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Abstract

While significant effort has been devoted to devel-
oping deep learning architectures for time series
forecasting, the role of data in the training pipeline
remains relatively overlooked. In this work, we
propose Filter, Augment, Forecast (FAF): an on-
line data curation strategy based on (1) data se-
lection to filter out low-quality (e.g., noisy) ex-
amples and (2) augmentation of the remaining
high-quality data. We use reference model-based
filtering inspired by the reducible holdout loss se-
lection (RHO-LOSS) from the language modeling
literature. We identify limitations of RHO-LOSS
under domain shifts common in time series and
introduce the adaptive RHO method (AdaRho),
which improves performance by updating the ref-
erence model during training. We provide a theo-
retical analysis using random matrix theory, high-
lighting the impact of reference models and noise
on data selection. FAF improves forecasting accu-
racy across diverse architectures without altering
them, achieving a 5.6% median MSE and 3.2%
median MAE reduction on nine datasets.

1. Introduction
Time-series forecasting remains a formidable challenge, as
real-world sequences frequently exhibit low signal-to-noise
ratios (Wang & Ventre, 2024), non-stationary dynamics
(Han et al., 2024), and data scarce, low-redundancy regimes
(Che, 2024). These conditions obscure the patterns a model
aims to learn, allowing noise and other irregularities to
degrade forecasting performance.
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Recent work tackles these difficulties in time-series forecast-
ing by pretraining time-series foundation models on billions
of points from heterogeneous domains—energy, finance,
healthcare, climate, and beyond—so that a single model can
generalize across granularity, noise levels, and time scales
(Ansari et al., 2024; Das et al., 2024; Chen et al., 2025;
Woo et al., 2024a). These ideas build on rapid architectural
progress in deep forecasting (Zhou et al., 2022; Li et al.,
2019; Liu et al., 2022; Zhang & Yan, 2023)—patch-based
decoders (Nie et al., 2023), encoder-only transformers (Liu
et al., 2023), and seasonal–trend hybrid models (Wu et al.,
2021)—and the emergence of large-scale time-series cor-
pora such as the 100-billion-point TimesFM dataset (Das
et al., 2024). Yet model capacity alone cannot compen-
sate for low-quality data. Unlike NLP and computer vi-
sion—fields that now routinely curate, filter, and augment
their training corpora (Gadre et al., 2023; Li et al., 2024;
Wang et al., 2022)—time-series research still largely leans
on automatically collected data through sensors or other
means, underscoring the need for systematic dataset cura-
tion and data selection.

Our paper tackles the challenge of performant time-series
forecasting by introducing Filter, Augment, Forecast (FAF),
an online data curation strategy that performs adaptive data
selection and data augmentation. For data selection, we
build on RHO-LOSS from the vision and language model-
ing literature (Mindermann et al., 2022). RHO-LOSS distin-
guishes training examples that are more amenable to learn-
ing from those that are not, such as noisy or unpredictable
tokens. This is done using a reference model, selecting
samples based on the loss gap between the reference and
target models. More recent work, Rho-1 (Lin et al., 2024),
adds token-level filtering to yield substantial speed-ups and
performance gains in language model training.

• Our main contribution is an adaptive variant of RHO-
LOSS, called AdaRho, described in Algorithm 1. AdaRho
addresses a key weakness of RHO-LOSS—its static refer-
ence model, which struggles under distribution shifts com-
mon in time series (e.g., streaming data or heterogeneous
domains). We resolve this by strategically updating the
reference model via a secondary data selection mechanism.

• As a second contribution, we present a statistical analysis
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Figure 1: In FAF, each batch is randomly sampled, augmented, and ranked by reducible loss. Top samples update the target model with a
high learning rate, while the next-best update the reference model more conservatively.

of reference-based data selection in regression with mixed
noise. It quantifies how reference quality and noise impact
selection and performance, highlighting the risks of poor
references and motivating AdaRho.

• As a final contribution, we combine our adaptive fil-
tering method AdaRho with time series data augmenta-
tion (Cheema & Sugiyama, 2024; Chung, 2020), yielding
the Filter, Augment, Forecast (FAF) framework. Augmenta-
tion helps the model learn from high-quality examples while
compensating for reduced sample size.

We show that FAF (Figure 1) consistently improves forecast
accuracy, achieving a 5.6% median MSE reduction across
nine tasks and eight state-of-the-art models (Section 3). Our
analysis links its effectiveness to training loss statistics, high-
lighting when data selection is most beneficial. Related
work is detailed in Appendix A.

2. Methodology
Our online training data curation strategy Filter, Augment,
Forecast (FAF) relies on two components: An online batch
selection algorithm that filters out noisy samples, AdaRho,
and an augmentation strategy that enriches the training data.
While AdaRho alone yields strong forecasting performance,
it reduces the effective sample size for training. To address
this, we combine it with data augmentation, which leads
to further improvements in forecasting performance across
diverse data domains. FAF is model-agnostic and can be ap-
plied to any time series forecasting model. As demonstrated
in the experiments, it consistently improves performance
across all models considered. In the following, we detail
AdaRho and the augmentation strategies we developed.

2.1. AdaRho: Adaptive Domain-Aware Batch Selection

We define a multivariate time series dataset as D :=
{(t, yt)}Tt=1, where yt := [yt,1, . . . , yt,N]⊤ ∈ RN denotes the
observation at time t with N channels. In the case of uni-
variate series, we set N = 1. Each observation yt, j may ex-
hibit both temporal dependencies and interactions with other
channels. Given a partially observed sequence {(t, yt)}T̃t=1,
where T̃ < T , the forecasting objective is to predict future

values yT̃+1, . . . , yT . For deep learning-based forecasting
approaches, the time series is divided into training samples
through a sliding window approach. Thus, one extracts
training points with context length t and forecast horizon h
as (yi

1:t, yi
t+1:t+h) for i = 1, . . . , n, given that in total we have

n samples through such process. For ease of understand-
ing and for consistency with supervised learning notation,
which we use to develop the theory, we refer to (yi

1:t, y
i
t+1:t+h)

as (xi, yi) := (yi
1:t, y

i
t+1:t+h).

Time series data differ widely across domains in modality,
channel count, forecast horizon T̃ , and dynamics. What is
informative in one domain may signal noise or sensor failure
in another, making sample selection highly domain-specific.
An effective online batch selection algorithm must therefore
be domain-aware, distribution-sensitive, and adaptive to
non-stationarity. It should downweight noisy or redundant
samples—such as easily predictable periodic trends—and
prioritize informative, rare, or time-specific patterns. For
instance, a post–peak-hour drop in electricity use carries
more signal than repetitive daily cycles. We now present a
framework that meets these criteria.

Reducible Loss Filtering Framework. We introduce two
models: fθ, the target model, parametrized by θ, whose
forecasting performance we aim to improve, and fθ′ , the
reference model, which is parametrized by θ′ and pretrained
on a subset of the data, and used to estimate sample-level
informativeness. Both models are optimized with stochastic
gradient descent (SGD), where at each epoch mini-batches
are sampled from the training data and the model parameters
are updated through a gradient descent step. In the training
of the target model, we filter noisy or redundant samples
from the minibatches with the framework introduced below.

Given a training set (xi, yi) for i = 1, . . . , n, we define the
reducible loss (Mindermann et al., 2022) for each sample as

εi := ℓ( fθ(xi), yi) − ℓ( fθ′ (xi), yi), (1)

where ℓ is a forecasting loss function (e.g., the mean squared
error). A large reducible loss indicates that the target model
performs worse than the reference model on that training
example, suggestive of a potential improvement, because
the reference model is trained on the same data distribution,
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but only on a subset of it. Therefore, when a data point is
encountered during training, there is a high probability that
the reference model has not seen it before. However, we
know that the reference model is a reasonable forecaster. As
a result, out-of-distribution samples are likely to yield high
loss when evaluated by the reference model. Such out-of-
distribution samples can arise from noise introduced during
the measurement process or may result from rare external
events (e.g. black swan events (Taleb, 2008)) that cannot be
forecasted using the available data. In such cases, we prefer
not to include these samples in training. However, when
we have a low reference loss of a sample, this signals that
such a sample can be learned effectively. If the target loss is
high in that case, then that sample can be effectively learned
but has not yet been learned (Mindermann et al., 2022). In
contrast, if the target loss is also low, it signals that even
though it can be effectively learned, it is already learned by
the target model, hence there is no point of prioritizing those
samples during learning iterations. Overall, high reducible
loss signals useful samples that we would like to prioritize
during SGD updates. Thus, the key step of the algorithm
is to sample instances giving top k% reducible loss during
training from each batch and to update the model on them.

Adaptivity. In standard RHO, the reference model’s param-
eters remain fixed during target model training. While this
works for large, i.i.d. datasets—like web-scale corpora—it
breaks down in domains such as time series, where data
are smaller and non-i.i.d. due to temporal dependencies. In
such cases, a static reference model may poorly approxi-
mate the evolving distribution. To address this, AdaRho
updates the reference model during training using samples
with moderately high reducible loss (ranked between the
top k% and (k + r)%), applying a much lower learning rate.
This ensures the updated model captures informative and
decorrelated samples while avoiding overfitting to noise. We
adopt AdaRho for all experiments and provide theoretical
and empirical evidence of its benefits over standard RHO.

We study the noise robustness of AdaRho in Appendix B.
Appendix D theoretically analyzes the filtering framework
in linear regression, highlighting how noise, thresholds, and
sample size interact. Now, let’s discuss the experiments.

3. Experiments
We evaluate FAF on a variety of multivariate and univariate
time-series benchmarks and compare the results with several
baselines. We consider several deep-learning models, as
baselines, and for each model, we report both the native
performance (i.e., the performance of the model trained
with standard SGD) and its performance with FAF training.

Datasets and Baselines. We evaluate FAF on nine MTS
datasets: ETTh1/2, ETTm1/2, Weather, Solar Energy (Lai
et al., 2018), ECL, Exchange, and Traffic (Wu et al., 2021).

In univariate settings, only the target column is used. While
Exchange is less ideal for absolute accuracy (Zeng et al.,
2023; Rossi, 2013), we include it to assess FAF’s relative
gains (see Appendix F). For multivariate forecasting, we
use PatchTST (Nie et al., 2023), TimePFN (Taga et al.,
2025), iTransformer (Liu et al., 2023), Autoformer (Wu
et al., 2021), Informer (Zhou et al., 2021), and ModernTCN
(donghao & wang xue, 2024). For univariate, we fine-tune
Chronos-Bolt-Base (Ansari et al., 2024) and Moirai-Base
(Woo et al., 2024b), with and without FAF.

Experimental Setup. For multivariate tasks, we use a 96-
timestep lookback window and a 96-timestep forecast hori-
zon. For univariate tasks, with a focus on shorter horizon,
we still feed in 96 time steps but forecast only the next 36.
Each dataset receives its own reference model trained on
25% of the training data. In the multivariate FAF pipelines
we reuse a single reference model, TimePFN, across all
target models to streamline comparison. Appendix H shows
that swapping in iTransformer yields comparable results. In
the univariate setting, we instead use Chronos-bolt (Ansari
et al., 2024) as the reference model, fine-tuned on the 25%
subset (see Appendix F for reference model details).

The training of the target and reference models are per-
formed using SGD aiming to minimize the training MSE
loss. We compute the reducible loss for every instance in
each batch using the MSE, as MSE is particularly sensitive
to outliers. During training, the target model is updated with
the top k% of instances ranked by reducible loss, where
the hyper-parameter k∈{0.25, 0.5, 0.75} is held fixed for a
given experiment. The reference model is updated with sam-
ples whose reducible loss lies between the k% and (k + r)%
quantiles. We set r = 1

2 k except when k = 0.75, in which
case we cap r at 0.20. Although r could be tuned via a grid
search, we leave it fixed to keep the hyper-parameter space
small. The value of k is selected by choosing the setting that
minimizes the validation loss. Details on baselines, training,
and hyperparameters are provided in Appendix F.

Main Results. The results in Table 1 show that FAF
markedly improves multivariate forecasting across a wide
range of models. It delivers up to a 20% reduction in MSE
and an 11.7% reduction in MAE at the model level. Aver-
aged over all datasets and models in MTS forecasting, the
dataset-level MSE drops by 6.4% (right-most columns of
Table 1). Gains are most pronounced on low-dimensional
datasets such as ETTh1 (7 channels) and taper off on high-
dimensional datasets like Traffic (862 channels) and ECL
(321 channels). A potential reason is a statistical effect:
when MSE is averaged over many channels, reducible-loss
values become less dispersed, weakening AdaRho ’s filtering
effect. Dispersion metrics (coefficient of variation and quar-
tile coefficient of dispersion) computed during TimePFN
training, shown in Table 11, confirm that the reducible losses
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Table 1: MTS forecasting results with respect to baseline, and its FAF-applied version. Input and forecast lengths are 96. Bold values
indicate improvements with FAF. The rightmost column reports average relative MSE improvement per dataset; bottom shows average
relative improvements in MSE and MAE per architecture.

Dataset iTransformer TimePFN Informer avg. impr.
Baseline FAF Baseline FAF Baseline FAF

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.387 0.405 0.381 0.402 0.402 0.417 0.375 0.402 0.930 0.763 0.745 0.619 +9.4%
ETTh2 0.300 0.349 0.293 0.343 0.293 0.343 0.285 0.335 2.928 1.349 1.466 0.991 +18.3%
ETTm1 0.342 0.376 0.325 0.365 0.392 0.402 0.312 0.350 0.623 0.559 0.583 0.490 +10.6%
ETTm2 0.185 0.272 0.172 0.252 0.180 0.262 0.172 0.250 0.396 0.474 0.310 0.430 +11.0%
Solar 0.201 0.233 0.190 0.225 0.203 0.219 0.182 0.213 0.190 0.216 0.166 0.227 +9.5%
Traffic 0.393 0.268 0.388 0.262 0.392 0.260 0.385 0.254 0.735 0.409 0.694 0.392 +2.9%
ECL 0.147 0.239 0.147 0.237 0.138 0.234 0.137 0.233 0.327 0.413 0.311 0.399 +1.9%
Exchange 0.086 0.206 0.085 0.204 0.100 0.223 0.087 0.205 0.921 0.774 0.655 0.654 +14.3%
Weather 0.175 0.215 0.169 0.207 0.166 0.208 0.160 0.201 0.455 0.481 0.318 0.383 +12.4%

avg. impr. +3.0% +2.7% +7.1% +4.5% +20.0% +11.7% +10.0%

ModernTCN PatchTST Autoformer avg. impr.
Baseline FAF Baseline FAF Baseline FAF

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.386 0.393 0.385 0.394 0.392 0.404 0.392 0.404 0.440 0.446 0.414 0.437 +2.1%
ETTh2 0.295 0.341 0.290 0.339 0.293 0.343 0.289 0.339 0.364 0.408 0.336 0.381 +3.6%
ETTm1 0.323 0.366 0.302 0.348 0.318 0.357 0.315 0.356 0.520 0.490 0.493 0.460 +4.2%
ETTm2 0.171 0.255 0.169 0.250 0.177 0.260 0.173 0.254 0.233 0.311 0.224 0.312 +2.4%
Solar 0.315 0.335 0.314 0.338 0.222 0.267 0.222 0.267 0.455 0.480 0.438 0.513 +1.4%
Traffic 0.735 0.459 0.708 0.439 0.517 0.334 0.494 0.319 0.605 0.376 0.613 0.381 +2.3%
ECL 0.214 0.298 0.211 0.294 0.185 0.267 0.182 0.269 0.214 0.327 0.190 0.305 +4.7%
Exchange 0.103 0.228 0.097 0.221 0.080 0.196 0.083 0.200 0.147 0.279 0.153 0.287 -0.7%
Weather 0.162 0.211 0.158 0.206 0.177 0.218 0.175 0.218 0.273 0.344 0.241 0.313 +5.1%

avg. impr. +2.6% +1.9% +0.9% +0.6% +4.9% +2.1% +2.8%

Table 2: Univariate forecasting results (MSE) with baseline and its FAF-applied version. Input and forecast lengths are 96 and 36. The
rightmost column reports average model-based MSE improvements; the bottom row shows per-dataset average improvements across
models. MAE scores are provided in Appendix G.

MSE ETTh1 ETTh2 ETTm1 ETTm2 Solar Traffic ECL Exchange Weather avg. impr.

Chronos Baseline
FAF

0.043
0.036

0.082
0.080

0.015
0.015

0.028
0.027

0.286
0.241

0.107
0.100

0.191
0.186

0.040
0.036

0.0005
0.0005 +6.4%

Moirai Baseline
FAF

0.044
0.036

0.113
0.093

0.015
0.014

0.032
0.030

0.238
0.232

0.170
0.142

0.293
0.285

0.039
0.035

0.0006
0.0005 +10.8%

avg. impr. +17.2% +10.0% +3.3% +4.9% +9.1% +11.5% +2.7% +10.1% +8.3% +8.6%

in ECL and Traffic are far less spread out than in the ETT
datasets. In fact, the higher univariate improvements (Table
2) support the same phenomena. Channel-wise applica-
tion of AdaRho through masking of the loss contributions
from the highest reducible loss yielding channels could mit-
igate this limitation and is left for future work. Model-wise
benefits also vary. iTransformer, ModernTCN, TimePFN,
Informer, and Autoformer see substantial gains, whereas
PatchTST has modest improvements. PatchTST forecasts
each channel independently, so noise averages out during
backpropagation, reducing the marginal value of filtering.
By contrast, Informer—whose ProbSparse attention increas-
ing the architectural complexity—accumulates the largest
rewards, with MSE and MAE falling by 20% and 11.7%,
respectively. Overall, FAF increases the architectural per-
formance of the models substantially as seen in Table 7.
We demonstrate the FAF applied performance of TimePFN
against state of the art architectures, including additionally
FedFormer (Zhou et al., 2022) and DLinear (Zeng et al.,
2023). The results demonstrate that the FAF applied archi-
tecture yields uniformly state-of-the-art results. We share

the detailed results in Appendix G.

In the univariate benchmarks, FAF delivers significant gains
in forecast performance. For ETTh1, the MSE falls by
17%, and similarly large improvements appear across sev-
eral other datasets. On average, Chronos achieves a 6.4%
MSE reduction, while Moirai improves by 10.8%, yielding
an overall mean reduction of 8.6% in univariate forecasting.
These results underscore FAF’s substantial benefit on both
time-series foundation models. Ultimately, across eight ar-
chitectures, FAF achieves a 5.6% median reduction in MSE
and a 3.2% median reduction in MAE, averaged across 9
datasets.

We provide an ablation study in Appendix H.
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Algorithm 1 AdaRho: Reducible loss-based sample selection with dual model updates

1: Input: Target model fθ to be optimized, reference model fθ′ with its pretrained parameters θ′0, target batch size nb, reference update
sample size nr > 0, batch size nB > nb + nr, learning rates η ≫ η′

2: Initialize θ0, and t = 0
3: for t = 0, 1, . . . do
4: Randomly sample a batch Bt of size nB
5: ∀i ∈ Bt, compute TargetLoss[i] = ℓ( fθ(xi), yi)
6: ∀i ∈ Bt, compute RefLoss[i] = ℓ( fθ′ (xi), yi)
7: ∀i ∈ Bt, compute ReducibleLoss[i]← TargetLoss[i] − RefLoss[i]
8: Sort Bt by ReducibleLoss[i] in descending order
9: btarget

t ← top-nb samples from sorted Bt
10: bref

t ← samples ranked nb+1 to nb + nr in sorted Bt

11: gt ← mini-batch gradient on btarget
t w.r.t. θ

12: g′t ← mini-batch gradient on bref
t w.r.t. θ′

13: θt+1 ← θt − ηgt
14: θ′t+1 ← θ′t − η′g′t

Outline
The appendix is organized as follows:

1. Appendix A discusses the related work.

2. Appendix B discusses the noise robustness of AdaRho.

3. Appendix D discusses the theoretical results.

4. Appendix E extends the theoretical discussion of AdaRho.

5. Appendix F details the experimental setup, including datasets, implementation specifics, reference models, augmentation
methods, and computational aspects.

6. Appendix G presents additional results, both qualitative and quantitative.

7. Appendix H provides further ablation studies, including evaluations with an alternative reference model and expanded
analyses of the main ablations.

A. Related Work
Our work fits within the broader framework of data selection and curation (Wenzek et al., 2020; Gao et al., 2020; Schuhmann
et al., 2022), where filtering is a common component of the data pipeline. We specifically focus on sample-level selection,
building on prior work (Loshchilov & Hutter, 2015; Mindermann et al., 2022; Schaul et al., 2015; Katharopoulos & Fleuret,
2018), and adapt these ideas to time series forecasting, in particular the RHO-LOSS (Mindermann et al., 2022). In time
series forecasting, data-centric methods encompass robustness, anomaly filtering, and data augmentation (Cheng et al., 2024;
Du et al., 2021; Fan et al., 2023; Yoon et al., 2022). For instance, RobustTSF (Cheng et al., 2024) links noisy-label learning
with forecasting by formalizing three types of anomalies and filtering them using variance-based criteria, while (Yoon et al.,
2022) improves robustness to input perturbations through smoothed training of probabilistic forecasters. Other work focuses
on offline sensor data cleaning during the data collection phase, targeting anomalies directly (Bachechi et al., 2020; Zhang
et al., 2017; Ding et al., 2019). In contrast, our approach does not explicitly target anomalous datasets or sensor-level
corrections, but instead aims to identify and leverage sample quality within standard time series datasets during training.
Moreover, while previous work has demonstrated the benefits of data augmentation in time series forecasting (Bandara et al.,
2021), our key contribution in FAF from that aspect lies in coupling data filtering and augmentation to mitigate the effects of
reduced sample size.
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B. AdaRho’s Noise Robustness
To demonstrate the robustness of AdaRho under realistic sensor–failure scenarios, we conduct a case study on the four
Electric Transformer Temperature (ETT) benchmarks (ETTh1, ETTh2, ETTm1, ETTm2). We inject synthetic noise by
randomly simulating multiplicative sensor noise with varying probabilities. Multiplicative noise is a realistic assumption
when measurement uncertainty or intrinsic variability scales with the magnitude of the signal, commonly seen in domains
such as finance, energy load forecasting, and physical sensors (Cipollini & Gallo, 2022; Khuntia et al., 2018; Tian et al.,
2013). Formally, given training pairs (xi, yi) := (yi

1:t, y
i
t+1:t+h) we first subsample a fraction ρ ∈ {0, 0.2, 0.4, 0.6, 0.8} of the

instances. For every selected sample we draw a uniform subset of 20–40 % of its time steps and channels, and corrupt them
with i.i.d. Gaussian noise σ2 = 4:

ȳi
t′, j = yt′, j · zi

t′, j where zi
t′, j ∼ N

(
1, σ2) and 1 ≤ j ≤ N (2)

B.1. Setting

For each noise ratio ρ we train two models from scratch on the corrupted training split: (i) the vanilla iTransformer
baseline and (ii) its AdaRho-augmented counterpart. All hyperparameters follow the official iTransformer configuration
((t, h) = (96, 96)). For each dataset, we trained a reference model, also an iTransformer with the same hyperparameters, on a
randomly selected 25% subset of the data. We evaluate the clean test split and report mean absolute error (MAE).

B.2. Results

Two trends emerge from Table 3. First, performance degrades for both models as ρ increases, but the drop is noticeably
milder for AdaRho. At the highest noise level (ρ = 0.8), AdaRho cuts MSE by 7.4% and MAE by 4.0% relative to the
baseline. At ρ = 0.6 the gains widen to 9.0% MSE and 5.3% MAE, underscoring the benefit of our targeted data selection
under heavy corruption. Even in the noise-free setting (ρ = 0), AdaRho still improves MSE by 4.0% and MAE by 3.2%.
Because real-world time-series measurements are never perfectly clean, these results suggest that AdaRho can deliver
significant accuracy gains across both low- and high-noise regimes.

As shown in Table 3, AdaRho effectively filters out samples corrupted with multiplicative noise, capturing realistic
measurement-based errors. Notably, the largest improvement occurs at a noise level of 0.6, exceeding that of 0.8. This is
expected: since only the top 25% of high-loss samples are used to train the target model, and 80% of the data is noisy at the
0.8 noise level, at least 5% of the selected training samples are inevitably corrupted.

This also justifies our use of a dataset-dependent threshold k (i.e., the percentage of top reducible-loss samples used for
target model updates) based on validation performance in real-world experiments. Because real-world datasets vary in
their noise characteristics, choosing a fixed k across all datasets may not be optimal. Nonetheless, as evidenced by Table 3,
even with a fixed k = 25, AdaRho achieves substantial gains, even under heavy noise where some selected samples are still
corrupted.

Table 3: MSE and MAE values for Baseline and AdaRho under different noise levels on ETT(h/m)(1/2), including percentage
improvements of AdaRho over Baseline. Results are averaged over 4 datasets.

Noise Level Baseline AdaRho % Improvement

MSE MAE MSE MAE MSE MAE

0.8 0.388 0.399 0.359 0.383 +7.4% +4.0%
0.6 0.354 0.382 0.322 0.361 +9.0% +5.3%
0.4 0.324 0.364 0.310 0.353 +4.3% +3.0%
0.2 0.317 0.359 0.306 0.351 +3.5% +2.2%
0.0 0.304 0.350 0.291 0.338 +4.0% +3.2%
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C. Augmentation Methods
At each batch, AdaRho first filters out potentially noisy observations, then trains the target model on the smaller set of
high-quality samples. A reduced training set, however, can hurt forecasting accuracy. In Section D, we analyze how noise
magnitude and sample–target correlations interact, showing that a simple thresholding rule indeed retains a higher proportion
of clean data. Yet, as Figure 3 illustrates, fewer samples can offset this benefit: the risk need not fall below the no-threshold
baseline because sample size remains a dominant term in the risk bound. To recover the lost diversity, we augment
the data, avoiding any transformation that violate the space-time nature of the series. Building on existing time-series
data-augmentation literature, specifically StiefelGen (Cheema & Sugiyama, 2024), Gaussian smoothing (Rosenblat, 1956)
and jittering (Um et al., 2017), we apply the transformations in Table 4 sequentially, sampling each according to the stated
probability at every training batch. StiefelGen augments multivariate sequences by projecting them onto the Stiefel manifold,
thus preserving underlying temporal physics and performing well in low-data regimes. Jittering injects small Gaussian
perturbations into each sample to increase local variability.

Table 4: Augmentation Space

Augmentation Probability

StiefelGen (Cheema & Sugiyama, 2024) 0.50
Smoothing (Rosenblat, 1956) 0.25
Jittering (Um et al., 2017) 0.50

In our pipeline, the reference model is trained solely on the subset of the non-augmented data. We then create augmented
batches and use AdaRho to filter out noisy samples as well as samples possibly exhibiting physically implausible behavior
due to augmentation. Below, we visualize the augmented sequences alongside the original data. As shown, the augmentations
preserve the physical behavior of the underlying time series, demonstrating that they generate physically plausible variations.
For visualization purposes, we show only the input time series, although the augmentations are applied to both the input and
forecast segments during training.
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Figure 2: Data augmentation in the context time series for each dataset.
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D. Theoretical Results
We provide a theoretical analysis of reference-loss filtering in a regression setting aligned with point forecasting, quantifying
trade-offs between data quality, noise, and sample size. By modeling with linear regression and random features, we leverage
random matrix theory for a sharp characterization (Tulino et al., 2004; Hastie et al., 2020; Bartlett et al., 2020). Unlike prior
work on heterogeneous noise (Akhtiamov et al., 2024; Song et al., 2024; Patil et al., 2024; Jain et al., 2024), our setting
introduces unique challenges due to statistical dependencies between label noise and features induced by reference-based
filtering, resulting in estimation bias. Nonetheless, our analysis yields empirically meaningful insights into data selection
and the roles of the reference model and noise statistics.

D.1. System Model

Suppose that we observe i.i.d. pairs {(xi, yi)}ni=1 that follow the linear model yi = x⊤i β⋆ + ξi for i = 1, . . . , n, where β⋆ ∈ Rp

is the latent/optimal model we wish to learn. The features obey xi ∈ R
p with xi

i.i.d.
∼ N(0, I) and, crucially, the noise term ξi

is distributed as a mixture with two components:

ξi =

σ1 zi, with probability p1,

σ2 zi, with probability p2,
with p1 + p2 = 1 (3)

Here zi
i.i.d.
∼ Dz is a distribution such that E[zi] = 0 and Var(zi) = 1, and σ2 ≥ σ1 > 0 are the variance levels corresponding to

more vs less noisy components respectively. Define γ = p/n. We estimate β⋆ by solving the following minimum ℓ2–norm
least-squares problem:

β̂ := arg min
β∈Rp

{
∥ y − Xβ∥22 : β has minimal ∥β∥2

}
(4)

where X = [x⊤1 , . . . , x
⊤
n ]⊤ ∈ Rn×p and y = [y1, . . . , yn]⊤ ∈ Rn. We know that the estimate can be equivalently written as

β̂ = X† y. For a test sample x0
i.i.d.
∼ N(0, I) which is independent of the training data, the risk of β̂ is defined as:

RX(β̂;β) = E
[
(x⊤0 β⋆ − x⊤0 β̂)2 | X

]
(5)

Filtering with a Reference Model: Suppose that we have a reference parameter βref ∈ R
p. For every i = 1, . . . , n, we

compute the residual

ri = yi − x⊤i βref, and define I(τ) = { i ≤ n : |ri| ≤ τ} (6)

for a chosen threshold τ > 0. Let the cardinality of filtered indices be n f = |I(τ)| and define the filtered data matrix as
X f =

[
x⊤i
]⊤
i∈I(τ)

∈ Rn f×p and the label vector as y f :=
[
yi
]
i∈I(τ) ∈ R

n f . Similar to (4), we solve the minimum ℓ2-norm least

squares problem on the filtered data X f with corresponding labels y f and obtain β̂ f = X f
†y f . Following the equation (5),

we similarly define the risk RX f (β̂ f ;β). Below we provide an analysis of of this risk in terms of key problem variables.

D.2. Derivation of Filtered Model Asymptotic Performance

To derive our results, we consider a standard large dimensional setting – so-called proportional asymptotics – where the
number of samples n and dimension p grow together to infinity while obeying limn→∞ p/n = γ. Let us first recall from
(Hastie et al., 2020) that, for the standard linear regression problem β̂ = arg minβ ||y − Xβ|| with ground-truth model
y = Xβ⋆ + ξ with the label noise ξ having i.i.d. zero mean and σ2 variance entries, the asymptotic risk converges to:

RX(β̂;β⋆)→

σ2 γ
1−γ , γ < 1,

∥β⋆∥
2
2

(
1 − 1

γ

)
+ σ2

γ−1 , γ > 1

Our analysis will build on this fact, however, our setting is made challenging by the fact that we have two distinct distributions
and a filtering process. To proceed, we will first study the impact of filtering by characterizing the effective noise level and
the sample size post-filtering.

Characterizing sample size. We now define a few key terms before stating our asymptotic risk formula. Define the norm
of the gap between two models as δ := ∥β⋆ − βref∥2. Looking at the residual given by (6), we notice that x⊤i (β⋆ − βref)
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is distributed as δ gi for gi ∼ N(0, 1). Hence, |ri| ≤ τ translates to the event |δ gi + σ jzi| ≤ τ. Accordingly, for any
g, z i.i.d.
∼ N(0, 1), we denote:

Πδ,σ j (τ) = P
(
|δg + σ jz| ≤ τ

)
, for j = 1, 2

Equivalently, we have Πδ,σ j (τ) = 2Φ
 τ√
δ2+σ2

j

 − 1 for j = 1, 2 where Φ(·) denote the standard normal CDF. We also denote

the fraction of the data points that are kept after filtering and the resulting parameterization ratio after filtering by:

π(τ) := p1Πδ,σ1 (τ) + p2Πδ,σ2 (τ), γ f (τ) :=
γ

π(τ)

Characterizing noise level and correlation. After filtering, we decompose each noise component σ jz into a part orthogonal
to δg and the residual that is aligned with δg. Using the shorthand notation ζ j = δg + σ jz, we define for j = 1, 2:

σ2
j,⊥(τ, δ) := σ2

j Var
(
z
∣∣∣ |ζ j| ≤ τ

)
and σ2

j,∥(τ, δ) := σ2
j

Cov
(
z, δg
∣∣∣ |ζ j| ≤ τ

)2
Var
(
δg
∣∣∣ |ζ j| ≤ τ

)
Finally, we let the effective variances in the filtered dataset be decomposed as:

σ2
⊥(τ, δ) :=

p1Πδ,σ1 (τ)σ2
1,⊥(τ, δ) + p2Πδ,σ2 (τ)σ2

2,⊥(τ, δ)

π(τ)
, σ2

∥ (τ, δ) :=
p1Πδ,σ1 (τ)σ2

1,∥(τ, δ) + p2Πδ,σ2 (τ)σ2
2,∥(τ, δ)

π(τ)
(7)

In the initial regression, z, g are independent, and z is treated as pure noise. However, post-filtering, z and g variables
become negatively correlated due to the filtering (absolute value thresholding). This negative correlation results in a biased
estimation of the latent parameter β⋆. Our decomposition of noise captures this fact to provide a refined estimate of the risk.
After applying the threshold τ to the residuals |ri|, the proportion of retained points that come from each noise component
changes from the original mixture weights p1, p2. Specifically, since Πδ,σ1 (τ) ≥ Πδ,σ2 (τ) for all τ as σ2 ≥ σ1, thresholding
retains a larger fraction of the lower-noise samples. Consequently, the post-filtered dataset exhibits a higher proportion of
data from the σ1 component compared to the original mixture, thus effectively shifting the noise distribution toward the
cleaner regime.

Asymptotic Risk Formula Under Filtering. We now present our main theoretical result, which compares the asymptotic
risks of the standard and filtered least-squares estimators in the high-dimensional regime. As n, p → ∞ such that
p/n→ γ ∈ (0, 1), the unfiltered min-norm least-squares estimator β̂, almost surely satisfies:

lim
n→∞

RX(β̂;β⋆) =
(
p1 σ

2
1 + p2 σ

2
2

) γ

1 − γ

The above result is obtained by extending Theorem 1 of (Hastie et al., 2020) for a mixture model noise. Before stating
the risk formula for filtered least squares, we assume β⋆ ⊥ (βref − β⋆). Let β̂ f be the minimum ℓ2-norm estimator on the
dataset obtained by the filtering with threshold τ given by (6), and define γ f (τ) = γ/π(τ) to be the parameterization ratio
after filtering. Consider the decomposition of the effective noise into σ2

⊥(τ, δ) and σ2
∥
(τ, δ) given by (7). The aligned part

σ2
∥
(τ, δ), which is a signal that lies in the column space of X, behaves like the bias component. As a result, the aligned part

of the noise contributes to risks by σ2
∥
(τ, δ) and

σ2
∥
(τ,δ)
γ f (τ) in the two different regimes. When γ f (τ) > 1, the min-norm solution

shrinks any aligned component of the noise by a factor 1/γ f (τ). On the other hand, the orthogonal term σ2
∥
(τ, δ) is treated as

i.i.d. Gaussian noise. Therefore, as n→ ∞, we state the following result:

RX f (β̂ f ;β⋆) ≈


σ2
⊥(τ, δ) γ f (τ)

1−γ f (τ) + σ
2
∥
(τ, δ), if γ f (τ) < 1,

∥β⋆∥
2
2

(
1 − 1

γ f (τ)

)
+
σ2
⊥(τ,δ)
γ f (τ)−1 +

σ2
∥
(τ,δ)
γ f (τ) , if γ f (τ) > 1

The above fact also utilizes from Theorem 1 of (Hastie et al., 2020), and generalizes the results to filtering. The
formula indicates that starting from the under-parameterized regime γ < 1, filtering may move the system to either side
of the interpolation threshold depending on π(τ). Moreover, we also note that as τ → ∞, we have γ f (τ) → γ and
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σ2
⊥(τ, δ) → p1σ

2
1 + p2σ

2
2, so the filtered estimator recovers the unfiltered one. While stating the above asymptotic risk

formula, we assumed that βref is sufficiently close to β⋆, which we further discuss in Appendix E.

In Figure 3, we compare the theoretical and empirical risk estimates for n = 2000, p = 400, ∥β⋆ − βref∥2 = 0.25, and
(σ1, σ2) = (0.5, 2). While filtering increases the proportion of lower-noise samples, the reduced dataset size can lead to
higher risk, highlighting the trade-off between removing noisy points and retaining sufficient training data. Moreover,
having a reference model βref that more closely aligns with β⋆ further reduces the final risk, justifying the adaptive nature of
AdaRho.
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Figure 3: Theoretical vs. empirical risk

E. Further Theoretical Discussions
Recall from Section D that the threshold condition on data point i from noise component j ( j = 1, 2) is:∣∣∣x⊤i (β⋆ − βref) + σ j zi

∣∣∣ ≤ τ.
Because xi ∼ N(0, Ip) and δ := ∥β⋆ − βref∥, we have x⊤i (β⋆ − βref) = δ gi with gi ∼ N(0, 1). Thus, othe above thresholding
event equivalently becomes {|δ gi + σ j zi| ≤ τ}. We then define the following two datasets, containing filtered data points
from the two noise mixtures:

D1 :=
{

(xi, yi) : i ∈ {1, . . . , n}, yi = x⊤i β⋆ + σ1zi,
∣∣∣ x⊤i (β⋆ − βref) + σ1zi

∣∣∣ ≤ τ} ,
D2 :=

{
(xi, yi) : i ∈ {1, . . . , n}, yi = x⊤i β⋆ + σ2zi,

∣∣∣ x⊤i (β⋆ − βref) + σ2zi

∣∣∣ ≤ τ} .
We know that the frequencies of D1 and D2 in the filtered dataset are proportional to p1Πδ,σ1 (τ) and p2Πδ,σ2 (τ) as n→ ∞,
respectively. Although z and δg (the projection of β⋆ − βref) are initially independent in the regression model, the variables
δ g and z become correlated after the filtering (thresholding). Using the shorthand notation ζ j := δ g + σ j z, and following
the discussions in Section D, the noise can be decomposed into two parts for j = 1, 2:

σ2
j,⊥(τ, δ) := σ2

j Var
(
z
∣∣∣ |ζ j| ≤ τ

)
and σ2

j,∥(τ, δ) := σ2
j

Cov
(
z, δg
∣∣∣ |ζ j| ≤ τ

)2
Var
(
δg
∣∣∣ |ζ j| ≤ τ

)
Finally, we let the frequency-weighted effective variances in the filtered dataset be decomposed as:

σ2
⊥(τ, δ) :=

p1Πδ,σ1 (τ)σ2
1,⊥(τ, δ) + p2Πδ,σ2 (τ)σ2

2,⊥(τ, δ)

π(τ)
, σ2

∥ (τ, δ) :=
p1Πδ,σ1 (τ)σ2

1,∥(τ, δ) + p2Πδ,σ2 (τ)σ2
2,∥(τ, δ)

π(τ)
(8)

In the following parts, we will show how we derive the above formulas for σ2
⊥(τ, δ) and σ2

∥
(τ, δ). Defining βdiff := β⋆ − βref,

we write the filtered datasets D1 and D2 as:

D1 :=
{

(xi, yi) : i ∈ {1, . . . , n}, y = x⊤ (β⋆ + α1(τ, δ)βdiff) + σ1,⊥(τ, δ) z1 :
∣∣∣x⊤i βdiff + σ1 zi

∣∣∣ ≤ τ}
D2 :=

{
(xi, yi) : i ∈ {1, . . . , n}, y = x⊤ (β⋆ + α2(τ, δ)βdiff) + σ2,⊥(τ, δ) z2 :

∣∣∣x⊤i βdiff + σ2 zi

∣∣∣ ≤ τ}
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where α j(τ, δ) are given by:

α j(τ, δ) =

√
σ2

j,∥(τ, δ)

Var(δg | |ζ j| ≤ τ)
, for j = 1, 2.

This means the post-filtering data consists of two datasets with different parameters and noise levels.

Key Approximation: In the large-sample limit n→ ∞, each group’s proportion
p jΠδ,σ j (τ)
π(τ) is fixed, so we approximate the

combined filtered data by a single regression with parameter

β f = β⋆ +

 2∑
j=1

p j Πδ,σ j (τ)
π(τ)

α j(τ, δ)

 βdiff,

which is the frequency-weighted average of two parameters. Define α(τ, δ) =
(∑2

j=1
p j Πδ,σ j (τ)
π(τ) α j(τ, δ)

)
so that we compactly

write β f = β⋆ + α(τ, δ)βdiff. The errors in our analysis at finite n arise from the approximation since we treat the two subsets
as if they shared a single parameter. However, our approximation is reasonable in the sense that, in the infinite sample size
n→ ∞ regime, each shift α j(τ, δ)βdiff from β⋆ will be combined in a frequency-weighted manner, and the approximation
becomes exact.

We now consider the proportional limit regime n, p→ ∞ with p/n→ γ. As shown in (Hastie et al., 2020), for the standard
linear regression problem β̂ = arg minβ ||y − Xβ||2 with ground-truth model y = Xβ⋆ + ξ with the label noise ξ having i.i.d.
zero mean and σ2 variance entries, the asymptotic risk converges to:

RX(β̂;β⋆)→

σ2 γ
1−γ , γ < 1,

∥β⋆∥
2
2

(
1 − 1

γ

)
+ σ2

γ−1 , γ > 1
(9)

We know that β̂ f −β⋆ = X f
†X fβ f + X f

†ξ f −β⋆ = (X f
†X f − I)β⋆ +α(τ, δ)X f

†X fβdiff + X f
†ξ f , where ξ f :=

[
ξi
]
i∈I(τ) ∈ R

n f

is the noise vector on the filtered dataset and β̂ f is the estimate obtained from the filtered dataset. Recall the definition of
risk from Section D:

RX(β̂;β) = E
[
(x⊤0 β⋆ − x⊤0 β̂)2 | X

]
= E
[
(β⋆ − β̂)⊤(β⋆ − β̂) | X

]
(10)

Plugging the above β̂ f − β⋆ into (10) and recalling our assumption β⋆ ⊥ βdiff, we see that the contribution of the term
α(τ, δ)X f

†X fβdiff to the final risk is decoupled from the rest. As can be seen from the asymptotic risks for standard linear
regression in (9), for the overparameterized regime, the bias error term is ∥β⋆∥22

(
1 − 1

γ

)
, while for the underparameterized

regime there’s no bias error term in the final asymptotic risk. Accordingly, the contribution of the term α(τ, δ)X f
†X fβdiff is

shrunk by 1/γ f (τ) when the filtering results in an overparameterized setting γ f (τ) > 1. On the other hand, if γ f (τ) < 1, there
is no shrinkage in its contribution. Consequently, in the under-parametrized region, the contribution of α(τ, δ)βdiff to the risk
as a bias term is: 2∑

j=1

p j Πδ,σ j (τ)
π(τ)

α j(τ, δ)

 √Var(δg | |ζ j| ≤ τ) =
p1Πδ,σ1 (τ)σ2

1,∥(τ, δ) + p2Πδ,σ2 (τ)σ2
2,∥(τ, δ)

π(τ)
= σ2

∥ (τ, δ). (11)

In the over-parameterized region, the contribution of α(τ, δ)βdiff to the risk as a bias term gets shrunk by the 1/γ f (τ), and
therefore:

1
γ f (τ)

 2∑
j=1s

p j Πδ,σ j (τ)
π(τ)

α j(τ, δ)

 √Var(δg | |ζ j| ≤ τ) =
p1Πδ,σ1 (τ)σ2

1,∥(τ, δ) + p2Πδ,σ2 (τ)σ2
2,∥(τ, δ)

π(τ)γ f (τ)
=
σ2
∥
(τ, δ)

γ f (τ)
. (12)

On the other hand, the orthogonal noise terms σ j,⊥(τ, δ) z for j = 1, 2 behave as i.i.d. noise in the filtered system. Hence,
combining this fact with (11) and (12), we state the following result as n→ ∞:

RX f (β̂ f ;β⋆) ≈


σ2
⊥(τ, δ) γ f (τ)

1−γ f (τ) + σ
2
∥
(τ, δ), if γ f (τ) < 1,

∥β⋆∥
2
2

(
1 − 1

γ f (τ)

)
+
σ2
⊥(τ,δ)
γ f (τ)−1 +

σ2
∥
(τ,δ)
γ f (τ) , if γ f (τ) > 1

16



Filter, Augment, Forecast: Online Data Selection for Robust Time Series Forecasting

Further Discussion on the Validity of Approximation: As βref approaches β⋆, the difference βdiff = β⋆ − βref shrinks,
causing the shifts α j(τ, δ)βdiff in each subset to become negligible. In this regime, the overall noise scales σ1, σ2 dominate,
and the single-parameter approximation with β f ≈ β⋆ becomes more accurate. Although our derivation does not strictly
prove optimality in finite-sample settings, the frequency-weighted structure provides a reasonable proxy that aligns well
with empirical results in the large-sample limit.
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F. Experimental Details
F.1. Datasets

We evaluate FAF across standard multivariate time-series forecasting benchmarks. In the univariate setting, we use the
target variable as the response and exclude other covariates. The datasets include ECL (Electricity Consumption Load),
Exchange, Traffic, Weather, and Solar Energy. In addition, four datasets are from the Electricity Transformer Temperature
(ETT) collection introduced by (Zhou et al., 2021): ETTh1, ETTh2, ETTm1, and ETTm2. Except for the Solar Energy
dataset, originally introduced by (Lai et al., 2018), all other benchmarks were evaluated by Autoformer (Wu et al., 2021).
Following common practice (Nie et al., 2023; Liu et al., 2023; Taga et al., 2025), we split each dataset chronologically into
training, validation, and test sets. Key details for each dataset are summarized below (split sizes assume context length = 96,
input length = 96). Overall, our approach adheres to standard time-series forecasting practices.

ECL. The Electricity Consumption Load dataset (Wu et al., 2021) records hourly power usage from 321 customers
(321 variables). The dataset includes 18,317 training samples, 2,633 for validation, and 5,261 for testing. Due to its
highly multivariate nature, architectures such as iTransformer and TimePFN—which explicitly incorporate multivariate
interactions—demonstrate strong performance on this dataset.

Exchange. This dataset consists of daily exchange rates from eight countries (eight variables), with 5,120 training samples,
665 for validation, and 1,422 for testing. Although commonly excluded (e.g., (Nie et al., 2023)) due to the noisy nature of
financial data and the strong performance of naive models (Zeng et al., 2023; Rossi, 2013), it serves as a valuable testbed for
evaluating FAF under high-noise and low-predictability conditions. Our experiments show that FAF significantly reduces
overfitting to noise in models such as Informer (Zhou et al., 2021) and TimePFN (Taga et al., 2025). The strongest baseline
on this dataset was PatchTST, likely due to its channel-independent design and shared backbone, which spreads gradient
updates and mitigates overfitting through averaging.

Solar Energy. Introduced by (Lai et al., 2018), the Solar Energy dataset includes measurements from 137 solar stations
sampled every 10 minutes. It contains 36,601 training samples, 5,161 for validation, and 10,417 for testing. Day-night
cycles induce sharp spikes and drops aligned with sunrise and sunset. Informer (Zhou et al., 2021) performs surprisingly
well, possibly due to its ProbSparse attention mechanism capturing abrupt time-dependent patterns. We observe that
FAF particularly improves the performance of weaker models by prioritizing harder, spiky patterns over simpler periodic
components.

ETT Datasets. The ETT collection (Zhou et al., 2021) includes seven variables measuring transformer temperature-related
signals. For the hourly datasets (ETTh1 and ETTh2), we use 8,545 training samples, 2,881 for validation, and 2,881 for
testing. For the 15-minute datasets (ETTm1 and ETTm2), the splits are 34,465 for training, 11,521 for validation, and 11,521
for testing. Across these datasets, we observe substantial performance improvements with FAF in multivariate forecasting
models.

Traffic. This dataset, collected from 862 sensors measuring hourly road occupancy (862 variables), provides 12,185 training
samples, 1,757 for validation, and 3,509 for testing (Wu et al., 2021). It is the highest-dimensional dataset in our benchmarks.
Similar to ECL, architectures that explicitly model multivariate relationships tend to perform better.

Weather. The Weather dataset (Wu et al., 2021) consists of 21 meteorological variables recorded every 10 minutes. We
use 36,792 training samples, 5,271 for validation, and 10,540 for testing. Convolution-based models such as ModernTCN
perform well here, possibly due to their ability to capture local dependencies through smoothing and lag-based operations in
this noisy and highly time-dependent dataset.

Note that for univariate forecasting tasks, we use only the target variable, effectively modeling the datasets as univariate. In
these settings, the input length is set to 96, and the forecast horizon to 36.

F.2. Implementation Details

We used the official codebases of the respective models to ensure consistency with the literature. Specifically, in the
multivariate setting, we used iTransformer (Liu et al., 2023), PatchTST (Nie et al., 2023), TimePFN (Taga et al., 2025),
Informer (Zhou et al., 2021), and ModernTCN (donghao & wang xue, 2024). We report their results using their original
hyperparameters (e.g., number of layers, embedding dimensions, etc.).

In the univariate setting, we relied on the codebases of Chronos (Ansari et al., 2024) and Moirai (Woo et al., 2024b), and
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used the Chronos-bolt-base and Moirai-base models, respectively. We used AdamW (Loshchilov & Hutter, 2017) as the
optimizer.

When reporting FAF results, we fixed the model hyperparameters and varied the values of k and r, which determine the
subset of samples (ranked by highest reducible loss) used to train the target (top k) and reference (next r) models. We set
r = k

2 by default, and for k = 0.75, we set r = 0.25. The value of k ∈ {0.25, 0.5, 0.75} was selected based on the lowest
validation MSE.

We provide the code in the supplementary material.

F.3. Reference Model

As reference models, we selected Chronos-bolt-base (Ansari et al., 2024) for the univariate setting and TimePFN (Taga
et al., 2025) for the multivariate setting. Both models were trained on a randomly subsampled 25% of the training points for
each dataset, with separate models trained for each dataset. We fixed these two reference models to streamline comparisons
across different models under FAF, and to demonstrate that a single reference model can improve the performance of various
target models, thereby reducing the computational overhead of training additional reference models.

However, the space of potential reference models is much broader. Simpler models such as DLinear (Zeng et al., 2023) or
smaller versions of existing architectures could also serve effectively as reference models.

As discussed in Section D, the quality of the reference model plays a crucial role in robust data selection. Therefore, we
expect the reference model to perform reasonably well on the data itself. Since the reference model is trained on a subset of
the data, models that generalize well under limited data budgets are more likely to yield better performance with AdaRho.
Conversely, if the reference model performs poorly, AdaRho-based filtering should be applied less aggressively (i.e., filter
out fewer samples), as its reliability in selecting informative examples diminishes.

TimePFN is a strong choice as a reference model because it is pretrained on large-scale synthetic data and has been shown
to perform well under low-data regimes, making its learned parameters competitive. Similarly, pretrained foundational
models such as Chronos or Moirai also serve as highly effective reference models for the same reason. This suggests that
synthetic pretraining, or pretraining through other means, can improve the generalization ability of various reference model
architectures in low-data regimes. Nevertheless, pretraining is not strictly necessary. In the Appendix H, we demonstrate
that iTransformer (Liu et al., 2023) can also serve effectively as a reference model without pretraining. In below, we show
the performances of the reference model architectures. In the univariate setting, the architecture used is Chronos-bolt-base,
whereas for the multivariate setting it is TimePFN. The default hyperparameter settings of the codebases are applied to the
reference models and lowest validation loss yielding epoch is chosen as the reference model.

Table 5: We report the test performance of the reference models. For the univariate setting, we used Chronos-bolt-base with
an input length of 96 and a forecast horizon of 36. For the multivariate setting, TimePFN was used with both input and
forecast horizons set to 96.

Datasets Univariate Multivariate

MSE MAE MSE MAE

ETTh1 0.040 0.148 0.394 0.411
ETTh2 0.086 0.221 0.303 0.348
ETTm1 0.015 0.089 0.354 0.382
ETTm2 0.028 0.110 0.184 0.266

Solar 0.379 0.395 0.209 0.243
Traffic 0.105 0.170 0.406 0.275
ECL 0.199 0.304 0.146 0.243

Exchange 0.037 0.148 0.088 0.209
Weather 0.0006 0.016 0.163 0.207
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F.4. Compute

We conducted all experiments on L40S GPUs with 48GB of memory, using a slurm cluster system. While all experiments
fit within a single GPU, we used 4–5 GPUs in parallel to speed up training. The total training time varies by dataset size:
high-dimensional datasets like Traffic require 8–9 hours, whereas smaller datasets such as the ETT variants take only tens of
minutes. As we report results across 8 models and 9 datasets, along with the development of our method, the total GPU
usage exceeded 300 hours. The experimental codebase is implemented entirely in PyTorch.

Note that in this work, our primary focus was not on computational speed-up. However, by using AdaRho, when we train
the target model on k% of the training data and the reference model on an additional r% (i.e., from k% to (k + r)%), we only
backpropagate through (k + r)% of the data. For moderate values of k and r, for example, k = 25 and r = 12.5, this means
backpropagation is performed on just 37.5% of the data. Since forward passes are significantly cheaper than backward
passes, this leads to more than a 2× reduction in overall computational cost. As we vary k ∈ 25, 50, 75, the benefits of
reduced backpropagation diminish at higher k values. However, the computational cost does not increase since we still
backpropagate on only a subset of the training data. Overall, AdaRho does not increase computational complexity, aside
from the cost of training the reference model on a data subset—an overhead that is mitigated by (i) training on a smaller
subset and (ii) reusing the same reference model across multiple target models.

Moreover, the data augmentations we applied do not significantly increase computational complexity. Throughout our
experiments, we did not observe any computational slowdown due to these augmentations. Additionally, since data loading
is handled by the CPU, using CPUs with multiple cores can further speed up the process. Therefore, overall, FAF does not
introduce any noticeable computational overhead.
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G. Additional Results
G.1. Quantitative Results

Univariate Results. We first present the complete univariate forecasting results, covering both Chronos and Moirai, and
reporting both MSE and MAE metrics. The MSE scores are already shown in Table 2. As seen below (in Table 6), both
architectures benefit significantly from FAF in terms of both MSE and MAE. The rightmost column reports the average
MSE scores for each architecture.

Table 6: Univariate forecasting results (MSE and MAE) for Chronos-Bolt and Moirai, with and without FAF.

Dataset
Chronos-Bolt Moirai

avg. impr.
Baseline FAF Baseline FAF

MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.043 0.156 0.036 0.141 0.044 0.163 0.036 0.146 +17.2%
ETTh2 0.082 0.215 0.080 0.211 0.113 0.254 0.093 0.230 +10.0%
ETTm1 0.015 0.089 0.015 0.088 0.015 0.091 0.014 0.088 +3.3%
ETTm2 0.028 0.111 0.027 0.108 0.032 0.113 0.030 0.110 +4.9%
Solar 0.286 0.291 0.241 0.274 0.238 0.246 0.232 0.245 +9.1%
Traffic 0.107 0.176 0.100 0.166 0.170 0.250 0.142 0.221 +11.5%
ECL 0.191 0.302 0.186 0.295 0.293 0.388 0.285 0.385 +2.7%
Exchange 0.040 0.151 0.036 0.145 0.039 0.148 0.035 0.145 +10.1%
Weather 0.0005 0.015 0.0005 0.015 0.0006 0.016 0.0005 0.015 +8.4%

avg. impr. +6.4% +3.7% +10.8% +5.2% +8.6%

Comparison to architectural variations. To demonstrate how FAF compares with various architectures, we compared
many architectural variations and FAF applied TimePFN in Table 7. All in all, one sees that compared to various architectural
variations, FAF yields state-of-the-art results.

Table 7: Results of multivariate time-series forecasting comparing FAF to leading architectures. Input and forecast lengths
are both 96. FAF refers to FAF applied TimePFN.

Dataset ECL Weather Traffic Solar-Energy Exchange ETTh1 ETTh2 ETTm1 ETTm2

Models MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

FAF 0.137 0.233 0.160 0.201 0.385 0.254 0.182 0.213 0.087 0.205 0.375 0.402 0.285 0.335 0.312 0.350 0.172 0.250

TimePFN 0.138 0.234 0.166 0.208 0.392 0.260 0.203 0.219 0.100 0.223 0.402 0.417 0.293 0.343 0.392 0.402 0.180 0.262

iTransformer 0.147 0.239 0.175 0.215 0.393 0.268 0.201 0.233 0.086 0.206 0.387 0.405 0.300 0.349 0.342 0.376 0.185 0.272

PatchTST 0.185 0.267 0.177 0.218 0.517 0.334 0.222 0.267 0.080 0.196 0.392 0.404 0.293 0.343 0.318 0.357 0.177 0.260

DLinear 0.195 0.278 0.341 0.412 0.690 0.432 0.286 0.375 0.101 0.237 0.400 0.412 0.357 0.406 0.344 0.371 0.195 0.293

FEDformer 0.196 0.310 0.227 0.313 0.573 0.357 0.242 0.342 0.148 0.289 0.380 0.417 0.340 0.386 0.363 0.408 0.191 0.286

Informer 0.327 0.413 0.455 0.481 0.735 0.409 0.190 0.216 0.921 0.774 0.930 0.763 2.928 1.349 0.623 0.559 0.396 0.474

Autoformer 0.214 0.327 0.273 0.344 0.605 0.376 0.455 0.480 0.147 0.279 0.440 0.446 0.364 0.408 0.520 0.490 0.233 0.311

ModernTCN 0.214 0.298 0.162 0.211 0.735 0.459 0.315 0.335 0.103 0.228 0.386 0.393 0.295 0.341 0.323 0.366 0.171 0.255

# of Variates 321 21 862 137 8 7 7 7 7

We see from the table that FAF strengthens the TimePFN architecture, even more so in domains such as Solar or ETTm1
where it lacks the good baseline performance. In the experiments, we used the official codebases with input and forecast
horizons set to 96. The table clearly demonstrates that FAF yields highly promising results.
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Comparison of FAF and the Reference Model. In Tables 1 and 2, we did not include the performance of the reference
models when comparing with FAF. Below, we present how FAF performs relative to FAF-applied TimePFN and FAF-applied
Chronos, where the target models are TimePFN and Chronos, respectively.

Table 8: Multivariate time-series forecasting performances of the baseline TimePFN, FAF-applied TimePFN, and the
corresponding reference model. We report the test performances of all models. For all cases, TimePFN was used with both
input and forecast horizons set to 96.

Datasets
Baseline FAF Reference

MSE MAE MSE MAE MSE MAE

ETTh1 0.402 0.417 0.375 0.402 0.394 0.411
ETTh2 0.293 0.343 0.285 0.335 0.303 0.348
ETTm1 0.392 0.402 0.312 0.350 0.354 0.382
ETTm2 0.180 0.262 0.172 0.250 0.184 0.266

Solar 0.203 0.219 0.182 0.213 0.209 0.243
Traffic 0.392 0.260 0.385 0.254 0.406 0.275
ECL 0.138 0.234 0.137 0.233 0.146 0.243

Exchange 0.100 0.223 0.087 0.205 0.088 0.209
Weather 0.166 0.208 0.160 0.201 0.163 0.207

As shown in Table 8, the performance of FAF significantly surpasses that of the reference model, demonstrating that AdaRho
not only improves upon the baseline model but also outperforms the reference model itself. Notably, in a few cases—such as
ETTh1—the reference model slightly outperforms the baseline. This outcome is expected, as reference models are trained
on a randomly sampled 25% subset of the training data. Such subsampling may inadvertently exclude noisy training points
that do not contribute to accurate forecasting, thereby improving performance. Nonetheless, even in these cases, the target
model trained with FAF consistently outperforms the reference model by a substantial margin.

Table 9: Univariate time-series forecasting performances of the baseline Chronos-Bolt, FAF-applied Chronos-Bolt, and the
corresponding reference model. We report the test performance of all models. For all cases, Chronos-Bolt was used with an
input length of 96 and a forecast horizon of 36.

Datasets
Baseline FAF Reference

MSE MAE MSE MAE MSE MAE

ETTh1 0.043 0.156 0.036 0.141 0.040 0.148
ETTh2 0.082 0.215 0.080 0.211 0.086 0.221
ETTm1 0.015 0.089 0.015 0.088 0.015 0.089
ETTm2 0.028 0.111 0.027 0.108 0.028 0.110

Solar 0.286 0.291 0.241 0.274 0.379 0.395
Traffic 0.107 0.176 0.100 0.166 0.105 0.170
ECL 0.191 0.302 0.186 0.295 0.199 0.304

Exchange 0.040 0.151 0.036 0.145 0.037 0.148
Weather 0.0005 0.015 0.0005 0.015 0.0006 0.016

A similar pattern holds for Chronos-Bolt: FAF consistently outperforms the reference model, even in cases where the
reference model is more accurate than the baseline.
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G.2. Qualitative Results

Below, we qualitatively demonstrate how FAF impacts forecasting performance. The examples, drawn from multivariate
tasks, compare TimePFN with and without FAF.
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Figure 4: Comparison of Baseline vs. FAF-applied results on ETTh1 dataset.
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Figure 5: Comparison of Baseline vs. FAF-applied results on ETTh2 dataset.
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Figure 6: Comparison of Baseline vs. FAF-applied results on ETTm1 dataset.
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Figure 7: Comparison of Baseline vs. FAF-applied results on ETTm2 dataset.
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Figure 8: Comparison of Baseline vs. FAF-applied results on Solar dataset.
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Figure 9: Comparison of Baseline vs. FAF-applied results on ECL dataset.
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Figure 10: Comparison of Baseline vs. FAF-applied results on Exhange dataset.
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Figure 11: Comparison of Baseline vs. FAF-applied results on Traffic dataset.
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Table 10: Ablation on ETTh/m datasets (MSE and MAE) using TimePFN for MTS forecasting (input length and forecast horizon 96).
FAF yields almost uniformly superior performance, followed by AdaRho.

Dataset FAF Augmentation AdaRho RHO HTL LRL Uniform

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.375 0.402 0.398 0.418 0.383 0.406 0.386 0.408 0.429 0.436 0.395 0.410 0.402 0.417
ETTh2 0.285 0.335 0.296 0.344 0.286 0.336 0.294 0.341 0.311 0.364 0.299 0.346 0.293 0.343
ETTm1 0.312 0.350 0.388 0.395 0.307 0.353 0.319 0.355 0.356 0.390 0.322 0.346 0.392 0.402
ETTm2 0.172 0.250 0.185 0.269 0.173 0.253 0.173 0.255 0.201 0.284 0.176 0.254 0.180 0.262

Table 11: Dispersion of reduc. loss

Metric ETTh1 ETTm1 ECL Traffic

QCD 0.61 0.70 0.18 0.23
CV 1.30 1.58 0.33 0.45

H. Ablations
We report an ablation study in Table 10, highlighting the clear advantage of FAF over several competitive baselines on the
ETT datasets. To disentangle the individual contributions of AdaRho and the data augmentation strategy, we conducted
ablation studies by removing each component separately. For a broader comparison, we also included several established
sample selection methods: RHO-Loss (Mindermann et al., 2022), which employs a learnable prioritization mechanism;
HTL (Loshchilov & Hutter, 2015), which focuses on samples with high training loss; and LRL, a simple heuristic that
selects samples with the lowest loss according to a reference model. Additionally, we reported results under uniform sample
shuffling as a baseline. These comparisons offer insight into how FAF’s selective strategy interacts with data quality and
learning dynamics. In the end, we compared each method basically adhering to the same experimental configurations.
Although AdaRho is competitive with FAF in some benchmarks, we see that FAF has much superior performance overall.

As part of our ablation studies, we report the quantile coefficient of dispersion (QCD) and the coefficient of variation (CV),
both common measures of data dispersion. QCD, defined as QCD = Q3−Q1

Q3+Q1
, uses the first and third quartiles and is more

robust to outliers. CV is given by CV = σ
µ

, the ratio of standard deviation to mean. We find that when dispersion is low
(e.g., all data points are equally informative or noise cancels via averaging), filtering yields smaller performance gains. This
provides a simple guideline for when to apply FAF.

H.1. Ablation on Replacing the Reference Model

We conducted the experiments using Chronos as the reference model for univariate settings and TimePFN for multivariate
settings. To demonstrate that other models can also serve as reference models, we present an ablation study below where
both iTransformer and TimePFN are used as reference models, with iTransformer as the target model. The results show that
using iTransformer as the reference model yields similarly competitive performance.
Table 12: We report the test performance of the target model (iTransformer) using two different reference models. FAF-r-TimePFN
refers to FAF with TimePFN as the reference model, while FAF-r-iTransformer refers to FAF with iTransformer as the reference model.
Both the input and forecast lengths are set to 96.

Datasets Baseline FAF-r-TimePFN FAF-r-iTransformer

MSE MAE MSE MAE MSE MAE

ETTh1 0.387 0.405 0.381 0.402 0.375 0.395
ETTh2 0.300 0.349 0.293 0.343 0.295 0.342
ETTm1 0.342 0.376 0.325 0.365 0.334 0.364
ETTm2 0.185 0.272 0.172 0.252 0.176 0.258

Solar 0.201 0.233 0.190 0.225 0.192 0.217
Traffic 0.393 0.268 0.388 0.262 0.392 0.268
ECL 0.147 0.239 0.147 0.237 0.147 0.237

Exchange 0.086 0.206 0.085 0.204 0.086 0.205
Weather 0.175 0.215 0.169 0.207 0.169 0.208
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