
Pass-Tuning: Towards Structure-Aware Parameter-Efficient Tuning for
Code Representation Learning

Anonymous ACL submission

Abstract

Code pre-trained models (CodePTMs) have re-001
cently become the de-facto paradigm for var-002
ious tasks in the domain of code intelligence.003
To achieve excellent performance, the widely004
used strategy is to fine-tune all the parame-005
ters of CodePTMs. However, as the model006
size increases along with the number of down-007
stream tasks, this strategy becomes excessively008
expensive. There are also some prior works009
that utilize Parameter-Efficient Learning (PEL)010
methods for model tuning in natural language011
processing to mitigate similar problems, but012
applying them directly to CodePTMs fails to013
capture the inherent structural characteristics014
of codes. To address the problem, in this paper,015
we propose Pass-Tuning for structure-aware016
Parameter-Efficient code representation learn-017
ing. Specifically, a plug-and-play graph neural018
network module that can learn from Abstract019
Syntax Tree (AST) is employed as a tunable020
prefix. On the one hand, Pass-Tuning can fur-021
ther exploit the structural information of source022
code. On the other hand, it could serve as a re-023
placement for full fine-tuning. We evaluate our024
method on multiple tasks across eight program-025
ming languages, including code understanding026
and generation. These results demonstrate the027
effectiveness, robustness, and universality of028
our method. Our codes and resources are avail-029
able at AnonymousForPaper.030

1 Introduction031

Pre-trained language models (Devlin et al., 2019;032

Liu et al., 2019) have significantly boosted a se-033

ries of natural language processing (NLP) tasks.034

These models mainly adopt deep transformer ar-035

chitecture (Vaswani et al., 2017), which are pre-036

trained on a large-scale unsupervised text corpus,037

and then fine-tuned on downstream tasks. When038

regarding a code snippet as a sequence of tokens,039

it innately lends itself to these transformer-based040

models (Yang et al., 2019; Lewis et al., 2020; Raffel041

et al., 2020) from NLP.042

100 101 102

Tunable Parameters

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

Un
de

rs
ta

nd
in

g
Pe

rfo
rm

an
ce Fine-TuningBitFit Adapter

P-Tuning V2

Pass-Tuning

(a) Comparison on clone detection (evaluated in F1)

10 1 100 101 102

Tunable Parameters

10

12

14

16

18

Ge
ne

ra
tio

n
Pe

rfo
rm

an
ce Fine-Tuning

BitFit

Adapter

P-Tuning V2
Pass-Tuning

(b) Comparison on code summarization (evaluated
in Smoothed BLEU-4 score)

Figure 1: Pass-Tuning performs far beyond popular
Parameter-Efficient learning methods over both code
understanding and generation tasks. It also achieves
comparative performance to full fine-tuning with much
fewer tunable parameters. The size of the circle is pro-
portional to the number of tunable parameters. All the
methods are evaluated on the PLBART backbone model.

Under the assumption of “Software Natural- 043

ness” (Hindle et al., 2016; Buratti et al., 2020) and 044

inspired by the enormous success of pre-training, 045

code pre-trained models (CodePTMs) have also 046

been proposed and widely applied in the realm of 047

code intelligence (Feng et al., 2020; Guo et al., 048

2021; Wang et al., 2021; Ahmad et al., 2021; Guo 049

et al., 2022). Similarly, a straightforward approach 050

to adapting these large-scale CodePTMs to the 051

1

AnonymousForPaper

downstream tasks (e.g., code summarization, code052

clone detection) is fine-tuning the whole model for053

each task. However, the number of downstream054

tasks is ever-increasing, and it is often necessary to055

fine-tune the whole model for a specific program-056

ming language in real-world applications. The057

number of combinations of tasks and languages058

leads to standard full fine-tuning solutions being059

prohibitively expensive and cumbersome.060

To reduce the cost of model tuning, researchers061

employ strategies like Prefix-Tuning (Li and Liang,062

2021) to condition language models with frozen063

parameters to perform specific downstream tasks.064

Notwithstanding, we experimentally observe that065

current PEL methods (Ding et al., 2023) struggle066

to reach the same stunning effect in code represen-067

tation learning as in the NLP domain1. Motivated068

to address the cost-performance dilemma for tun-069

ing CodePTMs, we believe that a new Parameter-070

Efficient Learning (PEL) approach with versatility071

should be built beyond the NLP domain.072

In our work, we present a Parameter-Efficient073

tuning approach with Graph attention Network cap-074

turing code structural information from abstract075

syntax tree, namely Pass-Tuning, a versatile PEL076

method with minor tuning cost and competitive077

performance, to serve as a lightweight alternative078

to fine-tuning. Specifically, we first construct tun-079

able Graph Attention Network (GAT) modules as080

tunable prefixes to capture the code structure infor-081

mation contained in Abstract Syntax Tree (AST).082

We design a novel code retrieval strategy based083

on attention distribution and AST token distances084

for better initialization. In order to adapt our ap-085

proach to more scenarios, we implement a PEL086

framework for CodePTMs with different architec-087

tures. Then, we evaluate Pass-Tuning on multiple088

tasks over eight different programming languages.089

Experiments show that our method can provide090

competitive (and in some tasks even better) per-091

formance while only modifying less than 1% of092

the parameters than full fine-tuning, substantially093

reduces per-task/per-language storage and mem-094

ory usage when tuning CodePTM on downstream095

tasks.096

• We introduce Pass-Tuning framework for ap-097

plying PEL on adapting CodePTMs to down-098

stream tasks. It significantly reduces the tun-099

able parameters in conjunction with the univer-100

1We take these PEL methods from NLP as strong baselines,
the results are shown in section 4.4 and section 4.5.

sality over models of different architectures. 101

• In Pass-Tuning, a plug-and-play graph atten- 102

tional module is adopted to capture the struc- 103

tural information of source codes. We also 104

design an ingenious code-retrieving method 105

to improve our framework’s performance by 106

better parameter initialization based on token 107

importance evaluation. 108

• As is depicted in Figure 1, our experiments 109

on multiple tasks across different program- 110

ming languages confirm the effectiveness of 111

Pass-Tuning. Moreover, we can even achieve 112

better results on some tasks than tuning all the 113

parameters. 114

2 Preliminaries 115

This section introduces basic concepts and nota- 116

tions used in this paper. 117

2.1 Code Basics 118

Each program can be represented in two modals: 119

the source code and the structure of code: Abstract 120

Syntax Tree (AST), as is shown in Figure 3. 121

function_
definition

parameters

block

expression_
statement

call

attribute

attribute

argument_
list

def write

(self , data)

self temp

append

.

. (data)

:

def write (self, data):
self.temp.append(data)
...

Non-leaves

Leaves

Leaf edges

AST edges

Dataflow edges

Figure 3: A Python code snippet and its parsed U-AST,
with connected Dataflow edges and Leaf edges. (Best
viewed in color.)

We use Tree-sitter2 to parse source codes. AST 122

contains rich structural information, while it has a 123

tree structure that may cause long-range problems 124

due to the long distance between leaf nodes. In- 125

spired by Wang et al. (2020) and Zhu et al. (2022), 126

We add data flow edges to enhance the connectivity 127

of the AST and name it as U-AST (upgraded AST). 128

2.2 Code-related Tasks 129

Language Models’ ability to understand and gen- 130

erate programs can boost developers’ productiv- 131

ity. In order to better evaluate models’ capacity, 132

2github.com/tree-sitter

2

https://github.com/tree-sitter

CodePTM

function_
definition

...

...

, data)
()

argument_
list

parameters

...

...

data

</>

key value

Code

Sampling

Prefix

Prediction Head

Input

Tunable

Frozen

Upgraded Abstract Syntax Tree

Code Retriever

Optimization

GAL

h1

Feedback (Optional)

h2

h3

h4
h1 h2h3

h4

h’1

def write (self, data):
self.temp.append(data)
...

Figure 2: An illustration of Pass-Tuning based on a CodePTM, e.g., CodeBERT (Feng et al., 2020), CodeT5 (Wang
et al., 2021) with Transformer architecture. Graph Attentional Layers (GALs) designed to capture source codes’
structural information are prepended as prefixes to each layer of the backbone model. In the process of model tuning,
the parameters of the backbone model are frozen, and only these prefixes are modified. Besides, the Code Retriever
will help the GAT to get better initialization through token importance evaluation, as is stated in section 3.3. (Best
viewed in color.)

the following tasks are proposed to foster machine133

learning research for code.134

Code Understanding Code understanding tasks135

assess models’ ability to understand codes and their136

relationships. The most typical one is clone de-137

tection (Svajlenko et al., 2014; Mou et al., 2016),138

which measures the semantic similarity between139

code snippets. Another representative code under-140

standing task is defect detection (Zhou et al., 2019).141

It identifies whether source codes contain defects142

that may be vulnerable to attacks.143

Code Generation Code generation tasks eval-144

uate the capacity to tackle sequence-to-sequence145

generation problems of models. These tasks could146

be further divided into code-code and code-text.147

For code-code tasks, code translation involves148

translating a code snippet from one programming149

language to another (Nguyen et al., 2015). Code150

completion’s target is to predict the following to-151

kens based on a code context (Raychev et al., 2016;152

Allamanis and Sutton, 2013). Code refinement (Tu-153

fano et al., 2019) is designed for automatic bug-154

fixing for source code. And for code-text tasks,155

code summarization (Iyer et al., 2016; Alon et al.,156

2019) aims to generate comments (natural lan-157

guage) for function-level code snippets.158

2.3 Prefix-Tuning159

Prefix-Tuning (Li and Liang, 2021) is a lightweight160

alternative to Fine-Tuning. Instead of modifying161

all parameters of a language model (LM), Prefix-162

Tuning focuses on optimizing a continuous task- 163

specific vector (prefix) while keeping the LM’s 164

parameters frozen. This technique reduces the cost 165

of adapting LM to downstream tasks and eliminates 166

the necessity to store a full copy for each task. 167

2.4 Graph Attention Network (GAT) 168

Recently, graph neural network (Kipf and Welling, 169

2017) has emerged as a promising method for pro- 170

cessing graph-structured data. GAT (Graph At- 171

tention Network) (Veličković et al., 2018) is a 172

convolution-style graph neural network that lever- 173

ages the attention mechanism for homogeneous 174

graphs, which includes only one type of node or 175

edge. It first computes the attention coefficient be- 176

tween different nodes and then produces the new 177

feature of each node with neighborhoods’ features 178

through aggregation as output. 179

3 Pass-Tuning 180

In this section, we formally introduce our method: 181

Pass-Tuning at length. An overview of Pass-Tuning 182

is presented in Figure 2. 183

3.1 Overview 184

Compared with natural language, the most crucial 185

feature of code is that it has its own structure. Di- 186

rectly migrating the PEL methods in NLP to the 187

code domain might seriously impair the perfor- 188

mance of several downstream tasks. Thus, we aim 189

to pursue the cost-effectiveness of tuning while 190

considering the code characteristics in this work. 191

3

Inspired by Li and Liang (2021), using tunable192

prefixes to learn knowledge instead of modifying193

all parameters would be promising to develop a194

reliable PEL tuning method for CodePTMs. In195

practice, we design a Structure Knowledge Injector196

module (injector module) with graph attentional197

architecture to play the role of “tunable prefix”.198

It will learn from the code structures instead of199

treating code as plain text, and then inject structure200

knowledge into the Transformer-based models.201

As is presented in Figure 2, each (self-)attention202

layer of a Transformer block in the CodePTM is203

concatenated with a Structure Knowledge Injector.204

For the whole training procedure, only these mod-205

ules are tuned while the parameters of the backbone206

model remain unchanged.207

3.2 Structure Knowledge Injector208

We hold the view that the problem of using PEL209

mentioned in section 3.1 is caused by a gap be-210

tween texts and well-structured codes. Therefore,211

to make full use of the structural information, here212

we introduce Structure Knowledge Injector as a213

prefix for each layer of the model. For simplicity,214

we only show the key steps of injecting knowledge215

into attention modules.216

Given a CodePTM G with encoder-only archi-217

tecture that has n transformer layers, the l-th model218

layer is defined as G(l). The task is to train Struc-219

ture Knowledge Injector module fl, as is demon-220

strated in Figure 4, to capture code structure infor-221

mation by the concatenation as follows:222

Concat(fl, G(l)) (1)223

Provided a code-related task dataset T with M224

samples, each code snippet Tm is first parsed into225

AST and then transformed into U-AST through226

the same process as section 2.1, notated as S(Tm).227

After that, an r × r adjacency matrix Ar×r
m is con-228

structed based on the connected edges in S(Tm).229

Then, Ar×r
m will be the input of the GALs, and each230

node feature is represented as hi.231

Through the computation of attention coefficient232

αij and aggregation, as is shown in Equation 2, we233

get the updated representation h′i, where Ni is the234

neighborhood of node i in the graph.235

h′i = σ(
∑
j∈Ni

αijWhj) (2)236

And given the input hidden states of the model237

as three vectors: Queries, Keys, and Values by238

projection matrices W q
l , W k

l , and W v
l respectively. 239

W ′kl = Concat(fl(h′i),W
k
l) (3) 240

W ′vl = Concat(fl(h′i),W
v
l) (4) 241

After the concatenation, the original projection 242

matrices will be equipped with the knowledge from 243

the injector module in the specific layer l, repre- 244

sented as W ′
l v and W ′

l v. 245

In the training stage, the cross-entropy loss will 246

be computed based on the training sample Tm. 247

n∑
l=1

lossl ←
n∑

l=1

LTm(fl, G(l)) (5) 248

and each fl will be optimized by back- 249

propagation and G(l) is frozen at all time. 250

fl ← fl − α∇fl

n∑
l=1

lossl (6) 251

where α is the learning rate. 252

3.3 Code Retriever 253

Initialization is a crucial factor in the graph neu- 254

ral networks’ performance (Abboud et al., 2021). 255

Inspired by previous works that leverage a reparam- 256

eterization process for robustness, we employed a 257

two-stage initialization strategy for Pass-Tuning 258

that take backbone model, task, and code token 259

type into account. Given m code snippets repre- 260

sented as S, each sample S(i) is given a score 261

R(S(i)) based on the relationship between token- 262

level attention from the model and token distance 263

of the U-AST (Chen et al., 2022). Then, this parsed 264

U-AST first fed into the GAT as initialization. It 265

is noteworthy that we sample the code snippet for 266

initialization as follows: 267

P (S(i)) =
log |R(S(i))|+ δ∑m

k̃=1
log |R(S(k̃))|+ δ

(7) 268

It is worth noticing that we regard codes as doc- 269

uments and first use BM25 (Stephen et al., 1994) 270

to rank the input codes for the cold-start scenario. 271

3.4 Adaptation for Different Scenarios 272

Since there exist two kinds of CodePTMs: encoder- 273

only and encoder-decoder, we implement two sets 274

of Pass-Tuning for them respectively. 275

3.4.1 Code Generation 276

For the code generation tasks, the knowledge in- 277

jection process is similar to the description in sec- 278

tion 3.2 for all CodePTMs. 279

4

Node Features:

Attention:

Part of Upgraded AST:

Node Features:

Attention:

Graph Attentional Layer

Tokens:

Adjcency Matrix:

def write (self, data):
self.temp.append(data)
...

Code Info

, data)data
GAT Init

,

data
)

data

h2h1 h3 h4

h’1 h’2 h’3 h’4

h2

h’2

h1
h3

h4
a 2
1

a22

a
23

a
24

Co
nca
t/av
g aij

Whi Whj

Figure 4: An illustration of Injector modules with graph
attentional architecture employed as tunable prefixes in
Pass-Tuning, The input codes are parsed into U-ASTs
for constructing adjacency matrices, which are fed into
the GAT for the computation of the attention coefficient
and aggregation.

3.4.2 Code Understanding280

For the code understanding tasks that can be ab-281

stracted into classification tasks, we take different282

strategies for knowledge injection.283

Encoder-Only. For CodePTMs like CodeBERT284

and GraphCodeBERT that only have transformer285

encoders, the knowledge of code structure is in-286

jected into the encoder modules layer-wise.287

Encoder-Decoder. For models with Encoder-288

Decoder architecture, e.g., CodeT5 and PLBART,289

we inject the knowledge provided by the GAL into290

each layer at the encoder modules, decoder mod-291

ules, and cross-attention modules.292

4 Experiments293

In this section, we conduct extensive experiments294

to evaluate Pass-Tuning and compare it against full295

fine-tuning and strong baselines.296

4.1 Datasets and Metrics297

We evaluate Pass-Tuning on the following six298

datasets covering eight programming languages299

for both code understanding and generation.300

Code Understanding For code understanding301

tasks, we employ BigCloneBench (Svajlenko et al.,302

2014) for clone detection and Devign (Zhou et al.,303

2019) for defect detection. The Accuracy and F1-304

score are reported for the two tasks respectively.305

Code Generation For Code-Text generation, we 306

use CodeSearchNet (Husain et al., 2019) dataset for 307

code summarization and smoothed BLEU-4 (Lin 308

and Och, 2004) as the evaluation metric. And for 309

code generation, CONCODE dataset (Iyer et al., 310

2018) is involved with exact match (EM), the 311

BLEU score (Papineni et al., 2002), and Code- 312

BLEU (Ren et al., 2020) as evaluation metrics. 313

Then, for Code-Code generation, we first use 314

Java-C# dataset (Nguyen et al., 2015) for code 315

translation, we report the exact match accuracy 316

(EM) and the BLEU score (Papineni et al., 2002). 317

Secondly, we employ two Java datasets provided 318

by Tufano et al. (2019): Refine Small and Refine 319

Medium for code refinement tasks. BLEU-4 and 320

EM are used for evaluation. Details of these four 321

datasets are listed in Appendix A. 322

4.2 Experimental Setup 323

Pre-trained Language Models We select six 324

representative pre-trained language models in our 325

experiment, including five CodePTMs: Graph- 326

CodeBERT (Guo et al., 2021), PLBART (Ahmad 327

et al., 2021), CodeT5 (Wang et al., 2021), and 328

UniXcoder (Guo et al., 2022). 329

Experimental Details For a fair comparison, 330

we adopt CodePTMs with the same number of 331

transformer layers. To be specific, we choose 332

GraphCodeBERT-base and UniXcoder-base from 333

microsoft3, PLBART-base from uclanlp4, and 334

CodeT5-base from Salesforce5 as our model back- 335

bones. Then, we set the max length 6 of the U- 336

AST token sequence fed into the graph attentional 337

architecture as 32 and 64, represented by Pass- 338

Tuning(32) and Pass-Tuning(64) in the following 339

experiments. We choose Adam optimizer (Kingma 340

and Ba, 2015) with a warm-up rate of 1,000 steps. 341

All the experiments are implemented by PyTorch 342

1.5.1, and models are trained and evaluated with 4 343

interconnected NVIDIA GTX 3090 GPUs. More 344

details of the experimental implementation and hy- 345

perparameter settings of CodeBERT, GraphCode- 346

3https://huggingface.co/microsoft
4https://huggingface.co/uclanlp/

plbart-base
5https://huggingface.co/Salesforce/

codet5-base
6We find that the average length of the top K training

samples of each task differs and falls within a range between
32 and 64. As such, we have covered both 32 and 64 as the
lengths for the input code snippets. If the snippets exceed the
token length, they are truncated; if they are shorter, then they
are padded.

5

https://huggingface.co/microsoft
https://huggingface.co/uclanlp/plbart-base
https://huggingface.co/uclanlp/plbart-base
https://huggingface.co/Salesforce/codet5-base
https://huggingface.co/Salesforce/codet5-base

BERT, and UniXcoder are given in Appendix B.347

In our experiments, we aim to answer the fol-348

lowing research questions: 1) As a PEL method,349

whether Pass-Tuning can achieve overall compar-350

ative performance while significantly diminishing351

the number of tunable parameters? 2) Can Pass-352

Tuning obtain surpassing full fine-tuning perfor-353

mance on some downstream tasks? 3) On which354

kind of code-related tasks Pass-Tuning excel? Do355

the tasks’ characteristics or the CodePTMs’ own356

properties cause this phenomenon?357

4.3 Baselines358

To further demonstrate the effectiveness of Pass-359

Tuning, we set the following PEL methods from360

NLP as strong baselines: BitFit (Ben Zaken et al.,361

2022), Adapter7 (Houlsby et al., 2019), and Prefix-362

Tuning (Li and Liang, 2021). These methods all re-363

quire minor modifications of parameters and keep364

the backbone model frozen. Since there are no365

ready-made implementations of these baseline tun-366

ing methods that can be directly applied to code367

representation learning, we implement them from368

scratch based on encoder-only and encoder-decoder369

architectures for various CodePTMs.370

4.4 Performance of Code Generation371

In this section, We evaluate Pass-Tuning on four372

generation tasks with different CodePTMs as back-373

bones. The results of code summarization on six374

programming languages’ bimodal8 data of Code-375

SearchNet (CSN) are in Table 1, and then we make376

the following observations. 1) Even if we only377

tune less than 1% of the model parameters, Pass-378

Tuning can still reach state-of-the-art (SOTA) per-379

formance based on CodeT5 and PLBART in sum-380

marizing code for three and two subsets of lan-381

guages respectively. 2) The experiments show that382

Pass-Tuning can outperform all previous PEL meth-383

ods when using PLBART as the backbone model.384

3) For CodeT5, compared to full fine-tuning and385

Adapter (with relatively richer parameters), there386

exists only marginal performance gaps. 4) In terms387

of absolute performance on code summarization,388

CodeT5 performs slightly better. We take the view389

that one potential reason for this is that CodeT5390

7Concurrent with our work, Ayupov and Chirkova (2022)
apply LoRA and adapters to CodeT5 and PLBART.

8Bimodal data means parallel data of NL-PL (Natural
Language-Programming Langauge) pairs and unimodal stands
for pure codes without NL texts.

utilizes the unimodal part of CSN during the pre- 391

training stage, whereas PLBART does not. 392

From Table 2, employing Pass-Tuning with 393

PLBART can reach SOTA results in EM, and com- 394

parable performance on other metrics for genera- 395

tion tasks. For using CodeT5 as the backbone, there 396

exists a gap between Pass-Tuning and fine-tuning. 397

However, our method can surpass all previous PEL 398

methods although we have much lesser parameters. 399

Table 3 demonstrate the performance of code 400

translation and code refinement. For the translation 401

task, it is self-evident that the number of parame- 402

ters is positively correlated with the performance, 403

and it’s hard for all PEL methods to conduct this 404

seq2seq task since the number of parameters con- 405

straints models’ capability. Nevertheless, there is 406

no denying that Pass-Tuning outperforms both Bit- 407

Fit and P-Tuning V2 by a significant margin. The 408

situation is different for code refinement, whether 409

we use CodeT5 or PLBART as backbones, Pass- 410

Tuning can surpass the performance of full fine- 411

tuning on at least one of the metrics. 412

Moreover, Table 14 to Table 16 enumerate addi- 413

tional generation tasks using GraphCodeBERT and 414

UniXcoder as backbones. 415

4.5 Performance of Code Understanding 416

The results of code understanding tasks: defect de- 417

tection and clone detection, are shown in Table 4. 418

We make the following observations that 1) For 419

the CodeT5 backbone, by comparing with other 420

strong PEL baselines, Pass-Tuning can reach simi- 421

lar performance but lower the cost of tuning further. 422

2) When using PLBART as the backbone, we can 423

see that Pass-Tuning demonstrates excellent perfor- 424

mance on Clone detection that surpasses full fine- 425

tuning. 3) For the defect detection task, tuning all 426

the parameters still exhibits dominant performance. 427

We hold the view that this phenomenon is caused 428

by the difficulty in understanding the semantics of 429

defects in context, and there exists a bottom-line 430

number of parameters that makes the representa- 431

tion learning of code defects feasible. Moreover, 432

the amount of data in the Devign dataset is much 433

smaller than that in BigCloneBench, which might 434

lead to overfitting problems. Similarly, Table 17 435

lists the results of conducting the same experiments 436

on GraphCodeBERT and UniXcoder. 437

6

Methods Params Ruby JavaScript Go Python Java PHP Overall

CodeT5
Fine-Tuning 224M 15.24 16.21 19.53 19.90 20.34 26.12 19.56
BitFit 0.001M 1.75 1.05 1.19 2.15 1.40 0.97 1.42
Adapter 14.22M 15.45 16.04 19.40 20.22 20.19 24.90 19.37
P-Tuning V2 0.633M 15.22 15.63 18.92 20.18 19.71 25.43 19.18
Pass-Tuning(32) 3.068M 15.30 15.70 19.51 20.24 20.27 25.57 19.43
Pass-Tuning(64) 3.068M 15.47 15.92 19.74 20.48 20.35 25.83 19.63
PLBART
Fine-Tuning 139M 13.97 14.13 18.10 19.33 18.50 23.56 17.93
BitFit 0.126M 8.38 5.21 12.18 12.78 9.08 11.57 9.87
Adapter 7.11M 3.91 2.05 11.62 15.20 13.54 24.01 11.72
P-Tuning V2 0.329M 13.43 13.93 17.18 18.16 16.96 23.21 17.15
Pass-Tuning(32) 1.879M 14.30 14.29 18.00 19.15 17.78 23.72 17.87
Pass-Tuning(64) 1.879M 14.23 14.52 17.84 19.13 18.30 23.82 17.97

Table 1: Performance on Code Summarization task.

Methods Params BLEU EM CodeBLEU

CodeT5
Fine-Tuning 224M 40.73 22.25 43.20
BitFit 0.001M 0.13 0.00 12.36
Adapter 14.22M 33.28 21.20 39.81
P-Tuning V2 0.633M 28.87 19.50 32.02
Pass-Tuning(32) 3.068M 33.60 22.15 36.97
Pass-Tuning(64) 3.068M 34.12 22.75 37.38
PLBART
Fine-Tuning 139M 32.42 16.55 35.39
BitFit 0.126M 2.70 0.25 0.67
Adapter 7.11M 4.40 6.35 13.72
P-Tuning V2 0.329M 26.92 16.75 30.65
Pass-Tuning(32) 1.879M 30.33 19.75 33.96
Pass-Tuning(64) 1.879M 29.86 19.88 33.01

Table 2: Performance on Code Generation task.

Methods Params
Java to C# C# to Java Refine Small Refine Medium

BLEU EM BLEU EM BLEU EM BLEU EM

CodeT5
Fine-Tuning 224M 84.15 65.30 79.12 66.40 77.39 21.35 91.04 7.82
BitFit 0.001M 0.25 0.00 0.24 0.00 1.28 0.00 5.14 0.00
Adapter 14.22M 75.43 52.40 73.10 57.70 77.41 18.58 91.01 3.61
P-Tuning V2 0.633M 59.86 33.70 57.10 41.00 78.99 4.56 91.02 0.79
Pass-Tuning(32) 3.068M 75.46 52.30 75.38 60.70 79.51 11.85 91.22 5.72
Pass-Tuning(64) 3.068M 72.86 48.70 73.19 58.40 79.69 12.55 91.06 5.45
PLBART
Fine-Tuning 139M 77.05 62.60 79.29 62.80 73.32 12.71 83.88 4.24
BitFit 0.126M 16.48 0.10 17.43 0.90 74.08 1.45 85.41 0.42
Adapter 7.11M 66.72 42.10 68.70 51.00 73.58 10.90 84.72 3.12
P-Tuning V2 0.329M 22.87 1.00 48.08 33.80 73.87 2.07 73.58 0.03
Pass-Tuning(32) 1.879M 64.95 44.00 64.14 52.20 74.37 5.07 86.38 6.09
Pass-Tuning(64) 1.879M 64.68 41.90 63.38 49.70 74.45 5.01 87.26 6.24

Table 3: Performance on Code Translation & Code Refinement Tasks.

Methods Params
Defect Clone

Accuracy F1

CodeT5
Fine-Tuning 224M 64.35 94.97
BitFit 1.183M 55.05 69.52
Adapter 15.40M 59.74 94.47
P-Tuning V2 1.182M 54.61 79.83
Pass-Tuning(32) 0.591M 58.09 93.16
Pass-Tuning(64) 0.591M 56.83 88.25
PLBART
Fine-Tuning 139M 62.27 92.85
BitFit 1.308M 56.30 92.42
Adapter 8.29M 61.60 92.74
P-Tuning V2 1.182M 53.81 75.88
Pass-Tuning(32) 0.591M 56.41 93.41
Pass-Tuning(64) 0.591M 56.09 92.75

Table 4: Performance on Code Clone Detec-
tion & Code Defect Detection Tasks.

4.6 Ablation Study438

We choose CodeT5 backbone9 for ablation study.439

Effectiveness of Injector Module. Pass-Tuning440

employs a Structure Knowledge Injector with GAT441

network architecture as the tunable prefixes in order442

to capture code structure. The results of ablation443

studies are shown in Table 5, and we can see that444

the two variants (removing the injector module and445

using GCN replacement) of prefix design lead to446

worse performance on code summarization tasks447

in most languages, and can no longer reach sur-448

passing fine-tuning results. which indicates the449

effectiveness of our designation.450

Effectiveness of Code Retriever. We design a451

code retriever in section 3.3 for better GAT initial-452

ization in Pass-Tuning. To confirm its effectiveness,453

we replace it by selecting code snippets randomly.454

Based on the observation in Table 5, it is clear that455

using random initialization causes slightly worse456

results among all programming languages.457

Effectiveness of Modeling AST To demonstrate458

the necessity of explicitly modeling AST, we con-459

duct comparative experiments for all involved tasks.460

9Experiments on other models are listed in Appendix C.3

As showcased in Table 12 and Table 13, model- 461

ing using AST achieves better results across all 462

tasks compared to directly employing the code se- 463

quences. 464

4.7 Efficiency Analysis 465

Our approach offers a new path to get out of the 466

cost-performance dilemma of using CodePTMs. To 467

quantify our efficiency, Table 6 list the tunable pa- 468

rameters of all tuning strategies covered in this pa- 469

per. Compared with PEL baselines, the tuning cost 470

of our method is lower or at the same level, while 471

Pass-Tuning evidently outperforms these methods 472

across all the tasks. When compared with full fine- 473

tuning, our approach can achieve overall compara- 474

tive results by modifying less than 1% of the param- 475

eters, which further proves the cost-effectiveness 476

of Pass-Tuning. 477

5 Related Works 478

Code Pre-trained Language Models. Trans- 479

former based models (Vaswani et al., 2017; Devlin 480

et al., 2019) significantly advance the performance 481

of various natural language processing (NLP) tasks. 482

With the brilliant achievements of these pre-trained 483

models in the field of NLP, recent works attempt 484

7

Methods Ruby JavaScript Go Python Java PHP Overall

Full-Tuning 15.24 16.21 19.53 19.90 20.34 26.12 19.56
Pass-Tuning(64) 15.47 15.92 19.74 20.48 20.35 25.83 19.63
w/o. Code Retriever 15.24 15.70 19.38 20.01 20.32 25.41 19.34
w/o. Knowl. Injector 15.22 15.63 18.92 20.18 19.71 25.43 19.18
with GCN 15.41 15.83 19.44 20.20 19.76 25.48 19.35

Table 5: Ablation study of Pass-Tuning based on CodeT5 in code summarizaton tasks.

Methods
PLBART CodeT5

CLS
MB

GEN
MB

CLS
MB

GEN
MB

Fine-Tuning 139M 139M 224M 224M
Bitfit 1.308M 0.126M 1.183M 0.001M
Adapter 8.29M 7.11M 15.40M 14.22M
P-Tuning V2 1.182M 0.329M 1.182M 0.633M
Pass-Tuning 0.591M 1.879M 0.591M 3.068M

Table 6: Comparison of the number of learnable param-
eters between Pass-Tuning and other PEL strategies.

to apply them to codes in order to boost the de-485

velopment of software engineering and code in-486

telligence. CodeBERT (Feng et al., 2020) is pre-487

trained on NL-PL data. It follows RoBERTa (Liu488

et al., 2019), which uses multi-layer bidirectional489

Transformers as the architecture with masked lan-490

guage modeling (MLM) and replaced token detec-491

tion (RTD) (Yang et al., 2019) pre-training tasks.492

GraphCodeBERT (Guo et al., 2021) is a variant of493

CodeBERT that integrates the data-flow to facili-494

tate code representation learning. PLBART (Ah-495

mad et al., 2021) is based on BART (Lewis et al.,496

2020) with a denoising objective in pre-training.497

CodeT5 (Wang et al., 2021) utilizes the T5 (Raffel498

et al., 2020) architecture, leveraging code seman-499

tics through identifier tokens and applying multi-500

task learning (MTL) to a unified framework. UniX-501

coder (Guo et al., 2022) adapts the UniLM (Dong502

et al., 2019) architecture and is pre-trained on uni-503

fied cross-modal data to support both code under-504

standing and generation tasks.505

Parameter-Efficient Learning. The idea of506

Parameter-Efficient Learning (PEL) (Ding et al.,507

2023) is to optimize a small portion of parameters508

while keeping the model backbone frozen. As long509

as the data is sufficient, PEL can reach comparable510

performance to full model tuning (He et al., 2022).511

Houlsby et al. (2019) insert task-specific neural512

modules called adapters into the transformer-based513

models, and only these adapters are trained during514

fine-tuning. Mahabadi et al. (2021) propose a bet-515

ter trade-off between performance and the number516

of tunable parameters through combining adapters 517

and low-rank optimization. Inspired by the suc- 518

cess of prompting methods that guide large lan- 519

guage models (Brown et al., 2020) through textual 520

prompt (Liu et al., 2021), Prefix-Tuning (Li and 521

Liang, 2021) concatenate tunable prefix vectors 522

with the keys and values of each attention layer 523

inside the model, and only train these soft prompts 524

when being fine-tuned. Then, it is further simpli- 525

fied by prompt-tuning (Lester et al., 2021) that only 526

prepends to the input in the first layer. After that, 527

BitFit (Ben Zaken et al., 2022) employs a sparse 528

method that only tunes the bias terms of the model. 529

Recently, LoRA (Hu et al., 2022) has utilized low- 530

rank matrices for approximating parameter updates. 531

Compared to full fine-tuning, these techniques have 532

all demonstrated competitive performance on a se- 533

ries of NLP tasks while only updating less than 534

10% of the model parameters. 535

6 Conclusion 536

In this work, we present a novel Pass-Tuning frame- 537

work for adapting CodePTMs with different archi- 538

tectures to downstream tasks. To our best knowl- 539

edge, we are the first to propose a lightweight al- 540

ternative to full fine-tuning in the domain of code 541

representation learning and significantly reduce the 542

number of trainable parameters for a series of tasks. 543

Besides, we consider source codes’ structure infor- 544

mation and employ tunable prefixes with GAL ar- 545

chitecture. Moreover, a distinct initialization strat- 546

egy is designed for prefixes to exploit the character- 547

istics of codes. Extensive experiments have demon- 548

strated the effectiveness of our method and Pass- 549

Tuning can steadily outperform all PEL baselines. 550

In comparison with full Fine-Tuning, we only mod- 551

ify less than 1% of the parameters while achieving 552

competitive results. Further ablation studies indi- 553

cate the robustness and rationality of our strategies. 554

In our future work, we will explore more Parameter- 555

Efficient learning approaches for code and move 556

one step forward to further utilize code structure 557

information for tuning CodePTMs. 558

8

Limitations559

Our method has mainly two limitations. First, when560

performing an NL-PL task such as code summa-561

rization, our approach cannot provide additional in-562

formation to natural language comments. Secondly,563

we obtain ASTs with high connectivity by adding564

data-flow edges and using them as input. How-565

ever, different token types have different salience566

for various CodePTMs (Chen et al., 2022). Thus,567

feature engineering for AST may further enhance568

the performance, which we leave as future work.569

Broader Impact and Ethical Consideration570

To our best knowledge, we are the first to propose a571

Parameter-Efficient tuning method for CodePTMs572

while considering code structure. Pass-Tuning will573

not introduce additional model bias and does not574

involve misuse of code and natural language com-575

ments. Our approach significantly reduces the com-576

putation and operational costs when applying pre-577

trained models to downstream tasks. We believe it578

will be beneficial to the NLP community.579

References580

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and581
Thomas Lukasiewicz. 2021. The surprising power582
of graph neural networks with random node initial-583
ization. In Proceedings of the Thirtieth International584
Joint Conference on Artificial Intelligence, IJCAI-21,585
pages 2112–2118. International Joint Conferences on586
Artificial Intelligence Organization. Main Track.587

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and588
Kai-Wei Chang. 2021. Unified pre-training for pro-589
gram understanding and generation. In Proceedings590
of the 2021 Conference of the North American Chap-591
ter of the Association for Computational Linguistics:592
Human Language Technologies, pages 2655–2668,593
Online. Association for Computational Linguistics.594

Miltiadis Allamanis and Charles Sutton. 2013. Min-595
ing source code repositories at massive scale using596
language modeling. In 2013 10th Working Confer-597
ence on Mining Software Repositories (MSR), pages598
207–216. IEEE.599

Uri Alon, Omer Levy, and Eran Yahav. 2019. code2seq:600
Generating sequences from structured representa-601
tions of code. In International Conference on Learn-602
ing Representations.603

Shamil Ayupov and Nadezhda Chirkova. 2022.604
Parameter-efficient finetuning of transformers for605
source code. In Efficient Natural Language and606
Speech Processing (ENLSP-II) workshop of the 36th607
Conference on Neural Information Processing Sys-608
tems (NeurIPS 2022). Curran Associates, Inc.609

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 610
2022. BitFit: Simple parameter-efficient fine-tuning 611
for transformer-based masked language-models. In 612
Proceedings of the 60th Annual Meeting of the As- 613
sociation for Computational Linguistics (Volume 2: 614
Short Papers), pages 1–9, Dublin, Ireland. Associa- 615
tion for Computational Linguistics. 616

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 617
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 618
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 619
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 620
Gretchen Krueger, Tom Henighan, Rewon Child, 621
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 622
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma- 623
teusz Litwin, Scott Gray, Benjamin Chess, Jack 624
Clark, Christopher Berner, Sam McCandlish, Alec 625
Radford, Ilya Sutskever, and Dario Amodei. 2020. 626
Language models are few-shot learners. In Ad- 627
vances in Neural Information Processing Systems, 628
volume 33, pages 1877–1901. Curran Associates, 629
Inc. 630

Luca Buratti, Saurabh Pujar, Mihaela Bornea, Scott Mc- 631
Carley, Yunhui Zheng, Gaetano Rossiello, Alessan- 632
dro Morari, Jim Laredo, Veronika Thost, Yufan 633
Zhuang, and Giacomo Domeniconi. 2020. Exploring 634
software naturalness through neural language mod- 635
els. 636

Nuo Chen, Qiushi Sun, Renyu Zhu, Xiang Li, Xuesong 637
Lu, and Ming Gao. 2022. CAT-probing: A metric- 638
based approach to interpret how pre-trained models 639
for programming language attend code structure. In 640
EMNLP 2022, Abu Dhabi, United Arab Emirates. 641
Association for Computational Linguistics. 642

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 643
Kristina Toutanova. 2019. BERT: Pre-training of 644
deep bidirectional transformers for language under- 645
standing. In Proceedings of the 2019 Conference of 646
the North American Chapter of the Association for 647
Computational Linguistics: Human Language Tech- 648
nologies, Volume 1 (Long and Short Papers), pages 649
4171–4186, Minneapolis, Minnesota. Association for 650
Computational Linguistics. 651

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong- 652
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, 653
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, 654
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei 655
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong 656
Sun. 2023. Parameter-efficient fine-tuning of large- 657
scale pre-trained language models. Nature Machine 658
Intelligence, 5(3):220–235. 659

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi- 660
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, 661
and Hsiao-Wuen Hon. 2019. Unified language model 662
pre-training for natural language understanding and 663
generation. In Advances in Neural Information Pro- 664
cessing Systems 32: Annual Conference on Neural 665
Information Processing Systems 2019, NeurIPS 2019, 666
December 8-14, 2019, Vancouver, BC, Canada, pages 667
13042–13054. 668

9

https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.24963/ijcai.2021/291
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.48550/ARXIV.2212.05901
https://doi.org/10.48550/ARXIV.2212.05901
https://doi.org/10.48550/ARXIV.2212.05901
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
http://arxiv.org/abs/2006.12641
https://aclanthology.org/2022.findings-emnlp.295
https://aclanthology.org/2022.findings-emnlp.295
https://aclanthology.org/2022.findings-emnlp.295
https://aclanthology.org/2022.findings-emnlp.295
https://aclanthology.org/2022.findings-emnlp.295
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-669
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,670
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-671
BERT: A pre-trained model for programming and672
natural languages. In Findings of the Association673
for Computational Linguistics: EMNLP 2020, pages674
1536–1547, Online. Association for Computational675
Linguistics.676

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming677
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-678
modal pre-training for code representation. In Pro-679
ceedings of the 60th Annual Meeting of the Associa-680
tion for Computational Linguistics (Volume 1: Long681
Papers), pages 7212–7225, Dublin, Ireland. Associa-682
tion for Computational Linguistics.683

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,684
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,685
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,686
Shao Kun Deng, Colin Clement, Dawn Drain, Neel687
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.688
2021. GraphCodeBERT: Pre-training code represen-689
tations with data flow. In International Conference690
on Learning Representations.691

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-692
Kirkpatrick, and Graham Neubig. 2022. Towards a693
unified view of parameter-efficient transfer learning.694
In International Conference on Learning Representa-695
tions.696

Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su,697
and Premkumar T. Devanbu. 2016. On the natural-698
ness of software. Commun. ACM, 59(5):122–131.699

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,700
Bruna Morrone, Quentin De Laroussilhe, Andrea701
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.702
Parameter-efficient transfer learning for NLP. In703
Proceedings of the 36th International Conference704
on Machine Learning, volume 97 of Proceedings705
of Machine Learning Research, pages 2790–2799.706
PMLR.707

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-708
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu709
Chen. 2022. LoRA: Low-rank adaptation of large710
language models. In International Conference on711
Learning Representations.712

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis713
Allamanis, and Marc Brockschmidt. 2019. Code-714
searchnet challenge: Evaluating the state of semantic715
code search. arXiv preprint arXiv:1909.09436.716

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and717
Luke Zettlemoyer. 2016. Summarizing source code718
using a neural attention model. In Proceedings of the719
54th Annual Meeting of the Association for Compu-720
tational Linguistics (Volume 1: Long Papers), pages721
2073–2083, Berlin, Germany. Association for Com-722
putational Linguistics.723

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and 724
Luke Zettlemoyer. 2018. Mapping language to code 725
in programmatic context. In Proceedings of the 2018 726
Conference on Empirical Methods in Natural Lan- 727
guage Processing, pages 1643–1652, Brussels, Bel- 728
gium. Association for Computational Linguistics. 729

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 730
method for stochastic optimization. In 3rd Inter- 731
national Conference on Learning Representations, 732
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 733
Conference Track Proceedings. 734

Thomas N. Kipf and Max Welling. 2017. Semi- 735
supervised classification with graph convolutional 736
networks. In International Conference on Learning 737
Representations. 738

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 739
The power of scale for parameter-efficient prompt 740
tuning. In Proceedings of the 2021 Conference on 741
Empirical Methods in Natural Language Processing, 742
pages 3045–3059, Online and Punta Cana, Domini- 743
can Republic. Association for Computational Lin- 744
guistics. 745

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 746
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 747
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 748
BART: Denoising sequence-to-sequence pre-training 749
for natural language generation, translation, and com- 750
prehension. In Proceedings of the 58th Annual Meet- 751
ing of the Association for Computational Linguistics, 752
pages 7871–7880. Association for Computational 753
Linguistics. 754

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 755
Optimizing continuous prompts for generation. In 756
Proceedings of the 59th Annual Meeting of the Asso- 757
ciation for Computational Linguistics and the 11th 758
International Joint Conference on Natural Language 759
Processing (Volume 1: Long Papers), pages 4582– 760
4597, Online. Association for Computational Lin- 761
guistics. 762

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE: a 763
method for evaluating automatic evaluation metrics 764
for machine translation. In COLING 2004: Pro- 765
ceedings of the 20th International Conference on 766
Computational Linguistics, pages 501–507, Geneva, 767
Switzerland. COLING. 768

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, 769
Hiroaki Hayashi, and Graham Neubig. 2021. Pre- 770
train, prompt, and predict: A systematic survey of 771
prompting methods in natural language processing. 772
CoRR, abs/2107.13586. 773

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 774
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 775
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 776
RoBERTa: A robustly optimized BERT pretraining 777
approach. arXiv preprint arXiv:1907.11692. 778

10

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586

Rabeeh Karimi Mahabadi, James Henderson, and Se-779
bastian Ruder. 2021. Compacter: Efficient low-rank780
hypercomplex adapter layers. In Advances in Neural781
Information Processing Systems.782

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.783
Convolutional neural networks over tree structures784
for programming language processing. In Proceed-785
ings of the Thirtieth AAAI Conference on Artificial786
Intelligence, pages 1287–1293.787

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N788
Nguyen. 2015. Divide-and-conquer approach for789
multi-phase statistical migration for source code (t).790
In 2015 30th IEEE/ACM International Conference791
on Automated Software Engineering (ASE), pages792
585–596. IEEE.793

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-794
Jing Zhu. 2002. Bleu: a method for automatic evalu-795
ation of machine translation. In Proceedings of the796
40th Annual Meeting of the Association for Compu-797
tational Linguistics, pages 311–318, Philadelphia,798
Pennsylvania, USA. Association for Computational799
Linguistics.800

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-801
ine Lee, Sharan Narang, Michael Matena, Yanqi802
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the803
limits of transfer learning with a unified text-to-text804
transformer. Journal of Machine Learning Research,805
21(140):1–67.806

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016.807
Probabilistic model for code with decision trees.808
ACM SIGPLAN Notices, pages 731–747.809

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie810
Liu, Duyu Tang, Ming Zhou, Ambrosio Blanco, and811
Shuai Ma. 2020. Codebleu: a method for auto-812
matic evaluation of code synthesis. arXiv preprint813
arXiv:2009.10297.814

Robertson Stephen, Walker Steve, Jones Susan,815
Hancock-Beaulieu Micheline, and Gatford Mike.816
1994. Okapi at trec.817

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo,818
Chanchal K Roy, and Mohammad Mamun Mia. 2014.819
Towards a big data curated benchmark of inter-project820
code clones. In 2014 IEEE International Conference821
on Software Maintenance and Evolution, pages 476–822
480. IEEE.823

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-824
miliano Di Penta, Martin White, and Denys Poshy-825
vanyk. 2019. An empirical study on learning bug-826
fixing patches in the wild via neural machine trans-827
lation. ACM Transactions on Software Engineering828
and Methodology, 28(4).829

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob830
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz831
Kaiser, and Illia Polosukhin. 2017. Attention is all832
you need. In Advances in Neural Information Pro-833
cessing Systems, volume 30. Curran Associates, Inc.834

Petar Veličković, Guillem Cucurull, Arantxa Casanova, 835
Adriana Romero, Pietro Liò, and Yoshua Bengio. 836
2018. Graph attention networks. In International 837
Conference on Learning Representations. 838

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi 839
Jin. 2020. Detecting code clones with graph neu- 840
ral network and flow-augmented abstract syntax 841
tree. In 2020 IEEE 27th International Conference 842
on Software Analysis, Evolution and Reengineering 843
(SANER), pages 261–271. IEEE. 844

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. 845
Hoi. 2021. CodeT5: Identifier-aware unified pre- 846
trained encoder-decoder models for code understand- 847
ing and generation. In Proceedings of the 2021 848
Conference on Empirical Methods in Natural Lan- 849
guage Processing, pages 8696–8708, Online and 850
Punta Cana, Dominican Republic. Association for 851
Computational Linguistics. 852

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- 853
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019. 854
XLNet: Generalized autoregressive pretraining for 855
language understanding. In Advances in Neural In- 856
formation Processing Systems, volume 32. Curran 857
Associates, Inc. 858

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, 859
and Yang Liu. 2019. Devign: Effective vulnerability 860
identification by learning comprehensive program 861
semantics via graph neural networks. In Advances in 862
Neural Information Processing Systems, volume 32. 863
Curran Associates, Inc. 864

Renyu Zhu, Lei Yuan, Xiang Li, Ming Gao, and 865
Wenyuan Cai. 2022. A neural network architecture 866
for program understanding inspired by human behav- 867
iors. In Proceedings of the 60th Annual Meeting of 868
the Association for Computational Linguistics (Vol- 869
ume 1: Long Papers), pages 5142–5153, Dublin, 870
Ireland. Association for Computational Linguistics. 871

A Statistics of Datasets 872

A.1 Code Generation & Translation 873

Dataset Language Training Dev Testing

CONCODE NL - Java 100,000 2,000 2,000
CodeTrans Java - C# 10,300 500 1,000

Table 7: CONCODE (Iyer et al., 2018) and Code-
Trans (Nguyen et al., 2015) datasets statistics for code
generation and code translation tasks.

11

https://openreview.net/forum?id=bqGK5PyI6-N
https://openreview.net/forum?id=bqGK5PyI6-N
https://openreview.net/forum?id=bqGK5PyI6-N
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/49265d2447bc3bbfe9e76306ce40a31f-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.353
https://doi.org/10.18653/v1/2022.acl-long.353

A.2 Code Refinement874

Dataset Language Training Dev Testing

RefinementSmall Java 46,680 5,835 5,835
RefinementMedium Java 52,364 6,545 6,545

Table 8: Code Refinement (Tufano et al., 2019) dataset
statistics.

A.3 Defect Detection & Clone Detection875

Dataset Language Training Dev Testing

BigCloneBench Java 900K 416K 416K
Devign C 21K 2.7K 2.7K

Table 9: BigCloneBench (Svajlenko et al., 2014) and
Devign (Zhou et al., 2019) datasets statistics for Clone
detection and Defect Detection tasks.

A.4 Code Summarization876

Language Training Dev Testing

Go 167,288 7,325 8,122
Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

Table 10: CodeSearchNet (Husain et al., 2019) data
statistics for the code summarization task.

B Implementation Details877

Hyperparameter value

Batch Size 8,16,32
Learning Rate {8e-6, 2e-5, 1e-4, 5e-4}
Max Source Length {130, 240, 256, 320, 512}
Max Target Length {3, 120, 150, 240, 256, 512}
GAL max Length {32, 64}
Epoch {2, 30, 50, 100}
Smoothing Factor δ {0.05, 0.1}

Table 11: Hyperparameters for Pass-Tuning

C Supplementary Experiments878

In this section, we provide additional experiments879

that are not demonstrated in section 4.880

C.1 Supplementary Analysis of Explicitly 881

Modeling AST 882

To demonstrate the necessity of explicitly model- 883

ing the AST, we design additional experiments to 884

compare its performance improvement relative to 885

simply modeling code tokens (directly constructing 886

sequences in the order of code). In the experiments, 887

we set the maximum sequence length to 32. 888

Tasks Clone Defect Java → C# C# → Java

Metrics F1 Acc BLEU EM BLEU EM

CodeT5
Token Modeling 92.97 55.82 74.60 52.10 74.64 59.50
AST Modeling 93.16 58.09 75.46 52.30 75.38 60.70

PLBART
Token Modeling 93.02 55.60 64.65 41.20 64.69 52.80
AST Modeling 93.41 56.41 64.95 44.00 64.14 52.20

Table 13: Effectiveness of explicitly modeling AST for
clone detection, defect detection, and code translation
tasks.

C.2 Supplementary Experiments on More 889

Backbones 890

This section provides supplementary experiments 891

on more backbones in Table 14, Table 15, Table 16, 892

and Table 17. 893

C.3 Supplementary Ablation Studies 894

This section provides supplementary experiments 895

of detailed ablation studies in Table 18, Table 19, 896

Table 20, and Table 21. 897

12

Languages Ruby JavaScript Go Python Java PHP Overall

CodeT5
Token Modeling 15.17 15.64 19.33 19.92 20.08 25.52 19.27
AST Modeling 15.30 15.70 19.51 20.24 20.27 25.57 19.43

PLBART
Token Modeling 14.28 13.17 17.33 17.08 17.41 23.54 17.13
AST Modeling 14.30 14.29 18.00 19.15 17.78 23.72 17.87

Table 12: Effectiveness of explicitly modeling AST for code summarization.

Methods Ruby JavaScript Go Python Java PHP Overall

GraphCodeBERT
Fine-Tuning 11.94 15.05 18.43 19.27 18.72 25.37 18.13
Pass-Tuning(32) 12.94 14.19 18.34 19.19 18.75 25.51 18.15
UniXcoder
Fine-Tuning 14.66 15.39 19.01 19.75 20.19 26.08 19.18
Pass-Tuning(32) 14.69 14.82 19.84 20.10 19.42 24.97 18.97

Table 14: Performance on Code Summarization task based on GraphCodeBERT and
UniXcoder.

Methods BLEU EM CodeBLEU

GraphCodeBERT
Fine-Tuning 31.08 18.35 35.00
Pass-Tuning(32) 30.58 17.10 26.05
UniXcoder
Fine-Tuning 31.35 18.80 35.41
Pass-Tuning(32) 29.72 19.23 34.69

Table 15: Performance on Code Generation tasks
based on GraphCodeBERT and UniXcoder.

Methods
Java to C# C# to Java Refine Small Refine Medium

BLEU EM BLEU EM BLEU EM BLEU EM

GraphCodeBERT
Fine-Tuning 74.69 54.10 69.94 57.40 78.44 16.13 90.68 7.74
Pass-Tuning(32) 63.71 45.40 58.99 49.20 79.80 13.22 90.93 5.44
UniXcoder
Fine-Tuning 77.21 61.00 72.37 62.30 64.05 14.34 75.12 5.78
Pass-Tuning(32) 65.90 48.20 62.76 46.70 63.75 7.78 76.44 5.92

Table 16: Performance on Code Translation & Code Refinement Tasks.

Methods
Defect Clone

Accuracy F1

GraphCodeBERT
Fine-Tuning 62.88 95.30
Pass-Tuning(32) 57.28 93.14
UniXcoder
Fine-Tuning 62.34 91.36
Pass-Tuning(32) 54.28 87.74

Table 17: Performance on Code Clone
Detection & Code Defect Detection
Tasks.

Methods Ruby JavaScript Go Python Java PHP Overall

CodeT5
Fine-Tuning 15.24 16.21 19.53 19.90 20.34 26.12 19.56
Pass-Tuning(64) 15.47 15.92 19.74 20.48 20.35 25.83 19.63
w/o. Code Retriever 15.24 15.70 19.38 20.01 20.32 25.41 19.34
w/o. GAT Module 15.22 15.63 18.92 20.18 19.71 25.43 19.18
with GCN 15.41 15.83 19.44 20.20 19.76 25.48 19.35

PLBART
Fine-Tuning 13.97 14.13 18.10 19.33 18.50 23.56 17.93
Pass-Tuning(64) 14.23 14.52 17.84 19.13 18.30 23.82 17.97
w/o. Code Retriever 14.00 14.42 17.31 18.72 18.28 23.65 17.73
w/o. GAT Module 13.43 13.93 17.18 18.16 16.96 23.21 17.15
with GCN 14.10 14.40 17.91 18.85 17.22 23.58 17.71

Table 18: Detailed comparison of code summarization tasks based on PLBART and
CodeT5 with variant Pass-Tuning implementation

Methods BLEU EM CodeBLEU

CodeT5
Fine-Tuning 40.73 22.25 43.20
Pass-Tuning(64) 34.12 22.75 37.38

w/o. Code Retriever 30.51 20.85 33.92
w/o. GAT Module 28.87 19.50 32.02
with GCN 31.51 20.65 35.11

PLBART
Fine-Tuning 32.42 16.55 35.39
Pass-Tuning(32) 30.33 19.75 33.96

w/o. Code Retriever 27.42 18.70 30.97
w/o. GAT Module 26.92 16.75 30.95
with GCN 27.47 18.94 31.08

Table 19: Detailed comparison of code generation
tasks based on PLBART and CodeT5 with variant Pass-
Tuning implementation

13

Methods
Java to C# C# to Java Refine Small Refine Medium

BLEU EM BLEU EM BLEU EM BLEU EM

CodeT5
Fine-Tuning 84.15 65.30 79.12 66.40 77.39 21.35 91.04 7.82
Pass-Tuning(32) 75.46 52.30 75.38 60.70 79.51 11.85 91.22 5.72
w/o. Code Retriever 64.19 49.60 63.60 49.00 79.44 7.69 91.02 1.70
w/o. GAT Module 59.86 33.70 57.10 41.00 78.99 4.56 91.02 0.79
with GCN 69.37 43.80 67.91 51.80 79.59 8.68 91.10 2.46

PLBART
Fine-Tuning 77.05 62.60 79.29 62.80 73.32 12.71 83.88 4.24
Pass-Tuning(32) 64.95 44.00 64.14 52.20 74.37 5.07 86.38 6.09
w/o. Code Retriever 55.55 29.10 55.67 38.60 74.37 3.18 57.00 0.09
w/o. GAT Module 22.87 1.00 48.08 33.80 73.87 2.07 73.58 0.03
with GCN 52.20 27.80 56.64 42.30 74.63 3.48 79.04 0.05

Table 20: Detailed comparison of code translation and refinement tasks based on
PLBART and CodeT5 with variant Pass-Tuning implementation

Methods
Defect Clone

Accuracy F1

CodeT5
Fine-Tuning 64.35 94.97
Pass-Tuning(32) 58.09 93.16

w/o. Code Retriever 54.98 92.20
w/o. GAT Module 54.61 79.83
with GCN 54.94 92.96

PLBART
Fine-Tuning 62.27 92.45
Pass-Tuning(32) 56.41 93.41

w/o. Code Retriever 53.66 77.46
w/o. GAT Module 53.81 75.88
with GCN 53.37 78.37

Table 21: Detailed comparison of code
understanding tasks based on PLBART
and CodeT5 with variant Pass-Tuning
implementation

Dataset CodeTrans Bugs2Fix

Task Code Translation Code Refinement

Language Java (java-cs) CSharp(cs-java) Java(small) Java(medium)

Sample Size 10300 10300 46680 52364

Rank Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency

1 public 10300 identifier 10300 identifier 46680 identifier 52364
2 identifier 10300 { 10300 (46680 ; 52364
3 ; 10300 } 10296) 46680 (52364
4 (10300 ; 10294 ; 46674) 52364
5) 10300 (10293 { 45800 { 52360
6 { 10300) 10293 } 45800 } 52360
7 } 10278 public 10286 . 41536 . 51122
8 type_identifier 8693 . 8020 public 35972 type_identifier 46686
9 return 7329 return 7280 type_identifier 34420 = 42125
10 = 6174 = 6866 void_type 27452 public 37333
11 . 4967 , 5933 , 20905 , 36045
12 , 3189 new 5176 return 18961 void_type 30241
13 int 2447 predefined_type 4986 = 17800 if 28548
14 new 2315 virtual 4458 if 9985 return 24441

Table 22: Frequent token types for CodeTrans and Bugs2Fix datasets.

Dataset CodeSearchNet

Task Code Summarization

Language Ruby JavaScript Go Python Java PHP

Sample Size 24927 58025 167288 251820 164923 241241

Rank Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency

1 def 24927 function 58025 func 167288 def 251820 identifier 164923 function 241241
2 identifier 24927 (58025 identifier 167288 identifier 251820 ; 164923 name 241241
3 end 24149) 58024 (167288 (251820 (164923 (241241
4) 23963 { 58024) 167288) 251820) 164923) 241240
5 (23961 identifier 57920 { 167288 : 251820 { 164923 { 241237
6 . 23694 } 57830 } 167256 . 240830 } 164923164893 } 241189
7 = 20458 ; 56535 type_identifier 167124 , 231582 type_didentifier 155261 ; 241177
8 , 19763 property_identifier 56230 . 160184 = 224000 . 154207 $ 240579
9 constant 16005 . 55902 field_identifier 153297 " 170662 , 122881 -> 210556
10 " 13367 , 49939 , 138470] 134779 = 119607 = 207844
11 string_content 13281 = 49366 return 133661 [134778 return 115325 return 193817
12 } 13156 return 40431 * 132700 if 134518 public 112995 , 188558
13 if 12390 if 39780 := 107524 return 119020 if 96105 string_value 165950
14] 11759 string_fragment 34220 package_identifier 101431 in 105395 new 79605 public 163542

Table 23: Frequent token types for CodeSearchNet dataset.

14

Dataset BigCloneBench Devign CONCODE

Task Clone Detection Defect Detection Code Generation

Language Java C Java

Sample Size 901028 21800 100000

Rank Token type frequency Token type frequency Token type frequency

1 identifier 901028 identifier 21800 identifier 100000

2 ; 901028 (21800 type_identifer 99834

3 (901028) 21798 ; 98005

4) 901028 { 21783 . 78004

5 { 901028 ; 21602 void_type 61779

6 } 900430 primitive_type 20988 > 33964

7 . 899241 * 20741 < 33911

8 type_identifier 895508 } 20352 boolean_type 33322

9 = 894986 type_identifier 20264 int 30689

10 new 898876 , 20056 , 25166

11 , 792560 = 19084] 18274

12 string_literal 712764 number_liternal 17494 [18272

13 try 665816 field_identifier 16811 long 11661

14 public 623123 -> 16188 ERROR 10146

Table 24: Frequent token types for BigCloneBench, Devign, and CONCODE dataset.

15

