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Abstract

Pruning deep neural networks is a widely used
strategy to alleviate the computational burden in
machine learning. Overwhelming empirical evid-
ence suggests that pruned models retain very high
accuracy even with a tiny fraction of parameters.
However, relatively little work has gone into char-
acterising the small pruned networks obtained, bey-
ond a measure of their accuracy. In this paper, we
use the sparse double descent approach to identify
univocally and characterise pruned models associ-
ated with classification tasks. We observe empir-
ically that, for a given task, iterative magnitude
pruning (IMP) tends to converge to networks of
comparable sizes even when starting from full net-
works with sizes ranging over orders of magnitude.
We analyse the best pruned models in a controlled
experimental setup and show that their number of
parameters reflects task difficulty and that they are
much better than full networks at capturing the
true conditional probability distribution of the la-
bels. On real data, we similarly observe that pruned
models are less prone to overconfident predictions.
Our results suggest that pruned models obtained
via IMP not only have advantageous computational
properties but also provide a better representation
of uncertainty in learning.

1 INTRODUCTION

Conventional statistical wisdom suggests that increasing the
size of a model leads to an initial improvement in general-
isation performance, followed by dramatic overfitting and
degradation of accuracy in highly overparameterised mod-
els. In reality, the implicit regularisation of large models
leads to a double descent which, under suitable conditions,
leads to overparameterised models with even stronger gener-

alisation performance [Vallet et al., 1989, Opper et al., 1990,
Geman et al., 1992, Belkin et al., 2019, Nakkiran et al.,
2021, Loog et al., 2020]. This phenomenon is well under-
stood theoretically in simple cases and has been replicated
in practice in a variety of modern deep neural networks ar-
chitectures [Belkin et al., 2019, Nakkiran et al., 2021, Arpit
et al., 2017, Neyshabur et al., 2019, Belkin et al., 2020].

However, decades of research on pruning neural networks
[LeCun et al., 1989, Hassibi and Stork, 1992, Gale et al.,
2019, Hoefler et al., 2021] has also shown that a large num-
ber of parameters (weights) in these overparameterized mod-
els can be removed without compromising on the general-
isation error. He et al. [2022] recently reported that iterative
pruning leads to a converse phenomenon to double descent,
a sparse double descent: generalisation performance ini-
tially degrades upon pruning, and then improves to reach an
optimum frequently providing even better performance than
the original full model. The sparse double descent allows us
to identify an optimal model by plotting the generalisation
error as a function of the number of parameters during the it-
erative pruning process. How the architectural bias induced
by pruning enables the networks to reverse the double des-
cent curve is not understood theoretically, and is relatively
unexplored empirically.

Here we seek to address this knowledge gap in the iterative
magnitude pruning (IMP) framework [Han et al., 2015], a
simple and successful approach for pruning deep neural
networks [Blalock et al., 2020, Renda et al., 2020] which
is pivotal to finding “lottery tickets” [Frankle and Carbin,
2019, Frankle et al., 2019, 2020], i.e. sparse subnetworks
that can be trained in isolation without compromising on
accuracy. We start with a remarkable empirical observation.
Figure 1 shows the double descent curve (thick line) and the
sparse double descent curves (thin lines) for fully connected
networks trained on MNIST (left) and a ResNet-18 trained
on CIFAR-10 (right). Naturally, the starting point of the
double descent curve is fixed at the smallest possible model.
He et al. [2022] considered sparse double descent starting
from a single, large model. Here, we consider sparse double
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Figure 1: Pruning models along the double descent curve (dark red) shows that sparse double descent curves (light red)
from different models coincide at the minima. Results are shown for three-layer FCNs on MNIST (left) and ResNet-18 on
CIFAR-10 (right) with 20% label noise averaged over three replicates.

descent curves starting from neural networks with a large
range of parameters. We show in fig. 1 that irrespective
of the initial full model size (or indeed test accuracy), all
sparse double descent curves tend to achieve their minimum
(best pruned model) within a very narrow range of model
sizes, which is systematically smaller than the trough of
the first descent (best small full model). What is special
about such sparse models? What enables the improvement
in generalisation by pruning?

To answer this question quantitatively, we investigate the
behaviour of the best pruned models in a controlled binary
classification scenario where data is generated from distri-
butions of differing complexity. We find that the size of
the best pruned model correlates well with task complexity.
Moreover, best pruned models are considerably better at cap-
turing the underlying true conditional label distribution than
either full models (which tend to be significantly overconfid-
ent) or best small full models. These empirical observations
are replicated in our analysis of real data, suggesting that
IMP indeed captures important aspects of the uncertainty in
the learning problem, as well as producing computationally
more tractable models.

We see a key contribution of our empirical study in suggest-
ing a way to estimate the number of “effective” parameters
that a trained model contains, and that are required for solv-
ing a classification task. Quantifying the effective number
of parameters in trained neural networks has been a central
question for the theory of neural networks for a long time,
see for example Breiman [1995], yet it remains an open
challenge. In this manuscript, we focus on the empirical
findings and leave the theoretical analysis for future work.
Our main contributions are:

1. We find that IMP prunes models of different sizes to
produce sparse double descent curves that coincide
at the minima of the test error. We define the effect-

ive number of parameters required for a given classi-
fication task and model/architecture. We demonstrate
this phenomenon in fully-connected and convolutional
neural networks trained on MNIST and CIFAR-10.
Additionally, the effective number of parameters is
comparable across architectures, suggesting that our
procedure identifies an intrinsic property of the classi-
fication task.

2. By training neural networks on binary Gaussian mix-
ture classification tasks of increasing difficulty, we
show that the effective number of parameters in a
model correlates with task difficulty.

3. We finally study the calibration of pruned models and
show that pruned models capture the true distribution
of the synthetic data models better than their unpruned
counterparts. As a consequence, we show that the best
pruned models are better at capturing uncertainty in
their predictions.

2 RELATED WORK

Dating back to 1998, Poppi and Massart [1998] used pruning
to find the optimal neural network architecture. They found
that pruning could improve generalisation and even recover
the optimal model in a linear dataset. Kuhn et al. [2021]
introduces a new complexity measure for neural networks,
namely the fraction of weights that can be pruned from
the network without affecting its performance. They found
that the fraction of prunable weights increases with network
width for a ResNet trained on CIFAR-10. Li et al. [2018]
uses the idea of subspace training to estimate the number of
parameters (or intrinsic dimension) needed to achieve good
performance using neural networks. They found that many
problems have smaller intrinsic dimensions than one might
suspect, and the intrinsic dimension for a given dataset var-
ies little across a family of models with vastly different sizes.



While these conclusions align with our findings, their res-
ults rely on the usage of random subspace solutions with a
performance ≈ 90% of the baseline to define the intrinsic di-
mension. Our approach instead uses sparsification to find the
effective number of parameters using models that generalise
better than the baseline.

Venkatesh et al. [2020] used different calibration strategies
on overparameterised models to study the impact on the res-
ulting lottery tickets. Lei et al. [2023] propose a new sparse
training method that improves the reliability of pruned mod-
els. From a theoretical perspective, Sakamoto and Sato
[2022] used PAC-Bayesian theory to understand the gener-
alisation behaviour of pruned networks. Zhang et al. [2021]
characterise the performance of training a pruned neural net-
work to show that pruning enlarges the convex region near a
desirable model with guaranteed generalisation. Yang et al.
[2023] used a controlled setting under random pruning to
determine pruning fractions that can improve generalisation
performance. A series of theoretical works [Malach et al.,
2020, Orseau et al., 2020, Pensia et al., 2020, da Cunha
et al., 2022, Burkholz, 2022] have shown the existence of a
winning ticket inside larger (deeper and wider) networks of
different sizes, thus providing some intuition on the amount
of overparameterisation required.

To understand how IMP can improve the generalisation
of neural networks by acting as a regulariser, Jin et al.
[2022] studied the loss of influential samples in the op-
timally pruned models. Paul et al. [2022] use the geometry
of the error landscape at each level of pruning to understand
the principles behind the success of IMP (with rewinding)
without label noise. Our focus is primarily on the properties
(accuracy, number of parameters, and calibration) of the
best pruned models. Ankner et al. [2022] used the frame-
work of Pope et al. [2021], which uses GANs to generate
images with known intrinsic dimensions, to find that the in-
trinsic dimensionality of data correlates with the prunability
of neural networks. Certain efforts have also been made to
understand the masks learned using pruning [Paganini and
Forde, 2020, Pellegrini and Biroli, 2021].

Since the rediscovery of the double descent behaviour in
deep neural networks [Belkin et al., 2019, Nakkiran et al.,
2021], characterising double descent curves from simple
models to deep networks has become a very active area
of research, see Hastie et al. [2022], Spigler et al. [2019],
Advani et al. [2020], Belkin et al. [2019], d’Ascoli et al.
[2020a], Lin and Dobriban [2021], d’Ascoli et al. [2020b],
Mei and Montanari [2022] for a small sample. Here, our
focus is not on this double descent phenomenon – instead,
our goal is to provide a univocal procedure to associate a
pruned model with a large model using the sparse double
descent.

3 EXPERIMENTAL SETUP

Datasets: We used MNIST [LeCun et al., 1998] and
CIFAR-10 [Krizhevsky et al., 2009] for our experiments
with real data. Additional experiments were also performed
using the Fashion-MNIST dataset [Xiao et al., 2017] (see
fig. S3 for results). We also perform experiments in a con-
trolled setting, where we consider binary mixture classi-
fication with inputs sampled from a Gaussian mixture in
D = 100 dimensions. This simple setting for the data
model allows us to precisely compute the true conditional
class probability of data and characterise the actual decision
boundary. This allows us to closely investigate the architec-
tural bias induced by pruning. We consider two settings for
mixture classification. The linear dataset consists of two
clusters that can be separated using a linear classifier. The
two clusters have means µ1 ̸= µ2, but same covariance
matrix Σ1 = Σ2. The XOR dataset was created such that
the resulting Gaussians (that have the same covariance) are
placed like the graphic representation of the XOR logical
function. The training and test sets contain 10 000 and 5000
samples respectively. See appendix A for more details.

A crucial aspect of our experiments is adding symmetric
label noise by randomly permuting the labels for a frac-
tion of the training data. Adding label noise to training data
provides a straightforward way to produce double descent
[Nakkiran et al., 2021] and sparse double descent [He et al.,
2022] in deep neural networks. Note that using other kinds
of label noise could provide different conclusions, but is
not the focus of the current study and hence is out of scope
for this paper. While adding label noise seems unrealistic,
Northcutt et al. [2021] found that labelling errors are per-
vasive in several benchmark machine learning datasets and
lower capacity models may be more practical. Building
on this observation, we show that pruning can potentially
provide a way of finding this capacity.

Models: A two-layer fully-connected network (FCN) was
used for our experiments on the Gaussian mixture classifica-
tion tasks with five replicates for each model (see details in
appendix C). The width of the hidden layer was varied to ob-
tain models of varying sizes and produce the double descent
curve. For MNIST, we used two and three-layer FCNs while
varying the width of the first hidden layer, and ResNet-6
with convolutional filters of different widths. For CIFAR-10,
we used ResNet-18 [He et al., 2016] and varied the width of
the convolutional filter to obtain the double descent curve.
Each experiment was replicated three times for real-world
datasets. The hyperparameters used in these experiments are
described in appendix C. The cross-entropy loss function
was used to train all the models. For CIFAR-10, we also
successively removed one class at a time and then trained
and pruned a ResNet-18 model with a fixed width of the con-
volutional filter. All our models were trained long enough
to ensure that they were not in the epoch-wise double des-



cent regime [Nakkiran et al., 2021]. The OpenLTH library1

was used for our experimental evaluations. The code for
replicating our experiments is available on GitHub2.

Network pruning: IMP with 20% weights removal at
each iteration (lottery ticket rewinding was used when re-
quired, see appendix B) was used for our experiments as it
provides an effective procedure to find subnetworks with
nontrivial sparsities that have low test error [Frankle and
Carbin, 2019, Frankle et al., 2020, Blalock et al., 2020,
Renda et al., 2020]. It should be noted that other pruning
techniques like random pruning and gradient-based prun-
ing also produce the sparse double descent curve [He et al.,
2022] and can be used instead.

Computational costs: Our analysis requires us to work
in the double descent paradigm, which allows us to prop-
erly define a best pruned model. Unfortunately, this implies
significant computational costs as we have to perform the
full sparse double descent analysis. For example, figs. 1,
2 and S2 required us to train approximately 300 different
models and close to 1000 models when including replicates.
Nevertheless, we believe that our extensive investigations
using the mixture classification task and different architec-
tures for MNIST and CIFAR-10 lay a solid foundation for
the phenomenon described in the paper.

Terminology: The results in fig. 1 show that repeated
pruning of different-sized models produces sparse double
descent curves that achieve the lowest test error within a
small range of parameters. To facilitate further discussion on
this phenomenon, we define best pruned model and effective
number of parameters.

Definition 1 (Best pruned model) Let E(·) denote the test
error (or 0-1 loss) of a model. For a trained model fw, test
dataset Stest, and pruning method ϕ, the best pruned model
fbp
w is defined as

fbp
w = argmin

w
E(ϕ(fw,Stest)).

These best pruned models have low generalisation error but
unlike their overparameterized parent models, they have a
non-zero error on the training data.

Definition 2 (Effective number of parameters) The
number of non-zero weights in the best pruned models fbp

w

obtained by pruning an overparameterised model.

By pruning overparameterised models of different sizes we
can obtain best pruned models that have similar accuracy
but a slightly different effective number of parameters.

1
https://github.com/facebookresearch/open_lth

2
https://github.com/viplovearora/noisy_lottery_

tickets

4 RESULTS

We first confirm that fully-connected neural networks ex-
hibit both traditional double descent and sparse double des-
cent on the mixture classification tasks: fig. 2 shows the
same trend in the effective number of parameters as we ob-
served in fig. 1. As expected, the test error decreases with
the distance between cluster means ν (see fig. S1).

Next, we considered the effective number of parameters
in the best pruned models (cf. definition 1). Focusing on
the linear dataset in fig. 2a, we see that the pruned mod-
els (thin red lines) generally achieve the lowest test error
with roughly 500 parameters. This number of parameters
is optimal for starting networks of different size, which we
use to determine the effective number of parameters for
that dataset (see definitions 1 and 2). For networks trained
on the linear dataset, we find that the effective number of
parameters, i.e. the number of parameters in the best pruned
models, ranges from ∼ 200 to ∼ 500 for different starting
models and for different values of ν (see appendix D for the
full distribution). We find the same behaviour for the XOR
dataset, fig. 2b, but with a higher number of parameters
(between 250 and 1000) than for the linear dataset with the
same ν.

The double descent and sparse double descent curves for
MNIST and CIFAR-10 datasets can be seen in figs. 1 and S2.
Tables 1 and S2 show the number of parameters and test
errors for the full/unpruned models and the corresponding
best pruned models. Notice, importantly, that the best pruned
models do not interpolate, so they exhibit a significant im-
provement in generalisation gap. Focusing on the number
of parameters, we observe that a 200× increase for the full
models results in only a ∼ 3.5× increase in the number of
parameters for the best pruned models. Comparing the test
errors, a surprising finding is that sparse subnetworks with
low test error exist inside the unpruned models that lie at
the interpolation regime of the double descent curve. This
means that even though the unpruned models have high test
errors, they can be pruned using IMP to achieve much lower
test errors. Pruning thus acts as a type of regularisation in
this case, which is known to mitigate the peak of the test
accuracy at the interpolation threshold [Belkin et al., 2019].

Our findings for CIFAR-10 similarly show that the best
pruned models have better generalisation than the unpruned
counterparts (see table 1). Similar to MNIST, we observe
that the number of parameters in the best pruned models
increases with the size of the original model but at a much
slower rate. Comparing the effective number of parameters
for MNIST and CIFAR-10, one can easily conclude that
more parameters are required for CIFAR-10.

The effective number of parameters correlates with task
difficulty: As illustrated in the data plots of fig. 2, optim-
ally separating the linear dataset requires a plane, whereas

https://github.com/facebookresearch/open_lth
https://github.com/viplovearora/noisy_lottery_tickets
https://github.com/viplovearora/noisy_lottery_tickets
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(a) The first two principal components (PCs) of data generated using the linear datasets along with the double descent curves.
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(b) The first two principal components (PCs) of data generated using the XOR datasets along with the double descent curves.

Figure 2: Average over 5 replicates of train and test error for models with different sizes, after numerous iterations of
pruning, on the (a) linear, and (b) XOR datasets as the distance between clusters ν is varied. The red bold line with dots
shows the traditional double descent curve, while the thinner lines represent the test error reached after pruning iterations of
the initial models (sparse double descent). Similarly, black lines show train error both for the full and pruned models.

Table 1: Number of parameters and test error for unpruned (full) and best pruned models for MNIST and CIFAR-10. Average
values over 3 replicates are reported. We observe that a 200× increase for the full models results in only a ∼ 3.5× increase
in the number of parameters for the best pruned models. Notice also that the error achieved by pruned models appears
insensitive to the error rate of the original full model, i.e. even models with poor generalisation can be rescued by pruning.

MNIST (3 layer FC) CIFAR-10 (ResNet-18)
Parameters Test error Parameters Test error

Full Pruned Full Pruned Full Pruned Full Pruned
45 200 6061 0.105 0.048 128 271 17 211 0.143 0.141
89 400 4908 0.176 0.059 238 155 16 359 0.159 0.143
266 200 5987 0.163 0.071 238 155 16 359 0.159 0.143
443 000 6377 0.144 0.064 1 689 080 19 647 0.187 0.130
885 000 10 196 0.123 0.084 3 798 420 35 028 0.165 0.128

4 421 000 10 683 0.099 0.089 10 546 700 49 799 0.146 0.128
8 841 000 17 094 0.091 0.097 23 725 050 57 356 0.137 0.129

two planes are needed for separating the classes in the XOR
dataset. Thus, one would expect that the effective number
of parameters would double going from the linear to XOR
datasets. Interestingly, this is what we observe in fig. 3a,
even though the best pruned models are obtained from full
models of the same size. The pruning approach thus sug-

gests a way to quantify the effective number of parameters
in deep, over-parameterised neural networks. Can we extend
this approach to measuring task difficulty to more realistic
datasets and convolutional networks? The results in fig. 3b
and table S3 show that for a fixed ResNet model, as we
decrease the number of classes in the CIFAR-10 dataset (or
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(b) Sparse double descent curves on subsets of CIFAR-10
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task difficulty.

Figure 3: Our analysis shows that the effective number of parameters correlates with task difficulty: (a) the effective number
of parameters required for the XOR dataset is approximately twice that of the linear dataset, which reflects the higher
complexity of the XOR task, and (b) decreasing the number of classes in the CIFAR-10 dataset allows IMP to find models
with fewer effective number of parameters.
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(a) Effective number of parameters for
different models trained on the MNIST
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104 105 106 107

Parameters

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Er
ro

r

DenseNet
VGG
ResNet

(b) Sparse double descent curves obtained on pruning different
convolutional neural networks for CIFAR-10 dataset.

Figure 4: Comparing the effective number of parameters across different neural network architecture for MNIST and
CIFAR-10 datasets.

equivalently make the task easier for an overparameterised
model), the effective number of parameters reduces for a
smaller classification task. This further affirms our obser-
vation on the mixture classification task that the effective
number of parameters is related to the difficulty of the task.
Interestingly, the effective number of parameters does not
decrease linearly with the number of classes.

The effective number of parameters is comparable
across architectures: How does the choice of neural net-
work architecture impact the effective number of parameters
for a given dataset? We compare the size of best pruned
models obtained for the MNIST dataset using three differ-
ent neural network architectures: two-layer FCN, three-layer
FCN, and ResNet-6, in fig. 4a. We find that although the test

error of the best pruned models for the different architectures
is different (see tables 1 and S2), the effective number of
parameters are fairly comparable. This provides additional
empirical evidence that our procedure might be invariant
to the neural network architecture and reflects a notion of
the ‘difficulty’ of the classification task, something that we
already noted in the mixture classification task. This obser-
vation also carries forward to different convolutional neural
network architectures on CIFAR-10. Figure 4b shows the
sparse double descent curves obtained for DenseNet, VGG,
and ResNet. The effective number of parameters is similar
across the three different architectures: 44 590 for DenseNet,
44 468 for VGG, and 39 483 for ResNet.



(a) Comparing the decision boundaries learned by the best
pruned and full models we find that best pruned models are
more aligned with the optimal classifier.

(b) Calibration curves on the linear (left) and XOR (right) datasets show that
best pruned models and small full models are better calibrated, whereas the
full models are overconfident and poorly calibrated.

20 0 20
20

10

0

10

20

Best pruned

20 0 20
20

10

0

10

20

Full

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.000
0.075
0.150
0.225
0.300
0.375
0.450
0.525
0.600
0.675

20 0 20 40
20

10

0

10

20

30

40

50
Best pruned

20 0 20 40
20

10

0

10

20

30

40

50
Full

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

(c) Visualising the absolute difference between the predicted class probabilities and the optimal probabilities for the linear (left) and XOR
(right) datasets projected on a 2D plane. Lower values (darker blue colours) are preferred.

Figure 5: Analysis of prediction uncertainty in the mixture classification task. We find that the best pruned models are better
at capturing uncertainty, whereas the overparameterised models tend to be overconfident in their predictions.

4.1 PRUNED MODELS BETTER CAPTURE
UNCERTAINTY

We first use the mixture classification task to understand the
architectural bias induced by pruning. For the results presen-
ted in fig. 5, we evaluate the models with 500 neurons in the
hidden layer for the linear (ν = 0.2) and XOR (ν = 0.6)
datasets. Similar results are obtained for different starting
models and other values of ν. To understand what differen-
tiates the pruned models we analyse the decision boundary
learned by these models. We sample 100 000 points from
the original data distribution and compute the corresponding
probabilities for the models of interest along with the condi-
tional class probabilities. In fig. 5a, we plot the probability
of data belonging to class y = 0 as a function of the relative
distance between the centres of the two clusters (located at
x = 0 and x = 1) for the linear dataset. As expected, the
optimal probabilities are given by a logistic function shown
using the black dots. Comparing the best pruned and full
models, we can conclude that the function learnt by the best
pruned model is much closer to the true class conditional
probability used to generate the data, whereas the full over-
parameterised model is overconfident in predicting either
class.

In fig. 5c, we visualise the absolute difference between the
predicted probabilities and the conditional class probabilit-
ies relative to the position of each point projected on a 2D

plane. A value close to 0 on the colour scale in fig. 5c im-
plies that the model has correctly estimated the conditional
probability. One would expect that a model would confid-
ently predict the correct class farther from the boundary
and make errors near the boundary. This intuition is clearly
illustrated using the results for the linear dataset. Strikingly,
the full model makes confident predictions near the bound-
ary, thus resulting in a value of ≈ 0.45 shown using the
red colour in fig. 5c. In the XOR dataset, the best pruned
model is more uncertain in its predictions, especially near
the boundary, but is better than the full model. This is further
illustrated using the calibration curves in fig. 5b where we
see a near-perfect calibration in the best pruned models for
both datasets, whereas the full models are overconfident and
poorly calibrated. We also observe that the calibration of
the best small full models is comparable to the best pruned
models.

The calibration curves for MNIST and CIFAR-10 in fig. 6
show that the curves for the best pruned models are usually
above the black line, which means that they make the cor-
rect prediction while being uncertain. Figure 6c illustrates
this using the probabilities corresponding to the predicted
class. This implies that even though the pruned models are
accurate, they tend to be underconfident in their predictions
while the full models are overconfident. This is at odds
with our observation in the mixture classification task. On
further analysis, we found that the best pruned models are
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(a) MNIST with two-layer FCN. ECE for pruned and
full models are 0.114 and 0.052, respectively.
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(b) CIFAR-10 with ResNet-18. ECE for pruned and
full models are 0.122 and 0.101, respectively.
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Figure 6: Class-averaged calibration curves for the best pruned and full models on (a) MNIST and (b) CIFAR-10 datasets
show that the pruned models are underconfident while the full models are overconfident. The highlighted areas signify
deviation between classes. (c) Probabilities of the predicted class for the MNIST (top) and CIFAR-10 (bottom) datasets.
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Figure 7: Sparse double descent (red) and expected calibration error (blue) on pruning two-layer FCN on MNIST (left) and
ResNet-18 for CIFAR-10 (right). Highlighted area shows the deviation across three replicates. Comparing the calibration
error for true and noisy labels we find that the best pruned models are optimally calibrated to noisy data.

calibrated to test data with label noise (see fig. S4). This
is a reasonable outcome since the model was trained with
label noise, which could introduce significant bias in the
classification learned by the model.

To understand how iterative pruning impacts calibration,
in fig. 7 we plot the test error and expected calibration er-
ror [Guo et al., 2017] (ECE) for a fixed model. For both
noisy and true labels, we observe that the ECE initially
increases slightly on iterative pruning but then drops signi-
ficantly. The major difference between the two scenarios is
the location of the minimum. For true labels, the lowest ECE
is observed for models that have high test error, whereas the
best pruned models are better calibrated to data with noisy
labels. This strange behaviour requires further investigation
to understand the impacts of pruning on model calibration.
Perhaps, a trade-off between test error and calibration error
can be used to choose models that have low error and are
well-calibrated.

5 CONCLUSIONS

The existence and identifiability of small pruned net-
works, which can still generalise as well as large,
over-parameterised models, remains an empirically well-
supported fact that still lacks a satisfactory theoretical ex-
planation. In this paper, we provided a number of empirical
observations which unveiled two intriguing characteristics
of small pruned networks: (1) their number of parameters
correlate with task difficulty and provide a measure of the
effective number of parameters in large models, and (2)
pruned models are less prone to overconfident predictions.

Working in the IMP framework, we consistently reproduce
the sparse double descent phenomenon first observed by
He et al. [2022] in a number of synthetic and real datasets.
While He et al. [2022] focused on the sparse double descent
of the large model, we observe that irrespective of the size
(and test accuracy) of the model from which we start the
sparse double descent, the resulting optimal pruned models
all achieve a similar generalisation error and have compar-



able sizes. The size of the best pruned models (defined by
the number of retained parameters) appears to correlate well
with natural notions of task complexity, both in real and
simulated datasets.

We then analysed more in-depth the functions learned by
these small networks: on simulated data, where we know the
actual class conditional probability functions, we observe
that pruned models capture much better the true underlying
function, whereas full models tend to be overconfident. On
real data, we again verify that full models are more confident
than pruned models, which in this case tend to be slightly
under-confident. A possible explanation is that, as customary
in double descent studies, our models are trained on data
with label noise, which impacts their calibration on data
with true labels. Indeed, we find that pruned models are
nearly optimally calibrated to data with label noise, while
full models are once again over-confident.

Our results are somewhat at odds with a recent claim
by Yang et al. [2023], which showed evidence of over-
confidence of pruned models in one example (ResNet-50
on CIFAR-100). A possible reason for this discrepancy is
that the pruning algorithm employed in [Yang et al., 2023]
is greedy and does not require re-training from initialisa-
tion. Additionally, their setup did not involve training on
noisy labels; both of these observations might explain the
different conclusions reached by that study. Indeed, these
considerations point to a non-trivial interaction between
pruning algorithm, training procedure and statistical char-
acteristics of the resulting pruned models. Exploring such
questions, both theoretically and empirically, might finally
shed light on the unreasonable success of pruning large
neural networks.

In the future, it would be interesting to see how other prun-
ing procedures impact our findings and extend our study
to larger datasets like ImageNet. It would be interesting
to see if these findings apply to other architectures like
auto-encoders and recurrent neural networks. Finally, our
findings highlight the importance of the sparse double des-
cent thus encouraging theoretical work to understand the
phenomenon.
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