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Abstract

Rapid and accurate prediction the physicochemical properties of molecules given
their structures remains a key challenge in cheminformatics. Machine learning
approaches offer high-throughput options, but the relevant inductive biases and
data representations are up for debate. For example, masked language models
(MLMs) can be trained in a self-supervised way on hundreds of millions to billions
of readily available SMILES strings. However, this model will not be clued into
the rich geometric information found in molecular structures. Another option is
graph neural networks (GNNs), which can operate directly on molecular structures.
Yet, generating these molecular graphs is computationally intensive, leading to a
relative scarcity in data compared to SMILES strings. This makes it challenging to
scale to large pre-trained GNNSs, in contrast to the situation for LMs. As such, it
becomes attractive to combine these two paradigms, benefiting from pre-training on
a large corpus of SMILES strings and embedding these representation into a fine-
tuning that uses geometric information. Despite the promise of such an approach,
contrary to previous studies, we find mixed results with the combination of the
LMs and GNNs on several molecule datasets. In particular, we found evidence for
improvement on the FreeSolv and QM7 benchmarks, but degraded performance on
the ESOL, LIPO and QM9 datasets compared to a GNN baseline.

1 Introduction

Accurately and efficiently predicting the physicochemical properties of molecules based on their
structures is a fundamental challenge in the field of cheminformatics. While quantum and classical
mechanical simulations provide valuable insights, advances in machine learning (ML) have intro-
duced new possibilities for high-throughput predictions. However, several key challenges remain,
particularly around the choice of inductive biases and the optimal representation of molecular data.

Inductive biases, which refer to the assumptions embedded within a model architecture, play a critical
role in the success of machine learning models, particularly when data are limited. It is up for debate
over the most appropriate inductive biases for molecular prediction tasks, with different models
offering distinct advantages depending on the specific properties being predicted.
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Equally important is the representation of molecular structures in a form that is both informative and
efficient for machine learning algorithms to process. Traditional representations, such as SMILES
(Simplified Molecular Input Line Entry System) strings [[13] or molecular fingerprints, have been
widely used [15 112} [2 [1} [7]], but they may not fully capture the intricate spatial and electronic features
of molecules. Graph neural networks (GNNs), which treat molecules as graphs where atoms are nodes
and bonds are edges, provide a promising inductive bias for processing molecular graphs. Several
GNN architectures have been introduced to work with 3D molecule graphs, including DimeNet [6]]
and SchNet [10].

The key scientific question to address is (1) how can the extensive knowledge about chemical grammar
within chemical language models be used, and (2) for what tasks (3) and under what data regimes are
they useful. We address the first using a multimodal data fusion method that embeds representations
from the pretrained chemical LM into GNN node embeddings. This method builds off of a similar
work, MolPROP [9]]. Our work mainly differs from MolPROP in that we use 3D graphs over 2D
graphs, and use ChORBERT over ChemBERTa-2.The second point is addressed by exploring several
tasks that may depend on different physical phenomena and benchmarks, including hydration free
energy, aqueous solubility, lipophilicity, as well as QM7 and QM9 properties.
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Figure 1: Overview of multimodal graph fusion workflow. Atom-wise embeddings of a molecule are
obtained from a pretrained language model via its SMILES string, and concatenated to node features
in a 3d molecular graph representation. We then train a GNN on this graph to predict downstream
molecular properties.

2 Related Works

Integration of pre-trained protein language models into geometric deep learning networks
by [14], trains a Protein Language Model (PLM) on amino acid sequences, creating amino acid
embeddings that are used as features for a graph. They then train a Graph Geometric Neural Network
(GGNN) on these enhanced graphs, finding improvements on most benchmarks compared to baselines
and existing SOTA methods. They hypothesized that the relative scarcity in 3D geometric structures
as compared to amino acid sequences allowed the PLM to supplement the GGNN approach, leading
to the observed performance boost.

MOolPROP: Molecular Property prediction with multimodal language and graph fusion by [9]
mirrors the work done in [14]], working with molecules instead of proteins. MolPROP generates
2D graphs from the SMILES string. MolPROP then uses ChemBERTa-2, a pre-trained chemical
language model trained on SMILES strings, to create embeddings to concatenate to node features
on the graph, similar to our approach. MolProp then trains a GAT or GCN based GNN on these
augmented graphs, achieving improved performance on the FreeSolv and ESOL benchmarks and
competitive results on Lipo and QM7 but poor results on the classification tasks examined - BACE,
BBBP, and ClinTox.



3 Methods

Models

To evaluate the utility of fusing a pretrained chemical language model’s embeddings into a graph
neural network for molecular property prediction, we compare three modeling approach. First, we
use the [CLS] token of the pretrained chemical language model [4]], and add a feed-forward layer to
predict the molecular property of interest. We refer to this approach as LM. The second baseline is a
graph neural network DimeNet [6] implemented in [8], which receives the atomic positions and types
as input, which we refer to as GNN. Finally in the multimodal graph fusion approach, we extract
the per-atom embeddings from the tokenized SMILES strings and assign them as additional node
features in the molecular graph, as shown in Fig.[I]

Datasets

We evaluate our approach on several benchmark datasets: FreeSolv, ESOL, Lipophilicity (Lipo)
and QM7 [15]. FreeSolv is a dataset of experimental and calculated hydration-free energies for
642 small molecules in water. ESOL is a dataset of 1128 compounds and their solubility. Lipo is
a dataset of 4200 molecules from the ChEMBL database with their corresponding experimentally
dervied lipophilicities. Lastly, QM7 is a subset of the GDB-13 molecule database, consisting of
6830 molecules which have up to 7 heavy atoms (Carbon, Nitrogen, Oxygen, and Sulfur) along
with their respective atomization energies, which are derived from Density Functional Theory (DFT)
calculations.

To compare with [9], 80% of the data were used for training, with 10% reserved for testing and
validation. We used the Bemis-Murcko [3] scaffold split to separate molecules of the same scaffold,
making model performance on the test set more indicative of model performance on unseen molecules.

For each dataset, we needed to have both a 3D graph and corresponding SMILES string available.
These datasets did not have 3D structural information available. We used the RDKit library to generate
them by using the EmbedMolecule function to to position the atoms in 3D space, and then Merck
Molecular Force Field (MMFF) [11] refined the 3D structure. Though we expect these generated
strucutres to be lower quality compared to those computed with more complex DFT simulations, this
allows us to get a basis for comparison with MolPROP that have been tested on FreeSolv, ESOL,
Lipo and QM7.

We additionally looked at the QM9 dataset [[15]. QM9 is a subset of 134 thousand molecules with
up to 9 heavy atoms (Carbon, Nitrogen, Oxygen and Fluorine) from GDB-17. The molecules were
modeled using DFT, producing high quality 3D structures, and thus 3D graphs, as well as 12 different
molecular properties. Out of these 12, we focused on predicting dipole moment, as this is a complex
property that depends on both the molecular geometry and electronic structure. For this dataset, we
used a random split of 70/15/15.

Training

To ensure a fair evaluation across the different models, we optimized hyperparamters using Optuna.
For each method (LM, GNN, LM+GNN), we ran 48 trials for 50 epochs each on FreeSolv, ESOL,
Lipo and QM7, and 100 epochs for QM9. We used an early stopping patience of 10 for all trials.
Parameters were chosen with the TPE sampler. All HPO and model training were performed on AMD
MI250X GPUs on the Frontier supercomputer at Oak Ridge National Laboratory.

Evaluation

After HPO, we apply the best hyperparameters to an 8 fold cross validation for FreeSolv, ESOL, Lipo
and QM7. We then report the average RMSE plus or minus the standard deviation for models trained
on each of the 8 training sets. For the QM9 dataset, we only run one trial of the best hyperparameters
on our split and report a single test validation.

Additionally, we trained models on various subsets of the combined training and validation dataset to
determine whether each method’s performance depended on dataset size. We ran Lipo and QM7 with
subsets of size 250, 500, 750, 1,250, and QM9 with subsets of size 250, 500, 750, and 1,000. At each
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Figure 2: Model performance scales with dataset size. Performance of the different model types on
random subsets of the (A) Lipophilicity, (B) QM7 atomization energy, and (C) QM9 dipole moment
datasets. Each data point for a training set size less than 1,300 is averaged over 8 trials, error bars
being one standard deviation. Results for datasets larger than 1,000 for (QM9 data, (C)) are from a
single training run.

subset size, we run 8 trials with different subsets and report the average and standard deviation. For
QM9, we additionally trained 1 trial for subset sizes 5,000, 20,000, 35,000, 60,000, 75,000, 90,000,
105,000, and 111,206 (the combined train and validation set).

On QMY, we use Principal Component Analysis (PCA) to examine how well the GNN and LM+GNN
are representing the molecules. We select one of the 8 models (or the only model for larger subsets)
that were trained on a given subset size, and use it to produce embeddings on the full test dataset. We
then use PCA to visualize the embedding space. We expect better models will reveal more structured
representations, with points in the test set having a smooth gradient from low dipole moment to high
dipole moment and each molecule being close to others with similar dipole moments.

4 Results
Model FreeSolv ESOL Lipo QM7 QMO 1o
Size 642 1128 4191 6830 130831
Metric RMSE | RMSE | RMSE | RMSE | MAE |
LM 4.136 £0.105 2.240+0.008 1.114+0.008 197.151+2.283 | 0.572
GNN 2.069 +£0.521 0.746 £ 0.159 0.414 £0.0290 72.968 +11.993 | 0.241
LM+GNN 1.811+£0.454 0.929+0.147 0.539+0.138 70.291 +11.350 | 0.265
ChemBERTa-277v.mrr | 2.515+£0.00  1.025 +£0.00 0.987 £0.00 147.9 £0.00 N/A
ChemBERTa-277v.mim | 2.047+£0.00  0.889 £0.00 0.798 £ 0.00 172.8 £0.00 N/A
MOoIPROPytr+GAT 2.05+0.16 0.991 £0.11 0.799 £ 0.01 131.8 +11.2 N/A
MOoIPROP M+GAT 1.70 £ 0.09 0.777 £ 0.02 0.733 £ 0.02 151.8 £ 10.0 N/A

Table 1: Performance comparison of different models across various datasets. Values represent mean
+ standard deviation. 8-fold cross validation was performed on all datasets except QM9. Only 1 trial
was run on the full QM9 dataset. We also report numbers from [9]] from their two best models and
their numbers for ChemBERTa-2 MLM and MTR, which are numbers from 10-fold cross validation
evaluated on the same test set used in this paper.

We ran 8-fold cross validation for FreeSolv, ESOL, Lipo and QM?7, obtaining a mean and standard
deviation of test loss for each model. The results, along with numbers sourced from [9]], are shown
in Table I} The LM+GNN model appears to perform competitively on FreeSolv and QM7, though
the result is similar to the GNN baseline for QM7. We see that MolPROP similarly performs well
on FreeSolv, but is not competitive to our GNN baseline on ESOL, Lipo, and QM7. We also found
our LM approach to do quite poorly, suggesting that the ChORBERT model may not be well suited
for predicting molecular properties on these datasets as compared to ChemBERTa-2 examined in
MOolPROP. We hypothesize this may be due to the difference in pre-training dataset (PubChem for
ChemBERTa-2 and Enamine for ChORBERT), or possibly an issue with the regex tokenization
approach used in this paper.

On QM9, we found that the performance of the performance of the LM+GNN and GNN were
comparable, while the LM approach performed relatively poorly.



In our scaling experiments (Fig. [2), we see that the best model type is fairly consistently better or
about the same as the next best model type for the dataset for different dataset sizes. There is no
clear winner at a smaller dataset size. On the QM9 dataset, there is some evidence for the LM+GNN
performing better at a lower dataset size, but this doesn’t appear to be significantly different.

In Table 4] we see the result of the PCA algorithm reducing QM9 dipole moment model embeddings
into 2D space using the first two principle components. We may then use these graphs to qualitatively
assess model performance by how well the model appears to have structured its embedding space. For
a fully trained model, we expect a smooth gradient from low dipole moment to high dipole moment.
This can be seen in the full dataset (111,206 size train+validation set), where the GNN has a highly
ordered structure going from low dipole moment to high dipole moment. In particular, we analyze
dataset sizes where the LM+GNN may be doing better in the scaling graph. For the subset size of 500,
where the LM+GNN appears to do somewhat better in the scaling graph, we see that the LM+GNN
does have somewhat more structured embedding space, suggesting it does have a somewhat better
representation compared to the GNN alone. On dataset sizes 750 and 1000, it is less clear which
approach has a richer embedding space, mirroring the similar test MAE values in the scaling graph.

5 Discussion

In conclusion, we found that our combination of the LM+GNN did not conclusively show benefit
compared to a simpler GNN approach for regression tasks. We found some evidence for improved
performance on the FreeSolv and QM7 benchmarks, but evidence for degraded performance compared
to a GNN baseline for ESOL, Lipo and QM9. In contrast, MoIPROP finds state of the art performance
on FreeSolv, surpassing our LM+GNN, as well as performance comparable to our GNN baseline
for ESOL. Finally, on QM?7, we find our method to be competitive against a GNN baseline, while
MolPROP is significantly degraded on the benchmark.

We speculate differences could be due to our use of the ChORBERT model as compared to Chem-
BERTa. ChORBERT is trained on an augmented Enamine dataset, while ChemBERTa-2 is trained
on molecules from PubChem, possibly leading to differences in performances on molecules closer
to their respective training datasets. Further work is needed to determine if our results depend on
the language model used. An additional difference is our regex tokenization strategy. We chose this
approach to simplify mapping embeddings from to the molecular graph, but it is possible that this
choice of tokenization leads to worse performance for the language model. Future work will examine
using a different tokenization strategy, such as the WordPiece tokenizer or digits-based tokenizer
mentioned in [4]].

Another area of difference is our use of DimeNet, a GNN architecture better suited for 3D molecular
data, over MolPROP’s use of GCN and GAT architectures. Further examination might explore using
our LM+GNN method with these different architectures.

We hypothesize that the language model does provide some structure for training, especially on
smaller datasets, but ultimately becomes much less useful than the 3D graph data, explaining the
inconsistent performance improvements. This can be seen in the LM+GNN’s more clear performance
improvement on the smallest dataset, FreeSolv, as well as its competitive performance for small
subsets of QM9 on dipole moment prediction.

Since we expect the 3D graph data to be much more useful for learning, we hypothesize that the
language model embeddings cause the model to lose performance by utilizing them even when
enough higher quality 3D graph data is available. We expect that the LM+GNN model eventually
learns to avoid attending to the language model embeddings, leading to a convergence in performance
between the GNN and LM+GNN on large datasets. This can be seen in the QM9 scaling curve, where
the test MAE of the two models becomes similar at the four largest subset sizes.

We speculate that fine-tuning a model pre-trained on 3D graph data will lead to better performance
than using a language model, as it can make use of the much higher quality graph data. Future work
should focus on producing such a pre-trained graph model and comparing to existing baselines.
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A Appendix / supplemental material

Hyperparameter optimization

The tables below contain the hyperparameters which were optimized as the adapter layers for the LM
(Table[2) and the LM+GNN approach (Table 3]

Hyperparameter Search Range | Data Type
Dropout Rate [0.1,0.5] Float
Learning Rate [1075,1071] Float

Number of Layers [1,5] Integer

ExponentialLR Gamma | [0.9,0.999] Float

Table 2: LM Adapter search space.

Hyperparameter Search Range Data Type
Hidden Dimension [50, 150] or [50, 300] (QMD9) Integer
Number of Convolutional Layers [1,5] Integer
Number of Head Layers 1,2] or [1, 3] (QMY9) Integer
Number of Shared Layers 1,3] or [1,5] (QMY9) Integer
Dimension of Shared Layers [32,100] Integer
Dimension of Head Layers [50, 100] (per layer) Integer (multiple)
Exponential LR Gamma [0.9,0.999] Float
Learning Rate [1075,1077] (log scale) Float

Table 3: GNN and LM+GNN search space. On columns with another search range, the dataset which
used the alternative search range is specified in parentheses.
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Table 4: Dimensionality reduction of embeddings for GNN and LM+GNN on the QM9 dipole
moment task. Uses a randomly selected model from the 8 trials used in the scaling tests and runs
PCA on test set embeddings.
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