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Abstract
Objective: Predicting mortality after acute myocardial infarction (AMI) is crucial for timely prescription and treatment of AMI patients, but there 
are no appropriate AI systems for clinicians. Our primary goal is to develop a reliable and interpretable AI system and provide some valuable 
insights regarding short, and long-term mortality.
Materials and methods: We propose the RIAS framework, an end-to-end framework that is designed with reliability and interpretability at its 
core and automatically optimizes the given model. Using RIAS, clinicians get accurate and reliable predictions which can be used as likelihood, 
with global and local explanations, and “what if” scenarios to achieve desired outcomes as well.
Results: We apply RIAS to AMI prognosis prediction data which comes from the Korean Acute Myocardial Infarction Registry. We compared 
FT-Transformer with XGBoost and MLP and found that FT-Transformer has superiority in sensitivity and comparable performance in AUROC 
and F1 score to XGBoost. Furthermore, RIAS reveals the significance of statin-based medications, beta-blockers, and age on mortality regard
less of time period. Lastly, we showcase reliable and interpretable results of RIAS with local explanations and counterfactual examples for sev
eral realistic scenarios.
Discussion: RIAS addresses the “black-box” issue in AI by providing both global and local explanations based on SHAP values and reliable pre
dictions, interpretable as actual likelihoods. The system’s “what if” counterfactual explanations enable clinicians to simulate patient-specific 
scenarios under various conditions, enhancing its practical utility.
Conclusion: The proposed framework provides reliable and interpretable predictions along with counterfactual examples.
Key words: acute myocardial infarction; explainable artificial intelligence (XAI); interpretable machine learning; counterfactual explanation; electronic health 
records (EHR). 

Introduction
Acute myocardial infarction (AMI) is a critical cardiac event 
with a high mortality risk and complications, requiring 
immediate treatment, including revascularization of the 
infarct-related artery. Although advances in modern percuta
neous coronary intervention (PCI) and medical therapies over 
the past decades have led to a continuous decrease in mortal
ity, the risk still remains relatively high.1 Furthermore, the 
development of heart failure (HF) after AMI significantly 
impacts patient prognosis, tripling overall mortality, and 
quadrupling cardiovascular mortality.2 Therefore, contempo
rary studies have underscored the need for timely interven
tion and tailored interventions to mitigate AMI mortality and 
HF progression.

To deliver timely intervention and personalized therapy for 
AMI patients, it is crucial to assess prognosis and predict 
short-term mortality. Clinical experts often have employed 
scoring systems like the thrombolysis in myocardial infarc
tion score3,4 and the Global Registry of Acute Coronary 
Events (GRACE) score5,6 to achieve this. They utilize basic 
admission, peri-procedural characteristics, and laboratory 
findings to predict in-hospital mortality3,4 and relatively 
short-term mortality6 as well as long-term mortality with 
revised GRACE score version 2.0.7 These systems were uti
lized in the past to aid in the initial triage of ACS (Acute coro
nary syndrome) patients, supported by moderate evidence in 
previous guidelines.8 However, they do not encompass a 
wide spectrum of patients, including those who may 
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experience in-hospital complications beyond the PCI event. 
Furthermore, since they were developed in the early 2000s, 
their applicability is compromised by their limited accuracy 
(Refer to the previous works such as9,10 and the empirical 
results in Appendix Table S1). These limitations restrict their 
utility to long-term prognosis prediction and individualiza
tion of care.11

Recent studies have proposed advanced machine learning 
(ML) techniques using electronic health record (EHR) data to 
assess risk and predict mortality in AMI cases.9,10,12,13

Despite their promising results, there are some critical limita
tions in using their results for clinical decision-making. First, 
most ML approaches are black-boxed. This characteristic 
causes significant challenges for the experts to understand, 
validate, and justify the predictions and outcomes of the ML 
models.14–16 Additionally, these approaches often provide 
only predictions without tangible insights for clinical action 
and their predictions do not reflect the true likelihood despite 
their common usage as such. For example, while an artificial 
intelligence (AI) system may predict a patient’s mortality as 
90%, the actual likelihood can vary significantly from the 
prediction, making it challenging for experts to rely on these 
methods.

We believe that to be successful in clinical decision-making 
with the AI system, the individual strengths of the clinician 
and the AI should come together to optimize the joint deci
sion outcome.17 To this end, the AI system should maintain 
the transparency of its decision by providing insightful 
explanations to allow clinicians to appropriately apply their 
knowledge to improve the final decision. In addition, the pre
diction should represent the true correctness likelihood so 
that clinicians can trust the AI system’s prediction. In this 
regard, we propose the following criteria for a reliable and 
interpretable AI system (RIAS) for clinical decision-making. 
(1) The system should explain both the mechanisms and the 
reasons for the outcomes it produces.18–22 (2) The system 
should offer additional insights to the users on how users can 
achieve desired outcomes alongside predictions.19,20 (3) Their 
predictions should reflect the actual likelihood for classifica
tion tasks.18,19,22

Our study introduces the RIAS—an end-to-end framework 
that is designed with the above principles at its core. RIAS 
generates an optimized model for a given dataset and ensures 
both reliability and interpretability in outcomes. With RIAS, 
we analyze AMI prognosis data from the Korean Acute Myo
cardial Infarction Registry (KAMIR) and provide some valua
ble insights. Concretely, we apply RIAS to in-hospital, 6- 
month, and 12-month mortality prediction tasks for the AMI 
patients. RIAS is available at https://github.com/Alcohol
rithm/RIAS.

Methods
Description of the data
The study utilized data from the Korean Acute Myocardial 
Infarction Registry (KAMIR) for the years 2015-2018.23

KAMIR is a nationwide registry on AMI with 53 participat
ing centers with facilities for PCI and on-site cardiac surgery. 
A trained coordinator collected data using a standardized 
case report form and protocol. This protocol conformed to 
the ethical guidelines of the 1975 Declaration of Helsinki, as 
reflected by prior approval from the human research commit
tee of each participating institution. The Institution Review 

Board of Pusan National University Hospital approved this 
study (IRB number: 2202-004-111). Clinical outcomes are 
defined as clinical events including in-hospital, 6-month, and 
12-month mortality.

Characteristics of the cohort
The cohort’s baseline characteristics were as follows. The mor
tality rates for each clinical event are 3%, 5%, and 6% for in- 
hospital, 6-month, and 12-month mortality, respectively. The 
mean age was 64.3 years (±12.5 years). 76.9% were male. The 
prevalent past medical conditions included hypertension 
(50.1%), current smoking (36.7%), diabetes mellitus (27.9%), 
and dyslipidemia (14.4%). Nearly half of the cohort had ST- 
segment elevation AMI (STEMI) (47.1%). The majority 
(81.5%) presented with Killip class I, indicating a favorable 
clinical status. Initial thrombolysis therapy was administered 
to 1.5% of STEMI patients, while the overall rate of PCI was 
91.1% (97.0% in the STEMI subgroup and 86.3% in the non- 
STEMI subgroup). Among complications during hospitaliza
tions, the following were frequent as sequences: cardiogenic 
shock (5.1%), hemodynamically significant ventricular tachy
cardia/ventricular fibrillation (3.9%), new-onset heart failure 
(2.3%), ≥ BARC 2 bleeding (2.1%), and acute kidney injury 
(0.9%). Other variables include laboratory findings during 
hospitalization, echocardiography results, angiographic, and 
procedural characteristics, as well as discharge medications. In 
this patient cohort, ACE inhibitors or ARBs were prescribed 
for over 72% of patients, 74% of patients were prescribed 
beta-blockers, and nearly all patients (98% for aspirin, 97% 
for P2Y12 inhibitors) were taking aspirin and P2Y12 inhibi
tors (clopidogrel, ticagrelor, and prasugrel), and over 90% of 
patients were prescribed a statin. This indicates that the 
patients in this cohort serve as excellent examples of adherence 
to guideline-directed therapy. A summary of these baseline 
characteristics is provided in Table 1.

RIAS framework
To achieve a RIAS for medical experts, we developed the 
RIAS framework, which consists of the following compo
nents. Note that, RIAS can be applied to any model or data
set as it is a model-agnostic and dataset-agnostic framework, 
which allows for wider application. Figure 1 demonstrates 
the overview of RIAS.

Automatic optimizing step
The hyperparameter of the model is one of the most crucial 
factors to achieve an accurate model. Therefore, we com
bined an automatic hyperparameter optimizing step with 
RIAS. RIAS finds out the best hyperparameters using 
Optuna24 during predefined trials for given search ranges 
and given an evaluation metric. In this study, we used F1 
Score for Optuna24 and the search ranges for each model are 
shown in the supplementary Appendix.

Global and local explanations using SHAP values
A prior comprehensive work25 identifies that the explanation 
of explainable AI (XAI) must be intuitively interpretable and 
easily understandable. Furthermore, it should provide global 
and local views because features in EHR data have different 
semantic meanings depending on the view. Therefore, we 
chose to use SHAP to provide global and local explanations 
of RIAS, as it meets the requirements outlined.26,27 While 
there are other XAI methods available, such as data 
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dimensionality reduction, knowledge distillation, and rule 
extraction, we found SHAP to be the most suitable for our 
needs. SHAP employs game theory approaches to explain the 
outputs of any ML model.26 It assigns each feature an impor
tance value, called SHAP values, for a given prediction. 
The SHAP values denote the contributions of each feature to 
the prediction. They allow us to obtain a comprehensive 
understanding of the prediction of the model from both local 
and global perspectives. The global explanations of RIAS are 
derived by analyzing the SHAP value over the training data, 
and the local explanations accompany the prediction made 
by RIAS. RIAS uses PermutationSHAP to compute the SHAP 
value in a model-agnostic way for broader applications.

Deeper insights for desired outcomes
“What if” to change the patients to the preferred outcome is 
the major interest of clinicians. To achieve this, RIAS pro
vides counterfactual explanations, which are hypothetical 

examples that offer guidance to clinicians on how to improve 
the predicted patient outcomes. The counterfactual explana
tions of RIAS inform not only which features need to change, 
but also “how much should be changed.” For medical profes
sionals, counterfactual explanations should provide rich 
examples in a variety of scenarios and must be feasible. In the 
comprehensive benchmark,28 DiCE29 shows its competitive 
strengths, especially in the diversity of counterfactual explan
ations, in this criterion among various counterfactual explan
ation methods. In addition, DiCE29 can handle categorical 
features, such as sex, that are critical to EHR data, while 
some methods cannot.30 In this regard, RIAS uses DiCE29 to 
generate counterfactuals. Note that RIAS always generates 
feasible counterfactual examples by adding user constraints 
for the generation. To generate counterfactual explanations, 
the user must select which features to perturb that clinicians 
can influence such as treatment or medication, and set con
straints for them, such as the dosage of a drug.

Table 1. Characteristics of the cohort.

Feature Mean or proportion Feature Mean or proportion

Age 64.28 ± 12.51 Systolic blood pressure (mmHg) 131.08 ± 29.53
Female (%) 23.1 (3615) Diastolic blood pressure (mmHg) 78.75 ± 18.24
Killip Class at admission (%) Heart rate (bpm) 79.38 ± 19.48

I 81.50 (12 737) Current smoker (%) 36.68 (5732)
II 8.27 (1293) Angiographic and procedural findings
III 5.46 (854) Puncture route
IV 4.77 (745) Femoral 39.77 (6215)

Height (cm) 165.73 ± 28.26 Radial 50.02 (7817)
Weight (kg) 66.89 ± 15.14 Number of involved vessels (%)
Past history (%) 1 3.24 (507)

Hypertension 49.91 (7800) 2 44.79 (7000)
Diabetes mellitus 27.94 (4367) ≥ 3 46.91 (7331)
Dyslipidemia 14.42 (2253) Target vessel (%)
Myocardial infarction 6.96 (1088) LM 2.54 (397)
Angina 7.92 (1238) LAD 42.71 (6674)
Heart failure 1.33 (208) LCX 16.07 (2511)
Cerebrovascular accident 6.42 (1003) RCA 29.82 (4660)

Atrial fibrillation on initial ECG (%) 2.5 (391) Treatment of target vessel (%) 90.87 (14,201)
Initial ECG presentation Result of PCI (%)

STEMI 47.16 (7370) Successful 89.87 (14 045)
NSTEMI 52.84 (8258) Suboptimal 0.83 (130)

Final diagnosis Failed 0.34 (53)
STEMI 46.46 (7260) Index procedure (%) 90.9 (14,206)
NSTEMI 51.34 (8024) Status of revascularization (%)
UAP 0.58 (90) Complete 57.74 (9023)

Laboratory findings at presentation 13.85 ± 2.09 Partial 27.57 (4308)
Hb (g/dL) Use of IVUS (%) 22.74 (3554)
Creatinine (mg/dL) 1.27 ± 1.14 Use of FFR (%) 1.7 (265)
Peak Troponin I (ng/mL) 42.2 ± 59.51 Use of OCT (%) 3.16 (494)
Peak CK-MB (ng/mL) 107.2 ± 131.36 Complications during hospitalization (%) 12.48 (1951)
hsCRP (mg/dL) 13.9 ± 2.09 Discharge medication (%)
LDL-cholesterol (mg/dL) 109.71 ± 37.81 Aspirin 98.16 (15 341)
HDL-cholesterol (mg/dL) 43.19 ± 10.35 Beta-blocker 73.71 (11 520)
Triglyceride (mg/dL) 142.48 ± 94.67 Clopidogrel 56.64 (8851)

Echocardiography result 51.62 ± 10.35 Ticagrelor 50.5 (7892)
Left ventricular ejection fraction (%) Prasugrel 6.9 (1078)
Left ventricular end systolic volume (mL) 47.99 ± 23.37 ACEi inhibitors 33.17 (5184)
Left ventricular end diastolic volume (mL) 96.70 ± 30.26 ARB 39.68 (6201)
Mitral regurgitation grade (%) Statin 92.17 (14 405)

I�II 41.62 CCB 10.16 (1588)
≥III 1.91 Anticoagulant 5.05 (789)

Statistics are mean±SD (standard deviation) for continuous features, and proportions (counts) for categorical features.
Abbreviations: ECG, electrocardiogram; MI, myocardial infarction; STEMI, ST segment elevation MI; NSTEMI, non-ST segment elevation MI; UAP, 
unstable angina pectoris; CK, creatine kinase; MB, myocardial band; hsCRP, high-sensitivity C-reactive protein; LDL, low-density lipoprotein; HDL, high- 
density lipoprotein; LM, left main; LAD, left anterior descending; LCX, left circumflex; RCA, right coronary artery; PCI, percutaneous coronary 
intervention; IVUS, intravascular ultrasound; FFR, fractional flow reserve; OCT, optical coherence tomography; ACEi, angiotensin-converting enzyme; ARB, 
angiotensin II receptor blocker; CCB, calcium channel blocker.
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Reliable prediction
In practical applications where the AI system derives deci
sions, the decisions must not only be accurate but also should 
indicate potential inaccuracies. For those scenarios, the AI 
system typically outputs a value between 0 and 1 for each 
class. A value of 1 indicates that the system is certain that the 
sample belongs to that class, while a value of 0 indicates the 
opposite. These output values are often interpreted as the 
confidence of the system and users regard it as likelihood. 
However, such confidence values are mostly unreliable.31

Therefore, RIAS calibrates the confidence to more accurately 
represent the true correctness likelihood, enhancing the sys
tem’s trustworthiness for clinicians (Figure 2). Consequently, 
practitioners can determine how much they need to believe 
the prediction of the AI system. The comparison before and 
after applying the confidence calibration is shown in the sup
plementary Appendix.

Experimental setups of RIAS in this study
Unless otherwise noted, we set the following setups to show 
the empirical results using RIAS in this article. We reserved 
20% of data as test data to evaluate the AI system and the 
rest is used for training and analyzing features. We adopted 
5-fold cross-validation to tune the model using RIAS and 
tuned each model with 100 trials using Optuna.24 Due to the 
class imbalance, all splits are done in a stratified fashion. 

Since the dataset is highly imbalanced, we used scale pose 
weight for XGBoost and WeightedRandomSampler for neu
ral networks. Additionally, the dataset was split in a stratified 
manner, considering the class imbalance. We used histogram 
binning for confidence calibration after the AI model gener
ated its prediction. For reproducibility, we fix the random 
seed as 0.

Results
Performance comparison between ML models
Recent research predominantly employs MLP or gradient- 
boosting decision tree for EHR data analysis. Although the 
transformer is arguably the most promising architecture in 
the AI field,32 its application to EHR data remains relatively 
unexplored. In this context, we conduct a rigorous compari
son of FT-Transformer,33 a transformer variant, with MLP 
and XGBoost34 using RIAS in this subsection. The perform
ance of each model is the average of 5 random seeds [0,4] 
with 5-fold cross-validation on the test dataset. We evaluated 
each model using AUROC, sensitivity, and F1 score, and the 
comparative results are presented in Table 2.

Table 2 shows that XGBoost achieved the highest scores in 
the majority of metrics and tasks evaluated, underscoring its 
robust performance. In contrast, the MLP, despite its wide
spread use, did not show competitive results in this analysis. 

Figure 1. Overview of reliable and interpretable artificial intelligence system framework.
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Notably, the FT transformer demonstrated superior perform
ance in sensitivity, while also delivering results comparable to 
XGBoost in the remaining metrics. This highlights the poten
tial benefits of integrating transformer models into AI tasks 
where high sensitivity is paramount and may offer a compel
ling alternative to the traditional use of MLP in multi-modal 
healthcare AI systems.35,36

Global explanations using RIAS
We summarize the global contributions of the top 10 most 
important features for each task in Figure 3A-C and visualize 
the global explanations of the top 5 most important features 
for each task in Figure 4. Our findings reveal that statin- 
based medications and beta-blockers are consistently crucial 
in mortality predictions over different time periods. Addition
ally, complications during hospitalization and patient age are 
identified as significant factors influencing mortality through
out all periods assessed. The global explanations of RIAS 
were verified using recursive feature elimination (RFE) meth
ods and XGBoost. XGBoost was tuned for 50 trials using 
Optuna for each feature subset, and the most unimportant 
feature was recursively discarded. As shown in Figure 3D-F, 
the consistent performance during RFE proves the global 
explanations of RIAS. We also present the changes over the 
time periods in Figure 3G. Rosuvastatin and Atorvastatin, 
statin-class drugs used to manage high cholesterol levels, 
appear to be associated with mortality across all time periods, 

and age seems to have a greater influence on mortality at 6 
and 12 months. In contrast, beta-blocker usage and compli
cations during hospitalization held a higher ranking in early 
post-AMI mortality prediction but diminished to a lower 
ranking in 12-month mortality, with a reduction in its signifi
cance. Cardiac function indicators, such as left ventricular 
end-diastolic dimension, left ventricular ejection fraction 
(LVEF), and peak creatinine levels (Peak cr), play a signifi
cant role.

Local explanations and counterfactual examples 
using RIAS on realistic scenarios
In this subsection, we present the local explanations and 
counterfactual examples using RIAS within several realistic 
scenarios. The presentations consist of the following stages. 
First, RIAS reports its prediction with the likelihood for a 
given patient along with a local explanation. The likelihood, 
represented by a central value ranging from 0 to 1, indicates 
the likelihood of an event occurring, with 0 indicating 
unlikely and 1 indicating certain. Additionally, the local 
explanation displays the contribution of each feature to the 
prediction. Next, a clinician determines the patient’s required 
recovery plan to achieve the desired outcome. Lastly, RIAS 
generates counterfactual examples and provides its prediction 
along with the likelihood for clinicians to assess the effective
ness of the clinical decision, at least regarding its impact on 
the AI’s outcome. It is important to note that the likelihood 

Figure 2. Reliability diagram for each task. The diagram illustrates how well the predicted likelihoods (confidences) of a model correspond to the actual 
outcomes. In the diagram, predictions are grouped into bins based on their predicted probability. If the model is perfectly mirroring the actual likelihood 
then the diagram should plot the identity function. Any deviation from a perfect diagonal (red bars) represents discrepancy. These discrepancies are 
measured using expected calibration error (ECE, the details regarding ECE are in supplementary Appendix). The closer to zero, the better ECE.

Table 2. Performance comparison.

In-hospital mortality 6-month mortality 12-month mortality

AUROC Sensitivity F1 AUROC Sensitivity F1 AUROC Sensitivity F1

XGBoost 0.990 ± 0.01 0.824 ± 0.02 0.833 ± 0.02 0.939 ± 0.01 0.652 ± 0.05 0.693 ± 0.04 0.925 ± 0.01 0.551 ± 0.03 0.632 ± 0.02
FT-Transformer 0.986 ± 0.01 0.922 ± 0.02 0.823 ± 0.03 0.899 ± 0.01 0.672 ± 0.03 0.636 ± 0.03 0.905 ± 0.01 0.630 ± 0.52 0.574 ± 0.03
MLP 0.982 ± 0.01 0.820 ± 0.04 0.785 ± 0.03 0.900 ± 0.02 0.552 ± 0.05 0.643 ± 0.03 0.812 ± 0.12 0.504 ± 0.01 0.582 ± 0.01

The top results are highlighted in bold.
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generated by our system can be interpreted as the actual like
lihood since the RIAS calibrates the confidence of the AI 
model—which represents the likelihood—to accurately mir
ror the true correctness likelihood. For the presentations, we 
select suitable patients for a specific scenario from the test 
dataset. The details regarding the patients are shown in the 
supplementary Appendix.

Scenario 1: administration of beta-blocker upon discharge
Consider a 62-year-old male patient with ST-segment eleva
tion myocardial infarction (STEMI), 3-vessel disease, initially 
received thrombolysis and then successfully treated with par
tial revascularization for left anterior descending (LAD) 
artery, who does not use any beta-blocker or statin as dis
charge medication. This patient exhibits compromised cardiac 
function (LVEF 30%) for large anterior infarction, along with 
unfavorable laboratory findings (peak Cr 3.4 mg/dL, lowest 
Hb 4.5 g/dL), and experienced complications during 

hospitalization, which appears to be linked to thrombolysis 
treatment. Our system predicts a 95% likelihood of mortality 
for this patient after 12 months. For this patient, mortality 
was attributed to complications, including significantly 
reduced hemoglobin and elevated Peak cr. Contributing fac
tors also involved not taking statins, having a low LVEF, and 
the absence of prescribed beta-blockers in sequence. Then, the 
clinician verifies the decision using RIAS to produce counter
factual examples of the usage of beta-blockers. As shown in  
Figure 5A, RIAS finds out the counterfactual example where 
patients may have a lower mortality likelihood after 12 
months. It clarifies that discharging 4.59mg of medication 
Bisoprolol contributes to decreasing the likelihood of death 
from 95% to 38%. The use of beta-blockers as part of the dis
charge medication regimen for patients with AMI has been 
well-established as an effective treatment for reducing adverse 
cardiovascular events, with a strong foundation in multiple 
randomized controlled trials spanning from the pre- 

Figure 3. Global Explanations based on SHAP. (A) In-hospital mortality (B) 6-month mortality (C) 12-month mortality. (D–F) represent the F1 scores for 
recursive feature elimination for in-hospital mortality, 6-month mortality, and 12-month mortality, respectively. The shaded regions indicate the standard 
deviation over 5 random seeds. (G) Comparison of important features over different periods. The purple line indicates that the feature is included in the 
top 10 important features of both tasks. The blue and red lines indicate that the feature is included in the top 10 features of one task, but not in the top 10 
important features of other tasks.
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reperfusion era to the present. In the contemporary era of 
reperfusion and potent antiplatelet agents, the use of beta- 
blockers has become primarily focused on AMI patients with 
reduced LVEF.37–39 As an illustrative example, RIAS 

accurately anticipated the impact of beta-blockers in reducing 
mortality. The findings align with current guidelines and pre
vailing opinions on the matter, and bolster clinical decision- 
making.

Figure 4. Global explanations of the top 5 most important features for each task. The higher the SHAP value, the greater the contribution to mortality, 
and each dot represents the individual patient.
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Scenario 2: administration of clopidogrel upon discharge
Consider a 69-year-old male with a history of hypertension, 
presenting with non-ST-segment elevation myocardial infarc
tion (NSTEMI) and 3-vessel disease that was successfully 
treated with early invasive revascularization only for culprit 
vessel of left circumflex (LCX) artery, resulting in a final 
LVEF of 41%. During hospitalization, he experienced acute 
kidney injury (with the initial serum creatinine level at 
1.2 mg/dL escalating to 5.3 mg/dL), a significant drop in 
hemoglobin indicating a major bleeding event, and atrial 
fibrillation. Notably, he has not prescribed P2Y12 inhibitors 
and statins upon discharge, both of which are essential for 
AMI treatment.40 In this scenario, the patient seems to be 
prescribed only an anticoagulant instead of a dual or mono- 
antiplatelet agent and anticoagulant for AMI and combined 
atrial fibrillation due to a significant active bleeding event. 
He was predicted to die after 12 months with a 95% using 
our system. For this patient, the most critical factors influenc
ing his mortality prediction were the absence of statin use, 
highly elevated creatinine, significantly reduced hemoglobin, 
low LVEF, and the lack of prescribed beta-blockers in 
sequence. The clinician wants to verify whether the usage of 
clopidogrel can decrease the likelihood of death or not. 
Therefore, the clinician uses the RIAS and the system con
cludes that the usage of clopidogrel does not contribute to the 
decrease in the death likelihood. According to the system, the 
likelihood of death still remains at 95% with the usage of clo
pidogrel (in Figure 5B). The results advise clinicians to pre
scribe statin/beta-blockers and address the bleeding source, 
manage kidney injury, or consider clopidogrel use after ad 

hoc revascularization of the nonculprit vessel to reduce 
mortality.

We also present an additional realistic scenario with RIAS 
regarding SGLT2 inhibitors in supplementary Appendix.

Discussion
In this study, we introduced RIAS—which is a RIAS—for 
clinicians. Then, we applied RIAS to several tasks predicting 
mortality following AMI using prospective large multicenter 
registry data. While recent studies demonstrated that contem
porary deep-learning models outperform traditional 
regression-based prognosis prediction models and earlier ML 
algorithms, RIAS shows superior results over recent studies. 
Concretely, Kwon et al. demonstrated that a deep-learning- 
based model exhibited good performance with an AUROC of 
0.870 to 0.905 in predicting long-term mortality after AMI 
using the same cohort as the current study.42 Oliveira et al. 
utilized the Portuguese AMI registry to assess various ML 
models for predicting 12-month mortality, resulting in an 
AUROC of 0.89 and a recall of 0.9.43 Notably, our RIAS sys
tem exhibited comparable effectiveness when compared with 
presently prevalent deep-learning models, achieving an 
AUROC of 0.925 and an F1 score of 0.632 for 12-month 
mortality. The system gained the most benefit in predicting 
in-hospital mortality with an AUROC of 0.990 and an F1 
score of 0.833. Furthermore, we rigorously investigated 
employing the transformer-based model, FT-Transformer, 
over XGBoost and MLP for predicting clinical outcomes in 
AMI, which is the first investigation with our best 

Figure 5. Counterfactual examples with local explanations. (A) The change in mortality without and with beta-blocker prescription when left ventricular 
ejection fraction is less than 40% (B) The change in mortality according to the absence and presence of clopidogrel, one of the platelet aggregation 
inhibitors. The bold numbers are the predicted likelihood (f(x)), while the base value is the expectation of the training cohort. Features are represented by 
arrows that push results to high mortality (right arrows) or low mortality (left arrows). The length of the arrows is proportional to the SHAP values of the 
relevant features for each prediction. Less important features are omitted for visualization.41
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knowledge. Our finding reveals the strengths of FT- 
Transformer, especially its sensitivity, and these results are 
inlined with contemporary studies using transformer on other 
various predicting tasks.44–46

We also potentially resolved the challenges for clinicians 
seeking trust and meaningful insights from AI systems due to 
their “black-boxed operation”—making predictions without 
providing any explanations, and the discrepancy between 
predicted likelihood and the true correctness likelihood. Vari
ous XAI studies were suggested to address this issue by iden
tifying variables as important features for predicting 
mortality using SHAP values.43,47,48 However, each patient 
represents specific values of variables, so features from a 
dataset do not quantitatively predict the specific patient’s 
outcome in real-time. Clinicians may still hesitate if the 
results are not representative of each individual case, even 
when provided with explainable data. Furthermore, the prob
lem of predicted mortality differing significantly from the 
actual likelihood still remains. RIAS has resolved these issues 
by providing global (overall) and local (individual patient) 
explanations based on SHAP values and reliable predictions 
which can be interpreted as the actual likelihood through 
confidence calibration. In addition, RIAS provides more pro
found insights into desired outcomes through “what if �” 
counterfactual explanations—scenarios where one or more 
variables are changed—and demonstrates how these changes 
would have led to a different decision or prediction from the 
model. In realistic scenarios, the likelihood of predicted mor
tality can be altered by modifying variables. Hence, RIAS’s 
counterfactual explanations empower clinicians to simulate 
patient scenarios under diverse conditions (eg, changing 
treatment prescribed at discharge). These functionalities high
light significant strengths in our algorithm, emphasizing its 
precision in predictions.

The implications of RIAS can be summarized as follows: 
(1) expediting the development of a new AI system with a dif
ferent dataset and model; (2) enabling the use of predictions 
as actual likelihoods; (3) facilitating systematic studies on fea
tures contributing to prognosis, both globally and locally, 
based on SHAP values; (4) offering “what if” scenarios for 
patient treatment applications.

However, it is important to note several limitations in this 
study. The algorithm excludes certain crucial indicators for 
in-hospital mortality and morbidity, such as the symptom-to- 
hospital visit and door-to-balloon time, which are commonly 
considered in most AMI studies.49 Instead, our study cohort 
features well-defined variables, encompassing angiographic, 
laboratory, hemodynamic, and imaging findings. It exhibits 
consistent characteristics with other contemporary AMI stud
ies, with half of the patients being STEMI patients, 5% expe
riencing cardiogenic shock, and nearly all patients 
undergoing PCI and receiving optimal medical therapies 
thereafter. Our study results demonstrated comparable accu
racy to previous studies in short-term mortality using concur
rent AMI populations and the most current ML models. 
However, for 12-month mortality, the model does not 
include time-varying variables and follow-up characteristics, 
leading to lower accuracy compared to short-term mortality 
prediction. Another limitation of our study is the absence of 
validation on an external cohort for our results. In addition, 
variables related to medication in this system are based solely 
on discharge medication information and do not include 
follow-up medication details. The discontinuation of 

evidence-based medication is a robust predictor of long-term 
mortality after AMI. We also were not able to capture other 
time-variant variables throughout the follow-up period. 
These factors may compromise the accuracy of the system for 
12-month mortality prediction. In addition, RIAS can help 
improve trust in black-box AI, but the trustworthiness of 
RIAS depends on the trained classifier. All explanations of 
RIAS assume that the trained classifier always provides accu
rate predictions, but there is a risk of incorrect predictions. 
Furthermore, our system does not fully address other dimen
sions commonly associated with Trustworthy AI, such as eth
ical considerations and bias mitigation. These areas, while 
not directly tackled in our current study, are crucial for the 
broader discourse on AI’s role in healthcare. Finally, 
although we present several realistic scenarios using RIAS for 
clinicians, we have not thoroughly studied the effect of this 
system on clinicians. Therefore, the actual impact of this sys
tem on clinical decision-making in real-world practice needs 
to be further investigated.

Conclusion
Predicting mortality after AMI is critical for timely and per
sonalized interventions to reduce AMI mortality and hinder 
heart failure progression. However, there is a lack of RIASs 
that clinicians can trust. In this study, we propose the RIAS, 
an end-to-end framework designed to address these prevail
ing challenges. With RIAS, we rigorously compare various 
models on AMI prognosis datasets and present the contribu
tions of each feature to global and local explanations based 
on SHAP values, in particular revealing the influence of previ
ously known features that are considered important for clini
cal decision-making. Furthermore, we demonstrate the 
applicability of “what if” scenarios to validate personalized 
treatment plans using RIAS in diverse, realistic settings with 
reliable predictions that can be considered the actual likeli
hood. Although our study primarily applies RIAS to AMI 
prognosis datasets using XGBoost, the framework is designed 
with broader applicability in mind, being model-agnostic and 
dataset-agnostic. Future work includes exploring broader 
applications of RIAS for the healthcare domain and practical 
evaluation of the trustworthiness of RIAS with clinicians.
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