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Abstract

State-space models (SSMs) have recently emerged as a compelling alternative
to Transformers for sequence modeling tasks. This paper presents a theoretical
generalization analysis of selective SSMs, the core architectural component behind
the Mamba model. We derive a novel covering number-based generalization bound
for selective SSMs, building upon recent theoretical advances in the analysis of
Transformer models. Using this result, we analyze how the spectral abscissa of the
continuous-time state matrix influences the model’s stability during training and its
ability to generalize across sequence lengths. We empirically validate our findings
on a synthetic majority task, the IMDb sentiment classification benchmark, and the
ListOps task, demonstrating how our theoretical insights translate into practical
model behavior.

1 Introduction

Foundation models trained on large-scale datasets have become the dominant paradigm in modern
machine learning following the introduction of the Transformer architecture [1]. Although they
are very effective in sequence processing, the global nature of self-attention imposes limitations: a
finite sequence window and quadratic scaling w.r.t. the window length. Recently, a new family of
models named state-space models (SSMs) became a popular alternative to address this problem [2, 3].
These models are rooted in the classical state-space representations from control theory introduced
by Kalman et al. [4]. Theoretical analysis of SSMs has primarily focused on linear time-invariant
(LTT) settings. Récz et al. [5] derive a length-independent generalization bound for deep stable LTI
SSMs using Rademacher contraction techniques, while Liu and Li [6] establishes a length-dependent
bound and proposes corresponding initialization and regularization schemes. These results rely on
system stability from control theory, ensuring that operator norms remain well-defined and finite. LTI
architectures allow for an easy imposition of the stability assumption, making them well-suited for
bounded-norm analysis.

The state-of-the-art SSMs that form the core of the Mamba and Mamba-2 architectures are selective
and inherently nonlinear [7, 8]. They employ a selective-scan mechanism to capture long-term
dependencies, allowing for adaptive and efficient sequence processing. This design, however, makes
their analysis distinct from LTI SSMs and more closely aligned with self-attention. Despite their
growing empirical success, theoretical understanding of their capabilities remains limited, with the
exceptions of Ali et al. [9] and Dao and Gu [8], who establish a connection between Transformers
and SSMs, Yu et al. [10] who studies the initialization and training behavior of SSMs, and other
recent works that examine their expressive power [11-15].

Alongside expressive power, which characterizes model bias, an equally important question is that of
generalization, which captures the variance component of the bias—variance tradeoff, and it is central
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in theoretical machine learning. Recently, generalization bounds have been developed across various
domains, including graph neural networks [16], large language models [17], meta-learning [18],
recommender systems [19], representation learning [20], and various neural network architectures
[21-23]. Work on the generalization capabilities of attention models often builds on the covering-
based framework of Zhang [24] and Bartlett et al. [25], originally developed for linear models and
deep networks. Recent adaptations include Edelman et al. [26], which studies inductive bias in
Transformers; Trauger and Tewari [27], which establishes length-independent bounds; and Truong
[28], which derives rank-dependent bounds.

In this work, we investigate the generalization properties of selective SSMs. Unlike prior work on
LTI SSMs that relies on classical tools from control theory and stability assumptions, our approach
builds on recent theoretical developments for Transformers and self-attention mechanisms. By
unrolling the selective SSM into an attention-like formulation, we enable the use of covering number
techniques originally developed for Transformer models. This connection introduces new technical
challenges: selective SSMs feature input-conditioned dynamics, input-projected B and C' matrices,
and discretization from continuous-time systems. We address these by developing a unified covering
argument that combines tools from both RNN and attention-based analyses. In particular, we handle
the state matrix A through stability and discretization, while treating the input projections W and
We as linear function classes, analogous to the key-query structure in attention. This results in a
two-tiered covering construction that captures the hybrid structure of selective SSMs and is central to
our generalization bound, allowing us to study how model characteristics influence generalization and
training behavior. We support our theoretical findings with experiments on synthetic and real-world
sequence classification tasks. Our main contributions can be summarized as follows:

Theoretically, we derive a novel covering number-based generalization bound for selective SSMs by
unrolling their structure and leveraging their connection to attention mechanisms. We also provide a
bound for linear attention to rigorously demonstrate the link between the two model classes.

Analytically, we investigate the implications of our bound to understand how generalization depends
on the sequence length 7" and the spectral abscissa s 4 of the state matrix. In particular, we show
how training can fail to stabilize unstable models when 7" is large, resulting in poor generalization
despite the expressivity of the model.

Empirically, we validate our analysis on a synthetic majority task, the IMDb sentiment classification
benchmark, and the ListOps task. These experiments demonstrate how model behavior varies with
sequence length and stability, highlighting the practical impact of our theoretical insights.

2 Preliminaries

2.1 Notation

We denote the real and imaginary parts of a complex number by R(-) and J(-). We use R, R™, R™*™
to denote the set of real numbers, n-dimensional real vectors, and n x m real-valued matrices,
respectively. Lowercase letters like z refer to scalars or vectors, while bold uppercase letters like
X denote matrices. The ¢,-norm of a vector x is written as ||z||,, and the p-operator norm of a
matrix X is written as || X ||,. For a matrix X with column vectors z1, ..., Z,, the mixed norm
[ X||p,q is defined as || [[[1[l, -+ [l@nllp][|,- The Kronecker product of matrices X and Y is
denoted by X ® Y. Continuous-time state-space matrices are written as A., B., C., while their
discrete-time counterparts are denoted by A, B, C. The variable N represents the number of states
per channel, T is the sequence length, d is the number of channels, and m is the number of samples.
We use (t) to denote continuous time indexing and [¢] for discrete time. Lastly, we denote by
sa = max;{R(A\;(A))} the spectral abscissa of a matrix A € R™*", the largest real part among
the eigenvalues of A. This quantity is commonly used in stability analysis, since a continuous-time
system with state matrix A is asymptotically stable in the sense of Lyapunov if and only if s 4 < 0.

2.2 State-Space Models

LTI SSMs are based on the classical single-input single-output (SISO) state-space representation:
gb(j)(t) - Agj)x(j)(t) + ng)uj(t)
yi(t) = CP2 (1)
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where AY) € RVxN BY) ¢ RVx1 ) ¢ RIXN and DY) € R represent the dynamics of
a continuous-time LTI system corresponding to the j channel (feature) u;(t) of the input signal

u(t) using the hidden states z()(t) € RY. With the notable exception of S5 [29], most SSM
implementations use d SISO SSMs as in (1) in a single block, one for each channel respectively.

Selective SSMs, introduced with Mamba [7], make the model parameters and the discretization step
size input-dependent to increase expressive power. In particular, for the 5™ channel, the continuous-

time state-space parameters ng ) (t), Cc(] ) (t), and the step size A(t) are:
BY(t) = Wi u(t)

¢ At) = +qTult 2

cO) —uipyrwg SO =Talp ) @

Here, Wy, We € RVX4 ¢ € R? and p € R are learnable weights and 7a (z) = In(1 4 €%) is the

softplus function. The input and output matrices Bﬁj )
u(t). Thus, the state-space model for the j channel is:

() = AV 2D (1) + Wgu(t)u;(t)
yl) = uTWE:c(j)(t).

and ng ) are linear projections of the input

3

To derive a state-space model including all states and inputs, we stack the states in (3) to get one single
state vector z = [(z(M)T ... (z(@)T] T € RN that satisfies the following state-space model:

#(t) = Az (t) + Beu(t)

4)
y(t) = Cex(t)
in which
A 0 e 0
0 A® ... 0 B.(t) = I, © Wgu(t)
Ac = . . . . ’ . T T (5)
: : P Cc(t) =Ia®u(t) Wg
0 0 L))
For the discretization step, we follow the official implementation of Mamba [7]:
B[t] = A(t)B.

which uses a zero-order hold (ZOH) for the matrix A, and a simplified Euler discretization for the
matrix B. The matrix C remains the same as C.. since it represents a static relationship between the
output y and state . Utilizing this discretization procedure and the selective SSM architecture in (4)
results in the following discrete-time state-space model:

alt + 1] = A Az[t] + Alt) (1 @ Wault])ult]
ylt] = Ly @ ut] W) a[t] @)
Alt] = ma(p + ¢ ult)).
Assuming 2(0) = 0, we can unroll this recursive relation:

y[t'] = (la @ ult']"W¢) Z_: (AtA[t’ —1—t](Ig @ Wpu[t' — 1 —t])ult’ — 1 - t]) ®)

in which A is a shorthand notation for

A° =1, A" = AUkt Al =D A for ¢ >, ©))

For classification tasks requiring a scalar output, an additional parameter w € R is introduced. This
parameter corresponds to a linear layer applied to the last time step of the output sequence to obtain a
label as z = w " y[T], which captures all past information. The space of all selective SSMs Fssy as
defined in (7) is parametrized by

®SSM - {AC7W37WC7P7 (Lw} (10)



3 Generalization Bounds for Selective SSMs

To quantify generalization, we study the gap between the empirical training loss and the true expected
loss over unseen data. Following standard results from statistical learning theory, we upper bound this
generalization gap using the Rademacher complexity of the function class. Rademacher complexity
of a function class F for a given dataset .S, denoted as Rad(F, S), measures the average ability of a
function class to fit random noise and serves as a data-dependent notion of capacity. For completeness,
we include the formal definition of Rademacher complexity and the precise statement of the theorem
that bounds the generalization gap in terms of it in Appendix E.

Bounding the Rademacher complexity of complex function classes, such as foundation models, is
challenging. A common approach is to break down the model into smaller components and analyze
each of them separately by employing covering numbers. Covering numbers quantify the size of each
component’s function class by determining how many smaller subsets, or “balls”, are needed to cover
it. Formally, the covering number is defined as follows.

Definition 3.1 (Covering number). Let M be a metric space with metric u. A subset H C M is an

e-cover for M if for every h € M, there exists h € H such that wu(h, fl) < €. The covering number
N (M, e, ) is the lowest cardinality of an e-cover of M.

Remark 3.1 (Types of covering numbers). In our analysis, two distinct types of covering numbers
are employed. The metric space M in Definition 3.1 can be chosen as a collection of matrices
equipped with the metric induced by a matrix norm. We deploy this definition to construct a cover for
the parameters A. and p, similar to the existing covering techniques developed for RNNs. On the
other hand, let 7 = {f : i/ — Z} denote a function class, where Z is equipped with a norm || - ||,
and let S = {u;)}iZ, be a dataset. By equipping F with the following metric

1/p
o1 (F f < ZHf flug) ,,) 7 (1n

we obtain a data-dependent covering number for a function class, to construct covers for Wg, W¢, g,
and w. This is parallel to the cover construction for the query, key, and value weight matrices in
self-attention. For convenience, we denote the covering number of a function class N(F, e, Eop, |- ”)

by Np(]:IS’ € || : ”)

The covering numbers outlined in Remark (3.1) can be utilized to bound the Rademacher complexity
of a selective SSM parametrized as in (10) via Dudley’s integral theorem, stated below.

Theorem 3.2 (Bartlett et al. [25], Lemma A.5). Given a real-valued function class F = {f : U — R}
such that Yu € U, |f(u)| < b and a set of vectors S = {u;}i~,, we have

b 1 f y &l 7
Rad(FS) < inf <4a+12/ \/nNz( s 6 1l2) d6>. 1 12

m

3.1 Main Result

In this section, we present an upper bound on the generalization error for selective SSMs. Before
that, we outline and justify the assumptions necessary for deriving the bound. These assumptions are
needed mostly to construct suitable covers through the lemmas presented in Appendix D.

Assumption 3.1 (Input). The input sequence ||u[t]||2 < B, for all ¢.

Assumption 3.2 (Parameters). The parameters obey |[Wgll2 < Bp, |[Wg|11 < Mz, |[We|2 <
B, [wll2 < B, lw]li < My, [lgll2 < By, and [lg|l1 < M.

Assumption 3.3 (Loss function). The loss function [(-) is bounded by ¢; and Lipschitz continuous
with constant [;.

Assumption 3.4 (State Matrix A.). The continuous-time state matrix A, satisfies |A.|l2 < Ba
and ||ACH271 S mA.

'This is a modified version of Dudley’s integral theorem [30]. The proof presented in [25] ignored the
normalization by m in (11) and takes b = 1 in (12).



The bounds on the norms || - ||2, || - ||1, and || - ||1,1 in Assumptions 3.1 and 3.2 are standard and
chosen to enable the use of Lemma D.3, adapted from [27] originally developed for Transformers.
This result provides a covering number bound for linear function classes with bounded || - ||1,; norm,
without introducing sample size or sequence length dependencies. While alternative norms can be
used, they typically lead to looser or length-dependent bounds. The Lipschitz continuity of the loss
function in Assumption 3.3 ensures that small changes in the input lead to controlled changes in the
loss, which is essential for bounding the model’s generalization error in Lemma D.4. Assumption 3.4
employs different norms than 3.2 (|| - ||2,1 rather than || - ||1,1) because we cover A, with a distinct
strategy (Lemma D.2) from the other parameters. With these in place, we now state the following
theorem, whose proof is provided in Appendix E.

Theorem 3.3. Let S = {u(;, 2 }i~, be the training set and Fgsy be all selective SSM blocks
described in (7). If Assumptions 3.1-3.4 are satisfied, then with probability more than 1 — § the
following bound for any h € Fssy holds:

1 & 121,C ay/m In (2)
E _ . ) < ssvo (141
u,2(1(h(u), 2)) — ;l (h(ug), 24))| < N ( +1In <3Cﬂw + 3y 4,25
(13)
in which
Crioy = O (MAB BB EBB A S (MY N30V 4 52/9982/)9/2) (14)
and
pa(l—ph)  Tph —B,B,\ %At +98,B
Sy = - ; = (14l ~e=n , Ma =1In(1 + PT2e7w))
T A pa)? a1 ( ) a =In( ) s

where 17 > 0 is any arbitrarily small positive number chosen in a way that s 4 + 7 # 0. The notation
O(-) ignores the logarithmic dependencies on N and d, but not 7. The terms 9)%(.y does not appear
in the capacity expression Cr,,, with the exception of 2. This is the result of an assumption
My = B(.), made for the ease of presentation in the proof. To ensure clarity in the derivation, these
terms are handled separately throughout the proof, and the assumption is incorporated only at the
final stage.

Proof Sketch of Theorem 3.3. The class of all Selective SSMs, denoted by Fgssm, is parameter-
ized by Ossm = {Ac, WB, We,p,q,w}. We bound the generalization gap |E(I(h(u),z)) —
LS U(h(u®), 29)| by controlling the Rademacher complexity of Fssu.

The first challenge is to bound the distance between A? and its cover A'. Unlike LTI SSMs and
RNNs, where the fixed number || A||5 bounds || At||2, here || At||2, as defined by the shorthand in (9),
has an input-dependent structure and must be controlled via the learnable parameters {p, ¢, A.}. In
Lemma E.3 we construct the appropriate p 4 (as defined in (15)) using Gelfand’s formula (Corollary
5.6.14 in [31]) and bounds on p, ¢, A. to show [|A’||s < p,, revealing the role of the spectral
abscissa of A.. Gelfand’s formula characterizes the growth of || At||2 in terms of the spectral radius
of A, which is why the small positive number 1 > 0 appears in (15). Then Lemma E.5 establishes an
upper bound on || A! — A||5 through a telescoping-sum argument. Finally, Lemma E.6, followed by
Lemma E.7, shows how the cover radius for the whole model is decomposed as the sum of the cover
radii of each parameter in Oggy;. Additionally, the structure of the input-dependent time step A[t]
should be taken into account, as it affects both A[t] and BJt]. The bounded norm assumptions on the
input and ¢, together with the presence of the bias term p in A[¢], ensure the existence of a uniform
lower bound on the step size. As shown in Lemma E.3, this bound is essential for the application of
Gelfand’s formula to control the growth of || A?|5.

Next, individual covers are constructed: A, is covered in Lemma D.2 as an element of the matrix
space equipped with its matrix norm. Recognizing the attention mechanism in (8), Lemma D.3
covers the parameters {Wg, W, g, w} by treating them as linear function classes. These individual
covers are combined via a Cartesian product to cover Oggn, and the cover radii are chosen optimally
according to Lemma C.9 to yield a global e-cover of Fggn. Finally, Lemma D .4, a standard corollary
of the Dudley integral bound on Rademacher complexity, yields the claimed bound. O



Remark 3.2 (Lens of Attention). A novel component of the proof of Theorem 3.3 lies in recognizing
the attention mechanism in (8), which guides us to cover the parameter set {Wp, W¢, ¢, w} as
a function class. In particular, the line of work by [24, 26, 27] on generalization in Transformers
presents numerous covering-number bounds for such parameters. We utilize these results to establish
our theorem, obtaining a length-independent generalization bound under the condition s 4 < 0. This
result is attainable only by revealing the underlying attention mechanism. To show this connection
explicitly, we make the following assumptions to single out the attention in selective SSMs:

Assumption 3.5. Set ¢ = 0 and p = e, yielding a constant step size A[t] = 1.

Assumption 3.6. Assume A, = 0, so that A[t] = I for all ¢.

Under Assumptions 3.5 and 3.6, the selective SSM reduces to linear attention with a causal mask [8].
In particular, the output at time 7" admits the representation

T-1
z=w' Y (Leul]"WS) L@ Weu[l —1—t]) ull —1—1]. (16)
t=0

Query Key Value

By fixing A[t] = I and A[t] = 1, we obtain a significantly simpler derivation of the generalization
error bound for linear attention given below, with its proof presented in Appendix F.

Proposition 3.4. Let S = {u), z(;) }i~,, and suppose Assumptions 3.1-3.4 hold with the simplifica-
tions made in Assumptions 3.5 and 3.6. Then, for the class of linear attentions Fi4 parametrized by
{We, Wg,w}, with probability at least 1 — 0, the generalization bound in (13) holds, where Cryq,,
is replaced by

Cr, = O(TB,BpBcB). (17)

4 Analysis

In this section, we draw insights from Theorem 3.3: we interpret the dependency of the bound on its
parameters and compare it to similar bounds derived for other architectures. Table 1 summarizes the
dependency of the generalization error bound on the sequence length 7', the input dimension d, and
the input magnitude B,, for different architectures.

Length Independence. As shown in Theorem 3.3 and Table 1, when the spectral abscissa satisfies
sa < 0, the generalization bound is length-independent, whereas if sa4 > 0, the bound grows
exponentially in 7". This aligns with prior results for RNNs [32, 33] and LTI SSMs [5, 34], which
similarly emphasize the importance of the Lipschitz constant of the activation function and norm of
the state matrix. In our setting, the Mamba construction (6) ensures that the stability properties of
the continuous-time matrix A, carry over to the discrete-time matrix A[t], directly controlling the
generalization gap.

Attention. We now compare the bounds we derived in Theorem (3.3) for selective SSMs and
Proposition (3.4) for linear attention. The gap between their capacity terms, Cry,, and Cr, ,, arises
from simplifying assumptions used to reduce a selective SSM to a linear attention structure. First,
Assumption 3.5 removes dependence on the input-conditioned discretization A[t], eliminating the
M term and its associated input-norm B, scaling, resulting in a B2 dependence—reflecting the
three linear projections of attention (query, key, value). In contrast, selective SSMs incur an extra ‘B,,
factor embedded in 9T A due to dynamic input influence. Second, Assumption 3.6 further simplifies
the bound by removing the need to cover the state matrix A, reducing the S term to a linear
dependence on T' due to projection accumulation. Lastly, comparing linear to softmax attention,
the key difference lies in normalization. Softmax reweighs the sequence, removing any explicit
T-dependence in the bound and effectively decoupling capacity from sequence length.

RNNs. Consider the vanilla RNN model
alt] = o, (At — 1] + Bult]), y[t] =0, (C=[t]), (18)

where o, is [,-Lipschitz and bounded. When [;|| A||2 < 1, the bound is length-independent, whereas
for [,]|A|l2 > 1 it exhibits linear dependence on 7'. The key mechanism RNNs avoid exponential
dependence is the bounded activation [36]. Unfortunately, incorporating a bounded activation into
selective SSMs degrades their training efficiency, the very advantage that motivated their design.



Table 1: Generalization bound scaling for different sequence-to-sequence models. Dependencies are shown
with respect to sequence length 7, hidden dimension d, and input magnitude 8, (logarithmic terms in d and
B, omitted). ¥ The term pa depends on the spectral abscissa s 4, as defined in (15). When sa < 0, we can
choose 1 > 0 to be arbitrarily small so that pa < 1, yielding a length-independent bound. # [, is the Lipschitz
constant of the activation function used in the RNN as defined in (18). § The bounds for LTI SSMs are derived
under different assumptions as explained in Remark 4.1.

Model Specification T d By,
. 54 <0 1 dr/? Bl
Selective SSM (Theorem 3.3) 54> 0 Tp£ s ql/2 %}5
Linear Attention (Proposition 3.4 ) N.A. T 1 %i
Softmax Attention [27] N.A. 1 1 B3
|| All2 < 1F 1 d By
Vanilla RNN [32] I||All2 =1 T d By
L] All2 > 1 T d3/? B,

Discrete-time LTI SSMs [5] ¥ max; [A;(A)] < 1 1 - Bounded )

2k llulk]ll3

Continuous-time LTI SSMs [35] § 54 <0 In3/2(T) - Holder continuous

Another distinction is that RNN bounds hinge on contractivity—the induced norm of the matrix being
less than one or related to the singular values—while our bound depends on the spectral properties of
A_.. This difference stems from our analysis, which begins with a continuous-time state-space model
and discretizes via the matrix exponential, an operation governed by eigenvalues rather than singular
values. We believe that the distinctive parameter for RNNs ([, || A]|2) can be improved in a similar
way to our approach, where we took advantage of Gelfand’s formula. This allows replacing || A||2
with max; |A;(A)|, which is an improvement since the spectral radius of a matrix is a lower bound
on any induced matrix norm.

Remark 4.1 (LTI SSMs). One of the recent generalization bounds for LTI SSMs is the length-
independent result of Racz et al. [5], which applies exclusively to stable discrete-time LTI systems.
Their bound relies on the ¢;-norm of the system’s impulse response and the Ho-norm of its transfer
function, both of which are finite for only strictly stable systems. Extending this result to selective
SSMs is nontrivial, as there is no direct analogue of these norms for general nonlinear systems.
Moreover, they assume that the input satisfies Y-, [lu[k]||3 < oo, which is generally not satisfied
in deep learning applications unlike our Assumption 3.1. Liu and Li [6] derive another generalization
bound for LTI SSMs, but they aim to consider the temporal dependencies in the input signal via
its mean and variance, leading to a Holder continuity condition. Their bound, under a stability
assumption, scales logarithmically with 7" and is derived for continuous-time SSMs. Thus, in practice,
it only applies when the discretized model remains close to its continuous-time counterpart. In
contrast, we directly consider a continuous-time SSM with an input-dependent time scale, and derive
a generalization bound for the resulting discrete-time model—an assumption more aligned with how
such models are used in practice. In summary, while existing techniques for SSMs leverage system-
theoretic properties unique to LTI systems, the nonlinearity of selective SSMs requires deriving
bounds that are better suited to modern deep learning architectures.

Overall, our results complete the picture of generalization for deep sequence models. Strongest
generalization occurs in selective SSMs with s 4 < 0, softmax-attention, and RNNs with [||A|]2 < 1,
all benefiting from implicit normalization or stabilization. In contrast, selective SSMs with s 4 > 0
generalize poorly. We revisit this in the next section, showing that no sub-exponential bound can
be derived using Rademacher complexity in this regime. Later on in Section 5, we observe that the
training error grows rapidly unless s 4 is driven negative, as seen in Figure 1.

4.1 A Lower Bound on the Rademacher Complexity

In this section, we present a theorem that establishes a lower bound on the Rademacher complexity
for the case where the spectral abscissa satisfies s 4 > 0.
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Figure 1: Experiment 1. Top: Training loss vs epochs for Left: Majority, Middle: IMDb, Right: ListOps.
Bottom: Evolution of s a vs epochs for the same datasets. All runs use an unstable initialization with sa = 0.1.
Whenever training successfully reduces the loss, the spectral abscissa s 4 is driven toward zero, indicating that
the system becomes stable. In cases where s 4 does not decrease toward zero, training is not successful.
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Figure 2: Experiment 2. Left: Majority, Middle: IMDb, Right: ListOps. Train and test accuracy versus se-
quence length 7" for models initialized with s 4 = 0. The results demonstrate length-independent generalization.
Each experiment is repeated five times with different random seeds; the dashed line denotes the mean accuracy
across runs, and the shaded region represents + one standard deviation.

Theorem 4.1. Let s o > 0 be a fixed spectral abscissa and S = {u;)}2y C [—1,1]7. If |w| < B,
then

1+s4)T=1 /2
Rads (Fss) z%w% —. (19)

Moreover, if sa = 0, then

[ 2
Radg (-FSSM) Z %MT —_—. (20)
™m

The proof of the theorem is provided in Appendix G. It is based on the construction of a restricted
subclass of selective SSMs in which the step size is fixed and the output grows unboundedly as
a function of a single parameter w. In this simplified setting, the Rademacher complexity can be
computed explicitly, yielding a lower bound on the Rademacher complexity of the broader class
Fssm. Unfortunately, these lower bounds are looser than the corresponding upper bounds by a factor
of O(T), suggesting that there is room for improvement in at least one of the bounds. Nevertheless,
they demonstrate an important fact: the dependence on 7" in the Rademacher complexity cannot
be eliminated when s4 > 0. Specifically, it must grow at least exponentially when s4 > 0.



5 Experiments

To validate our theoretical findings, we conduct two sets of experiments on three datasets >. The
first experiment examines the effect of a positive spectral abscissa. It demonstrates that when the
system matrix is initialized with positive s 4, training may fail, especially for longer sequences,
rendering the generalization gap ill-defined. Since this gap is defined as the difference between train
and test error, if one of these two terms is not well-defined, it would be meaningless to evaluate
their difference. In the second experiment, we initialize the state matrix with s 4 = 0 and study how
the generalization gap evolves with increasing sequence length. The model architecture used in the
experiments consists of an embedding layer, followed by a single selective SSM block. The model
is trained using cross-entropy loss. To stabilize training, we employ a regularization function from
Keller [37]. Below, we describe the tasks with their corresponding datasets, followed by our analysis
of each experiment.

Majority: The first task employs a synthetic “majority” dataset, where each input sequence consists
of binary symbols {0, 1}, embedded into a d-dimensional vector. The objective is to predict whether
the sequence contains more ones than zeros. The output depends uniformly on all input positions:
no single position has disproportionate influence, and the prediction is not determined by a small
subset of the input sequence. This makes the task well-suited for measuring trends in generalization
gap w.r.t. the sequence length 7'. During training, noise is introduced by randomly flipping a small
percentage of the inputs after labeling, adding a layer of difficulty. The noise limits the model’s
accuracy around 95%, preventing it from overfitting despite the simplicity of the task.

IMDDb: The second task is binary sentiment classification using the IMDb large movie review dataset
[38] containing 50K reviews. Each review is labeled as positive or negative based on its sentiment.
This task poses a real-world challenge due to its high variability in sequence lengths and the need for
contextual understanding. To control sequence length during training and evaluation, we pad/truncate
sequences to a fixed 7. For shorter sequences (1" < 300), sentiment indicators are often clear early,
aiding prediction, while longer sequences often require retaining more context for accuracy. Thus,
truncating them leads to a substantial decrease in model performance, as seen in the test loss in
Figure 2. The average review length in the dataset is around 7" = 300. Therefore, the test loss and
generalization gap both stabilize after 7' = 300, indicating that enough information is preserved for
the model to generalize effectively. This is explained thoroughly in Appendix B.2.

ListOps: The third task uses the ListOps dataset [39], a synthetic benchmark that evaluates a model’s
ability to reason over hierarchical sequences. Each input is a bracketed expression with nested
operations, for example [MIN 5 1 [MAX 2 9] 0], which evaluates to a single-digit integer. The
challenge lies in the fact that the correct output depends on the entire nested structure rather than local
context. We use the version from Tay et al. [40] to align with standard long-sequence benchmarks.

Experiment 1 (Stability Under Training): This experiment investigates the behavior of the spectral
abscissa s 4 during training. To better understand the role of stability in training selective SSMs, we
deliberately initialize all models in an unstable regime with sy = 0.1. The key observation here
is that successful training is accompanied by s 4 being driven toward zero. We observe that as the
sequence length T increases, the initial loss grows exponentially, making it increasingly difficult for
the model to escape instability. This ultimately causes training to fail for longer sequences. Since
successful training consistently corresponds to s 4 approaching zero, we consider the regime with
54 < 0 as the stable operating region when analyzing the generalization gap in the next experiment.
These results are illustrated in Figure 1.

Experiment 2 (Length-Independent Generalization): Here we evaluate the generalization behavior
across varying sequence lengths. Unlike Experiment 1, we initialize the models in a marginally
stable regime with s 4 = 0, which results in smoother training. The models are trained and tested
on sequences of different lengths, and we measure the generalization gap as the difference between
training and test losses. As shown in Figure 2, this gap remains relatively stable across sequence
lengths, with no consistent increasing or decreasing trend. These results support our theoretical claim
that selective SSMs exhibit length-independent generalization behavior.

Interestingly, the mechanism behind this behavior is foreshadowed in Experiment 1: when initialized
in an unstable regime, the model naturally pushes s 4 below zero during training, moving toward

20ur code is available at https://github.com/Arya-Honarpisheh/gen_err_sel_ssm.
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stability to enable learning. However, it stabilizes just enough to preserve rich temporal information.
This suggests that selective SSMs are implicitly biased toward operating near the stability bound-
ary, where they can extract long-range dependencies without incurring the exponential instability
associated with longer sequences. This is a manifestation of the trade-off between expressivity and
generalization. In Experiment 2, starting near this boundary allows the model to train smoothly,
leading to consistent generalization across different sequence lengths.

6 Conclusion and Future Work

In this paper, we derived new generalization gap bounds for selective SSMs by leveraging their
embedded linear-attention mechanism. As a corollary to our main result, we obtained a bound for
linear attention, which illustrates the underlying connections explicitly. Our analysis revealed that the
spectral abscissa s 4 of the continuous-time state matrix A, governs selective SSMs’ generalization
behavior: models with s4 < 0 enjoy length-independent guarantees, while those with s4 > 0
suffer exponential growth in error. Finally, our experiments supported these theoretical findings,
showing that models satisfying s 4 < 0 indeed generalize well on long inputs. An important direction
for future work is to improve these generalization error bounds. This could involve refining the
analysis under alternative assumptions or exploring different techniques, such as directly bounding
the Rademacher complexity instead of relying on covering-based arguments. Another promising
avenue is to extend generalization analysis to other variants of deep architectures.

7 Limitations

This work considers a selective SSM as the discretization of a continuous-time state-space model,
following the formulation used in Mamba. Hence, the theory developed here does not directly apply to
other variants of selective SSMs where, for example, the matrix A(w) exhibits a different dependency
on the input. This work assumes that the training and test data are drawn from the same distribution.
Out-of-distribution generalization of selective SSMs is not addressed. For a recent analysis of length
generalization, a specific type of out-of-distribution setting where test sequences are longer than those
seen during training, the interested reader is referred to Buitrago and Gu [41].
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A Related Work

Self-attention is the core mechanism behind the Transformer architecture, introduced as an alterna-
tive to RNNs and CNNs for sequence processing [1, 42]. While the concept of attention predates
the Transformer, its introduction marked a pivotal shift in the scale of large models. An attention
mechanism assigns scores to each pair of elements in a sequence to measure their relevance to each
other. The self-attention mechanism, drawing inspiration from the key—query analogy used in rela-
tional databases, captures dependencies between elements of an input sequence, where inputs attend
to each other within the same sequence. Since their introduction, Transformers have been extensively
studied and refined, leading to numerous variants, including sparse and low-rank adaptations and
widespread applications across domains such as natural language processing [43, 44] and computer
vision [45-47]. Related to our work is the connection between SSMs and attention [8, 9].

State-space models are a new class of foundation models, introduced by Gu et al. [2] as an alternative
to Transformers for sequence processing. Rooted in the classical state-space representations intro-
duced by Kalman et al. [4] in control theory, SSMs leverage state-space representations to efficiently
model long-range dependencies in sequential data. The foundation of SSMs can be traced to the
HiPPO framework, which established a mathematical basis for encoding and preserving long-range
dependencies using orthogonal polynomial projections [48]. Building on this foundation, the first
practical implementation of SSMs is the S4 model, which utilized HiPPO as an initialization scheme
[3]. With the empirical success of S4 on the Long Range Arena benchmark [40], SSMs gained
widespread attention, prompting several extensions and refinements. S4D simplified training with
diagonal initializations [49], S5 introduced a multi-input multi-output structure for greater flexibility
[29], and Hyena explored hierarchical convolutions [50]. Selective SSMs introduced in the Mamba
model by Gu and Dao [7] extend LTI SSMs by using linear projections of the input to construct and
discretize SSMs, resulting in a nonlinear time-variant architecture. These properties make selective
SSMs closely resemble self-attention, as highlighted by Dao and Gu [8] while introducing Mamba-2.

Generalization bounds are central in the probably approximately correct (PAC) learning frame-
work, which formalizes a model’s ability to achieve low error on unseen data with high probability,
provided sufficient training data. The PAC-Bayes framework provides probabilistic guarantees on
generalization through a KL divergence between posterior and prior distributions [51, 52]. In the
information-theoretic framework, the generalization gap is controlled by the mutual information
between training data and model parameters [53-55]. Earlier studies explored statistical guarantees
based on VC-dimension and shattering bounds extensively [56—-60]. A related line of work uses
Rademacher complexity to control the generalization gap, often through chaining and Dudley’s
integral, leading to margin- or norm-based bounds [30, 61-63, 25]. This framework was later refined
through local Rademacher complexity [64], which focuses on subsets of the hypothesis class near the
empirical minimizer, yielding sharper bounds for deep models [65]. The recent works on norm-based
generalization bounds utilize covering numbers, a fundamental tool for bounding the capacity of
function classes [61]. Zhang [24] laid the groundwork for understanding the capacity of regularized
linear function classes through covering numbers. Later, Bartlett et al. [25] established generalization
bounds for neural networks using covering numbers based on the work of Zhang [24]. These methods
have been extended to Transformers in recent studies [26-28], where different aspects such as length
or rank dependency have been emphasized. For LTI SSMs, the works of Racz et al. [5], Liu and Li
[6] draw inspiration from this line of research but primarily leverage the structure of LTI systems to
derive their bounds from a state-space perspective.

B Experimental Details

In both experiments, we employ an embedding layer implemented using torch.nn.Embedding,
which maps input tokens into a continuous vector space. This is followed by a selective SSM
block, configured with N = 4 states per channel and d = 16 channels. The selective SSM block is
parameterized as

GSSM = {Ac; WB» WCapv q, w}

where each component is defined in Section 2.2. The matrix A, € represents the state
matrices across channels. In the code implementation, we store A structured as a R4*" matrix
where each row of A, corresponds to the diagonal elements of a distinct diagonal state matrix

Agj ) € RN*N for channel j,» where j € {1,...,d}. This parameterization follows the official

RNded
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implementation of Mamba [7], ensuring computational efficiency while maintaining expressive
capacity. The remaining parameters in Oggy have the exact dimensions described in Section 2.2:
Wg, We € RV*4 ¢ € R?, and p € R. The first experiment investigates how the stability margin
affects training, particularly showing that the initial loss grows exponentially with sequence length T’
when s 4 > 0. To focus on early training dynamics, we train for only 10 epochs using 10% of the
dataset, balanced across labels, to control loss magnitude and avoid label bias. In contrast, the second
experiment uses the full datasets to train models to convergence and evaluate the generalization gap.
The second experiment is repeated five times with different random seeds. For very long sequences
in the IMDb dataset, even with s 4 = 0 initialization, training may fail even at the very first stage,
preventing the model from stabilizing during the first few epochs. In such cases, we retry with a
different seed that yields a non-NaN value in the first epoch. The final results are reported as the
mean over five successful runs & one standard deviation.

B.1 Majority Dataset
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Figure 3: Majority. Histogram of ones, m = 1000 samples each for train and test, sequence length
T = 200.

Majority is a synthetic dataset similar to the dataset used in the experiments of Trauger and Tewari
[27], but with modifications. Each sample consists of a sequence of ones and zeros, forming the basis
of a binary classification task. The class label indicates whether a sequence contains more ones than
zeros. A sample sequence u; with 7' = 20 and its label z; would be as the following:

w =11,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,1,0,1]
z1 =1

Since the task involves only two unique elements, the vocabulary size is set to 2, and each element
in the sequence is projected into embeddings of dimension d when they pass the embedding layer.
Both the training and test sets contain m = 1000 samples. To ensure a uniform distribution of
ones and zeros across sequence lengths, we generate sequences such that the number of ones
varies approximately evenly from O to 7". To introduce some imbalance, we modify the training
set by randomly flipping 10% of ones to zeros after generating the sequences and labels. As
shown in Figure 3, this results in a noticeable reduction in sequences with a high number of ones.
Specifically, towards the maximum sequence length 7', fewer samples retain exactly 7" ones due to
these perturbations, altering the original distribution.

B.2 IMDb Large Movie Review Dataset

IMDb large movie review dataset [38] is a standard benchmark for sentiment analysis models and part
of the Long-Range Arena (LRA) benchmark [40]. The dataset contains 50,000 movie reviews, evenly
split between positive and negative labels, and is divided into training and test sets of 25,000 reviews
each. The task is binary sentiment classification, aiming to predict whether a review expresses a
positive or negative sentiment. The dataset’s balanced nature ensures unbiased model evaluation.

We chose IMDb for its diverse sequence lengths, as shown in Table 2 and Figure 4. To train effectively,
we used the entire dataset, truncating or padding sequences to a fixed length. For our experiments, we
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Figure 4: IMDb. Histogram of sequence lengths for both the training and test splits.

chose sequence lengths between 100 and 2000 tokens, based on the distribution observed in Figure 4.
As shown in Figure 2 (bottom), test accuracy increases from 100 to 300 tokens, then stabilizes. The
generalization gap, visible in the bottom plot, reflects this trend. The average sequence length is 314
tokens, with many sequences exceeding 300 tokens (Figure 4). Truncating sequences longer than
300 tokens results in the loss of valuable information, potentially reducing predictive accuracy, as
demonstrated by the following examples.

Short Sample

Text: “I don’t know why I like this movie so well, but I never get tired of watching it."
Label: Positive (1)

Length: 24

Long Sample

Text: “This movie was recently released on DVD in the US and I finally got the chance..."
Label: Negative (0)

Length: 1833

For shorter sequences, key indicators of the sentiment label often appear early in the text, making it
easier for the model to make predictions. However, for longer sequences, these indicators may not
be immediately apparent, as the sentiment may be spread across the entire review. In such cases,
retaining the full context of the sequence becomes crucial for accurate prediction. This is particularly
evident in the test loss observed in the bottom Figure 2, where truncating longer sequences results in
a loss of critical context, reducing the model’s accuracy.

Max Min Average Median

Train 3127 13 314 233
Test 3157 10 307 230

Table 2: IMDDb. Sequence length details for training and test splits.

B.3 ListOps Dataset

ListOps is a synthetic benchmark designed to evaluate a model’s ability to perform hierarchical
reasoning over long sequences first introduced in Nangia and Bowman [39]. Each sample in this
dataset is a bracketed expression consisting of nested mathematical operations, such as

[MED 4 8 [MIN 7 2] 2 3],

which evaluates to a single-digit integer. The correct label depends on the complete nested structure,
making the task dependent on the entire length of the sequence. We adopt the preprocessed version
provided by Tay et al. [40]. The vocabulary consists of digits, "[","]","(",")", and operator tokens
(MAX, MIN, MED, SUM). Sequence lengths are set between T' = 100 and 7' = 1000 in increments of

100. For each sequence length, we generate data in the range [100k — 5, 100k + 5].
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B.4 Experiment 1: Bounded Parameter Norms

The following table provides an example training log from Experiment 1 (IMDb, T' = 350). The
spectral abscissa s 4 is already plotted in Figure 1 (bottom middle, orange line). At the beginning of
a stable training cycle, in which s 4 is successfully pushed toward 0 from above and the loss drops
significantly within 10 epochs, the parameter norms do not show strictly increasing trends. This
supports the claim that these norms remain bounded. Additional logs are available in our GitHub
repository.

epoch [ sa [ [p[ [Tlall [ [Wallo [ [Wallia [ [Wello [ [Wellua [ [[Acllo [ maxuff]], [ Loss
0 [ 0100 | 1.43 [ 412 | 7.68 51.0 7.40 485 951 7.39 -
1| 0069 | 1.46 | 3.89 | 7.12 459 6.85 434 | 941 7.07 6.4 x 107
3 [ 0005 [ 1.62 | 356 | 6.53 414 633 39.1 9.21 649 347.7
5 [-0.006 | 1.58 | 3.44 | 621 395 6.15 390 | 9.01 6.19 2.04
7 [-0.009 | 1.58 [ 337 | 6.05 38.6 6.13 39.0 8.84 6.00 1.00
9 [ -0.010 | 1.61 | 333 | 501 375 6.12 39.0 8.66 582 0.67

Table 3: IMDb. Parameter logs during training epochs for Experiment 1, 7" = 350.

B.5 Experiment 1: Sweeping Spectral Abscissa with Constant Sequence Length
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Figure 5: Experiment 1. Top: Training loss vs epochs for Left: Majority, 7" = 250, Middle: IMDb, T = 500,
Right: ListOps, 7' = 300. Bottom: Evolution of s 4 vs epochs for the same datasets. We sweep the s a values
from —0.1 to 0.1 in 0.02 increments.

To understand the effect of different initialization regimes in more detail, we conduct Experiment
1 again, but this time we sweep the s 4 values while keeping 7' fixed. In order to observe the full
effect without encountering runs that diverge (i.e., contain NaN losses), we choose 7" = 250 for
Majority, T' = 500 for IMDb, and T' = 300 for ListOps. The results in Figure 5 are consistent
with those in Figure 1. Unstable initializations (where s 4 > 0) often lead to training failure due to
exploding losses, as other parameters have not yet adapted to stabilize the system. In cases where
training succeeds, s 4 is quickly pushed toward zero from above, restoring stability. In contrast, stable
initializations (s 4 < 0) enable smooth training and remain stable throughout for IMDb and ListOps.

For Majority, stable initializations below zero are also pushed toward zero, and some even end up
slightly above it (around s 4 ~ 0.05), which is acceptable since other parameters (B4, B,,, and p) can
compensate according to (15). The key insight is that initialization determines whether training can
proceed stably. When s 4 starts in an unstable region, large initial losses arise before other parameters
can adapt, often causing divergence. In contrast, initializing in the stable regime enables smooth
optimization and coordinated parameter adaptation, allowing p 4 to remain balanced through (15).
Thus, proper initialization of s 4 is essential for both convergence and stable expressivity.
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C Useful Lemmas

Lemma C.1. Let B, = I; ® Wgult]. Then, | B.||2 < BpB.,.
Proof.
IBell3 = 1a @ Wrult]]; = [[Wault]|3 < [|[Wa|3B% < B 21
O
Lemma C.2. Let C. = I, ® u[t]" WJ,. Then, |C.|l2 < BcB,.
Proof.
IC:)3 = [La @ ult] W I3 = l[ult]"Well; = [Weult]l3 < [Wel3%B), < Be®B;.  (22)
O
Lemma C.3. Let X and Y be matrices such that ||e* ||o < p and ||eY |2 < p. Then,
JeX =¥l < pllY = Xz 23)
Proof. Using the fundamental theorem of calculus, we express the difference as
1
eX —e¥ = / Y HA=0X(y _ X)) dt. (24)
0
Taking the spectral norm on both sides and applying submultiplicativity, we obtain
1
HeX _ €Y||2 < / etY+(1—t)X(Y _ X) dt
0 2
Loy (1-6)X
< Y HU=DX (Y — X)) dt
<[ (¥ =Xl 03
1
<IY =Xl [ e OOX
0
<plY — X2
O
Lemma C.4. Let p be an e,-cover for p and § be an €,-cover for q. Then,
|A[t] — Alt]] < €p + €. (26)

Proof. The derivative of the soft plus function, In(1 + e%), is which is bounded by 1. Thus,

In(1 + %) is 1-Lipschitz. using this property, we obtain
IA[] = Alt]] = [In(1 + P9 40y —In(1 4 P+ uld))|
<|p—p+(g— ) ult]] 27)
< lp =8l + (g — @ "ult]||2-

&
14e*?

Lemma C.5. Let w be an €,,-cover for w. Then,
[wTy[T) = & "GIT]| < B |ly[T] = 9[T]||2 + €w- (28)

Proof. Rewriting the LHS, we obtain
w'y[T] =@ G[T]| = [w (Y1) = §IT1) + (w — ) "§[T]]. (29)

Applying triangle inequality results in
[wTy[T] =@ " G[T]| < [lwllally[T] = §(T]ll2 + | (w — @) "§(T]|

A (30)
< By ly[T] = 9[T]l2 + €w.
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Lemma C.6. Let é’c be an ec-cover for C.. Then,

ICc2[T) — Ced[T]|l2 < BeBul|z[T] — &[Tz + ec- GD

Proof. The LHS can be bounded as follows:

<||Ce (2[T] = &[T]) + (C. — Co)2[T]]2 @)
<NCell2llz[T] = 2[TTll2 + [(Ce — Co)2[TT]2-
Applying Lemma (C.2) completes the proof. O

Lemma C.7. Let W3 be a cover for Wp. Then, for any v € R? such that ||v|s = %B., we obtain

I(Be — Be)vllz < Bo|(Ws — Wh)ul 2. (33)

Proof. We use the Kronecker product property (X ®@ Y') vec(V') = vec (YV XT). Take X as I,
Vasv',and Y as (W — Wg)u to obtain

I(Be = Bojvlle = || (L ® (Wi = Wa)u) o]l e
— || vee (W5 = Wa)uwT ) |lo

From the definition of the Frobenius norm, we obtain
I(Wg = Wg)uo'||p < [(Ws = Wa)ullp|v |
= [[(Wp — Wg)ul2]|v]l (35)
< B, [[(W5 — Wa)uls.
O

Lemma C.8. Let W¢ be a cover for We. Then, for any v € RN such that ||v||y = B, we obtain

I(Ce = Co)vllz < Bul|(We — Weullz. (36)

Proof. Similar to Lemma C.7. O

Lemma C.9 (Edelman et al. [26], Lemma A.8). For «;,3; > 0, the solution to the following
optimization

N
_Inin —
1y--49€n =1 Ci
n (37

subject to Z Biei = €
i=1
P ; H e [ o 1/3 n 1/3 52
is Tz and is achieved at €; = 5 E) , where y =%"" o' B7.

€ 7

D Covering Numbers

Lemma D.1 (Bartlett et al. [25], Lemma 3.2). Let conjugate exponents (p,q) and (r, s) be given
with p < 2, as well as positive reals (a,b, €) and positive integer ds. Let matrix X € R4*% pe

given with || X ||, < b. Then,
a2b?d>"
InN ({XA: AeR®2*%B A, <a},e | |lr) < T?’ In(2dads). (38)
Lemma D.2. Let Fa, = {A. € RN>Nd 1 || A || <B4 and | Acll21 < 9Ma}. Then,
2M Nd
InN(Fa,,ea,l] - ]2) < % In(v2Nd). (39)
A
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Proof. Note that every € 4-covering number for the Frobenius norm is also an € 4-covering number
for the spectral norm, as ||A — Al|2 < ||A — A||r < e4. Therefore,

N (Fa.,€a ]l - l2) SN (Faea |- [lr)
<IN ({Ac € RV A 20 < Mad,en, |- Ilr)-

Thus, we instantiate Lemma D.1 with p = ¢ = 2 and s = 1,7 = co. Take X to be identity and thus
b = v/ Nd which results in

(40)

2 2
N ({A, € RYNG Ay, < Mabien |- ) < PM ;Nﬂ In(2NdNd).  (41)
€A

O

Lemma D.3 (Trauger and Tewari [27], Lemma 3.6). Let m > day, Fw = {Wu : W €
Rdlx{iz, ||W 1,1 < mw} If||u||2 < B, then

B2
In Noo (Fovs ew, || - [|2) < 4 W n(2dyds + 1). (42)
w

Remark. The removal of the dependency on m in the log covering number for a function class is
nontrivial and requires specific assumptions about the norm bounds. For similar log covering bounds
that are independent of m, refer to [27] and the lemmas therein.

2
Lemma D.4. Let F be a function class such that In Noo (F, €, || - [|2) < Cﬁ—? and let S be the training
set {u), 2(i) } %1 Assume the loss function | : Z X Z — R is upper bounded by the constant ¢; and
Lipschitz continuous with constant \;. Then, with probability at least 1 — 6,

12[1C]: cl\/ﬁ In (%) 43
< N <1+ln(3cf>>+3cl 5 . (43)

m

Bus ((h(u),2)) = — > (o), 00)

=1

Proof. By Theorem 3.2, and the fact that In Na(l o Fle, | - |l2) < InNx(lo F,e, | - |l2) (check
Definition 1 in [24]), we have

“ I Noo(l .
Rad(lo F,S) < inf <4a+12/ \/HNOO( °oF 6| ) de). (44)
a>0 - m
Upper bound In Vo (F, €, m, || - ||2) as specified by the lemma to obtain
12 91 121
< inf <4a + — ﬁ de) = inf <4a + Cr In (cl>) (45)
a>0 NN a>0 vm !

in which we used In N (I o F. €, || - [|l2) < 1 InNoo(F, €, || - ||2). The minimum of (45) occurs at
_ 3LCF
o = W Thus,

12[16]: 12[16]: Cilv/m 12[[C]: Civ/m
< = .
= Um | Jm 1“(3&) vm (1““(3& o

Combining this bound on the Rademacher complexity with Theorem E.2 concludes the proof. [J

E Proof for Theorem 3.3: Generalization Error Bound for Selective SSMs

Before presenting the proof of Theorem 3.3, we provide preliminary background, including the
definition of Rademacher complexity and a standard theorem establishing its connection to the
generalization gap. Then, we introduce four intermediate lemmas tailored to the selective SSMs. The
first lemma establishes an upper bound on the spectral norm of the state matrix after ¢ repetitions,
namely || A?||2. The second lemma bounds the distance between the time-varying product A* and
its corresponding cover, accounting for the input-dependent nature of the state matrices. These two
lemmas are necessary and specific to selective SSMs, since, unlike standard RNNs, the state matrix
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A is not fixed. As a result, classical norm bounds do not directly apply, and we must instead derive
upper bounds in terms of the model parameters A, p, and ¢, which govern the input-dependent
dynamics. The third and fourth lemmas build upon the first two to inductively bound the distance
between the output of a selective SSM and that of its corresponding cover. These results culminate in
the proof of Theorem 3.3 provided at the end of this section.

Definition E.1 (Rademacher complexity). For a given real-valued Function class F and a set of
vectors S = {u;)}i™, the empirical Rademacher complexity is

1 m
Rad(F, 8) = —E, (?‘QE > o f(u(i))> (47)
i=1

where o; € {—1, 1} are uniformly distributed i.i.d Rademacher random variables.

Theorem E.2 (Mohri [66], Theorem 3.3). Ler F be a hypothsis class {f : U — Z}, and S be
the training set {u;), 2(;) }i~,. Assume the loss functionl : Z x Z — R is upper bounded by the
constant ¢;. Then, with probability more than 1 — §

m

B (0),2)) = 2 Y1 (flug): 20) @8)

3 S
s

< 2Rad(lo F,S) + 3¢

Lemma E.3. Let s be the spectral abscissa of A. i.e. max; R(\;(A.)). Suppose u[t] < B, and
llgll2 < B,. Then, given any arbitrary small n) > 0, there exists a sufficiently large t such that

A |2 < pla, (49)
where '
pa=(1+ e”_%q%“)“w . (50)
Proof. From (9), we have
T-1
A% = | T e*V*| - (51)
G=T—t

2

Given the assumptions of the lemma, and noting that the softplus function, In(1 + e*), is increasing,
we derive the following lower bound:

A[j] > In(1 4 P~ BaBu), (52)

Since the spectral abscissa of A, is 54, the spectral radius of et would be e*4. By Gelfand’s
formula (Corollary 5.6.14 in [31]), we have that ||(eA“)t||;/t — e®4 as t — oo. Consequently, for
an arbitrary small positive number 1 > 0, there exists a sufficiently large ¢, such that for all ¢ > ¢,
the following bound holds:

)l < (e )".

This yields the desired exponential norm bound for large ¢:

Tt L AL
Ay = (e T A0
2
< (eratn) (1420 53)
= (1 + epi%q%“)(SA+n)t = pf4.
[
Lemma E.4. We have the following upper bound on x[T):
21—p}
[Tl < M5B LA 5
— PA

in which pA = (1 + ep*%q%u)SAJrU and mA _ ln(l + ep+‘3q‘3u)_
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Proof.

|z[T]]]2 <

i (AfA 1)Ly ® Wgu[T — 1 —t])u[T — 1 — t])

’ﬂ

<3 (1AL AIT 1= 1)(L @ WulT — 1~ ]) o ulT — 1~ £]].)

=0 (55)
T—-1
<MaB, Y (14'2l1La © Wl — 1~ 1] )
t=0
T-1
< MABB2 Y ply = MADB B2 1 iy
t=0 1=pa

where we used Lemma E.3 to bound || A?|| and Lemma C.1 to upper bound the term involving the
Kronecker product to derive the last inequality. O

Lemma E.5. Let A, be an € 4-cover for A., p be an e,-cover for p, and § be an e,-cover for q. Then,

| AT — Aty < tply(Maea + Baea) (56)

where Ma = In(1 + ePtPaBu),

Proof. We start with

T-1 T-1
HAt _ AtHQ _ H Alk]A. _ H eA[k]AC
=T—t k=T-t 2
T-1 T-1 i—1 R R
= Z HeAU]Ac ( H eA[k]AC> 57)
i=T—t j=i k=T—t

T—1 i
_ H cAlA ( H eA[k]AC>
k=T—t

j=i+1 =T—
Factor common terms to obtain

T-1

T—1 1—1
< Z H CAlA. (eA[i]AceAmAc)< H emw&)
t

i=T—t \j=i+1 k=T— )
(58)
T-1 || T—1 o i-1
< Z CAlA. CAlA: _ JAliA. H oAlKIA.
i=T—t ||j=i+1 ) N | P )
Applying Lemma E.3, we get
T—1 _ o _
< pg—z—lneA[z]Au _ eA[z]Ac ||2p:T+t
z:i;t (59)
_ pf;l”eA[i]Ac _ eA[i]AC H2
i=T—t
Use Lemma C.3 to derive
T-1
|AT— A2 < ply > AL — Al A2, (60)
i=T—t
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Apply triangle inequality:

IN IN

(]

IN

T—

—

e Y (IIARIA: — Adllo + (AL - Ali])Acll2)

%

g
=

pla

K2

t
A
i=

T—t

(Maea+ 1AL - Afi]|Ba)

t

[
=

(WAEA + EASBA) .
T—t

At last, we obtain the final bound:

|A* — Af||y < tply (Maea + Baca).

Lemma E.6. Let A, B, A be covers for A, B, A. Then,

T-1

t=0

> AAT -1 t)Beu[T —1—t] - Tzl AAIT =1 —t)|Bou[T — 1 — ]

t=0 2

< MASieB + WZ%B%2SQGA + %B%i ST+ mA%ASQ) EA

1 1— Tph
, where Sl — PA andS — pa( PA) ra

—pa

(1-pa)? 1-pa-

Proof. Write the LHS as follows:

T-1

t=0

> ((AtA[ —1—-1B.— A'A[T —1—t]Bc> u[T—l—t})

Add and subtract the

2

terms tT;Ol (AtA[T —-1- t}BC> ut — t — 1]

Tziol (AtA[T -1- t]Bc> ult —t — 1] to derive

=
L

T
I
- O

+

(]

TT
,_.o

+

~

(AtA[T 1B, — A'A[T —1— t]BC) ull —t — 1]

(AtA[T 1 4B, — A'A[T —1— t]BC) u[l —t — 1]

(AtA

—1-4B AA[T—I—t]EC>u[T—t—1]|\2.

Apply the triangle 1nequahty to get

T-1

3 (||AtA[T 1 )(Be — Bu[T —t — 1]||2

t=0

+ | AYAT =1 —t] = AT =1 — ) Beu[T —t — 1]|2

+ (A

which is upper bounded by

T-1

— AYA[T —1—t|BulT —t — 1]H2>

<> (IAYLIAIT — 1= ]I(B. = BoulT —t = 1]|)

t=0

+ A% AT = 1~ 1] = AT — 1~ t]f| Beu[T — t — 1]]|2

+I(A" -

AY|LJAIT = 1= 4[| BeulT ~ ¢ = 1]l12).
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The application of Lemmas E.3 and E.5 to bound || A?||5 and cover || A — A?||5 results in
T-1
<3 (paMaen + paeall Bell2Bu + toa(Maca + Baca)Mal Bel2B. ). (68)
t=0
Apply Lemma C.1 to bound || B, |2:

T—
<Y (PaMaes + pyBeBlea + tpyMABEB (Maca + Baea)) - (69)
=0

=

Breaking the summation into two parts leads to

T-1 T-1
< (mAGB + %B‘BieA) Z pf4 + mA%B%Z(mAGA + %AGA) Z tpf4
t=0 t=0

1= oL 1—pL TpL
< (Maep + BpBlea) PA | MABRB2 (Maca + Baea) (pA( pé) - )
1—pa (1—pa) l=pa

which completes the proof. O

Remark. Lemma E.3 is stated for sufficiently large ¢. In Lemmas E.5 and E.6 we still apply that

bound when summing over all time indices. The step is legitimate because any sum ZtT:_Ul (+) can be
split at an index t( for which the hypothesis of Lemma E.3 holds for ¢ > ¢g:

T-1 to—1 T-1
SO =30+ 30
t=0 t=0 t=to

The first term involves only finitely many values of ¢ and therefore contributes a constant that is
absorbed into the leading O( - ) rate. The second (tail) term is where the bound of Lemma E.3 is used,
and it determines the asymptotic dependence on 7'. Hence, omitting the constant part does not affect
the final Big-O expression in the main theorem.

Lemma E.7. Let Ac, Wa, WC, D, 4 be covers for A., W, We, p, q. Then,
lwTy[T] — o T H[T]| < BWBcBLMAS €W, + MAB LB BB, S2ea
+ (BuBEBcBY) (S1+MaBAS:) (6, + €) (70)
+ %w%uewc + €w,

where S1 and Sy are defined as in Lemma E.6.

Proof. The proof follows from the sequential application of Lemmas C.5, C.6, and E.6, yielding:
|wy[T] — o "T]]
< By (BeBu (MaSiep + MABEB. S2ea + BB, (S1 + MaBaS2)ea) + €c) + €w.

(71)
Finally, we apply Lemmas C.7, C.8, and C.4 to relate the covers for B, C, A to the covers for
Wpg, We, p, g, completing the proof. O

Proof of Theorem 3.3. We aim to construct a cover for the space of all selective SSMs
Fssm = {z[T] = w'y[T] : y[T]is described in (8)} which is parametrizes by Ossy =
{A.,Wg,Wc,p,q,w}. Let’s look at how much the output w " y[T] changes if we move to the
points in the e-net constructing the cover. This is done in Lemma E.7. Thus, we need to choose
€A, €Wy, Ewes €q» €p and €, subject to the following:
€= %u;%C%ZSﬁASlewB + mi%w%B%C%ngm
+ (%w%B%C%z) (51 + mA%ASQ) (€p + €q) (72)
+ %w%uﬁwc + €w,
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which relates the e-cover of a selective SSM to corresponding covers for each parameter in Oggyy as
in (70).

Choose the covering for Wy according to Lemma D.3 such that

B2 M2
IHNOO(J:WB,GWB, H . ||2) < uiBln(QNd-i- 1). (73)

EWB

Similarly, choose the covering for W by replacing v in Lemma D.3 with z[T"] which is bounded as
in Lemma E.4 to derive

(MABB2S, ) M2

I Noo (Fwes ewes || - [|2) < 2 € In(2dNd + 1)
%2 ;B4m;/v§n2 S2 (74)
= B s C L In(2Nd” +1).
e
Likewise, choose the cover for w such that
MABBpBES,)” M2
I Noo (Fups €ws || - [2) < (MaBe ‘; wh) M, In(2d + 1)
v (75)
2 M2 P62 g2 2
- %B%C%uzmﬂimwsl In(2d + 1).
Ew
Lemma D.2 gives us the upper bound on the covering number for A.:
20M% Nd
NN (Fa,. e, |l2) < 6+1n(\/§Nd). (76)
A
We may use Lemma D.3 again to cover g:
%2 2
I Noo (Fys€qs || ll2) € —5— n(2d + 1) (77)
q
and p is covered simply by
2
Noo Byl - 1) < 221 )
P

Ignore the logarithmic dependencies and assume Mc = B, Mp = Bp, M, = B, M, =
B,,Ma = ‘B 4 for simplicity. Construct the cover for the space of all selective SSMs Fgsv as the
Cartesian product of all covers for each parameter in ©ggy. Then, the log covering number would be
the sum of the log covering numbers of all parameters. Use Lemma C.9 to find € 4, €W, €we s €g5 €gs
and ¢, such that the size of total cover would be minimum:

62 lnNoo(fSSM767 || : ||2)

<0 (((%Z‘BQB)”“*(%w%c%imsm’“ 4 (BLBIMEBLS2)3 (8,8, )%/

L (B2 Nd) VS (MAB,,B 5 BB S)?? + (BLBLBOMA B2 52)1/8 7

2/3

. 3
+ (B2B2)'/? (BL,BpBcBY) (Sl+fmA€BASQ)2/3) >

in which we ignored the cover for p as it is dominated by other terms.
< O ((m w2/ sm2my el sy + mPw2/sm2 o w51
RS0y SR D D S AR AR oS SR S D S AT TN
+ 9372/353?&(3533/3‘312/3‘32/3%%/3%?;/353/3)3) ’

where we used the fact that S is dominated by S5 for large T to obtain the last term. Therefore, we
have

<0 (m&%ﬁ,%g%%%g (sf/?’ + 823 4 B3 s N1/3q1/3

2/3 2/3\3 1)
+1+4 8% %3/3%3/352/) )
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Ignoring the constant terms and S7 compared to S results in

< O (M3 B2 BOBLBL WL 53NN Pal/? 4 BB (82)
The square root of this expression is Cx. The proof is complete by the application of Lemma D.4. [
F Proof for Proposition 3.4: Genralization Error Bound for Linear Attentions
Proof of Proposition 3.4. The proof that follows is similar to the proof of Theorem 3.3 with modifi-

cations accounting for the simplifications made in Assumptions 3.5 and 3.6. Specifically, we do not
need to cover A, p, or gq. Therefore, Lemma E.6 simplifies to

T_l(WB —Wau[T —1—1]|| < Tew,. (83)
> I,
t=0

Consequently, Lemma E.7 becomes
|wTy[T) — @ Y[T)| < TBywBeB2ew, + BuwBuewe + €w. (84)

Also, Lemma E.4 reduces to
|2[T]l. < TBp B3, (85)

which is used to cover W. Hence (79) becomes

2 A 2m2 L 2 2
N (Frase, | - |2) < O (B2B%)3 (1B, BoB2)
1 2 1\3
(T2 BHBLBL)(B,B,)3 + (12 BLB882)3) (0
= O(T*B%L BLBEB2).

By applying Lemma D.4, the proof is complete. O

G Proof for Theorem 4.1: Lower Bound on the Rademacher Complexity

Proof of Theorem 4.1. We consider a restricted class of scalar (d = N = 1) selective SSMs defined
by

Or={Ac=In(l+s4), Wp=1, We=1,p=¢,¢q=0,w | [w[<B,}. @)
Since ©; C Oggym, the Rademacher complexity of this restricted class provides a lower bound for

that of the full class Fssum. For this class the step size would be fixed A[k] = 1, and the discretized
matrices become

Akl =1+ sa, Blk]=ulk], CI[k]=ulk]. (88)
Thus, the resulting state space recurrence is
z[k] = (1 + sa)z[k — 1] + ulk]?, ylk] = ulk]z[k], z[k] = wylk]. (89)

With constant input u[k] = 1, the closed-form expression for the output becomes

1+5a)7 —1

2[T] = (90)
SA
Hence, the hypothesis class can be expressed as
1 1
Fi = {WH? | |’LU‘ < %w}- (C2))
A

The empirical Rademacher complexity is then

:(1+sA)T—1iEU

iz [T
sup Zoz()[] ” -

[w|<Bw i=1

1
Rads(F) = —E,

[w|<By i=1

sup wZJZ} . (92)
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The supremum is achieved when w = B, sign (3", 0;), yielding

1 T 1 [2
Rads(F) = 8, Ursa) =1 /2 93)
sa ™

When s4 = 0, the recursion becomes z[k] = z[k — 1] + 1, so z[T] = T, and hence z[T| = wT.
The resulting hypothesis class is {wT | |w| < B, }, and a similar argument yields

Rads () = BT/ ——. (94)
m™m

H Extra Discussion

Note that the term S5 in Theorem 3.3, derived in Lemma D.6) is

g = pa(l—ph)  Tph
(1—=pa)>  1—pa

This expression does not diverge as p4 — 1 even though there is a 1 — p4 in the denominator.
Applying L’Hbpital’s rule twice yields
T2 -T

SZ = 2 )
which is finite. Therefore, although increasing p4 degrades generalization, the generalization
bound does not blow up at p4 = 1; rather, it remains bounded and grows quadratically with 7.
The generalization becomes severely damaged only when p4 > 1, where the bound becomes
exponentially increasing in O(T'p).

Proof that the bound remains finite as p — 1. 'We compute

i (PA=PT) Tt L p=TpT (T —1)p"
1m 1_ 3 1_ = 11m 1_ 3 .
(1-p) p) ol (1-p)

p—1

First derivatives:

d d
— (numerator) =1 — T2p"=1 4 (1?2 = 1)pT, a (denominator) = —2(1 — p).

dp
Second derivatives:
d? 2 T2 2 T-1 & :
PP (numerator) = —T*(T — 1)p" 2 + T(T* = 1)p" ', Pl (denominator) = 2.

Evaluating at p — 1 gives

. (p(l—pT) TpT) T -T
lim = .

1\ (1—p)2 1-p 2
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions are summarized at the end of Section 1 under three categories:
Theoretical, Analytical, and Empirical. They are also explained in detail in the preceding
paragraph and in the abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations in a dedicated section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We present the assumptions for the main theorem in Assumptions 3.1-3.4, and
justify them immediately following their statement. A proof sketch is included in the main
text, while the full proof, with all technical details and supporting lemmas, is provided in
the Appendix. Assumptions for other theoretical results are also stated precisely, and all
corresponding proofs are given rigorously in the Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our code is accessible at: https://github.com/Arya-Honarpisheh/
gen_err_sel_ssm. The model used in the experiments is implemented exactly as described
in Section 2.2. Training follows standard procedures, and all necessary information for
reproducibility is provided in the paper. Additional implementation details are included in
Section B, as they could not fit within the main paper due to space constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is accessible at: https://github.com/Arya-Honarpisheh/
gen_err_sel_ssm.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided all the relevant details of the experiments. Note that additional
implementation details are provided in Section B, as they did not fit within the page limit of
the main paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main experiment of this paper is repeated five times. The corresponding
figures include error bars to illustrate the statistical significance of the theoretical claims.
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Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

 The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Our experiments were conducted solely to evaluate the generalization perfor-
mance of the model, without considering any metrics related to computational efficiency.
Therefore, we did not report compute resources, as they are irrelevant in the absence of
compute time or related performance indicators, which fall outside the scope of our interest.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper is fully consistent with the NeurIPS Code
of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical paper focused on understanding deep learning models,
and it poses no societal impact concerns.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a theoretical study focused on understanding the fundamental properties
of deep learning models. As such, it does not involve any high risk or misuse.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We implemented our models and experiments in Python using PyTorch. We
used the IMDb dataset [38] and ListOps Nangia and Bowman [39], which are publicly
available and were used under their standard terms of use. Additionally, we used a small
code snippet from a Substack article by Keller [37], which is publicly available. The author
retains ownership of the content, and no explicit license is provided. We have credited the
author in our paper and provided a link to the source. The code was used solely for research
purposes and was not redistributed or modified beyond what is permitted under fair use.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided the code to reproduce the experiments of this paper. It
comes with the same license as the paper: CC BY-NC-SA 4.0.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

35


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Notation
	State-Space Models

	Generalization Bounds for Selective SSMs
	Main Result

	Analysis
	A Lower Bound on the Rademacher Complexity

	Experiments
	Conclusion and Future Work
	Limitations
	Acknowledgments
	Related Work
	Experimental Details
	Majority Dataset
	IMDb Large Movie Review Dataset
	ListOps Dataset
	Experiment 1: Bounded Parameter Norms
	Experiment 1: Sweeping Spectral Abscissa with Constant Sequence Length

	Useful Lemmas
	Covering Numbers
	Proof for Theorem: Generalization Error Bound for Selective SSMs
	Proof for Propostion: Genralization Error Bound for Linear Attentions
	Proof for Theorem: Lower Bound on the Rademacher Complexity
	Extra Discussion

