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Robust Best-of-Both-Worlds Gap Estimators Based on Importance-Weighted
Sampling
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Abstract
We present a novel strategy for robust estimation
of the gaps in multiarmed bandits that is based on
importance-weighted sampling. The strategy is
applicable in best-of-both-worlds setting, namely,
it can be used in both stochastic and adversar-
ial regime with no need for prior knowledge of
the regime. It is based on a pair of estimators,
one based on standard importance weighted sam-
pling to upper bound the losses, and another based
on importance weighted sampling with implicit
exploration to lower bound the losses. We com-
bine the strategy with the EXP3++ algorithm to
achieve best-of-both-worlds regret guarantees in
the stochastic and adversarial regimes, and in the
stochastically constrained adversarial regime. We
conjecture that the strategy can be applied more
broadly to robust gap estimation in reinforcement
learning, which will be studied in future work.

1. Introduction
Best-of-both-worlds algorithms are algorithms that perform
well in stochastic, adversarial, and intermediate environ-
ments, with no need for prior knowledge about the nature of
the environment. The idea and the term were introduced by
Bubeck & Slivkins (2012), who studied multiarmed bandits,
and have since spread to a broad range of other frameworks,
including combinatorial bandits, linear bandits, bandits with
graph feedback, bandits with delayed feedback, Markov
Decision Processes (MDPs), and many more (Dann et al.,
2023; Masoudian et al., 2024; Jin et al., 2023).

There exist two major approaches to deriving best-of-both-
worlds algorithms. One is to start with an algorithm for
stochastic environments and extend it to a best-of-both-
algorithm by constantly monitoring whether the environ-
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ment satisfies certain stochasticity tests, and if not, perform
an irreversible switch into an adversarial operation mode.
So far this approach failed to yield any practically appli-
cable algorithms and to generalize beyond the multiarmed
bandit setting (Bubeck & Slivkins, 2012; Auer & Chiang,
2016). The second approach is to start with an algorithm
for adversarial bandits and to make adjustments (sometimes
only in the analysis) to make it also work in stochastic en-
vironments. This category can be further subdivided into
two. The first subcategory delivers stochastic regret guar-
antees through direct control of the gaps. This approach
was introduced by Seldin & Slivkins (2014), who injected a
bit extra exploration into the classical EXP3 algorithm with
losses (Bubeck & Cesa-Bianchi, 2012) and obtained the
first practically applicable best-of-both-worlds algorithm
named EXP3++. The approach was further improved by
Seldin & Lugosi (2017) and extended to additional settings,
for example, bandits with graph feedback (Rouyer et al.,
2022). An advantage of this approach is its intuitiveness and
relative simplicity, making it relatively easy to generalize to
new problems. A disadvantage is that the regret bounds are
slightly suboptimal: the adversarial regret bound of Seldin
& Lugosi (2017) is suboptimal by a lnK factor coming the
analysis of EXP3 (where K is the number of arms) and
the stochastic regret bound is suboptimal by a ln t factor
coming from the control of the gaps (where t is the game
round). The second subcategory is based on a self-bounding
analysis introduced by Zimmert & Seldin (2021). This ap-
proach, known as Tsallis-INF, is currently the dominant
one. It delivers minimax optimal regret guarantees in both
the stochastic and adversarial environments (Zimmert &
Seldin, 2021; Masoudian & Seldin, 2021; Ito, 2021), it also
delivers minimax optimal regret guarantees in intermediate
regimes, including stochastically constrained adversarial,
and stochastic regime with adversarial corruptions (Zim-
mert & Seldin, 2021; Masoudian & Seldin, 2021), and it
has been extended to a great variety of settings mentioned
earlier (Dann et al., 2023; Jin et al., 2023; Masoudian et al.,
2024). However, this approach is based solely on analysing
properties of the distribution on arms played by the algo-
rithm, and provides no gap estimates. In many practical
cases knowledge the gaps could be interesting and valuable,
but it is currently unknown whether this information can be
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Robust Best-of-Both-Worlds Gap Estimators

extracted from Tsallis-INF. A second disadvantage is that
extension to new settings requires handcrafting of potential
functions, which is not always intuitive.

Our work focuses on the first subcategory, namely, EXP3++
style approach. The best multiarmed bandits algorithm
in this subcategory is the EXP3++ version introduced by

Seldin & Lugosi (2017). It achieves O
(∑

a:∆(a)>0
(ln t)2

∆(a)

)
regret in the stochastic regime (where ∆(a) are the subop-
timality gaps) and O(

√
Kt lnK) regret in the adversarial

regime. A disadvantage of the algorithm of Seldin & Lugosi
is that its stochastic analysis is based on plain (or, in other
words, unweighted) losses. Therefore, the stochastic regret
guarantee applies only in the purely stochastic regime.

We introduce a novel modification of the algorithm, where
both the stochastic and the adversarial analysis are based
on importance-weighted losses. The modification preserves
the same regret bounds in the stochastic and the adversarial
regime as the regret bounds of Seldin & Lugosi, but provides
an opportunity to achieve improved regret bounds in interme-
diate regimes, such as stochastically constrained adversarial.
Moreover, it provides an explicit high-probability estimate
of the gaps, which may be interesting in its own right, in
particular if in the future the technique is extended to re-
inforcement learning, where using importance-weighted
estimates is a common practice.

The primary challenge in high-probability gap estimation
based on importance-weighted sampling are the high vari-
ance and range of importance-weighted samples. Our solu-
tion is based on using standard importance-weighted sam-
pling to control loss deviations from above and importance-
weighted sampling with implicit exploration (Neu, 2015)
to control loss deviations from below. For the first the con-
trol is achieved by Bernstein’s inequality for martingales,
which only requires one-sided boundedness of the losses.
For the second the control is achieved using the analysis of
implicit exploration by Neu. We emphasize that using the
combination of the two estimators is crucial, because due to
high range each of the two estimators only allow deviation
control in one direction.

In what follows, we start with outlining the problem setting
in Section 2, present our gap estimation strategy in Section 3,
combine it with the EXP3++ algorithm in Section 4, and
finish with a discussion in Section 5. All proofs are deferred
to the appendix.

2. Problem Setting
An environment generates a sequence of losses ℓ1, ℓ2, . . . ,
where ℓt ∈ [0, 1]K . We consider three types of environ-
ments. In a stochastic environment each entry ℓt(a) is drawn
from a distribution with a fixed expectation, E [ℓt(a)] =

µ(a), independent of t. In an oblivious adversarial en-
vironment the vectors ℓt are generated arbitrarily before
the game starts. Since the oblivious setting is the only ad-
versarial setting we consider in the paper, we will simply
refer to it as adversarial. In a stochastically constrained
adversarial environment the vector entries are sampled
independently from distributions that maintain the gaps,
E [ℓt(a)− ℓt(a

′)] = ∆̃a,a′ , but the means are allowed to
fluctuate over time. The stochastic environment is a special
case of stochastically constrained adversarial environment,
where the means do not fluctuate.

The game is played repeatedly, and at each step t the al-
gorithm chooses an action At ∈ {1, . . . ,K} and observes
only the loss of this action ℓt(At) at this time step.

The aim of the algorithm is to minimize the pseudo-regret,
which is the difference between its cumulative loss and the
cumulative loss of the best action in hindsight, defined as

R(t) =

t∑
s=1

E[ℓs(As)]−min
a

{
E
[ t∑

s=1

ℓs(a)

]}
.

In the oblivious adversarial setting the losses are considered
deterministic and the second expectation can be dropped,
making the pseudo-regret coincide with the expected regret

R(t) =

t∑
s=1

E[ℓs(As)]−min
a

t∑
s=1

ℓs(a).

In the stochastic regime action a is called optimal if µ(a) =
mina′{µ(a′)}. We use a∗ to denote an optimal action (there
may be more than one). We use ∆(a) = µ(a) − µ(a∗) to
denote the suboptimality gap of action a. The definition of
regret in the stochastic setting can then be rewritten as

R(t) =
∑

a:∆(a)>0

E[Nt(a)]∆(a), (1)

where Nt(a) denotes the number of times action a was
played in the first t rounds of the game.

In the stochastically constrained adversarial regime we
use a∗ ∈ argmina ∆̃a,1 to denote an optimal action, and
∆(a) = ∆̃a,a∗ the suboptimality gap of action a (Zimmert
& Seldin, 2021). If the means do not fluctuate with time,
this definition coincides with the definition of the gaps in the
stochastic regime. In the stochastically constrained adver-
sarial regime the regret can also be rewritten using equation
(1).

3. Robust Gap Estimation
Our gap estimation strategy uses importance weighted
losses, and importance weighted losses with implicit ex-
ploration. We denote the importance weighted loss of action
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Robust Best-of-Both-Worlds Gap Estimators

a at time t by:

ℓIWt (a) =
ℓt(a)1(At = a)

p̃t(a)
,

where 1(·) denotes the indicator function. The importance
weighted loss with implicit exploration of action a at time t
is denoted by:

ℓIXt (a) =
ℓt(a)1(At = a)

p̃t(a) + γt
,

where γt is an implicit exploration parameter to be specified
later.

LIW
t (a) =

∑t
s=1 ℓ

IW
s (a) is the cumulative importance

weighted loss of action a up to time t and LIX
t (a) =∑t

s=1 ℓ
IX
s (a) is the cumulative importance weighted loss

with implicit exploration of action a up to time t. Lt(a) =∑t
s=1 ℓt(a) is the true cumulative loss of action a up to

time t.

In the following display we present our gap estimation al-
gorithm, which we name Robust Importance Weighted Gap
Estimation. The algorithm can be combined with any other
algorithm (e.g., EXP3++) at the plug-in point marked in
blue.

Algorithm 1 Robust Importance Weighted Gap Estimation
Remark: see text for definition of ξt(a), and γt(a)
∀a : LIW

0 (a) = LIX
0 (a) = 0

For t=1, 2,...

∀a : ∆̂t(a) =

(
LIX
t−1(a) −

ln (4t)
γt−1

− mina

(
LIW
t−1(a) +√

2νt−1(a) ln (4t) +
ln (4t)

3

))
/(t− 1)

∀a : ∆̂t(a) = max
(
0, ∆̂t(a)

)
∀a : ϵt(a) = min

{
1

2K , 1
2

√
lnK
tK , ξt(a)

}
Let pt(a) be any distribution over {1, ...,K} (plug in
point for other algorithms).
∀a : p̃t(a) = ϵt(a)+ (1−

∑
a′ ϵt(a

′))pt(a) Draw action
At according to p̃t(a) and play it
Observe and suffer the loss ℓAt

t

∀a : ℓIWt (a) = ℓt(a)1(At=a)
p̃t(a)

∀a : ℓIXt (a) = ℓt(a)1(At=a)
p̃t(a)+γt(a)

∀a : LIW
t (a) = LIW

t−1(a) + ℓIWt (a)
∀a : LIX

t (a) = Lt−1(a)
IX + ℓIXt (a)

∀a : νt(a) = νt−1(a) + ϵt(a)
−1

The following proposition states the main property of the
gap estimation algorithm, namely, that with an appropriate
set of parameters it ensures that 1

2∆(a) ≤ ∆̂t(a) ≤ ∆ with
high probability for all sufficiently large t. Thus, ∆̂t(a) can

be used as a reliable estimate of ∆(a) for any higher level
purpose.

Proposition 3.1. For γt =
ϵt(a)∆̂t(a)√

1200
, and any a and t, the

gap estimates ∆̂t(a) of Algorithm 1 in the stochastic regime
satisfy:

P(∆̂t(a) ≥ ∆(a)) ≤ 1

2t
. (2)

Furthermore, for any choice of ξt(a), such that ξt(a) ≥
1200 ln t
t∆̂t(a)2

and t ≥ tmin(a), the gap estimates satisfy:

P
(
∆̂t(a) ≤

∆(a)

2

)
≤ 1

2t
, (3)

where tmin(a) = mint

{
t ≥ 4·1200(ln t)2K

∆(a)4 lnK

}
is the first time

when 1200ln(t)
t∆(a)2 ≤ 1

2

√
lnK
tK .

A proof of this proposition is provided in Appendix B.

4. EXP3++ with Robust Importance Weighted
Gap Estimation

In the following display we cite the EXP3++ algorithm of
Seldin & Slivkins (2014).

Algorithm 2 EXP3++
Remark: see text for definition of ηt and ξt(a)
∀a : LIW

0 (a) = 0
For t = 1, 2, ...

∀a : ϵt(a) = min

{
1

2K , 1
2

√
lnK
tK , ξt(a)

}
∀a : pt(a) = e−ηtL

IW
t−1(a)/

∑
a′ e−ηtL

IW
t−1(a

′)

∀a : p̃t(a) = ϵt(a) + (1−
∑

a′ ϵt(a
′))pt(a)

Draw action At according to p̃t(a) and play it
Observe and suffer the loss ℓt(At)

∀a : ℓIWt (a) = ℓt(At)1(At=a)
p̃t(a)

∀a : LIW
t (a) = LIW

t−1(a) + ℓIWt (a)

We combine EXP3++ with our robust gap estimation by
plugging the exploration parameters ϵt(a) from Algorithm 1
into EXP3++. The matching lines are highlighted in violet
and the plug-in point in blue. Note that importance weigthed
samples with implicit exploration are not used by EXP3++
and have no impact on its operation, they are only used
within Algorithm 1.

We prove the following regret guarantee in the stochastic
regime for EXP3++ with our robust gap estimation.

Theorem 4.1. Let ξt(a) = 1200 ln t
t∆̂t(a)2

, where ∆̂t(a) is the
gap estimate from Algorithm 1. Then the expected regret of

3
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EXP3++ in the stochastic regime satisfies:

R(t) = O

( ∑
a:∆(a)>0

ln2 t

∆(a)

)
+ Õ

( ∑
a:∆(a)>0

K

∆(a)3

)
,

(4)

where Õ hides factors logarithmic in K.

We provide a proof of the theorem in Appendix C. We note
that the regret bound matches the bound of Seldin & Lugosi
(2017, Theorem 3), but we use importance-weighted gap
estimates, opening potential for more applications.

The adversarial regret bound is taken directly from Seldin &
Slivkins (2014), who provide a general adversarial analysis
that holds for any choice of ξt.
Theorem 4.2 ((Seldin & Slivkins, 2014, Theorem 1)). For

ηt = 1
2

√
lnK
tK and ξt(a) ≥ 0 the regret of the EXP3++

algorithm in the adversarial regime for any t satisfies:

R(t) ≤ 4
√
Kt lnK.

5. Discussion
We have provided a robust strategy for gap estimation
based on importance weighted samples and implicit ex-
ploration. In combination with the EXP3++ algorithm

it achieves regret of order O

(∑
a:∆(a)>0

(ln t)2

∆(a)

)
in the

stochastic regime and regret of order O(
√
Kt lnK) in the

adversarial regime. While the regret bounds are the same
as the bounds of Seldin & Lugosi (2017), the ability to
use importance-weighted gap estimates opens the oppor-
tunity to achieve improved regret bounds in additional en-
vironments, such as stochastically constrained adversarial,
to provide high-probability regret guarantees, and to ex-
pand to additional learning settings beyond multiarmed ban-
dits. We emphasize that even though best-of-both-worlds
algorithms like Tsallis-INF provide slightly tighter regret

bounds, namely O

(∑
a:∆(a)>0

ln t
∆(a)

)
in the stochastic

regime and O(
√
Kt) in the adversarial regime, they pro-

vide neither gap estimates nor high-probability guarantees.
The ability of our approach to provide high-probability gap
estimates based on importance weighted samples might be
valuable in its own right. We are looking forward to discuss
these opportunities with workshop participants and explore
them further in future work.
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A. Bernstein’s Inequality for Martingales
We use the following concentration inequality of Seldin & Lugosi (2017) in our proofs. The important element for us that
distinguishes it from the more broadly known Bernstein’s inequality for martingales (?) is that it only requires one-sided
boundedness of the martingale.

Theorem A.1 (Bernstein’s inequality for martingales (Seldin & Lugosi, 2017)). Let X1, ..., Xn be a martingale difference
sequence with respect to filtration F1, ..., Fn, where each Xj is bounded from above, and let Si =

∑i
j=1 Xj be the

associated martingale. Let vn =
∑n

j=1 E[(Xj)
2|Fj−1] and cn = max1≤j≤n{Xj}. Then for any δ > 0:

P
{(

Sn ≥
√

2ν ln
1

δ
+

c ln 1
δ

3

)
∧ (vn ≤ ν) ∧ (cn ≤ c)

}
≤ δ. (5)

B. Proof of Proposition 1; Bounding the Probability of Failure
This section contains a proof of Proposition 1, that the gap estimates are reliable with high probability. It is comprised of
two subsections, upper bounding the probability that the gap estimate is too large, and upper bounding the probability that it
is too small once t passes a certain threshold. Before we begin with the proof, we introduce the following two inequalities:

P
(
LIX
t (a)− tµ(a) ≥ ln (4(t+ 1))

γt

)
≤ 1

4(t+ 1)
, (6)

P
(
tµ(a) ≥ LIW

t (a) +
√
2νt ln (4(t+ 1)) +

ln (4(t+ 1))

3

)
≤ 1

4(t+ 1)
, (7)

where line 6 follows from Neu (2015, Lemma 1), and 7 from Bernstein’s inequality for Martingales, as stated in (Seldin &
Lugosi, 2017, Theorem 9), a proof of line 7 is in Section D.

B.1. Upper Bound with High Probability

We want to show that

P(∆̂t(a) ≥ ∆(a))

is small.

In the interest of legibility and without loss of generality, we prove this for t+ 1, though the proof would otherwise be the
same. Firstly, we construct an upper bound on the probability that the gap estimate is larger than the true gap. Substituting
in definitions, and then upper bounding using the inequalities on lines 6 and 7 leads to

P(∆̂t+1(a) ≥ ∆(a)) =P(t∆̂t+1 ≥ t∆(a))

=P
(
LIX
t (a)− ln (4(t+ 1))

γt
−min

a

(
LIW
t (a) +

√
2νt(a) ln (4(t+ 1)) +

ln (4(t+ 1))

3

)
≥ tµ(a)− tµ(a∗)

)
≤P
(
LIX
t (a)− ln (4(t+ 1))

γt
≥ tµ(a)

)
+ P

(
min
a

(
LIW
t (a) +

√
2νt(a) ln (4(t+ 1)) +

ln (4(t+ 1))

3

)
≤ tµ(a∗)

)
(8)

≤ 1

4(t+ 1)
+ P

(
min
a

(
LIW
t (a) +

√
2νt(a) ln (4(t+ 1)) +

ln (4(t+ 1))

3

)
≤ tµ(a∗)

)
(9)

≤ 1

4(t+ 1)
+ P

(
LIW
t (a∗) +

√
2νt(a∗) ln (4(t+ 1)) +

ln (4(t+ 1))

3
≤ tµ(a∗)

)
(10)

≤ 1

2(t+ 1)
, (11)

where line 9 follows by upper bounding the first term of line 8 using 6. Line 11 follows from 7.
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B.2. Lower Bound with High Probability

It remains to show that the gap estimate is much smaller than the true gap with small probability. We want to show that

P
(
∆̂t(a) ≤

∆(a)

2

)
is small.

Our approach involves substituting in the definitions, then splitting the probability into three terms handled separately, which,
when combined, lead to an upper bound on the probability of interest.

We expand and then separate into three parts as shown in the following sections, where ct(x, y) =
√

2x ln (4(t+ 1)) +
y ln (4(t+1))

3 , and a′ = argmina(L
IW
t (a) + ct(νt(a), 1)).

B.2.1. SEPARATE

Again, in the interest of legibility and without loss of generality, we prove this for t+ 1, though the proof would otherwise
be the same. Substituting in the definitions of ∆̂t+1(a), ∆(a), and ct(x, y) we have:

P
(
∆̂t+1(a) ≤

∆(a)

2

)
= P

(
t∆̂t+1(a) ≤

t∆(a)

2

)
= P

(
LIX
t (a)− ln (4(t+ 1))

γt
−min

a

(
LIW
t (a) + ct(νt(a), 1)

)
≤ t∆(a)

2

)
.

Adding 0 terms, and rewriting the right side we have:

= P
(
LIX
t (a)− ln (4(t+ 1))

γt
−min

a

(
LIW
t (a) + ct(νt(a), 1)

)
+

t∑
s=1

γs
p̃s(a)

−
t∑

s=1

γs
p̃s(a)

+ LIW
t (a∗)− LIW

t (a∗) + ct

(
νt(a

∗),
1

p̃t(a∗)

)
− ct

(
νt(a

∗),
1

p̃t(a∗)

)
+ ct

(
νt(a),

1

p̃t(a)

)
− ct

(
νt(a),

1

p̃t(a)

)
≤ tµ(a)− tµ(a∗)− t∆(a)

2

)
.

Rearranging and using the definition of a′ leads to

= P

(
LIX
t (a)− tµ(a) + ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs
p̃s(a)

(12)

+ tµ(a∗)− LIW
t (a∗) + ct

(
νt(a

∗),
1

p̃t(a∗)

)
(13)

+
t∆(a)

2
− ln (4(t+ 1))

γt
− ct(νt(a

′), 1) + LIW
t (a∗)− LIW

t (a′)− ct

(
νt(a

∗),
1

p̃t(a∗)

)
− ct

(
νt(a),

1

p̃t(a)

)
−

t∑
s=1

γs
p̃s(a)

≤ 0

)
.

(14)

Let A denote the group of terms on line 12, B on line 13, and C on line 14.

= P(A
+B

+ C ≤ 0) (15)
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Which can be upper bounded;

≤P(A ≤ 0) + P(B ≤ 0) + P(C ≤ 0). (16)

We next upper bound the first two probabilities in line 16 by 1
4(t+1) as shown in the following two sections.

B.2.2. BOUND A

First, we upper bound P(A ≤ 0). We want to show:

P

(
LIX
t (a)− tµ(a) + ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs
p̃s(a)

≤ 0

)
≤ 1

4(t+ 1)
.

Start by rearranging P(A ≤ 0) to write:

P

(
ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs
p̃s(a)

≤ tµ(a)− LIX
t (a)

)
.

Then expand the right side:

tµ(a)− LIX
t (a) = tµ(a)− E[LIX

t (a)] + E[LIX
t (a)]− LIX

t (a). (17)

The next step is to upper bound the first two terms on the right hand side of line 17.

tµ(a)− E[LIX
t (a)] =

t∑
s=1

µ(a)
γs

p̃s(a) + γs

≤
t∑

s=1

γs
p̃s(a)

. (18)

The last two terms of line 17 can be lower bounded with probability at most δ by applying Bernstein’s inequality for
Martingales. Let St denote the last two terms of line 17, and let Xi be derived from St as follows:

St = E[LIX
t (a)]− LIX

t (a)

=

t∑
i=1

E[ℓIXt (a)]− ℓIXt (a)

=

t∑
i=1

Xi.

Each Xt is bounded from above:

Xt = E[ℓIXt (a)]− ℓIXt (a)

≤ p̃t(a)ℓt(a)

p̃t(a) + γt

≤ 1,

and has, by construction, expected value of 0 given the history up to and including time t− 1:
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E[Xt|Ft−1] = 0.

Therefore, as X1, ..., Xt is a martingale difference sequence, St =
∑t

i=1 Xi is the associated martingale. To apply
Bernstein’s inequality for Martingales we still need to bound the variance of St.

E[X2
t |Ft−1] = E[(E[ℓIXt (a)]− ℓIXt (a))2]

= E[(ℓIXt (a)− E[ℓIXt (a)])2]

= E[(ℓIXt (a))2]− E[ℓIXt (a)]2

= E
[
1(At = a)ℓt(a)

2

(p̃t(a) + γt)2

]
− p̃t(a)

2µ(a)2

(p̃t(a) + γt)2

=
p̃t(a)ℓ

2
t (a)

(p̃t(a) + γt)2
− p̃t(a)

2ℓ2t (a)

(p̃t(a) + γt)2

≤ p̃t(a)

(p̃t(a) + γt)2
(1− p̃t(a))

≤ 1

p̃t(a) + γt

≤ 1

p̃t(a)

≤ ϵ−1
t (a)

=⇒

vt(a) =

t∑
j=1

E[X2
j |Fj−1] ≤

t∑
j=1

ϵ−1
j (a) = νt(a) (19)

Applying Bernstein’s Inequality for Martingales results in:

P
(
E[LIX

t (a)]− LIX
t (a) ≥ ct

(
νt(a), 1

))
≤ 1

4(t+ 1)
. (20)

Putting the previous steps together to bound P(A ≤ 0):

P(A ≤ 0) =P
(
tµ(a)− LIX

t (a) ≥
t∑

s=1

γs
p̃s(a)

+ ct

(
νt(a),

1

p̃t(a)

))

= P
((

tµ(a)− E[LIX
t (a)]

)
+

(
E[LIX

t (a)]− LIX
t (a)

)
≥

t∑
s=1

γs
p̃s(a)

+ ct

(
νt(a),

1

p̃t(a)

))
(21)

≤ P
(
E[LIX

t (a)]− LIX
t (a) ≥ ct

(
νt(a),

1

p̃t(a)

))
(22)

≤ P
(
E[LIX

t (a)]− LIX
t (a) ≥ ct

(
νt(a), 1

))
(23)

≤ 1

4(t+ 1)
, (24)

where line 21 follows from expanding as in line 17 and line 22 follows from upper bounding tµ(a)− E[LIX
t (a)] as in 18.

Line 23 follows by lower bounding ct

(
νt(a),

1
p̃t(a)

)
with ct(νt(a), 1). Finally, line 24 follows directly from 20.
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B.2.3. BOUND B

After bounding P(A ≤ 0), we upper bound P(B ≤ 0)We want to show:

P
(
tµ(a∗)− LIW

t (a∗) + ct(νt(a
∗),

1

p̃t(a∗)
) ≤ 0

)
≤ 1

4(t+ 1)
.

The first step is to rewrite P(B ≤ 0).

P(B ≤ 0) = P
(
LIW
t (a∗)− tµ(a∗) ≥ ct

(
νt(a

∗),
1

p̃t(a∗)

))
Then, using the same technique as when bounding P(A ≤ 0), let

Xt = ℓIWt (a∗)− µ(a∗)

and

St =

t∑
i=1

Xi = LIW
t (a∗)− tµ(a∗).

In order to apply Bernstein’s Inequality for Martingales we firstly show that X1, ..., Xt is a martingale difference sequence.
Each term is bounded from above:

Xt ≤ ℓIWt (a∗) ≤ 1

p̃t(a∗)
.

And E[Xt|Ft−1] = 0:

E[Xt|Ft−1] = E
[
1(At = a∗)ℓt(a

∗)

p̃t(a∗)
− µ(a∗)

]
=

p̃t(a
∗)µ(a∗)

p̃t(a∗)
− µ(a∗)

= 0.

By construction, St is the associated martingale, and as before, in order to apply Bernstein’s Inequality for Martingales, we
now bound the variance of St. The first line follows directly from the definition of variance, and that E[ℓIWt (a∗)] = µ(a∗).

E[X2
t |Ft−1] = E[(ℓIWt (a∗))2]− E[ℓIWt (a∗)]2

≤ E
[(

ℓt(a
∗)1{At = a∗}
p̃t(a∗)

)2]
= E

[
ℓt(a

∗)21{At = a∗}2

p̃t(a∗)2

]
≤ E

[
ℓt(a

∗)21{At = a∗}
p̃t(a∗)2

]
=

µ(a∗)2p̃t(a
∗)

p̃t(a∗)2

≤ 1

p̃t(a∗)

≤ 1

ϵt(a∗)

=⇒

vt(a
∗) =

t∑
j=1

E[X2
j |Fj−1] ≤

t∑
j=1

ϵj(a
∗)−1 = νt(a

∗) (25)

Lastly, applying Bernstein’s inequality for martingales results in:

P(B ≤ 0) = P
(
LIW
t (a∗)− tµ(a∗) ≥ ct

(
νt(a

∗),
1

p̃t(a∗)

))
≤ 1

4(t+ 1)
.
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B.2.4. BOUND C

To complete the bounding of line 16 it remains to upper bound P(C ≤ 0).We want to show

P

(
t∆(a)

2
− ln (4(t+ 1))

γt
− ct(νt(a

′), 1) + LIW
t (a∗)− LIW

t (a′)

−ct(νt(a
∗),

1

p̃t(a∗)
)− ct(νt(a),

1

p̃t(a)
)−

t∑
s=1

γs
p̃s(a)

≤ 0

)
(26)

is small.

By adding 0 = ct(νt(a
∗), 1)− ct(νt(a

∗), 1) we rewrite C as:

C =
t∆(a)

2
− ln (4(t+ 1))

γt
+ (LIW

t (a∗) + ct(νt(a
∗), 1))− (LIW

t (a′) + ct(νt(a
′), 1))

− ct(νt(a
∗), 1)− ct

(
νt(a

∗),
1

p̃t(a∗)

)
− ct

(
νt(a),

1

p̃t(a)

)
−

t∑
s=1

γs
p̃s(a)

. (27)

We define the following function:

F (t) =
ln (4(t+ 1))

γt
+ ct(νt(a

∗), 1) + ct

(
νt(a

∗),
1

p̃t(a∗)

)
+ ct

(
νt(a),

1

p̃t(a)

)
+

t∑
s=1

γs
p̃s(a)

. (28)

By definition of a′ we have:

(
LIW
t (a∗) + ct(νt(a

∗), 1)

)
≥
(
LIW
t (a′) + ct(νt(a

′), 1)

)
.

Meaning that C, on line 27, can be lower bounded by:

C ≥ t∆(a)

2
− F (t)

=⇒

P(C ≤ 0) ≤ P
(
F (t) ≥ t∆(a)

2

)
.

Substituting in the definition of ct leads to:

F (t) =
ln (4(t+ 1))

γt
+ 2
√
2νt(a∗) ln (4(t+ 1)) +

ln (4(t+ 1))

3
+

ln (4(t+ 1))

3p̃t(a∗)
+

t∑
s=1

γs
p̃s(a)

+
√
2νt(a) ln (4(t+ 1)) +

ln (4(t+ 1))

3p̃t(a)
.

(29)

Then, assuming that ϵt(a) = ξt(a), upper bound νt(a
∗) and p̃t(a

∗)−1, and substitute in the definition of νt(a) . This will
restrict the time interval to t ≥ tmin, which is addressed later. This leads to:

F (t) ≤ ln (4(t+ 1))

3
(1 + 2ξt(a)

−1) + 3

√√√√2 ln (4(t+ 1))

t∑
s=1

ϵs(a)−1 +
ln (4(t+ 1))

γt
+

t∑
s=1

γsϵs(a)
−1 (30)

(31)
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Upper bounding the sum
∑t

s=1 ϵs(a)
−1 as follows;

t∑
s=1

ϵs(a)
−1 ≤

tmin∑
s=1

ϵs(a)
−1 +

t∑
s=tmin

ϵs(a)
−1

≤
tmin∑
s=1

ct∆(a)2

ln t
+

t∑
s=tmin

ϵs(a)
−1

≤ ct2∆(a)2

ln t
+

t∑
s=tmin

ξs(a)
−1

≤ ct2∆(a)2

ln t
+

t∑
s=1

ξs(a)
−1

=
ct2∆(a)2

ln t
+

t∑
s=1

cs∆̂s(a)
2

ln s
. (32)

Using line 32, and substituting in the definition of ξ we can upper bound F (t) further;

F (t) ≤ ln (4(t+ 1))

3
(1 +

2ct∆̂t(a)
2

ln t
) + 3

√√√√2 ln (4(t+ 1))

(
ct2∆(a)2

ln t
+

t∑
s=1

cs∆̂s(a)2

ln s

)
+

ln (4(t+ 1))

γt
+

t∑
s=1

γsϵs(a)
−1

(33)

≤ ln (4(t+ 1))

3
(1 +

2ct∆̂t(a)
2

ln t
) + 3

√√√√2c ln (4(t+ 1))

(
t2∆(a)2

ln t
+

t∑
s=1

s∆̂s(a)2

ln s

)
+

ln (4(t+ 1))

ln t
t∆̂t(a)

√
c+

t∑
s=1

∆̂s(a)
√
c.

(34)

Where line 33 follows from substituting in the definition of ξt(a). The last two terms of 33 can be upper bounded by
setting γt = ϵt(a)∆̂t(a)

√
c for all t, resulting in line 34. As we are bounding the probability of ∆̂t(a) ≤ ∆(a)

2 , we have
∆̂t(a) ≤ ∆(a), which, along with ∆(a)2 ≤ ∆(a), allows for the following:

F (t) ≤ ln (4(t+ 1))

3

(
1 +

2ct∆(a)

ln t

)
+ 3

√√√√2c ln 4t

(
t2∆(a)2

ln t
+

t∑
s=1

s∆(a)2

ln s

)
+

ln (4(t+ 1))

ln t
t∆(a)

√
c+ t∆(a)

√
c

=
ln (4(t+ 1))

3

(
1 +

2ct∆(a)

ln t

)
+ 3∆(a)

√√√√2c

(
t2 ln (4(t+ 1))

ln t
+

t∑
s=1

s ln 4t

ln s

)
+ t∆(a)

√
c

(
ln (4(t+ 1))

ln t
+ 1

)
(35)

≤ ln (4(t+ 1))

3

(
1 +

2ct∆(a)

ln t

)
+ 3∆(a)

√√√√2c

(
t2 ln (4(t+ 1))

ln t
+

t∑
s=1

t ln (4(t+ 1))

ln t

)
+ t∆(a)

√
c

(
ln (4(t+ 1))

ln t
+ 1

)
(36)

=
ln (4(t+ 1))

3
+

2ct∆(a) ln (4(t+ 1))

3 ln t
+ 6t∆(a)

√
c
ln (4(t+ 1))

ln t
+ t∆(a)

√
c

(
ln (4(t+ 1))

ln t
+ 1

)
=

ln (4(t+ 1))

3
+ t∆(a)

(
2

3

ln (4(t+ 1))

ln t
c+

(
6

√
ln (4(t+ 1))

ln t
+

ln (4(t+ 1))

ln t
+ 1

)√
c

)
, (37)

where line 36 follows from 35 by s
ln s ≤ t

ln t for s ≥ tmin.
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The next step is to strictly upper bound each term in line 37 by t∆(a)
4 , in order to upper bound F (t) by t∆(a)

2 . Starting with
the first term, the following holds for t ≥ tmin:

ln (4(t+ 1))

t
≤ 3∆(a)

4
.

To upper bound the second term for t ≥ tmin note that tmin ≥ e·4
c > 1 + 4

c > 4
c , and substituting this value for t gives an

upper bound on ln (4(t+1))
ln t . Using this, we do the following:

t∆(a)

(
2

3

ln 16
c

ln 4
c

c+

(
6

√
ln 16

c

ln 4
c

+
ln 16

c

ln 4
c

+ 1

)√
c

)
<

t∆(a)

4

2

3

ln 16
c

ln 4
c

c+

(
6

√
ln 16

c

ln 4
c

+
ln 16

c

ln 4
c

+ 1

)√
c <

1

4
(38)

=⇒

2

3

ln 16
c

ln 4
c

c+

(
6

√
ln 16

c

ln 4
c

+
ln 16

c

ln 4
c

+ 1

)√
c− 1

4
= 0. (39)

Solving for the non-negative solution to line 39 gives:

c ≥ 1

1200
. (40)

Consequently, line 29 can be upper bounded by 0, for large enough t:

C ≤ t∆(a)

2
− F (t) ≤ 0

=⇒

P(C ≤ 0) ≤ P
(
F (t) ≥ t∆(a)

2

)
= 0.

Putting all of the pieces together to bound the probability the gap estimate is too small,

P
(
∆̂t(a) ≤

∆(a)

2

)
≤ P(A ≤ 0) + P(B ≤ 0) + P(C ≤ 0)

≤ 1

4t
+

1

4t
+ P(C ≤ 0)

= 2
1

4t

=
1

2t
for t ≥ tmin(a).

C. Proof of Theorem 1, Stochastic Regret Guarantee
We start by bounding E[NT (a)]. We split this into three parts, when the gap estimate is potentially too small during an initial
period of the game, when it is either too large or too small at any time, and when the gap estimate is good but a sup-optimal
action may be chosen regardless;

E[Na(t)] = E[N1,a(t)] + E[N2,a(t)] + E[N3,a(t)].

During the first t ≤ tmin(a) time steps, for any action, the gap estimate is not reliable, as it may be less than half the true
gap. As such, during this period a sub optimal action may be played

E[N1,a(t)] ≤ tmin(a) = Õ

(
K

∆(a)4

)

12
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times, where the Õ notation hides the logarithmic factors.

The gap estimate may also fail after that time threshold, when ∆̂(a) ≥ ∆(a) or ∆̂(a) ≤ ∆(a)
2 , and a sub-optimal action may

be played. The expected number of times this can happen for an action a is upper bounded by the following:

P(∆̂(a) ≥ ∆(a)) + P
(
∆̂(a) ≤ ∆(a)

2

)
≤ 2

1

4t
+ 2

1

4t
= 4

1

4t
=

1

t

=⇒

E[N2,a(t)] ≤
t∑

s=1

P(∆̂s(a) ≥ ∆(a)) + P
(
∆̂s(a) ≤

∆(a)

2

)

≤
t∑

s=1

1

s

= O(ln t).

Even when the gap estimate is good, a sub-optimal action may still be played. This comes from p̃t(a), which is composed
of two parts, handled separately as follows:

E[N3,a(t)] = E
[ t∑
s=tmin(a)

p̃s(a)

]
≤

t∑
s=1

E
[(

ϵs(a) + (1−
∑
a′

ϵs(a
′))ps(a)

)]
. (41)

Starting with upper bounding the first term:

ϵs(a) ≤
ln s

cs∆̂s(a)2

=⇒
t∑

s=1

E
[
ϵs(a)

]
≤

t∑
s=1

E
[

ln s

cs∆̂s(a)2

]

≤
t∑

s=1

4 ln s

cs∆(a)2

≤ 4

c∆(a)2

t∑
s=1

ln t

s

≤ 4 ln2 t

c∆(a)2

= O

(
ln2 t

∆(a)2

)
.

The first step to upper bound the second term of line 41 starts by upper bounding it by p:

(1−
∑
a′

ϵs(a
′))ps(a) ≤ ps(a).

Upper bounding p is done nearly identically as in (Seldin & Lugosi, 2017, Proof of Theorem 3). The bound on the gap
estimate being too large is of the same order, 1

t , and as β = 1
c = 1200 this satisfies the requirement that β ≥ 256. The only

difference is that in our analysis, we handle the tmin rounds of the game separately. Taking this we have:

t∑
s=1

E[ps(a)] = O

(
(ln t)2

∆(a)2

)
.

Together we have:

E[N3,a] = O

(
(ln t)2

∆(a)2

)
.
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Putting this together to get a bound on regret:

R(t) =
∑

a:∆(a)>0

E[Na(t)]∆(a)

=
∑

a:∆(a)>0

(
O(ln t) + Õ

(
K

∆(a)4

)
+O

(
ln2 t

∆(a)2

))
∆(a)

= O

( ∑
a:∆(a)>0

ln t∆(a)

)
+ Õ

( ∑
a:∆(a)>0

K

∆(a)3

)
+O

( ∑
a:∆(a)>0

ln2 t

∆(a)

)
.

D. Proof of Second Inequality (line 7)
The proof of the inequality on line 7 is as follows. The left hand side of line 7 can be rewritten as:

P
(
tµ(a)− LIW

t (a) ≥
√
2νt ln (4(t+ 1)) +

ln (4(t+ 1))

3

)
.

Let St = tµ(a)−LIW
t (a), we show that St is a martingale, apply Bernstein’s inequality for Martingales and arrive at line 7.

Start by rewriting St:

St =

t∑
s=1

µ(a)− ℓIWs (a).

Clearly µ(a)− ℓIWs (a) ≤ 1, meaning each term is upper bounded. We must also show that the expected value of each term
with respect to the past is 0.

E[µ(a)− ℓIWs (a)|Fs−1] = E[µ(a)− ℓIWs (a)]

= E[µ(a)]− E[ℓIWs (a)]

= µ(a)− E
[
ℓs(a)1(As = a)

p̃s(a)

]
= µ(a)− µ(a)p̃s(a)

p̃s(a)

= 0

As µ(a)− ℓIWs (a) is upper bounded and has expected value 0 for any s, it forms a martingale difference sequence, and by
construction, St is the associated Martingale. In order to apply Bernstein’s inequality for Martingales it remains to bound
the variance of St .

vt =

t∑
s=1

E[(µ(a)− ℓIWs (a))2|Fs−1]

First note:

E[µ(a)2] + E
[
−2µ(a)21(As = a)

p̃s(a)

]
= µ(a)2 − 2µ(a)2

p̃s(a)

p̃s(a)
≤ 0 (42)
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We start by bounding each term in v:

E[(µ(a)− ℓIWs (a))2] = E[µ(a)2] + E[ℓIWs (a)2] + E[−2µ(a)ℓIWs (a)]

= E[µ(a)2] + E
[
ℓs(a)

21(As = a)2

p̃s(a)2

]
+ E

[
−2µ(a)21(As = a)

p̃s(a)

]
(43)

≤ E
[
ℓs(a)

21(As = a)2

p̃s(a)2

]
(44)

≤ E
[
1(As = a)

p̃s(a)2

]
=

p̃s(a)

p̃s(a)2

=
1

p̃s(a)
,

where line 44 follows from line 43 by upper bounding the first and last term with 0 as in line 42.

vt =

t∑
s=1

E[(µ(a)− ℓIWs (a))2|Fs−1]

≤
t∑

s=1

1

p̃s(a)

≤
t∑

s=1

ϵs(a)
−1 = νt(a)

As this is an upper bound for vt for all t, the probability of the second event in Bernstein’s inequality for martingales is
1, and the same can be done for the probability of the third event using c = 1. We now apply Bernstein’s inequality for
martingales, with δ = 1

4(t+1) , directly resulting in line 7.
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