimensional. Specifically, Zt = {Zt(s)∣s ∈ Ω} con-
tains all the binary treatment variables of locations in region
Ω. If there are 100 locations s, the Zt can take 2100 values.
Then we need to train a classifier with 2100 classes, which
is unacceptable. To address the challenges, we propose the
following method.

Dimension Reduction. Since it’s hard to compute the
propensity scores of high-dimensional treatments directly,
we utilize a dimension reduction map to project treatments
into a low-dimensional space. Let R(⋅) denote the dimen-
sion reduction map. We define it as follows:

R(Zt) = ∣{Zt(s);Zt(s) = 1, s ∈ Ω}∣. (5)

R(Zt) maps Zt to a low-dimensional space, representing
the count of treated locations in time t. We focus on the
count of treated points when constructing estimators. There-
fore, this dimension reduction map preserves the informa-
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Figure 2. Full model architecture.

tion in the treatments while facilitating efficient computation
of propensity scores.

After the dimension reduction of treatment, we express the
propensity score in the following form:

et(R(zt)) = P(R(Zt) = R(zt)∣h≤t−1). (6)

Then we specify the distribution P(R(Zt) = R(zt)∣h≤t−1)
to calculate the propensity score. According to Assump-
tion 2, Zt∣h≤t−1 is generated by a spatial Poisson point
process. With the properties of spatial Poisson point process
in section 3, we have R(Zt)∣h≤t−1 ∼ Poisson(λ1). Thus,
the task of calculating the propensity score is transformed
into estimating the parameter λ1 of the Poisson distribution
Poisson(λ1).

CNN-based Regression. We formulate the estimation of λ1

into a regression problem. Specifically, we employ the high-
dimensional series h≤t−1 to regress scalar R(Zt). Accord-
ing to the definition of regression, such a regression model
outputs E(R(Zt)∣h≤t−1)

1. Since CNNs efficiently extract
local features from high-dimensional tensors. They cap-
ture spatial hierarchies and patterns, making them ideal
for data like 3D structures. We employ CNNs as the
regression model and use the MSE loss during training.
Specifically, denote the output of CNNs as output(⋅), then
MSE = E(output(h≤t−1) −R(zt))

2. A detailed structure
of the used CNNs is in Appendix K.

1Regression models can be seen as modeling the probability
distribution of the dependent variable, with the predicted output
corresponding to conditional expectation.

Consequently, according to the properties of the Poisson
distribution, E(R(Zt)∣h≤t−1) is synonymous with the pa-
rameter λ1 that governs R(Zt)∣h≤t−1. Detailed derivation
can be found in Appendix E. Utilizing the Poisson distribu-
tion, the propensity score can be calculated by the following
equation:

et(R(zt)) =
λ
R(zt)
1

R(zt)!
e−λ1 . (7)

4.6.2. CALCULATE COUNTERFACTUAL PROBABILITY

Analyzing the probability distribution of high-dimensional
variables directly is challenging due to the “curse of dimen-
sionality”, which leads to data sparsity, increased complex-
ity of relationships, and higher computational costs (Ver-
leysen & François, 2005). Thus, we utilize the dimension
reduction map to project Zt into a low-dimensional space.
Consequently, the transformed counterfactual probability
takes the form:

ph(R(zt)) = fh(R(Zt) = R(zt)). (8)

With the properties of spatial Poisson point processes in
section 3, R(Zt) follows a Poisson distribution given by:
R(Zt) ∼ Poisson(λ2). Then, the objective is transformed
into estimating the parameter λ2.

As shown in Figure 2, to achieve this goal, we draw sam-
ples from the Poisson point process Fh(zt) and estimate
E(R(Zt)) using the sample mean of R(Zt). With the prop-
erty of Poisson distribution, E(R(Zt)) is equivalent to λ2,
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the detailed derivation is in Appendix E. Leveraging the defi-
nition of Poisson distribution, the counterfactual probability
is computed by the following equation:

ph(R(zt)) =
λ
R(zt)
2

R(zt)!
e−λ2 . (9)

4.6.3. TRANSFORMER-BASED INTENSITY FUNCTION
ESTIMATION

As for the estimation of the intensity function, we draw inspi-
ration from the maximum likelihood estimation (MLE). The
core idea is to use the neural network to model λY ob

t (z≤t)
(s),

and train this network to maximize the likelihood function.
We define net ∶ ΩÐ→ R as the output of this neural network.
The training objective is to minimize the following function:

−

∣S
Y ob
t
(z≤t)

∣

∑
i=1

ln(net(si)) + ∫
Ω
net(s)ds −KL(q∣∣p), (10)

where si ∈ SY ob
t (z≤t)

is the coordinate in SY ob
t (z≤t)

, q is the
data distribution obtained from the Transformer encoder
and Gaussian sampling, and p is a prior standard Gaussian
distribution. KL(q∣∣p) is the Kullback–Leibler divergence
between two distributions q and p. Note that ln(net(si))
and ∫Ω net(s) are the components of the likelihood function
of the spatial Poisson point process. A detailed derivation
of the training objective is in Appendix F. An overall archi-
tecture of the network is depicted in Figure 2.

Why choose the Transformer? During training, we input
coordinates sequence in SY ob

t (z≤t)
into the network. Since

the Transformer can capture long-term and high-order de-
pendencies and meanwhile enjoy computational efficiency
(Zuo et al., 2020), the ability to capture such dependencies
creates more powerful models than RNNs, which facilitates
the estimation of intensity function (Zhou et al., 2022; Zuo
et al., 2020). Thus, we employ the Transformer to realize
this network. In Section 5.5, through experiments, we fur-
ther demonstrate the superiority of the Transformer model.

5. Experiments and Results
We evaluate our method on both synthetic and real datasets.

5.1. Datasets

5.1.1. SYNTHETIC DATA

We employ the intensity functions of spatial Poisson point
processes to generate synthetic spatial-temporal data. Gen-
eration details are in Appendix M.1.

5.1.2. REAL WORLD DATA

Forest Change Data. The Global Forest Change Data is an
annually updated global dataset capturing forest loss derived

from time-series images acquired by the Landsat satellite
(Hansen et al., 2013). We consider forest loss events in
Colombia from 2002 to 2022 and treat them as outcomes.

UCDP Georeferenced Event Dataset. The UCDP Georef-
erenced Event Dataset is a comprehensive dataset document-
ing global conflicts, providing details on parameters such
as the temporal aspects and geographical coordinates of
conflict events (Croicu & Sundberg, 2015). We exclusively
examine conflict events transpiring within the territorial
boundaries of Colombia and consider them as treatments.
The chronological span of our analysis encompasses the
years from 2002 to 2022.

A brief overview and detailed description of the real-world
data are in Appendix L.

5.2. Baselines, Metrics, and Implementations

Baselines. The chosen baselines are state-of-the-art litera-
ture on the counterfactual outcomes estimation (Lim, 2018;
Robins et al., 2000), and the heterogeneous treatment ef-
fects estimation (Wager & Athey, 2018). These are: MSMs
(Robins et al., 2000), RMSNs (Lim, 2018), Causal Forest
(Wager & Athey, 2018). We also employ a linear regression-
based method (LR) as an additional baseline for comparison.
Since these baselines cannot handle the high-dimensional
series directly, we transformed all our synthetic data into
scalar series to adapt the baselines to our setting. Appendix
N details the baselines and adaptation.

Metrics. For synthetic experiments, we compute the true
counterfactual outcomes as ground truth and employ the
relative error rate (RER) between the estimation and the
ground truth as a metric. Details of the ground truth are in
Appendix M.2. The formula of RER is shown below:

RER =
∣Estimated Value - True Value∣

∣True Value∣
,

where ∣ ⋅ ∣ denotes the absolute value.

For real data experiments, since the true counterfactual out-
comes of real data are unknown, we consider the consistency
of our conclusions with existing literature on the effects of
human conflicts on natural resources.

Error Bars. For each experimental setup, we conduct 20
independent runs. Reported values are the means, and error
bars indicate the standard deviation (±σ) over the 20 runs.

Implementations. For CNNs in section 4.6.1, the details
are epoch = 200, learning rate = 0.001, batch size = 64. For
the Transformer-based neural network in Figure 2, the de-
tails are as follows: The number of blocks in the Trans-
former encoder is 8, the number of attention heads per layer
is 16, the number of layers in the Multi-Layer Perceptron
decoder (MLP) is 8, epoch = 300, learning rate = 0.0001.
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Table 1. Real data experiments results. The data in the table are
the estimated numbers of forest loss events.

c = 3 c = 4 c = 5 c = 6 c = 7

M = 1 20.6 ± 2.3 20.5 ± 2.2 20.7 ± 2.8 20.5 ± 1.9 20.8 ± 2.0
M = 3 21.5 ± 1.4 21.6 ± 2.4 22.3 ± 1.9 23.0 ± 1.3 23.3 ± 1.9
M = 5 22.4 ± 2.3 22.9 ± 1.8 23.6 ± 1.7 24.2 ± 1.2 24.7 ± 2.2
M = 7 24.7 ± 1.3 23.6 ± 1.7 26.7 ± 1.2 27.2 ± 1.5 28.0 ± 2.1

5.3. Synthetic Experiments

Treatment Intervention. In Section 4.2, we introduced
the crucial estimands Nω

t (FH), which need to determine
the intervention distribution of treatments over the M pe-
riods from t −M + 1 to t. Let λZj denote the intensity
function of the spatial point process generating Zj . We re-
place λZj with the form: hj = c × log (λZj), c is a constant,
j ∈ {t −M + 1, t −M + 2, . . . , t}, and log (⋅) represents
the natural logarithm. The constant c is introduced to
control the magnitude of the intensity function. A larger
c corresponds to the larger values of the intensity func-
tion, indicating an increased average density of treatments.
Under our spatial-temporal setting, parameter M is cru-
cial for regulating the duration of the intervention. A
larger M signifies an extended period of intervening in
the treatments. In synthetic experiments, c ∈ {3,4, ...,7}
and M ∈ {1,3}. Details of treatment intervention are in
Appendix G.

Results. We generate three synthetic datasets with time
lengths of 32, 48, and 64 (i.e., T = 32,48,64.). We conduct
experiments on each dataset, and in the main text, we present
the experimental results of M = 1. Additional experiment
results are in Appendix I. For M = 1, we calculate different
c ∈ {3,4, . . . ,7}, gradually increasing the intensity of the
treatment. The results are presented in Figure 3. Figure 3
visually illustrates our results. Across different time lengths,
our method consistently outperforms the baselines.

5.4. Real Data Experiments

In real data experiments, we consider conflicts in Colombia
as the treatment variable Z and forest loss in Colombia as
the outcome variable Y . We set M ∈ {1,3,5,7}, and c ∈
{3,4, ...,7}, representing a gradual increase in the intensity
and duration of conflicts.

Results. The results are illustrated in Table 1. Table 1 il-
lustrates that the estimated forest loss increases as M and
c increase. Thus, our results suggest that longer and more
intense conflicts in Colombia may increase forest loss. Pre-
vious studies De Jong et al. (2007); Eniang et al. (2007);
Garzón & Valánszki (2020); Kanyamibwa (1998) conclude
that conflicts may harm natural resources like forests, which
is consistent with our conclusion.

5.5. Ablation Studies

Replace Transformer with RNNs. In Section 4.6.3, we
discuss the reason for choosing the Transformer as the back-
bone to estimate the intensity function. To further demon-
strate the Transformer’s superiority over RNNs, we replace
the Transformer with RNNs and replicate the synthetic ex-
periments. We present the results of T=64, M=1 in Figure 4,
other results and details of RNNs are in Appendix J.1. Ac-
cording to Figure 4, results show that the estimation ability
of RNNs is inferior to that of the Transformer.

Relax the Poisson Assumption. To validate the robustness
of our methods over Assumption 2 (Poisson Assumption),
we relax it and replicate the synthetic experiments. Specifi-
cally, we add the Gaussian kernel to the intensity functions
of synthetic data, thus breaking the standard setting of the
Poisson point process. We compare the results with the
standard Poisson setting. We present the results of setting
T=64, M=1 in Figure 5. The implementation details and
other results are in Appendix J.2. According to Figure 5,
relaxing the Poisson assumption does not lead to significant
degradation in the estimation performance of our method,
demonstrating its robustness to data distribution.

5.6. Computation Efficiency

Now we introduce the computing platform and computation
efficiency. All experiments were conducted on an NVIDIA
RTX 4090 GPU and an Intel Core i7 14700KF processor. In
synthetic experiments, the synthetic data dimension could
be (100,100,192). In addition, the time for one experimental
setting was less than 10 minutes.

6. Conclusion
In this work, we study the estimation of counterfactual out-
comes for spatial-temporal data and develop estimators with
deep learning. Our experiments on synthetic datasets demon-
strate the superior estimation capability of our estimator over
four baselines, and experiments on real-world datasets pro-
vide a valuable conclusion to the causal effect of conflicts
on forest loss in Colombia. For future work, we look to
consider more general types of spatial-temporal data, mov-
ing beyond discrete point process data to encompass more
general spatial-temporal stochastic processes.
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Figure 3. Synthetic experiments results of M = 1. The horizontal axis represents the values of c, while the vertical axis represents the
relative error rate (RER). Lower lines in the graph correspond to methods with higher estimation accuracy.

Figure 4. Comparison results of Transformer and RNN.

Figure 5. Results of relaxing the Poisson assumption.

Impact Statement
In this work, we propose a framework to estimate the coun-
terfactual outcomes with spatial-temporal attributes, which
has positive societal impacts of helping predict the coun-
terfactual outcomes of spatial-temporal data. Besides, all
data used in this work are publicly available, and our newly
released assets are the source code of our paper, which does
not contain unsafe images or text.

References
Akbari, K., Winter, S., and Tomko, M. Spatial causality: A

systematic review on spatial causal inference. Geograph-
ical Analysis, 55(1):56–89, 2023.

Baddeley, A. et al. Analysing spatial point patterns in r.
Technical report, Technical report, CSIRO, 2010. Version
4. Available at www. csiro. au . . . , 2008.

Baum-Snow, N. and Ferreira, F. Causal inference in urban
and regional economics. In Handbook of regional and
urban economics, volume 5, pp. 3–68. Elsevier, 2015.

Bica, I., Alaa, A., and Van Der Schaar, M. Time series
deconfounder: Estimating treatment effects over time in
the presence of hidden confounders. In International
conference on machine learning, pp. 884–895. PMLR,
2020a.

Bica, I., Alaa, A. M., Jordon, J., and van der Schaar, M.
Estimating counterfactual treatment outcomes over time
through adversarially balanced representations. arXiv
preprint arXiv:2002.04083, 2020b.

Chi, H., Li, H., Yang, W., Liu, F., Lan, L., Ren, X., Liu,
T., and Han, B. Unveiling causal reasoning in large lan-
guage models: Reality or mirage? Advances in Neural
Information Processing Systems, 37:96640–96670, 2024.

Christiansen, R., Baumann, M., Kuemmerle, T., Mahecha,
M. D., and Peters, J. Toward causal inference for spatio-
temporal data: conflict and forest loss in colombia. Jour-
nal of the American Statistical Association, 117(538):
591–601, 2022.

Cressie, N. and Wikle, C. K. Statistics for spatio-temporal
data. John Wiley & Sons, 2015.

Croicu, M. and Sundberg, R. Ucdp georeferenced event
dataset codebook version 4.0. Journal of Peace Research,
50(4):523–532, 2015.

9



Transformer-Based Spatial-Temporal Counterfactual Outcomes Estimation

Dague, L. and Lahey, J. N. Causal inference methods:
Lessons from applied microeconomics. Journal of Pub-
lic Administration Research and Theory, 29(3):511–529,
2019.

De Jong, W., Donovan, D., and Abe, K.-i. Extreme con-
flict and tropical forests, volume 5. Springer Science &
Business Media, 2007.

Einstein, A. Die feldgleichungen der gravitation. Sitzungs-
berichte der Königlich Preußischen Akademie der Wis-
senschaften, pp. 844–847, 1915.

Einstein, A. Die grundlage der allgemeinen rela-
tivitätstheorie, volume 49. JA Barth, 1922.

El Bouchattaoui, M., Tami, M., Lepetit, B., and Cournède,
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Supplementary Materials of Transformer-Based Spatial-Temporal
Counterfactual Outcomes Estimation

A. Notations
A.1. Causal Model

Table 2. Notations for the causal model
Ω Whole spatial region
ω One specific spatial region
γ = {1,2, ..., T} Time index set
s Spatial location
t Time
T Number of time periods
Zt Treatment in time t
Z≤t Treatment up to time t
Z[t−M+1,t] Treatment between time t −M + 1 and time t
Szt Treatment location in time t
Yt(Z≤t) Potential outcome in time t
Y ob
t (z≤t) Observed outcome in time t

SY ob
t (z≤t)

Outcome location in time t

Xt Covariates in time t
xt Covariates realization in time t
h≤t Observed historical information up to time t
H≤t Potential historical information up to time t

A.2. Intervention

Table 3. Notation for treatment intervention
h Intensity function of spatial point process
M Duration of treatment intervention
Fh Distribution of spatial point patterns with intensity h
FH Joint distribution of M independent Fh

Fh(zt) Distribution of zt is be assigned to Fh

z≤t(FH) Distribution of z[t−M+1,t] in z≤t is be assigned to FH

A.3. Estimands

Table 4. Notation for interest estimands
Nω

t (FH) Expected number of outcomes that occur in time t and
region ω under intervention distribution FH

Nω(FH) Average Nω
t (FH) over time M to time T
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A.4. Estimators

Table 5. Notation for estimators

Ŷt(FH , s) Estimated intensity function of yt(z≤t(FH))

N̂ω
t (FH) Estimator for Nω

t (FH)

N̂ω(FH) Estimator for Nω(FH)

λY ob
t (z≤t)

(s) Intensity function of spatial Poisson point process that gen-
erates Y ob

t (z≤t(FH))

B. Running Example of the Estimands
Now we provide a running example for the estimands. For simplicity, consider the case of t = 8 and M = 3. Then the
estimands

Nω
8 (FH) = ∫

Z3
∣SY ob

8 (z≤8(FH))
∩ ω∣dFH(z[6,8]),

represent the expected number of outcomes in t = 8 and region ω under distribution FH . Next, we employ the Table 6 to
elaborate on each term of the estimands.

Table 6. Interpretation of key terms in the counterfactual estimands.

Term Interpretation

t = 8, M = 3 Evaluates outcomes at time 8, considering 3-times intervention persistence (times 6–8).
z[6,8] Sequence of treatment variables over the time window [6,8].
FH(z[6,8]) Joint probability distribution of z[6,8] under counterfactual intervention strategy FH .

∣SY ob
8 (z≤8(FH))

∩ ω∣ Observed outcome counts in region ω at time 8, under FH .

Z3 All possible values of z[6,8].

∫Z3 ⋅dFH(z[6,8]) Expectation computation over all possible values of z[6,8].

C. Proofs
C.1. Assumptions

Assumption 1: Unconfoundedness. Papadogeorgou et al. (2022) proposed the unconfoundedness assumption for spatial-
temporal data, in which they assume that given h≤t, Zt is not dependent on any past or future potential outcomes and
covariates. Their assumption is quite strict, as the future is unlikely to affect the past, so we relax their assumption and
assume that condition on h≤t, Zt is not dependent on H≤t:

Zt áH≤t∣h≤t.

Assumption 2: Overlap. For any zt ∈ Zt, t ∈ γ and h, there exists a unique constant δz > 0, such that et(zt)
ph(zt)

> δz . This
assumption ensures that all treatment point patterns in any intervention distribution Fh are also possible in the observed
world. Papadogeorgou et al. (2022) only use one treatment distribution Fh in their estimators. In contrast, we used
different treatment distributions in our estimators, so here we strictly assume a unique constant δz exists for any treatment
distributions.

Assumption 3. Let ∣ ⋅ ∣ denote the number of elements of a set, and V ar denote the variance.

(a) There exists a constant δY > 0 such that ∣SY ob
t
(z≤t)∣ < δY for all t ∈ γ and z≤t.

(b) Let vt = V ar[∏
t
j=t−M+1

phj
(zj)

ej(zj)
Nω(Yt)∣H≤t−M ] there exists a constant v > 0 such that 1

T−M+1 ∑
T
t=M vt

p
Ð→ v as

T Ð→∞.
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(c) ∣ ∫ω λS
Y ob
t
(z≤t)
(s)ds −Nω(Yt)∣ < β and β is an infinitesimals.

(d) β is o( 1
√

T
).

In Assumption 3, (a) means that the number of outcome events at any time has an upper bound under any treatment. In our
real-world scenario, we consider forest loss as the outcome event. Forest loss cannot be infinite, so (a) is reasonable. (b)
assumes the convergence in probability of a sequence. In (c), Nω(Yt) is the actual number of outcome events in time t and
region ω because our neural network smoothing can be viewed as an estimate of the intensity function of a point process.
We design it so that the output values of the neural network are as large as possible where the outcome occurs, and as small
as possible where the outcome does not occur, so (c) is reasonable. In (d), we assume that β tends to zero at a faster rate
than 1

√

T
, i.e., β

√
T Ð→ 0 as T Ð→∞.

C.2. Propositions

Proposition 1. The propensity score is a balancing score. For any t ∈ γ,

Zt á h≤t∣et(zt).

Proposition 2. Dimensional reduction property of the propensity score: if Zt áH≤t∣h≤t then Zt áH≤t∣et(zt).

Proposition 3: The consistency and asymptotic normality of the estimator. Let V ar denote the Variance, Nω(Yt)

denote the number of the observed outcome Yt in region ω. If all assumptions hold, and T →∞, we have that

√
T (N̂ω(FH) −Nω(FH))

d
Ð→ N(0, v),

where v = limT→∞
1

T−M+1 ∑
T
t=M vt and vt = V ar[∏

t
j=t−M+1

phj
(zj)

ej(zj)
Nω(Yt)∣H≤t−M ].

C.3. Definition

Definition: Martingale Difference Series (Van der Vaart, 2010). Let (Ω,F ,Pr) be a probability space, a filtration
Ft = {Ft; t ≥ 0} is a non-decreasing collection of σ − field on F , (e.g. F0 ⊂ F1 ⊂ ... ⊂ Ft ⊂ ... ⊂ F ). Let Xt = {Xt; t ≥ 0}
be a time series. A martingale difference series relative to a given filtration is a time series Xt such that, for any t:

(1) Xt is Ft measurable.

(2) E[∣Xt∣] <∞.

(3) E[Xt∣Ft−1] = 0.

C.4. Theorem

Theorem: Central limit theorem for Martingale difference series (Van der Vaart, 2010). If Xt is a martingale
difference series relative to the filtration Ft, and there exists a constant v > 0, such that 1

n ∑
n
t=1E[X

2
t ∣Ft−1]

p
Ð→ v, and such

that 1
n ∑

n
t=1E[X

2
t I∣Xt∣>ϵ

√

n∣Ft−1]
p
Ð→ 0 for any ϵ > 0, then

√
nXn

d
Ð→ N(0, v).

C.5. Proofs for Propositions

Proofs for Proposition 1. We need to show that P(Zt = zt∣et(zt), h≤t) = P(Zt = zt∣et(zt)). Since et(zt) is a function of
h≤t then P(Zt = zt∣et(zt), h≤t) = P(Zt = zt∣h≤t) = et(zt),

P(Zt = zt∣et(zt)) = E[P(Zt = zt∣h≤t)∣et(zt)] = E[et(zt)∣et(zt)] = et(zt).

Based on the above, we prove the Proposition 1.
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Proofs for Proposition 2. We need to show that P(Zt = zt∣H≤t, et(zt)) = P(Zt = zt∣et(zt)). Since et(zt) is a function
of h≤t and h≤t ⊂H≤t, then P(Zt = zt∣H≤t, et(zt)) = P(Zt = zt∣H≤t) and

P(Zt = zt∣H≤t) = P(Zt = zt∣H≤t, h≤t)

= P(Zt = zt∣h≤t) (Unconfoundedness)
= et(zt)

= P(Zt = zt∣et(zt)).

Based on the above, we prove the Proposition 2.

Proofs for Proposition 3. Let Errt = N̂ω
t (FH) − N

ω
t (FH) represent the estimation error at time t. We divide the

estimation error Errt into two parts: the first part is E1t, which comes from the treatment allocation, and the second part is
E2t, which comes from the spatial smoothing of our neural network. To be specific,

Errt =
t

∏
j=t−M+1

phj(zj)

ej(zj)
∫
ω
λS

Y ob
t
(z≤t)
(s)ds −Nω

t (FH) = E1t +E2t

where

E1t =
t

∏
j=t−M+1

phj(zj)

ej(zj)
Nω(Yt) −N

ω
t (FH)

and

E2t =
t

∏
j=t−M+1

phj(zj)

ej(zj)
∫
ω
λS

Y ob
t
(z≤t)
(s)ds −Nω(Yt).

We will show that,

(i)
√
T ( 1

T−M+1 ∑
T
t=M E1t)

d
Ð→ N(0, v),

(ii)
√
T ( 1

T−M+1 ∑
T
t=M E2t)Ð→ 0.

Proof of the asymptotic normality of the first part of the estimation error. We use Definition C.3, the definition of the
Martingale difference series, and Theorem C.4, the central limit theorem for the Martingale difference series to prove (i)
√
T ( 1

T−M+1 ∑
T
t=M E1t)

d
Ð→ N(0, v).

Lemma 1. E1t is a martingale difference series with respect to the filtration Ft =H≤t−M+1.

Proof for Lemma 1: We need to show that,

(1) E1t is H≤t−M+1 measurable,

(2) E[∣E1t∣] <∞,

(3) E[E1t∣Ft−1] = E[E1t∣H≤t−M ] = 0.

It is easy to prove that (1) holds from the definitions of E1t and H≤t−M+1. From Assumption 2 and Assumption 3 (c) we
have

∣E1t∣ ≤ ∣
t

∏
j=t−M+1

phj(zj)

ej(zj)
Nω(Yt)∣ + ∣N

ω
t (FH)∣ < δY (1 + δ

−M
z ) <∞.

Therefore, E[∣E1t∣] < δY (1 + δ
−M
z ) <∞, (2) is proved.

For the proof of (3), we will show that

E[
t

∏
j=t−M+1

phj(zj)

ej(zj)
Nω(Yt)∣H≤t−M ] = N

ω
t (FH),
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E[
t

∏
j=t−M+1

phj(zj)

ej(zj)
Nω(Yt)∣H≤t−M ] = ∫

t

∏
j=t−M+1

phj
(zj)

ej(zj)
Nω(Y

ob
t (z≤t(FH))) × P(zt−M+1∣H≤t−M)

× P(zt−M+2∣H≤t−M , zt−M+1) × ... × P(zt∣H≤t−M , z[t−M+1,t−1])dz[t−M+1,t]

= ∫

t

∏
j=t−M+1

phj(zj)

ej(zj)
Nω(Y

ob
t (z≤t(FH))) × P(zt−M+1∣H≤t−M)

× P(zt−M+2∣H≤t−M+1) × ... × P(zt∣H≤t−1)dz[t−M+1,t]

= ∫

t

∏
j=t−M+1

phj(zj)Nω(Y
ob
t (z≤t(FH)))dz[t−M+1,t] (Unconfoundedness)

= Nω
t (FH).

Then we have

E[E1t∣H≤t−M ] = E[
t

∏
j=t−M+1

phj(zj)

ej(zj)
Nω(Yt)∣H≤t−M ] −E[N

ω
t (FH)∣H≤t−M ]

= Nω
t (FH) −N

ω
t (FH)

= 0.

Based on the above, we prove the Lemma 1.

Lemma 2. 1
T−M+1 ∑

T
t=M E[E2

1tI(∣E1t∣ > ϵ
√
T −M + 1∣Ft−1)]

p
Ð→ 0, for any ϵ > 0.

Proof for Lemma 2. We will show I(∣E1t∣ > ϵ
√
T −M + 1∣Ft−1)Ð→ 0 as T Ð→∞. From Assumption 2 and Assumption 3

(b), we can obtain ∣E1t∣ < δY (1 + δ
−M
z ). We show δY (1 + δ

−M
z ) ≤ ϵ

√
T −M + 1, as T Ð→∞,

ϵ−1δY (1 + δ
−M
z ) ≤

√
T −M + 1

[ϵ−1δY (1 + δ
−M
z )]

2
≤ T −M + 1

M − 1 + [ϵ−1δY (1 + δ
−M
z )]

2
≤ T,

let T0 = ⌈M − 1 + [ϵ
−1δY (1 + δ

−M
z )]2⌉, when T ≥ T0, we have δY (1 + δ

−M
z ) ≤ ϵ

√
T −M + 1 and ∣E1t∣ < ϵ

√
T −M + 1.

Therefore, we have I(∣E1t∣ > ϵ
√
T −M + 1∣Ft−1)Ð→ 0 as T Ð→∞. Based on the above, we prove the Lemma 2.

We have E[E2
1t∣Ft−1] = V ar[E1t∣Ft−1] = V ar[∏

t
j=t−M+1

phj
(zj)

ej(zj)
Nω(Yt)∣H≤t−M ], from Assumption 3(b), we have

1

T −M + 1

T

∑
t=M

E[E2
1t∣Ft−1]

p
Ð→ v.

Combining Lemma 1, Lemma 2, and the Central limit theorem for the Martingale difference series C.4, we have

√
T (

1

T −M + 1

T

∑
t=M

E1t)
d
Ð→ N(0, v).

Based on the above, we prove the asymptotic normality of the first part of the estimation error.

Proof of the convergence in probability of the second part of the estimation error to zero. The second part of the
estimation error represents the difference between the integral of the outcome of the neural network smoothing and the
actual number of outcomes. We will show

√
T (

1

T −M + 1

T

∑
t=M

E2t)Ð→ 0.
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Let αt =∏
t
j=t−M+1

phj
(zj)

ej(zj)
, then

∣
1

T −M + 1

T

∑
t=M

E2t∣ = ∣
1

T −M + 1

T

∑
t=M

αt[∫
ω
λS

Y ob
t
(z≤t)
(s)ds −Nω(Yt)]∣.

From Assumption 2, we obtain αt < δ
−M
z . From Assumption 3(c), we obtain ∣ ∫ω λS

Y ob
t
(z≤t)
(s)ds −Nω(Yt)∣ < β. Then we

have

∣
1

T −M + 1

T

∑
t=M

E2t∣ < δ
−M
z ∣

1

T −M + 1

T

∑
t=M

[∫
ω
λS

Y ob
t
(z≤t)
(s)ds −Nω(Yt)]∣

≤ δ−Mz
1

T −M + 1

T

∑
t=M

∣∫
ω
λS

Y ob
t
(z≤t)
(s)ds −Nω(Yt)∣

< δ−Mz
1

T −M + 1
(T −M + 1)β

= δ−Mz β.

Because β can be arbitrarily small so δ−Mz β can also be arbitrarily small, combined with Assumption 3 (d), we conclude
that
√
T ( 1

T−M+1 ∑
T
t=M E2t)Ð→ 0.

Combining the proof of the asymptotic normality of the first part of the estimation error and the proof of the convergence to

0 of the second part of the estimation error, we prove
√
T (N̂ω(FH) −Nω(FH))

d
Ð→ N(0, v) as T Ð→∞.

D. Identifiability Proof
This section provides proof of identifiability for the estimands. Under the potential outcomes framework, identifiability
refers to whether an estimand can be represented using observable data. The formal definition is given below:

Definition D.1. (Identifiability) A parameter θ is said to be identifiable if it can be expressed as a function of the distribution
of observed data under certain assumptions. The parameter θ is said to be nonparametrically identifiable if it can be expressed
as such a function without any parametric assumptions on the model.

In the above definition, the parameter θ refers to the estimation target, which could be a causal effect or a counterfactual
outcome. Identifiability is crucial in observational studies because an estimand must be identifiable in order to be estimable
from observational data. If the estimation target depends on unobservable data, then it is non-identifiable and cannot
be estimated. To derive the identifiability of the estimation target in this work, we introduce the following reasonable
assumptions:

Assumption (Ignorability). We assume that, given the observed history h≤t, the treatment variable Zt is independent of the
latent history H≤t:

Zt ⊥⊥H≤t ∣ h≤t. (11)

Note that Papadogeorgou et al. (2022) assume that Zt is independent of all past and future potential outcomes and covariates
given h≤t. Their assumption is overly strict, as the future cannot causally affect the past (due to the unidirectional nature of
causality in time). Therefore, we relax their assumption by only requiring Zt to be independent of the latent history H≤t.

Assumption (Poisson Assumption). We assume that Zt, Yt(Z≤t), and Zt ∣ h≤t−1 are generated by spatial Poisson point
processes. This assumption is reasonable because spatial Poisson point processes are widely used statistical tools to model
the distribution of discrete events over spatial regions (Cressie & Wikle, 2015).

Assumption (Consistency). At any time and in any region, if a treatment sequence z≤t is assigned, then the observed
outcome Y ob

t must equal the potential outcome under that treatment, i.e.,

Y ob
t = Yt(Z≤t = z≤t). (12)

This assumption ensures that the observed outcomes are consistent with the potential outcomes, enabling the estimation of
counterfactual outcomes and causal effects.
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Theorem D.2 (Identifiability of the Estimation Target). If Assumptions Ignorability, Poisson, and Consistency hold, then the
estimands Nω

t (FH) is identifiable.

Proof. By the definition of Nω
t (FH), it suffices to show that E[Y ob

t (z≤t(FH))] is identifiable.

E[Y ob
t (z≤t(FH))] = E[E[Y

ob
t (z≤t(FH)) ∣ h≤t]] (13)

= E[E[Y ob
t (z≤t(FH)) ∣ h≤t, z≤t ∼ FH]] (14)

= E[E[Yt(Z≤t ∼ FH) ∣ h≤t, z≤t ∼ FH]] (15)

= E[E[Y ob
t ∣ h≤t, z≤t ∼ FH]], (16)

Equation (13) follows from the tower property of conditional expectation, (14) is derived using the ignorability assumption
(since Y ob

t (z≤t(FH)) ∈ H≤t), and both (15) and (16) follow from the consistency assumption. The Poisson assumption
ensures that the distributions of the potential outcomes and treatments are known, further reinforcing the identifiability of
the estimation target.

The above establishes the identifiability of the estimands, which guarantees the solvability of the proposed estimation
problem.

E. Derivation of Property of Poisson Point Process
Let λ(s) denote the intensity function of a Poisson point process, A denote a spatial region, N (A) denote the number of
events occurring within region A, and E[N (A)] denote the expected number of events occurring within region A.

According to the property of the Poisson point process, we have the following:

N (A) ∼ Poisson(λA),

where Poisson(⋅) denotes the Poisson distribution and λA is its parameter.

Then

E[N (A)] =
∞

∑
i=0

iP(N (A) = i) =
∞

∑
i=1

i
e−λAλi

A

i!
= λAe

−λA

∞

∑
i=1

λi−1
A

(i − 1)!
= λAe

−λAeλA = λA.

According to the definition of the intensity function we have:

E[N (A)] = ∫
A
λ(s)ds = λA.

F. Derivation of the Training Objective Function
The objective function Eq. (10) is mainly derived from the likelihood function of the Poisson point process and the objective
function of the variational autoencoder (VAE). Specifically, we employ the idea of maximum likelihood estimation (MLE),
and the likelihood function of the Poisson point process is shown below:

∑
i

log(λ∗(si)) − ∫
S
λ∗(u)du.

MLE for the intensity function of the Poisson point process seeks the optimal intensity function λ∗(⋅) from the data that
optimizes the above function. As for the KL(q∣∣p) in Eq. (10), it’s a common component of VAE. Therefore, our method
can be seen as a combination of MLE and VAE. We use a neural network as the intensity function and seek the optimal
intensity function by optimizing the objective function Eq. (10).

G. Explanation of the Treatment Intervention
In this section, we provide a brief explanation of why the intervention treatment duration M has an impact on the results.
In our problem setting, we assume treatments have delayed effects, i.e., temporal carryover. For example, an educational
program results in poorer performances at first, as students adjust to new learning methods, but eventually, they may get
long-term improvements. Therefore, under our spatial-temporal setting, the larger M may influence the estimation.
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H. Explanation of the term “Counterfactual Probability”
In this section, we provide a brief explanation of why the counterfactual probability is “counterfactual”. Recall that ph(zt) is
the probability density function of intervention distribution Fh(⋅). In this work, we aim to estimate the number of potential
outcomes when the treatment follows an intervention distribution. We specify this intervention distribution, which does
not necessarily exist in the observable data. For example, in the observable data, treatment may follow a distribution PA,
and we want to find out what will happen to outcomes when treatment follows another distribution PB . Therefore, the
counterfactual probability ph(zt) is counterfactual and it’s counter to the observable data or real-world.

I. Additional Experiments and Their Results

Figure 6. Experiments results of M = 3. The horizontal axis represents the values of c, while the vertical axis represents the relative error
rate (RER). The lower lines in the graph correspond to methods with higher estimation accuracy. From left to right, the three columns
respectively represent the experimental results with time lengths of 64, 48, and 32 (T = 64,48,32).

According to Figure 6, in the different experiment settings of M=3, the estimation errors of our method are relatively low in
most cases, indicating the robustness of our method concerning time lengths and intervention settings.

J. Details of the Ablation Studies
J.1. Details of the RNNs

J.1.1. PARAMETERS OF THE RNNS

We employ the Gated Recurrent Unit (GRU) network. The input size = 32, hidden size = 32, num layers = 3, dropout=0.1,
batch first = True.

J.1.2. COMPARISON RESULTS OF RNNS

(a) Comparison results of T=64, M=3. (b) Comparison results of T=48, M=3.
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(a) Comparison results of T=48, M=1. (b) Comparison results of T=32, M=1.

Figure 9. Comparison results of T=32, M=3.

According to the above comparison results with RNNs, the Transformer backbone is superior to the RNNs in most settings.

J.2. Details of the Relaxation of Poisson Assumption

J.2.1. SETTINGS OF INTENSITY FUNCTIONS

To relax the Poisson assumption, we add the Gaussian kernels to the intensity functions (see Appendix M.1) that generate the

synthetic data. Specifically, we replace the Z∗t−1(s) = e
−2DZt−1

(s) with Gaussian kernel of e−
D2

Zt−1
(s)

2σ2 , Y ∗t−1(s) = e
−2DYt−1

(s)

with e−
D2

Yt−1
(s)

2σ2 , and Z∗
[t−3,t](s) = e

−2DZ
[t−3,t]

(s) with e−
D2

Z
[t−3,t]

(s)

2σ2 . The σ is set to a constant of 1
√

2
.

J.2.2. COMPARISON RESULTS

(a) Relaxing results of T=64, M=3. (b) Relaxing results of T=48, M=3.
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(a) Relaxing results of T=48, M=1. (b) Relaxing results of T=32, M=1.

Figure 12. Relaxing results of T=32, M=3.

K. The Design Details of Convolutional Neural Networks

Figure 13. The design details of Convolutional Neural Networks.

L. Details of the Real Dataset

Figure 14. An example of the real dataset.
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An example of the real dataset is shown in Figure 14. In Figure 14, the blue lines represent the roads in Colombia. The left
part of the figure shows the conflicts in 2002 in Colombia, the red dots represent the conflict locations. The right part of the
figure demonstrates the forest loss in 2002 in Colombia, the green dots denote the forest loss locations.

L.1. Forest Change Data.

We only consider the “Year of gross forest cover loss event (loss year)” section of the Global Forest Change dataset, which
is a raster data matrix (.tif file). The matrix elements are 0, representing no forest loss events, and values from 1 to 22,
representing forest loss events occurring from 2001 to 2022 (Hansen et al., 2013). We selected a portion from the dataset
that occurred within the territory of Colombia. We read the raster data matrix’s elements from 2 to 22, calculating their
latitude and longitude positions. As a result, we obtained the forest loss events that occurred in Colombia from 2002 to 2022.
Data is publicly available online from https://glad.earthengine.app/view/global-forest-change.

L.2. UCDP Georeferenced Event Dataset.

UCDP Georeferenced Event Dataset exists as tabular data (.xlsx file) (Croicu & Sundberg, 2015). We only consider the
years in which conflicts occurred, the latitude and longitude coordinates of the conflict locations, and the country or region
where the conflicts occurred, as contained in the tabular data. We directly filtered conflict events within Colombia from the
tabular data, spanning from 2002 to 2022. Data is publicly available online from https://ucdp.uu.se/downloads/
index.html#ged_global.

L.3. Road Data.

We select several major roads within Colombia from Google Maps. Specifically, for convenience, we choose key points
from the main roads of Colombia and connect these points to form a polyline, representing the road. The coordinates of
selected key points are shown below:

• Road1: (-77.66, 0.77), (-76.42, 3.09), (-76.06, 4.29).

• Road2: (-76.06, 4.29), (-74.03, 4.66), (-73.04, 7.05), (-72.38, 7.75).

• Road3: (-76.02, 4.31), (-75.54, 6.15), (-73.11, 7.09), (-74.22, 10.97), (-72.23, 11.33).

• Road4: (-75.52, 6.15), (-74.69, 10.93).

• Road5: (-75.52, 6.22), (-76.77, 8.42).

The first part of the coordinate is the longitude, and the second part is the latitude.

M. Synthetic Data Generating Process
We utilize reject sampling (Lavancier et al., 2015) to sample spatial point patterns of treatments and outcomes based on their
intensity functions. Below, we introduce the setting for intensity functions.

M.1. Intensity Functions Setting

We consider four covariates X1(s) and X2(s) and X3(s) and X4(s). X1(s) = e
−3D1(s) + log(D2(s)), X2(s) = e

−3D3(s).
D1(s) is the distance from the location s to the road on spatial area. D2(s) is the distance from s to the border of the spatial
area. D3(s) is the distance from s to the center of the spatial area. λX3(s) = ea

3
0+a

3
1X1(s) and λX4(s) = ea

4
0+a

4
1X1(s) are

two intensity function, we use the point patterns generated by them to create X3(s) and X4(s). Specifically, a30, a31, a40 and
a41, are bias constant. Let D3(s) represent the distance from s to the closet points generated by λX3(s), D4(s) represent
the distance from s to the closet points generated by λX4(s). Then X3(s) = e

D3(s), X4(s) = e
D4(s).

Based on all covariates, we determine the intensity function of the Poisson point process that generates treatment and outcome.
Let X(s) = (X1(s),X2(s),X3(s),X4(s)) denote the covariates vector, and Z∗t−1(s) = e

−2DZt−1
(s), Y ∗t−1(s) = e

−2DYt−1
(s),

DZt−1(s) is the distance from s to the closet point in SZt−1 , DYt−1(s) is the distance from s to the closet point in SYt−1 . The
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intensity function for the Poisson point process that generates Zt is shown as follows:

λZt(s) = e
β0+βXX(s)+βZZ∗t−1(s)+βY Y ∗t−1(s). (17)

In Eq. (17), β0, βX , βZ , βY , are constant parameters. Let Z∗
[t−3,t](s) = e

−2DZ
[t−3,t]

(s), DZ[t−3,t](s) is the distance from s

to the closet point in ⋃t
j=t−3 SZj . The intensity function for the Poisson point process that generates Yt is shown as follows:

λYt(s) = e
γ0+γXX(s)+γZZ∗

[t−3,t](s)+γY Y ∗t−1(s). (18)

In Eq. (18), γ0, γX , γZ , γY , are also constant parameters. In the synthetic data generating process, we set β0 = −1,
βX = (1,1,1,1), βZ = 1, βY = 1, and γ0 = 1, γX = (1,1,1,1), γZ = 1, γY = 1, a30 = −0.2, a31 = 2.3, a40 = −0.2 and
a41 = 2.8.

M.2. Ground Truth Generation

For the computation of the true counterfactual outcomes, we first employ the method described in Appendix M.1 to calculate
the intensity function of the spatial Poisson point process generating Y ob

t (z≤t(FH)). Subsequently, we utilize this intensity
function to generate samples of Y ob

t (z≤t(FH)). Finally, the average of samples is computed as the true Nω
t (FH).

M.3. Synthetic Data Region

In synthetic data, the entire area is a rectangle with a length of 1 and a width of 1. For ease of computer processing, we
divide this area into 100 squares. We draw some lines on the rectangle, which we consider as roads. The synthetic data area
is shown in Figure 15. In Figure 15, the red line represents the straight road, while the green dashed line represents the
curved road. Based on the synthetic data region, we calculate the intensity function of the treatments and outcomes. While it
is possible to generate an arbitrary number of intensity functions, due to computational limitations, we have generated 32,
48, and 64 intensity functions for the treatments and outcomes, corresponding to time lengths of 32, 48, and 64. Afterward,
based on the intensity functions, we use rejection sampling to generate point patterns of treatments and outcomes. To be
specific, twenty spatial point patterns are generated from each intensity function.

Figure 15. The synthetic spatial area. The red lines and green lines in the figure represent the synthetic roads.

N. Details of Baselines
N.1. Baselines Adaption

Now we introduce how we adapt baselines to our setting. Since baselines cannot directly handle high-dimensional data such
as series of spatial point patterns, we transform all treatments (zt) and outcomes (Yt) into the number of events contained in
the treatments and outcomes (R(zt) and R(Yt)), R() is the dimension reduction map defined in Eq. (5) in the main text.
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Therefore, the data used for baselines are all scalar series. For baselines like MSMs, RMSNs, and Linear Regression (LR),
we fit scalar outcomes on treatments and covariates and make a comparison with our method. For Causal Forest, we first
use a linear regression model to fit scalar treatments on outcomes, and then train the causal forest model to estimate the
treatment effects. Finally, we combine the causal forest and regression model to build the counterfactual outcomes.

N.2. Marginal Structural Models (MSMs)

Marginal Structural Models (MSMs) (Robins et al., 2000) is the statistical tool used in observational studies to estimate
causal effects, especially when dealing with time-varying exposures and confounders. MSMs employ the standard regression
method as a base estimation model and adjust for these complexities using methods like inverse probability weighting
(IPW) or g-estimation. In our configurations, we employ MSMs to fit outcomes on treatments and covariates and make a
comparison with our method.

N.3. Recurrent Marginal Structural Networks (RMSNs)

Recurrent Marginal Structural Networks (RMSNs) (Lim, 2018) is a deep learning-based method to forecast counterfactual
outcomes. Different from the MSMs, RMSNs employ the RNN model to build sequence-to-sequence architectures for
counterfactual outcome prediction. To be specific, (Lim, 2018) employs RNNs to construct propensity networks and
prediction networks, and combines these modules to form the inverse probability of treatment weighting (IPTW) estimation.
In our configurations, we utilize RMSNs to fit outcomes on treatments and covariates.

N.4. Causal Forest

Causal Forest (Wager & Athey, 2018) is a random forest-based method for heterogeneous treatment effects estimation,
the treatment effects are estimated at the leaves of the random trees. We employ a Python library called EconML
https://econml.azurewebsites.net/ to realize the Causal Forest. Although EconML does not support the
estimation of the counterfactual outcomes directly, for most estimators in EconML, we can combine a baseline predictive
model with one estimator in EconML to construct the counterfactual outcomes estimation. Specifically, we use a regression
model to fit treatments on outcomes, and then train the causal forest model to estimate the treatment effects. Finally, we
combine the causal forest and regression model to build the counterfactual outcomes.

N.5. Linear Regression (LR)

We develop a linear regression-based method as an additional baseline. Since LR cannot directly handle matrix data
such as spatial point patterns, we transform all treatments (zt) and outcomes (Yt) into the number of events contained
in the treatments and outcomes (R(zt) and R(Yt)), R() is the dimension reduction map defined in Eq. (5) in the main
text. Therefore, the data used for LR are all scalar. Subsequently, we use R(z1), R(z2),..., R(zM) to regress R(YM),
and the regression model obtained is denoted as E[R(YM)∣R(z≤M)]. After obtaining the regression model, we replace
the independent variables, R(z1), R(z2),..., R(zM) in the regression model E[R(YM)∣R(z≤M)] with c ∗ log(R(z1)),
c ∗ log(R(z2)),..., c ∗ log(R(zM)), and then input them into the model to obtain the predicted values N̂ω

M(FH). Similarly,
we can obtain estimates at time M + 1. We use R(z1), R(z2),..., R(zM+1) to regress R(YM+1), and the regression model
obtained is denoted as E[R(YM+1)∣R(z≤M+1)]. After obtaining the regression model, we replace the independent variables,
R(z1), R(z2),..., R(zM+1) in the regression model E[R(YM+1)∣R(z≤M+1)] with c ∗ log(R(z1)), c ∗ log(R(z2)),...,
c ∗ log(R(zM+1)), and then input them into the model to obtain the predicted values N̂ω

M+1(FH). In this way, we repeat
the process until we obtain the estimate at the final time T, N̂ω

T (FH). Then we can obtain estimates in the main text:
N̂ω(FH) =

1
T−M+1 ∑

T
t=M N̂ω

t (FH). We use the torch.nn module in PyTorch to implement linear regression, with 10 epochs
and a learning rate set to 0.00004.

O. Limitations
In this section, we discuss the limitations of our work. We employ the unconfoundedness assumption to identify our
estimands and prove the propositions. The unconfoundedness assumption excludes the influences of unmeasured covariates.
In real-world scenarios, unmeasured covariates may exist thus this assumption may be violated. However, the unmeasured
covariates are still an open problem (Pearl, 2010), and the unconfoundedness assumption is still widely used in causal
inference. We should be open to the unconfoundedness assumption.
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