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Abstract

Object search is a fundamental task for service robots aiding humans in their daily
lives. For example, a robot must locate a cup before pouring coffee, or locate a
sponge before cleaning up a spill. As such, robots performing object search across
many different and potentially unseen environments must reason about uncertainty
in both environment layout and object location. In this work, we frame object
search as a Partially Observable Markov Decision Process (POMDP), and propose
a generalizable planner that combines the structured representations afforded by
3D scene graphs with the semantic knowledge of language models. Specifically,
we introduce (i) 3DSG-POMDPs, which are POMDPs defined over 3D scene
graphs that reduce the dimensionality of object search, and (ii) PROPHE-C, a
sampling-based planner for solving 3DSG-POMDPS. We demonstrate the efficacy
of PROPHE-C in a partially observable household environment, revealing that
additional online inference leads to more efficient and exploratory search plans,
compared to solely relying on language models for decision-making.

1 Introduction

Autonomous mobile service robots that assist humans in their everyday lives or work environments are
required to autonomously navigate and execute their tasks in various, potentially unseen, environments.
In many tasks, the robot is required to locate objects necessary to complete the task, e.g., locating a
sponge to clean up a spill. However, since each deployment environment is different and objects’
locations vary over time and are not rigorously tracked, the exact location of objects required to
accomplish the task is unknown. As such, the problem of object search is a critical piece in the
development of fully autonomous service robots.

The problem of object search can be framed as a Partially Observed Markov Decision Process
(POMDP), a general modeling framework for sequential decision-making with partial observability.
However, computing POMDP policies suffers from the curse of dimensionality unless problem-
specific structure is exploited. Alternatively, learning-based methods such as reinforcement learning
have demonstrated impressive performance, but are very data-hungry and prone to distribution shifts.
In this work, we propose a scalable and generalizable approach to solving the object search problem
by leveraging the power of semantics, both for the environment representation and the prior for an
object’s location.

Motivated by the massive success of language models and their potential in sequential decision-
making, we investigate the effectiveness of using language models in aiding object search problems
that are characterized by partial observability. Specifically, we leverage 3D scene graphs (3DSGs)
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Figure 1: A partially observed household environment (left) and its corresponding 3D scene graph
(top right). Our work explores performing search tasks over 3D scene graphs by harnessing the
semantic richness of language models (bottom right).

because they ground an environment’s semantic features with spatial information; we feed their nodes
into a language model, which contains massive amounts of semantic knowledge, and are provided
strong priors for potential object locations. Our experiments reveal that language models that are fed
the 3DSG’s nodes with no additional planning provide good guesses for where an object could be,
but lack spatial awareness when searching for it, often resulting in unnecessarily long paths to find
the object. On the other hand, by hallucinating future nodes in the 3DSG via domain-specific data,
extracting priors from a language model, and then sampling for promising trajectories that weigh
both travel cost and object location probabilities, our method harnesses both the “common-sense”
reasoning present in language models and spatial information held within 3DSGs. This incentivizes a
better balance of exploitative and exploratory behavior under partial observability.

Our contributions are three-fold: (i) We introduce 3DSG-POMDP, a POMDP defined over 3DSGs
that is well-suited for general object search problems. (ii) We propose PROPHE-C (PRobabilistic
Online Planner with Hierarchical Exploration Capabilities), a sampling-based online planner that
combines priors obtained from a language model embedding space and online inference to calculate
spatially efficient search plans. (iii) We evaluate our proposed approach against baseline methods and
quantify the benefits of using language models of various capacities as priors.

2 Related Work

First, we briefly introduce 3D scene graphs and their use in sequential decision-making. Then, we
discuss various approaches for robot planning problems across three broad categories: reinforcement
learning, large language models (LLMs), and model-based methods.

Reasoning over 3D Scene Graphs. 3D scene graphs (3DSG) are directed graph representations
that provide semantically-aware hierarchical relationships between objects/containers within a 3D
environment [3, 19]. For example, house (building)→ kitchen (room)→ shelf (furniture)→ cup
(item). 3DSGs have become increasingly popular for decision-making problems due to their ability
to condense a wealth of semantic information into a compact graph data structure that retains vital
spatial information [1]. In particular, the semantic information and graph structure of 3DSGs makes
it amenable for neural message-passing algorithms to determine object location likelihoods [13, 14],
but these methods have been limited to fully-observed 3DSGs. Recent extensions consider the
partially observed case, but the focus is on computing likelihoods of object location but not on policy
construction [12]—while the likelihoods are known, there is still the question of how to find the
object while striking a balance between exploration and exploitation.

Reinforcement learning for search. Reinforcement learning (RL) has been used widely to solve
object search, or target-driven, problems [30, 5]. Typically a neural network policy is learned coupled
with visual representation learning, and actions consist of moving the robot in a direction (i.e., left,
right, forward, stop). The use of semantic map representations and 3DSGs has been shown to
improve policy performance [5, 18]. While RL methods have succeeded in solving a number of
search problems, they are incredibly data-hungry and often rely on high-fidelity simulators which are
faced with sim-to-real transfer challenges. As such, pure RL-based solutions suffer from scalability
challenges when deploying in diverse real-world environments. Moreover, in terms of high-level

2



decision-making with respect to choosing which room or object to search, the action space varies
over time depending on what options are available. Unfortunately, RL with varying action spaces is
still an open challenge.

Planning with large language models. Large language models (LLMs) have exploded over the last
few years [6, 4, 23] and there has been an abundant body of work leveraging semantic understanding
from LLMs to aid in robot planning and decision-making [9, 26, 27]. There is huge potential for
LLMs to help robots operate in novel environments and reason beyond domain-specific data collection
methods used previously. However, a significant limitation of LLMs is contextual grounding since
LLMs lack a physical embodiment and spatial awareness of where and how they will be used by a
robot. Very recently, LLMs have been combined with 3DSGs [17] which combines language and
scene semantics to help robots more efficiently plan in 3D environments. While promising, the
assumption is that the 3DSG is fully known, and their focus is directed at developing an efficient
navigation planner in a 3D environment given a language command. In this work, we assume a
partially known environment and the challenge is finding a robot navigation policy that balances
between exploration and exploitation.

Belief-space planning. Planning under partial observability has been a widely studied problem in
robotics, from autonomous exploration [16], human-robot interaction [15], and aircraft collision
avoidance [11]. POMDPs are a popular modeling framework but suffer from the curse of dimen-
sionality, and hence are limited to relatively small problems or for cases where problem-specific
structure can be exploited. For example, [10] utilizes local and global information to construct a
hierarchical value function to synthesize a policy for large-scale autonomous exploration in unknown
environments, [7] utilizes hybrid belief states for task and motion planning, [24] proposes a novel
object-oriented POMDP formulation to reduce the exponential growth of the belief space, and [29]
propose a factored state-space POMDP framework where target object locations are correlated with
more observable items. Another similar work is [2], which uses scene graphs for reasoning under
partial observability but does not explicitly reason over the hierarchical relationships between nodes.
While these methods have demonstrated impressive results in their respective applications, these
techniques are tailored towards a specific problem formulation and are difficult to generalize or
transfer to other domains. In this work, we aim to leverage two general-purpose tools, namely 3DSGs
and language models, to formulate a general POMDP formulation amenable to problems that can
be framed as object search in partially known environments. We must also note that PROPHE-C’s
design draws heavy inspiration from successful POMDP solution techniques such as POMCP [20],
which uses Monte Carlo Tree Search to approximate a value function solution.

3 Problem Formulation

The problem of object search can be framed as a POMDP since the location of the target object is
unknown. In Section 3.1 we briefly describe the canonical POMDP definition, and then describe our
object search problem framed as a POMDP leveraging 3D scene graphs in Section 3.2.

3.1 POMDP Preliminaries

POMDPs are defined with a tuple: ⟨S,A, T ,Z,O,R, γ⟩, where S is a set of partially observable
states, A is the set of actions, T is the state-action transition function where Ta(s, s′) = p(s′|s, a)
for a ∈ A and s, s′ ∈ S, and Z is the set of observations, O represents the observation-function
Oa(s

′, z) = p(z|s, a) where a ∈ A, s, s′ ∈ S, z ∈ Z , R : S × A → R is a reward function, and
γ is a discount factor. The goal is to find a policy π (i.e., a = π(s)) that maximizes the expected
discounted sum of rewards E[

∑∞
t=0 γ

tR(st, at)]. However, since the state is partially observed, a
belief distribution b over states s is used since the true value of the state is unknown. The belief is
updated after an observation is made using the following update rule,

b′(s′) = ηOa(s
′, z)

∑
s∈S
Ta(s, s′)b(s) (1)

where η is the normalization constant. Unfortunately, given that we only have the belief and not the
true state, solving for an optimal policy for a POMDP is generally computationally intractable since
the size of the belief space grows exponentially with |S|. Indeed, developing approximate solutions
that scale tractable is an area of active research [21].

3.2 3DSG-POMDPs: POMDPs with 3D Scene Graphs
First we define a 3D scene graph and explain the appeal of this specific class of POMDPs, and then
present our 3DSG-POMDP formulation for decision-making over 3D scene graphs with unknown
goal locations.
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(a) A schematic of the PROPHE-C algorithm. (b) 3D scene graph.
Figure 2: (a) Each step is contained within the dashed boxes. The set of leaves (squares) changes
as we explore. We identify the leaves in the graph, hallucinate a full graph from those leaves, and
sample for the most valuable leaf in that hallucination using a belief vector for that entire hallucinated
graph, repeating this process many times. Then, the agent takes an action a whose expected value is
highest. We reveal more nodes in the scene graph and repeat. (b) Example of a 3D scene graph on a
household environment. The robot uses a 3D scene graph to reason about objects in its environment.

3.2.1 3D Scene Graphs
For ease of exposition, consider an indoor environment. The node-class layers of the 3D scene graph
include, from highest to lowest: buildings, rooms, structures/furniture, and objects. For a 3D scene
graph G, the items of those classes comprise its nodes V , and their relationships are described by
edges E . The members of V and E also have attributes; nodes have names, classes, spatial locations,
and more, and edges encode semantic relationships (such as inside or next to). Since G is a tree,
it also has a set of leaves, denoted by L ⊆ V .

There are four reasons we use 3DSGs for environment representation: (i) Defining our state and action
spaces over the nodes in 3DSGs induces small state and action spaces. (ii) 3DSGs bind semantic
information to states and actions, allowing easy value assessment of states and actions via language
models. (iii) Their hierarchical structure enables strong contextual reasoning since child-nodes are
always contextualized by their parents, which is useful when extracting priors over object locations
from a language model. (iv) The nodes’ spatial attributes capacitate path planning.

3.2.2 3DSG-POMDPs
Our justifications for defining a POMDP class specific to 3DSGs are two-fold: (i) In problems such
as object search where agent states are known, goal locations are not, and hidden state transitions are
deterministic, belief is only over potential goal locations. (ii) State and action spaces in a partially
observed 3DSG are dynamic, as the agent will continuously reveal new actions and states; this means
the belief size also fluctuates. We need a formalism that addresses and exploits these characteristics.

We define a 3DSG-POMDP with the tuple ⟨G, T ,Z,O,R, γ⟩. Let us first break down each term. G
represents the environment graph represented as a scene graph as described in Section 3.2.1, with
nodes V and edges E . The environment graph G implicitly defines the states, actions, and object
location of our problem. The nodes V describe the state and action space of the agent; the agent’s
state refers to which node s they are at, whereas taking an action a ∈ V corresponds to traveling to
that node (s′ = a). Notably, the state transition is assumed to be deterministic, i.e. p(a|s, a) = 1. For
notational simplicity, we use T (s, a) = a to denote the deterministic transition from s to a if taking
action a. Let ℓ denote the (unknown) location of the object. The leaves L of G represent the (final)
goal nodes that could contain the object of interest. The belief state b over the object of interest’s
location is defined as a vector of probabilities over each ℓ ∈ L.

The observation space Z is the set {0, 1}, where success (observing the object as a child of a leaf)
yields 1 and 0 otherwise. We also assume perfect observations, so we say Oa(s, z) = z. Since our
belief is over leaves rather than agent states, the standard belief update in (1) is unsuitable for our
purposes; we discuss our alternative in Section 4.5.2. Lastly, we have the reward R and discount
factor γ, which are defined similarly to the standard POMDP formulation. The reward function
should incentivize the agent to find the object as efficiently as possible.

4 PROPHE-C: Solving 3DSG-POMDPs

In this section, we describe our proposed planning algorithm, PROPHE-C. Broadly speaking, we
make use of hallucination to add foresight about potential layouts of the map, and then sample for
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promising trajectories through a hallucination to identify which next available leaf action is the best;
sampling is especially effective due to its computational speed combined with the small and discrete
nature of our state space. We will first outline the high-level components of the algorithm, and then
follow with descriptions of their finer details.

4.1 Method Overview
At any time, the agent will have observed some set of 3DSG nodes. For instance, in Figure 1, the
robot in the closet sees a shelf, and doorways to the basement and living room. All of these
nodes, regardless of their type, are classified as leaves; these leaves form the action space for this
current timestep. Our method also assumes access to a trained model that can correctly construct
3DSGs (i.e., it correctly segments and labels the nodes for the environment’s 3DSG) given some
visual input. As illustrated in Figure 2a, our planner is comprised of five main components:

Step 1. Leaf identification. We identify the set of leaves that are known but whose children have yet
to be observed, a prerequisite for graph hallucination and belief construction. See Section 4.2.

Step 2. Scene graph hallucination. Given the current 3DSG and leaves, the agent hallucinates what
a complete 3DSG for the environment might look like. See Section 4.3.

Step 3. Belief state creation. After hallucinating a 3DSG, we compute the belief vector over the
leaves potentially containing the target object. See Section 4.4.

Step 4. Trajectory sampling. For each hallucinated 3DSG, we sample many possible trajectories in
that 3DSG to calculate the most valuable action to take. See Section 4.5.

Step 5. Action execution. Execution of the selected action (i.e., target node) from Step 4 requires
computing a navigation plan to the desired location. See Section 4.6.

Algorithm 1 PROPHE-C

1: initialize G ▷ observed scene graph
2: initialize m,n ▷ samples, horizon length
3: initialize g ▷ number of graphs to hallucinate
4: function PROPHE-C(s0, query,m, n, g,G)
5: tried← {}
6: st ← s0
7: while true do
8: best_actions← {}
9: for i < g do ▷ sample scene graphs

10: hallucinate G′ from G and L
11: b← Q(G′, query, tried)
12: T, V ← {} ▷ trajectories, values
13: for j < m do ▷ sample trajectories
14: traj← {st}
15: for k < n do
16: a ∼ b
17: traj.INSERT(a)
18: end for
19: T.INSERT(traj)
20: v ←ROLLOUT(traj, b, 1)
21: V.INSERT(v)
22: end for
23: traj∗ ← argmax

T
(V )

24: best_actions.INSERT(traj∗[1])
25: end for
26: at ← mode(best_actions)
27: G, st, zt ←EXECUTEACTION(at, query,G)
28: if zt = 1 then ▷ termination condition
29: break
30: end if
31: tried.INSERT(at)
32: end while
33: end function
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4.2 Leaf Identification
Identifying the initial leaves is critical because (i) it provides start points for graph hallucination, and
(ii) helps us prune our belief vector to only include leaves we have not checked, keeping it smaller.
We use a set of “tried” leaves, explicitly keeping track of previously checked nodes.

(a) Ground-truth, with la-
beled rooms and furniture
pieces.

(b) Agent trajectories for
random search (in yel-
low) and greedy search
with domain knowledge (in
green).

(c) Agent trajectory using
max likelihood greedy via
language embeddings.

(d) Agent trajectory using
PROPHE-C.

Figure 3: An example of our household environment encoded by a 3D scene graph. The agent is
shown in bright green, and the hidden object (in this case a laptop) located on the nightstand is
denoted by the red star. Circles denote actions/observations taken to reveal a room or furniture item.

4.3 3DSG Hallucination
As the 3DSG is partially observed, the full state and action spaces are unknown, making planning for
the future difficult. Hallucination addresses this by filling an existing 3DSG with possible new nodes
until it has reached some constraint, such as an expected maximum number of rooms, or furniture
items. Since generative graph models, and specifically, conditional graph generation, are themselves
open research problems that have gained interest in recent years [28, 25, 22], we consider it outside
the scope of this work. Instead, we use the link probabilities between rooms and furniture from our
dataset to obtain priors for what possible nodes could be linked to currently observed nodes, and then
sample from them.

4.4 Belief State Creation
Every time we hallucinate a complete 3DSG, as done on Line 10 of Algorithm 1, we construct a
belief vector for all of the leaves in that environment. This is where we leverage language models to
provide the initial belief distribution.

4.4.1 Language Model Querying
Our query function Q, used on Line 11 of Algorithm 1, takes the target object string, such as
apple, cup, book, and computes a prior belief of that object being a child of leaf nodes (of the
complete/hallucinated 3DSG) such as fridge or cupboard. Additionally, it accesses the set of
tried nodes to prevent those nodes from being added to the new belief vector. We leverage existing
language models, particularly the English language Tok2Vec values from the SpaCy library’s small,
medium, and large models [8], to consider the similarity between the target object string and each leaf
node string in the word embedding space. To address the issue that the same furniture type existing
in different rooms could contain very different items (e.g., bathroom shelf versus living room
shelf), we instead consider the context vector c(ℓ) = [ℓ,Parent(ℓ),Parent(Parent(ℓ)), ...,Root]
of each leaf node, which consists of all nodes connecting the leaf and root nodes. To measure the
similarity between the target object q and context vector c(ℓ) of leaf node ℓ, we use the geometric
mean,

similarity(q, c(ℓ)) =

|c(ℓ)|∏
i

⟨e(q), ci(ℓ)⟩

 1
|c(ℓ)|

(2)

where e(·) is the embedding vector from the language model and ⟨·, ·⟩ is the cosine similarity between
two vectors. A softmax is applied to normalize the probabilities.1

1A large language model could be prompted to produce probabilities, but using similarities in the embedding
space provides direct numerical values.
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4.5 Sampling-based Planning
With a hallucinated graph and an initial belief distribution over the leaves, we sample many trajectories,
i.e., action sequences, over a pre-determined horizon. We evaluate each trajectory using a reward
function R.

(a) Ground-truth, with la-
beled rooms and furniture
pieces.

(b) Agent trajectories for
random search (in yel-
low) and greedy search
with domain knowledge (in
green).

(c) Agent trajectory using
max likelihood greedy via
language embeddings.

(d) Agent trajectory using
PROPHE-C.

Figure 4: Example of a slightly larger household environment. In this case, the hidden object is a
cup, located in the dishwasher. Using PROPHE-C, the agent actually checks more items before
finding the cup than max likelihood, deciding to fully explore a room before checking the next one.

4.5.1 Reward Function
Given the robot’s current state s, action a, and belief b, the reward function is the current belief over
a leaf a offset by a’s distance from the current state s, R(s, a, b) = b(a)− η∥s− a∥ where η trades
off being greedy (choosing max likelihood) and lazy (choosing the closest object)2. The distance
between s and a is computed using Dijkstra’s algorithm.

4.5.2 Trajectory Rollouts
Given a hallucinated 3DSG, the rollout function evaluates leaf-node transitions in a sampled action
sequence {a0, a1, ..., an} by summing its rewards based off the definition in Section 4.5.1. This is
also where belief updates occur, since our reward uses belief; we update by removing the previous
action and renormalizing the belief vector at each step. These rollouts are computed on Line 20 of
Algorithm 1. After finding the best trajectory for a hallucination, we append the first step in that
trajectory to a list of best nodes; once the hallucinations are finished, we find the mode of the list,
shown on Line 26 of Algorithm 1.

4.6 Intermediate Action Execution
Now, we offload execution of the most promising action to a planner such as model predictive control
or A∗, observe feedback from the environment, and then replan in a receding horizon fashion. In
the environments introduced in Section 5.1, our function implements a deterministic path planner
to calculate distance. For visualization, we use A∗, but during experimentation, we instead use a
Euclidean distance heuristic to reduce computation times.

5 Experimental Setup

In this section, we describe the comparison methods and experimental setup. Our code can be found
at: https://github.com/UW-CTRL/prophe-c

5.1 Household Environment
We constructed a household simulation environment complete with rooms, structures, and objects
which was used to generate 3DSGs. A random household with random floor plans and objects
can be generated. These household 3D scene graphs can contain up to six rooms, from: kitchen,
living room, utility closet, bedroom, garage, dining room, bathroom, basement, and
pantry. Additionally, we have over twenty furniture-like items, and forty target objects. Our dataset
for evaluation contains 1000 of these generated household environments. Figure 3 shows a 2D
representation of the example environment in our test set. We emphasize that the world shown by

2Recall that the set of available actions is the set of known leaf nodes
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(a) Number of actions with fully known 3DSG. (b) Number of actions with partially observed 3DSG.
Figure 5: Histograms displaying the number leaf steps taken until search completion for each episode.
The dotted line indicates the mean. Since greedy search with domain knowledge always succeeds
within a few steps, we omitted it for visual clarity.

Figure 3 is solely for visualization; the planner itself relies only on 3DSGs, which can be generated
from physical real-world interactions [19].

5.2 Baseline Comparisons
We compare PROPHE-C against three other methods: random search, max likelihood with domain-
specific priors (we use the probabilities for generating the environments), and max likelihood with
language priors (we utilize Tok2Vec values from SpaCy’s models).

5.3 Test Setup
We perform experiments in two scenarios: fully-known where the entire 3DSG is known except
the object location, and partially-observed where only nodes immediately visible to the agent are
given initially. Episodes are terminated upon observing the target object. For both scenarios, we
perform 250 object search problems. For each method, our goal is to analyze both the decisions made
and how efficient the search process was by considering the total distance traveled. In both cases,
PROPHE-C has a planning horizon of 3 leaf-steps, which is sufficient for our environment size. We
also investigate the effect of language model complexity—we compare the performance for the small,
medium, and large SpaCy models whose embedding vector lengths are 96, 300, and 300, respectively.

6 Experimental Results and Discussion

In this section, we discuss qualitative and quantitative results of our experiments. While our envi-
ronments are small-scale, these experiments are designed to gain insights into the benefits of using
language models combined with 3DSG representations and online inference.

Qualitative Results. The agent trajectories displayed in the household environments in Figure 3 show
all four methods for the same object search scenario. The agent starts in the utility closet and
is tasked with finding a laptop located at the bedroom nightstand. For the agent with domain-
specific knowledge, a greedy search is still highly optimal, even under partial observability. However,
for the agents whose priors come from much more general knowledge (the SpaCy embeddings),
it takes noticeably longer, especially since nightstand has less semantic similarity to laptop
relative to other locations. Our method, though, is more resilient to this and fully explores the
living room before committing to the bedroom and then finding the laptop. In contrast, using
max likelihood with language priors, the robot inefficiently switches between the bedroom and
living room resulting in a greater distance traveled. Another example is given in Figure 4, where
the agent must find a cup, which is located in the dishwasher. This location is pretty likely; as a
result, the max likelihood method travels a little less than PROPHE-C, but PROPHE-C still takes the
time to explore one likely room before moving to the next.

Quantitative Results. Our results indicate that max likelihood using a language model yields
impressive performance in our environment but that its embeddings ultimately lack foresight and
spatial awareness. Figures 5a and 5b show that on average, max likelihood with the medium and
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(a) Search efficiency with fully known 3DSG (b) Search efficiency with partially observed 3DSG
Figure 6: Linear regression plots showing the relationship between the number of actions taken to
find the object and the total distance traveled. For visual clarity, we removed the data points.

large SpaCy models will finish in one less leaf-step than our method. However, these results do
not tell the full story; as shown by Figures 6a and 6b, our approach is more efficient in searching,
especially where the object’s location is highly uncertain, like in Figure 3. We emphasize that more
leaf steps do not necessarily indicate longer search times; plotting leaf steps versus distance illustrates
that our method will more thoroughly search leaves in the immediate vicinity (hence providing
exploratory behavior) before moving to the next room, thus avoiding behaviors that frequently switch
between two rooms. Additionally, while the medium model is marginally worse than the large one,
we can boost the efficiency of the medium model greater than the large one with online inference (see
Figures 6a and 6b). Also evidenced in these charts, max likelihood search results in less distance
traveled under partially observed 3DSGs compared to fully known (up to the object’s location) ones.
We hypothesize that this is due to the lower amount of actions to choose from; as the number of
available actions go up, a max likelihood search using language model embeddings may sequentially
pick actions that are very spatially costly, whereas under partial observability, it is limited to a much
smaller range of actions at any given point. Notice also that the gap in PROPHE-C’s performance is
noticeably smaller between Figures 6a and 6b.

Key Takeaways. Overall, these tests reveal insights that both build off previous works and are
worth considering for future exploration: (i) Online inference can both enhance the performance of
an existing language model and fill the gap between a smaller model and a larger one. (ii) These
language models perform well on their own, especially in cases that line up with “common-sense”,
but suffer in situations where common-sense assumptions break down. (iii) 3D scene graphs imbue
disembodied language models with spatial awareness when combined with online planning.

7 Conclusion and Future Work

In this work, we leveraged 3D scene graphs, online inference, and language model priors to solve
the object search problem in partially observable domains. Our experiments imply language models
indeed have remarkable semantic capabilities in novel environments, and combining these capabilities
while maintaining belief over the leaves in the 3DSG elicits scalability, exploratory behavior, and
travel reduction during planning. Our results indicate promising behavior, and we intend to investigate
these trends on larger, more general domains. For instance, we could significantly extend the breadth
and depth of the 3DSG, leverage real-world datasets, and perform real-world testing in a house or
office buliding. Another avenue that we intend to explore is fully querying a large language model
such as GPT-4 and using generated text to guide search through a 3DSG. For this work, we found
that the raw embeddings would be easiest to work with since their values can be easily converted
into a plausible belief distribution. Additionally, our 3DSG hallucination method was implemented
without any learning; an interesting research direction is in conditional 3DSG generation—perhaps
this could also be done via the generated output of a language model as well.
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