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Abstract

The widespread use of Text-to-Image (T2I)001
models in content generation requires careful002
examination of their safety, including their ro-003
bustness to adversarial attacks. Despite exten-004
sive research on adversarial attacks, the reasons005
for their effectiveness remain underexplored.006
This paper presents an empirical study on ad-007
versarial attacks against T2I models, focusing008
on analyzing factors associated with attack suc-009
cess rates (ASR). We introduce a new attack ob-010
jective - entity swapping using adversarial suf-011
fixes and two gradient-based attack algorithms.012
Human and automatic evaluations reveal the013
asymmetric nature of ASRs on entity swap: for014
example, it is easier to replace “human” with015

“robot” in the prompt “a human dancing in the016
rain.” with an adversarial suffix, but the reverse017
replacement is significantly harder. We further018
propose probing metrics to establish indicative019
signals from the model’s beliefs to the adver-020
sarial ASR. We identify conditions that result021
in a success probability of 60% for adversarial022
attacks and others where this likelihood drops023
below 5%.1024

1 Introduction025

The capabilities of Text-to-Image (T2I) generation026

models, such as DALL-E 2 (Ramesh et al., 2022),027

DALL-E 3 (Betker et al., 2023), Imagen (Saharia028

et al., 2022) and Stable Diffusion (Rombach et al.,029

2022), have improved drastically and reached com-030

mercial viability. As with any consumer-facing AI031

solution, the safety and robustness of these models032

remain pressing concerns that require scrutiny.033

The majority of research related to T2I safety034

is associated with the generation of Not-Safe-For-035

Work (NSFW) images with violence or nudity (Qu036

et al., 2023; Rando et al., 2022; Tsai et al., 2023).037

To counter this, pre-filters that check for NSFW038

texts and post-filters that check for NSFW images039

are used (Safety-checker, 2022). However, these040

1We will release our code upon review decision.

filters are not infallible (Rando et al., 2022), and 041

research into bypassing them, termed ‘jailbreaking’ 042

is advancing (Yang et al., 2023b,a; Noever and No- 043

ever, 2021; Fort, 2023; Galindo and Faria; Maus 044

et al., 2023; Zhuang et al., 2023). These attacks 045

typically view the creation of NSFW-triggering ad- 046

versarial prompts as a singular challenge, without 047

sufficiently investigating the reasons behind these 048

attacks’ effectiveness. 049

On the other hand, explainability studies have 050

examined the capabilities and shortcomings of text- 051

to-image (T2I) models. They show that T2I mod- 052

els often generate content without understanding 053

the composition (Kong et al., 2023; West et al., 054

2023), and reveal compositional distractors (Hsieh 055

et al., 2023). We identified a specific bias of T2I 056

models linked to adversarial attack success rates, 057

bridging the gap between attack and explainability 058

research. We demonstrate the asymmetric bias of 059

the T2I models by conducting adversarial attacks 060

in a novel entity-swapping scenario, in contrast 061

to the existing setup of removing objects (Zhuang 062

et al., 2023) or inducing NSFW content (Yang et al., 063

2023b,a). This setup enables us to investigate the 064

attack success rate in a cyclical setting. 065

To study the underlying reasons for the success 066

of adversarial attacks, the attack must be powerful 067

and have a high success rate. This would allow us 068

to ensure that cases with low success rates arise due 069

to the model’s internal biases, not simply as a result 070

of the algorithm’s shortcomings. We propose two 071

optimizations of existing gradient-based attacks 072

(Shin et al., 2020; Zou et al., 2023) using efficient 073

search algorithms to find adversarial suffix tokens 074

against Stable Diffusion. This approach is based on 075

the observation that existing algorithms for LLM 076

attacks are unnecessarily conservative in generating 077

adversarial perturbations and struggle to efficiently 078

navigate the larger vocabulary size of the T2I text 079

encoder. 080

Our novel setup and efficient adversarial attack 081
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a turtle swimming in an aquarium.a fish swimming in an aquarium.

Attack 1: Swap “turtle” with “fish”

Attack 2: Swap “fish” with “turtle”

a fish swimming in an aquarium.a turtle swimming in an aquarium.

Entity Swap Setting - Which Direction Is Easier?

                                                
a fish swimming in an aquarium.                 93.36
a turtle swimming in an aquarium.              242.22

Sentence Perplexity

(a)

a turtle swimming in an aquarium. opi edmonton cumulative valentina coventry

a fish swimming in an aquarium. saxon turtpe entirely partly

Attack 1: Success Rate 1.5%

Attack 2: Success Rate 90%

Perplexity is not indicative of attack success rate

(b)

“a fish swimming in an aquarium.”

“a [PAD] swimming 
in an aquarium.”

High ASR

Low ASR

CLIP Embedding Space

“a turtle swimming in an aquarium.”

We found that the embedding distance from a back-
ground context position is a much stronger determi-
nant of attack success rate (ASR).

T2I Text Encoder’s Bias Given a Context 

(c)

Figure 1: Overview of new attack objective, its asymmetric success rate, and the underlying cause of said asymmetry.

have allowed us to observe an asymmetric attack082

success rate associated with entity swap. Initially,083

we hypothesized that long-tail prompts with high084

perplexity would be more vulnerable to attacks.085

Surprisingly, we found no strong correlation be-086

tween the Attack Success Rate (ASR) and the per-087

plexity of the prompt. However, with our proposed088

measure that evaluates the internal beliefs of CLIP089

models, we detected indicative signals for ASR,090

which help identify examples or prompts that are091

more susceptible to being attacked. Our contribu-092

tions can be summarized as follows.093

1. We introduce a new attack objective: replac-094

ing entities of the prompt using an adversarial095

suffix. This allows us to study the relation be-096

tween adversarial attacks and the underlying097

biases of the model (Figure 1a).098

2. We apply an existing gradient-based attack099

algorithm to execute entity-swap attacks and100

propose improvements that take advantage of101

the bag-of-words nature of T2I models. This102

powerful attack method reveals a clear distinc-103

tion in the ASR when two entities are swapped104

in opposite directions, indicating an asymme-105

try in adversarial attacks (Figure 1b).106

3. We propose a new metric that is tied to the107

asymmetric bias of T2I models. This helps us108

identify vulnerable preconditions and estimate109

ASR without performing an attack (Figure110

1c).111

2 Related Works112

Adversarial Attacks Adversarial attacks, which113

perturb inputs to cause models to behave unpre-114

dictably, have been a long-studied area in the field115

of adversarial robustness (Szegedy et al., 2013; 116

Shafahi et al., 2018; Shayegani et al., 2023). Previ- 117

ous studies on adversarial attacks focused on dis- 118

criminative models involving convolutional neu- 119

ral networks (Athalye et al., 2018; Hendrycks and 120

Dietterich, 2018), while recent work has shifted 121

towards examining generative models such as large 122

language models (LLMs) (Shin et al., 2020; Zou 123

et al., 2023; Liu et al., 2023c; Mo et al., 2023; 124

Cao et al., 2023), vision language models (VLMs) 125

(Dong et al., 2023; Khare et al., 2023; Shayegani 126

et al., 2024), and Text-to-Image (T2I) models de- 127

tailed below. 128

Attacks on T2I Models Zhuang et al. (2023) 129

were among the first to demonstrate that a mere 130

five-character perturbation could significantly al- 131

ter the generated images. Tsai et al. (2023) and 132

SneakyPrompt (Yang et al., 2023b) proposed ad- 133

versarial attacks using genetic algorithms and re- 134

inforcement learning algorithms to perturb safe 135

prompts to generate NSFW content. VLAt- 136

tack (Yin et al., 2023), MMA-Diffusion (Yang 137

et al., 2023a), and INSTRUCTTA (Wang et al., 138

2023) demonstrated that cross-modality attacks can 139

achieve higher success rates than text-only attacks. 140

For defense, Zhang et al. (2023) proposed Adver- 141

sarial Prompt Tuning to enhance the adversarial 142

robustness of the image encoder in T2I models. 143

Vulnerability Analysis Previous studies (Ilyas 144

et al., 2019; Shafahi et al., 2018; Brown et al., 2017) 145

have explored the reasons for the vulnerability of 146

neural networks to adversarial attacks, especially in 147

image classification. Ilyas et al. (2019) suggested 148

that adversarial examples stem from non-robust fea- 149

tures in models’ representations, which are highly 150
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predictive yet imperceptible to humans. Subhash151

et al. (2023) suggested that adversarial attacks on152

LLMs may act like optimized embedding vectors,153

targeting semantic regions that encode undesirable154

behaviors during the generation process.155

Distinct from previous research, our study an-156

alyzes factors in the model’s beliefs linked to at-157

tack success rates. Unlike prior work focusing on158

untargeted attacks to trigger NSFW image genera-159

tions, we introduce a unique entity-swapping attack160

setup and develop a discrete token-searching algo-161

rithm for targeted attacks, identifying asymmetric162

biases in success rates due to the model’s internal163

bias. Our experiments emphasize the relationship164

between prompt distributions, model biases, and165

attack success rates.166

3 Entity Swapping Attack167

This section describes the proposed setup of the168

entity-swapping attack and the corresponding eval-169

uation metric. Designing a new attack scenario170

may be straightforward, but developing a suitable171

measure is not trivial. Towards this end, we pro-172

pose two efficient discrete token search algorithms173

for the attack, resulting in improved success rates174

in entity-swapping attacks.175

3.1 Stable Diffusion176

We study entity-swapping attacks using Stable Dif-177

fusion (Rombach et al., 2022), an open-source 2178

T2I model based on a denoising diffusion proba-179

bilistic model with a U-Net architecture. It uses180

cross-attention and CLIP (Radford et al., 2021)181

for text-image alignment and a variational auto-182

encoder (Kingma and Welling, 2013) for latent183

space encoding. The model’s dependence on CLIP184

text embeddings increases its vulnerability to ad-185

versarial attacks. See Appendix E for more details.186

3.2 Entity Swapping Dataset187

We first constructed datasets with the following188

key properties to study model bias through entity-189

swapping attacks.190

1. Each data point should be a pair of sentences191

- input and target - and T2I models should be192

able to generate both reliably.193

2. The input sentence and the target sentence194

should differ by exactly one noun (i.e., an195

entity).196

2Licensed under CreativeML Open RAIL++-M License
for intended for research purposes only.

3. The input sentence and target sentence should 197

be visually distinct. 198

As an example, the pair (“a person in a park.”, 199

“a man in a park.”) satisfies requirements 1 and 2 200

but not 3. As our setup for entity-swapping at- 201

tacks is targeted, namely adversarial attacks need 202

to swap the entities in the images without affecting 203

other parts compared to other attacks that aim to 204

either generate NSFW images or remove objects, 205

we created two datasets to study the effects of ad- 206

versarial attacks. We manually constructed a small 207

high-quality dataset HQ-Pairs and a larger-scale set 208

derived from an existing dataset MS-COCO. 209

HQ-Pairs For the first dataset, we manually 210

crafted 100 pairs for entity-swapping that satisfy 211

all the requirements. We refer to this first dataset 212

as HQ-Pairs (High Quality). 213

COCO-Pairs To ensure that our results were not 214

due to selective data selection, we generated a sec- 215

ond dataset of 1,000 pairs deterministically from 216

the test split captions of MS-COCO (Lin et al., 217

2014) 3. We refer to this dataset as COCO-Pairs. 218

Since COCO-Pairs is automatically generated, we 219

attempted to ensure that each data pair satisfies all 220

three requirements. However, generating sentence 221

pairs through stable diffusion and verifying them 222

as visually distinct automatically is not always reli- 223

able. We observed some visually non-distinct pairs, 224

such as (“Herd of zebras ...”, “Images of zebras 225

...”) within COCO-Pairs despite automatic checks 226

and filtering. See Appendix A for details on dataset 227

curation. 228

3.3 Proposed Attack 229

We examine how the underlying data distribution 230

of prompts influences the success rate of entity- 231

swapping attacks on T2I models. Our approach is 232

straightforward: rather than manipulating T2I to 233

produce NSFW images or completely removing an 234

object, we aim to replace an object in the image 235

with another targeted one. This approach also al- 236

lows us to explore the feasibility of reverse attacks 237

by inserting adversarial tokens. Examples of our 238

attack setup can be found in Figure 2. 239

The CLIP text-encoder transforms prompt to- 240

kens x1:n into n hidden states with dimension D. 241

Let the operationH represent the combined process 242

of encoding tokens x1:n and reshaping the hidden 243

states into a vector of length n×D. 244

3We will release the code to reproduce COCO-Pairs.
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a doodle of a light bulb on a notebook. im-
pressive " slovakbris terrier

a doodle of a dog on a notebook. light bulb 
bulb surrounding bulb

a backpack in a forest. �oating goldie hut 
shinee edm

a cabin in a forest. mulberry literal bernard 
collateral backpack

a robot dancing in the rain. taeyeon hara 
concession headshot brian

a human dancing in the rain. 2 ': embar-
rassing robot thankfully

a child playing with a toy train. guys sct air-
plane protoairplane

a child playing with a toy airplane. glaston-
bury locomotive cv with amethyst

Forward Attack ASR 20%

Backward Attack ASR 100%

10%

70%

ASR 30%

60%

 0%

ASR 10%

ASR 60%

ASR  0%

ASR 10%

ASR 70%

Figure 2: Targeted replacement of entities (blue or orange text) using adversarial suffixes (red highlight) and their
corresponding Attack Success rate (ASR) over 10 attack attempts using Stable Diffusion. This attack setup allows
us to study the correlation between prompt distribution and ASR. We observe a clear distinction in ASR when
performing entity-swapping with reversed directions. The rest of the paper explores explanations and measures that
can detect and predict ASR without performing the attack itself.

H(x1:n) = Flatten(CLIP(x1:n)) (1)245

Our attack targets the CLIP embedding space246

and aims to maximize a score function that mea-247

sures the shift from the input token embeddings248

H(xT1:n) towards the target token embeddings249

H(xS1:n) using cosine similarity:250

S(x1:n) = wt × cos(H(xT1:n),H(x1:n))−
ws × cos(H(xS1:n),H(x1:n))

(2)251

Optimizing S is challenging due to the discrete252

token set and the exponential search space (k|V |253

for k suffix tokens), making simple greedy search254

intractable. Current solutions based on HotFlip255

(Ebrahimi et al., 2017) and concurrent work ap-256

plied to Stable Diffusion (Yang et al., 2023a), take257

gradients w.r.t. one-hot token vectors and replace258

tokens for all positions in the suffix simultaneously.259

The linearized approximation of replacing the ith260

token, xi, is computed by evaluating the following261

gradients:262

∇exi
L(x1:n) ∈ R|V |, L(x1:n) = −S(x1:n)

(3)263

where exi denotes the one-hot vector representing264

the current value of the ith token.265

3.4 Proposed Optimization Algorithms 266

Based on existing gradient-based methods (Zou 267

et al., 2023; Shin et al., 2020), we propose two 268

efficient algorithms to find adversarial suffix tokens 269

against Stable Diffusion. 270

Single Token Perturbation This is a straightfor- 271

ward modification of the Greedy Coordinate Gra- 272

dient algorithm (Zou et al., 2023) using our loss 273

function defined in Eqn. 3. At each optimization 274

step, our algorithm selects k tokens with the high- 275

est negative loss as replacement candidates, χi, for 276

each adversarial suffix position i. It then creates 277

B new prompts by randomly replacing one token 278

from the candidates. Each prompt in B differs from 279

the initial prompt by only one token. The element 280

of B with the highest S is then assigned to x1:n. 281

We repeat this process T times. 282

Multiple Token Perturbation Unlike the LLMs 283

targeted by Zou et al. (2023), CLIP models oper- 284

ate more like bag-of-words (Yuksekgonul et al., 285

2022) without capturing semantic and syntactical 286

relations between words. Furthermore, Genetic Al- 287

gorithms (Sivanandam et al., 2008) have proved 288

effective on Stable Diffusion (Zhuang et al., 2023; 289

Yang et al., 2023b) for generating adversarial at- 290

tacks. Inspired by this apparent weakness in CLIP 291

models, we hypothesized that replacing multiple 292
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tokens simultaneously could improve the conver-293

gence speed.294

In detail, the algorithm selects k tokens and cre-295

ates B new prompts by randomly replacing multi-296

ple token positions. Drawing inspiration from the297

classic exploration versus exploitation strategy in298

reinforcement learning (Sutton and Barto, 2018),299

we initially replace all tokens and then gradually300

decrease the replacement rate to 25%. Figure 2301

illustrates some adversarial suffixes generated us-302

ing this algorithm. Details of both algorithms are303

provided in the Appendix B.304

Token Restrictions For finer control over token305

search, we can limit the adversarial suffix to a set306

of tokens A. By setting the gradients of the V −A307

tokens to infinity before the Top-k operation, we308

ensure only A tokens are chosen. This method309

allows us to mimic QFAttack (Zhuang et al., 2023),310

as shown in Figure 3, or generate undetectable311

attacks by excluding target synonyms in the attack312

suffix.

a red and white picnic blanket with a 
basket m! ( 7 +

a yellow sunflower in a field 9 | 0 + c

a yellow and black bumblebee on a 
flower | 6 s $ 4

a snake and a young man | 5 m? 4

Figure 3: The emulation of restricted token attack (un-
targeted) from Zhuang et al. (2023) using five ASCII
tokens with Stable Diffusion 1.4. The blue text indicates
the part we want to remove. We set wt = 0 in Eqn. 2.

313

3.5 Proposed Attack Evaluation314

To assess the success of a targeted entity-swapping315

attack, we use a classifier to verify if the generated316

image matches the input or target prompt. Given a317

tuple (input text, target text, generated image), we318

define a classifier C as follows:319

C(input text, target text, generated image)

=


+1 if image matches target text
−1 if image matches input text
0 otherwise.

(4)320

When trying to change “A backpack in a forest”321

to “A cabin in a forest”, we noticed that some of322

the generated images depicted “People in a forest”323

or “A cabin and a backpack in a forest” instead. 324

We define such cases as class 0. Class +1 alone 325

indicates a successful attack, but this three-class 326

framework enables a more comprehensive compar- 327

ison between human judgments and our proposed 328

classifiers. 329

Attack Success Rate (ASR) We define an ad- 330

versarial suffix as successful if the target text is a 331

suitable caption for the majority of images gen- 332

erated by an attack prompt using a T2I model. 333

For example, if we generate 5 images with an ap- 334

pended adversarial suffix prompt “A backpack in 335

a forest. titanic tycoon cottages caleb dojo ”, we 336

will consider the adversarial suffix successful if 3 337

or more images match the target prompt “A cabin 338

in a forest”. 339

Human Evaluations/Labels We gather evalua- 340

tions from three human evaluators 4 for 200 random 341

samples by presenting them a WebUI (Appendix 342

H) with the generated image and two checkboxes 343

for input text and target text. They are instructed 344

to select texts that match the image and can se- 345

lect one, both, or neither, i.e. into three classes 346

as established in Eqn. 4. The Gwet-AC1 met- 347

ric (Gwet, 2014) of the three evaluators is 0.765 348

and the pairwise Cohen’s Kappa κ metrics (Co- 349

hen, 1960) are 0.659, 0.736, and 0.779, indicating 350

a high degree of agreement. We consider the ma- 351

jority vote among evaluators as ground truth. 352

Choice of the Classifier We generate multiple at- 353

tack suffixes for each input-target pair to determine 354

attack success rates. Due to the large volume of im- 355

ages, we employ human evaluators for a subset and 356

VLM-based classifiers for the full set evaluation. 357

We test InstructBLIP (Liu et al., 2023a), LLaVA- 358

1.5 (Liu et al., 2023b) and CLIP (Radford et al., 359

2021), and compare their performance with human 360

labels. 361

For InstructBLIP and LLaVA-1.5, we use 362

the prompt ‘Does the image match the caption 363

[PROMPT]? Yes or No?’. For CLIP models, an 364

image is classified as +1 if its target text similarity 365

is above 1− γ and its input text similarity is below 366

γ and −1 for the reverse case. All other cases are 367

classified as 0. Table 1 shows the agreement of dif- 368

ferent automatic classifiers with ground truths from 369

4Our evaluations were conducted by three non-author, na-
tive English-speaking volunteers who generously offered their
time without compensation. We sincerely thank them for their
commitment and good faith effort in labeling.
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Figure 4: Comparison of pair-wise attack success rate on HQ-Pairs using Multiple Token Perturbation Algorithm.

Model # Classes Accuracy F1

InstructBLIP 3 0.79 0.75
LLaVA-1.5 3 0.76 0.74
CLIP 3 0.62 0.55
CLIP-336 3 0.60 0.55

InstructBLIP 2 0.86 0.84
LLaVA-1.5 2 0.83 0.81
CLIP 2 0.70 0.69
CLIP-336 2 0.68 0.67

Table 1: Comparison of Automated Evaluation Models.
# Classes = 3 means the model outputs are categorized
into classes {−1, 0 and 1} as defined in Eqn. 4. Since
classes {−1, 0} both correspond to unsuccessful attacks,
we collapse them into a single class 0 and report the
performance of the VLM models with # Classes = 2.

our human evaluators. We use the optimal thresh-370

old γ (γCLIP = 0.0034 and γCLIP−336 = 0.0341)371

that maximizes the F1 score. Since InstructBLIP372

shows the best alignment with human evaluation,373

we use InstructBLIP as our sole classifier in subse-374

quent sections.375

4 Experiments and Results376

This section presents the experimental details and377

results of adversarial attacks for entity-swapping,378

involving the insertion of adversarial suffixes.379

4.1 Experimental Setups380

We evaluate Stable Diffusion v2-1-base on the HQ-381

Pairs dataset of 100 input-target pairs to compare382

the effectiveness of Single and Multiple Token383

Perturbation. We run each algorithm 10 times384

per pair with T = 100 steps with k = 5 and385

B = 512, which yields 10 adversarial attacks per386

pair, and we generate 5 images per attack. The387

two algorithms are evaluated against each other on388

100 × 10 × 5 = 5000 generated images. We set 389

wt = ws = 1 in Eqn. 2 for the experiments. After- 390

ward, we evaluate COCO-Pairs (1000 pairs) using 391

the Multiple Token Perturbation algorithm to es- 392

tablish the asymmetric bias phenomenon with the 393

same hyperparameters. We used a single Nvidia 394

RTX 4090 GPU for all experiments, including at- 395

tack, image generation, and automated evaluation, 396

totaling around 500 GPU hours. 397

4.2 Overall Attack Results 398

Using the same hyperparameters and compute bud- 399

get, our Multiple Token Perturbation algorithm 400

outperforms the Single Token Perturbation ( ASR 401

26.4% vs. 24.4% for 1000 attacks). Zou et al. 402

(2023) showed that Single Token Perturbation 403

was an effective adversarial suffix-finding strategy 404

for LLMs. However, the CLIP text is relatively 405

lightweight compared to LLMs and behaves more 406

like a bag-of-words model (Yuksekgonul et al., 407

2022). CLIP also has a larger vocabulary compared 408

to LLMs ( 50K vs. 32K) which leads to a larger 409

unrestricted search space (∼ 1024 vs. ∼ 1023 for 410

5 token suffixes). We find that updating multiple 411

tokens at each time step leads to faster convergence, 412

likely because CLIP demonstrates a reduced em- 413

phasis on the semantic and syntactical relationships 414

between tokens. Our findings corroborate the effec- 415

tiveness of the Genetic Algorithm in Zhuang et al. 416

(2023), which resembles multiple token perturba- 417

tions but operates in an untargeted setting without 418

a gradient-based algorithm. We employ Multiple 419

Token Perturbation for all subsequent experiments. 420

4.3 Forward and Backward Attack Results 421

One of our key findings is the strong asymmetry of 422

adversarial attack success rate, as illustrated in Fig- 423
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ure 4. For instance, attacks from ‘A swan swimming424

in a lake.’ to ‘A horse swimming in a lake.’ failed425

in all ten attempts, whereas the reverse direction426

achieved an ASR of 0.9. In other cases, the forward427

and backward ASRs aren’t inversely proportional.428

For example, both directions between ‘A man read-429

ing a book in a library.’ and ‘A woman reading a430

book in a library.’ have moderate ASRs of 0.7 and431

0.5, respectively, while pairs like (‘A dragon and432

a treasure chest.’, ‘A knight and a treasure chest.’)433

fail in both directions. Inspired by these asymmet-434

ric observations, we conducted further experiments435

to analyze the relationship between prompt distri-436

bution and attack success rate.437

5 Asymmetric ASR Analysis438

This section discusses our experiments to analyze439

the asymmetric ASR observed in Section 4.3. We440

aim to investigate the model’s internal beliefs that441

may lead to these distinct attack success rate (ASR)442

differences from opposite directions. We propose443

three potential factors for this asymmetry: the dif-444

ficulty of generating the target text (BSR, Eqn. 5),445

the naturalness of the target text relative to the in-446

put text (∆1, Eqn. 6), and the difference in distance447

from the target text to the baseline compared to that448

from the input text (∆2, Eqn. 7).449

5.1 Probe Metrics450

We initially speculated that ASR might be related451

to the difficulty in generating the target prompt,452

leading us to evaluate the Base Success Rate (BSR)453

of target generation.454

BSR =
Successful Generations
Generation Attempts

(5)455

BSR assesses the T2I model’s ability to generate456

an image that matches the input prompt without457

any adversarial suffixes. Stable Diffusion is often458

unable to generate novel compositions not present459

in its training data (West et al., 2023) and struggles460

with generating co-hyponym entities in the same461

scene (Tang et al., 2022). We find that even simple462

scenes such as “A dragon guarding a treasure.”463

are inconsistently produced (See Appendix F for464

examples). Therefore, if the T2I models struggle465

with the target alone, adversarial attacks aimed at466

generating them are likely to be even more chal-467

lenging.468

We also speculated that the difference in Per-469

plexity ∆1, measuring how natural or plausible470

a ! swimming in a lake.

a ! in a forest.

Figure 5: Baseline Distance Difference measures the
inherent biases of T2I models. This can be observed by
prompting Stable Diffusion a PAD token in place of an
entity.

a prompt is, might be associated with asymmet- 471

ric ASR. For example, “A swan swimming in a 472

lake” is a more natural scene than “A horse swim- 473

ming in a lake”. Using text-davinci-003 474

by OpenAI (Brown et al., 2020), we calculate the 475

perplexity difference 476

∆1(x
T
1:n, x

S
1:n) = PPL(xT1:n)− PPL(xS1:n). (6) 477

where PPL(x1:n) = e−
1
n

∑n
i=1 logP (xi|x1:i−1) is the 478

perplexity for the sequence x1:n. 479

480

Furthermore, we introduce a new metric 481

termed Baseline Distance Difference, denoted as 482

∆2. Figure 5 shows that T2I models have inherent 483

biases towards certain objects. We denote this 484

phenomenon as the baseline - answering what 485

would Stable Diffusion generate if prompted with 486

“A swimming in a lake”. Intuitively, targets 487

closer to this baseline should be easier to generate. 488

∆2(x
T
1:n, x

S
1:n) = cos(H(xT1:n),H(xB1:n))
−cos(H(xS1:n),H(xB1:n)).

(7) 489

5.2 Results 490

We generated 64 images for each sentence in HQ- 491

Pairs and COCO-Pairs. We counted the number 492

of successful generations to determine the BSR as 493

defined in Eqn. 5. 494

On the HQ-Pairs dataset, we find that Perplex- 495

ity Difference ∆1 has a negligible correlation with 496

ASR (Pearson r = 0.05 and Spearman ρ = −0.06). 497

This is counterintuitive because we expected that 498

a target with lower perplexity compared to the in- 499

put text would be easier to generate through an 500

adversarial attack. We also observed that ASR 501

7



(a) ASR vs. Baseline Distance Difference (∆2 in Eqn. 7) (b) ASR for Negative and Positive ∆2

Figure 6: Correlation of ASR with Baseline Distance Difference ∆2. Data is reported using the Multiple Token
Perturbation algorithm on HQ-Pairs. ∆2 shows a moderate negative correlation with ASR.

has a weak positive correlation with BSR (Pearson502

r = 0.28 and Spearman ρ = 0.38) and a moder-503

ate correlation with ∆2 (Pearson r = −0.39 and504

Spearman ρ = −0.46. See Figure 6a). In partic-505

ular, Figure 6b shows that the mean ASR is 0.40506

when ∆2 is negative, while it drops to just 0.12507

when ∆2 is positive. Thus, ∆2 allows us to esti-508

mate, to some extent, the probability of a success-509

ful adversarial attack. We present more correlation510

plots of ASR with Perplexity Difference and BSR511

in Appendix F.512

5.3 Predictor for Successful Attack513

Considering the observed correlations of BSR (of514

the target text) and ∆2 with attack success rates,515

this section explores whether the combination of516

these two indicators can predict the probability of517

a successful entity-swapping attack.518

HQ-Pairs COCO-Pairs
BSR ∆2 Num. Avg. ASR Num. Avg. ASR

Low Neg. 23 0.174 260 0.129
Low Pos. 19 0.047 274 0.087
High Neg. 27 0.6 239 0.349
High Pos. 31 0.171 226 0.213

All All 100 0.264 1000 0.189

Table 2: Average ASR for different combinations of
BSR and ∆2 on COCO-Pairs dataset. We define BSR ≥
0.9 as high. The average BSR of the target text of HQ-
Pairs and COCO-Pairs were 0.82 and 0.698 respectively.

Table 2 shows that our probe metric acts as a519

reliable predictor of attack success: when BSR520

(of the target text) is high and ∆2 is negative for a521

given input-target text pair, adversarial attacks have 522

a 60% chance of success on the HQ-Pairs dataset, 523

compared to only 5% when BSR is low and ∆2 524

is positive. Thus, considering both BSR and ∆2 525

together enhances the prediction accuracy of an 526

attack’s success likelihood. We further validate our 527

findings on the much larger COCO-Pairs dataset. 528

Although the differences are not as pronounced as 529

those in the HQ-Pairs, due to limitations explained 530

in Section 3.2, we still observe that high BSR and 531

negative ∆2 remain indicative of a higher likeli- 532

hood of successful adversarial attacks. We also 533

identified factors akin to existing research on gen- 534

eral elements associated with attack success rates, 535

like the length of the adversarial suffix. These fac- 536

tors, together with our experimental results, are 537

detailed in Appendix G. 538

6 Conclusion 539

This paper presents an empirical study on adversar- 540

ial attacks targeting text-to-image (T2I) generation 541

models, with a specific focus on Stable Diffusion. 542

We define a new attack objective: entity-swapping, 543

and introduce two gradient-based algorithms to im- 544

plement the attack. Our research has identified key 545

factors for successful attacks, revealing the asym- 546

metric nature of attack success rates for forward 547

and backward attacks in entity-swapping. Further- 548

more, we propose probing metrics to associate the 549

asymmetric attack success rate with the asymmet- 550

ric bias within the T2I model’s internal beliefs, thus 551

establishing a link between a model’s bias and its 552

robustness against adversarial attacks. 553
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7 Limitations554

Our analysis establishes the asymmetric bias phe-555

nomenon for Stable Diffusion but whether all T2I556

models have such bias is an open question. Closed-557

source T2I models with different architectures such558

as Imagen and DALL·E may be immune to the559

asymmetric bias phenomenon or their creators may560

have mitigated biases through careful data curation.561

One of our key findings is that asymmetric bias562

is not intuitive. Although humans might consider563

“fish” to be a more natural option (and likely more564

abundant in the training data) for “A in an565

aquarium”, we find that Stable Diffusion is strongly566

biased towards “turtle” instead. We leave exploring567

the underlying reason for this non-intuitive bias as568

future work.569

We observed that gradient-based algorithms tend570

to include the target word in the adversarial suf-571

fix. Concurrent works that aim to generate unde-572

tectable NSFW attacks use a dictionary to prevent573

this. Since we target benign words and have dif-574

ferent targets for every attack, we could not use a575

similar approach. We explore explicitly forbidding576

tokens corresponding to the target word, but the al-577

gorithm still finds synonyms or different tokeniza-578

tions of the target word. Forbidding the target word579

proved to be a nontrivial and ultimately, we did not580

consider generating true adversarial attacks to be581

a central focus of our investigation of model bias.582

Another technical challenge is the need to compute583

BSR which involves generating a statistically sig-584

nificant number of images (64 in our experiments)585

for the same prompt. Finding ways to approximate586

the BSR is an area for future research.587
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A Generating COCO-Pairs811

Starting from 5000 captions, we filter out long captions and use a Named-Entity-Recognition model812

(Nadeau and Sekine, 2007) to identify the first noun in the sentence and use a Fill-Mask model (Devlin813

et al., 2018) to replace it with another noun. We use the NLTK (Loper and Bird, 2002) library and several814

heuristics to prevent synonyms, hyponym-hypernym, and nonvisualizable nouns from being selected. We815

are left with 2093 (base caption, synthetic caption) pairs, from which we sample 500. This yields 1000816

sentence pairs in total by considering both directions.817

B Algorithms818

Algorithm 1 Single Token Perturbation

Require: Initial prompt x1:n, modifiable subset I , iterations T , loss L, score S, batch size B, k
1: for t ∈ T do
2: for i ∈ I do
3: χi ← Top-k(−∇xiL(x1:n)) {Compute top-k promising token substitutions}
4: end for
5: for b = 1, . . . , B do
6: x

(b)
1:n ← x1:n {Initialize element of batch}

7: x
(b)
i ← Uniform(χi), where i← Uniform(I) {Select random replacement token}

8: end for
9: x1:n ← x

(b∗)
1:n , where b∗ = argmaxb S(x

(b)
1:n) {Compute best replacement}

10: end for
Ensure: Optimized prompt x1:n

Algorithm 2 Multiple Token Perturbation

Require: Input: Initial prompt x1:n, modifiable subset I , iterations T , loss L, score S, batch size B, k,
ϵf , ϵs

1: ϵ← ϵs
2: for t ∈ T do
3: for i ∈ I do
4: χi ← Top-k(−∇xiL(x1:n)) {Compute top-k promising token substitutions}
5: end for
6: for b = 1, . . . , B do
7: x

(b)
1:n ← x1:n {Initialize element of batch}

8: for i ∈ I do
9: if P(ϵ) then

10: x
(b)
i ← Uniform(χi) {Select random replacement token}

11: end if
12: end for
13: end for
14: x1:n ← x

(b∗)
1:n , where b∗ = argmaxb S(x

(b)
1:n) {Compute best replacement}

15: ϵ← max(ϵf , ϵs − t
T ) {Reduce the replacement probability}

16: end for
Ensure: Output: Optimized prompt x1:n
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C Additional Examples of Asymmetric Bias 819

Sentence Pair (1 / 2) ∆2 ASR 1→ 2 ASR 2→ 1 Example

a (plane / hot air balloon) in the sky at
sunset.

-0.1 80% 0%

a plane in the sky at sunset. 
picturesque flyer '\" evening balloon

a (cabin / backpack) on a mountain. -0.08 90% 20%

a cabin on a mountain. salutparticle
novo backpack sitting

an owl in a (forest / shopping mall). -0.07 70% 0%

an owl in a forest. vintage mall 
cashier mannetups

a (birdhouse / jack o lantern) on a tree
branch.

-0.06 60% 0%

an a birdhouse on a tree branch. sectional 
grizzly pumpkin micro costume

a (turtle / fish) swimming in an aquarium. +0.05 0% 90%

a fish swimming in an aquarium. 
tortoise're dly applying

a (robot / human) dancing in the rain. +0.1 0% 60%

a human dancing in the rain. 2 ': 
embarrassing robot thankfully

a doodle of a (light bulb / dog) on a
blackboard.

+0.1 0% 80%

a doodle of a dog on a blackboard.
electrical bulb bulb expressing

Table 3: Additional examples of asymmetric bias in Stable Diffusion 2.1. ∆2 shows a consistent negative correlation
with ASR.

13



D Changing the Number of Adversarial Tokens820

(a) Reducing the number of attack tokens for ”a red panda/car in a forest.”. Displaying only the adversarial
attack suffixes. 2 tokens are sufficient. ”a red panda in a forest. chained porsche ” generates ”a car in a forest”.

(b) Reducing the number of attack tokens ”a guitar/piano in a music store.”. Displaying only the adversarial
attack suffixes. All 5 tokens are necessary. ”a guitar in a music store. serendipity upright three bank piano ”
generates ”a piano in a music store.”

Figure 7: Reducing the number of tokens in adversarial prompts. Highly dependent on the input-target text pair.

E T2I Model Basics821

Stable Diffusion (Rombach et al., 2022) is built on a denoising diffusion probabilistic model (DDPM)822

(Ho et al., 2020) framework, utilizing a U-Net architecture for its core operations. Key to its text-to-image823

capabilities is the cross-attention mechanism, which aligns textual inputs with relevant visual features.824

Specifically, the U-Net attends to image-aligned text embeddings produced by a CLIP (Radford et al.,825

2021) model. Stable Diffusion also incorporates a Variational Autoencoder (Kingma and Welling, 2013)826

to efficiently encode images into a latent space, significantly reducing computational requirements while827

maintaining image quality. Since text embedding generation using a CLIP model is the first stage of the828

14



Stable Diffusion pipeline, it is particularly susceptible to adversarial attacks (Galindo and Faria; Zhuang 829

et al., 2023). If an adversary can perturb the text embeddings, later stages in the Stable Diffusion pipeline 830

will reflect the perturbed embeddings. 831

E.1 Exploiting CLIP’s Embedding Space 832

The CLIP text-encoder maps the textual prompt tokens x1:n, with xiϵ{1, ..., V } where V denotes the 833

vocabulary size, namely, the number of tokens to x1:n, where hi is the hidden state corresponding to the 834

token xi. The U-Net component in Stable Diffusion attends to all h1:n embeddings using cross-attention. 835

x1:n can be flattened into Φ, a one-dimensional vector of shape n × D, where D is the embedding 836

dimension (typically 768 for CLIP and its variants). For simplicity, we refer to Φ as the text embedding 837

of x1:n from here on. LetH represent the combined operation for encoding tokens x1:n and reshaping the 838

hidden output states. 839

Φ = H(x1:n) = Flatten(CLIP(x1:n)) (8) 840

Since input text and target text can vary in the number of tokens and to allow for an arbitrary number 841

of adversarial tokens, we pad all input and targets to 77 tokens each, the maximum number of tokens 842

supported by CLIP. 843

E.2 Score Function 844

The cosine similarity metric approximates the effectiveness of appending adversarial tokens at some 845

intermediate optimization step t. Moving away from the input tokens’ embedding and gradually towards 846

the target tokens’ embeddings through finding better adversarial tokens can be thought of as maximizing 847

the following score function, similar to the metric in (Zhuang et al., 2023). 848

S(x1:n) = wt × cos(H(xT1:n),H(x1:n))−
ws × cos(H(xS1:n),H(x1:n))

(9) 849

Here, wt and ws are weighing scalars and cos denotes the standard cosine similarity metric between 850

two one-dimensional text embeddings. For simplicity, we set wt = ws = 1 for all experiments. 851

E.3 Optimization over Discrete Tokens 852

The main challenge in optimizing S is that we have to optimize over a discrete set of tokens. Furthermore, 853

since the search space is exponential (k|V | for k suffix tokens), a simple greedy search is intractable. 854

However, we can leverage gradients with respect to the one-hot tokens to find a set of promising candidates 855

for replacement at each token position. We use the negated Score Function as the loss function L(x1:n) = 856

−S(x1:n). Maximizing the score is equivalent to minimizing the loss. Since losses are used for top K token 857

selection, the absolute value of the loss does not matter. We can compute the linearized approximation of 858

replacing the ith token i, xi by evaluating the gradient 859

∇exi
L(x1:n) ∈ R|V | (10) 860

Here exi denotes the one-hot vector that represents the current value of the ith token. Taking gradient 861

with respect to one-hot vectors was pioneered by HotFlip (Ebrahimi et al., 2017) and applied on Stable 862

Diffusion by a concurrent work (Yang et al., 2023a). Based on this heuristic, we presented two algorithms 863

for finding adversarial suffix tokens against Stable Diffusion. 864
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F Primary Determinants of Attack Success865

(a) “a sofa and a bed in a room.”

(b) “a dragon guarding a treasure.”

Figure 8: Examples of prompts that have low Base Success Rate (BSR) that highlight cases where Stable Diffusion
fails to generate images that match the input prompt.

(a) ASR vs. Perplexity Difference (∆1 in Eqn. 6) (b) ASR vs. BSR (of target text)

(c) ASR vs. Baseline Distance Difference (∆2 in Eqn. 7) (d) ASR for Negative and Positive ∆2

Figure 9: Correlation of ASR on ∆1, ∆2 and BSR. Data is reported using the Multiple Token Perturbation algorithm
on HQ-Pairs. We find that the Perplexity Difference ∆1 does not correlate with ASR. BSR shows a weak positive
correlation and Baseline Distance Difference ∆2 shows a moderate negative correlation with ASR.
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G Additional Determinants of Attack Success 866

These sections discuss factors beyond the asymmetric properties that are related to the success rate of 867

the attack. We have found factors like whether target token synonyms are allowed, attack suffix length 868

and attack POS types are factors indicating the attack’s success. We also found that, unlike LLM attacks, 869

adversarial suffixes do not transfer across T2I, indicating that these models might be harder to attack than 870

single-modality models. 871

G.1 Restricted Token Selection 872

Emulating QFAttack We can restrict certain tokens to emulate QFAttack (Zhuang et al., 2023) or 873

prevent the exact target word from being selected. We find that QFAttack can be consistently emulated by 874

restricting token selection to tokens corresponding to ASCII characters. We find that such adversarial 875

suffixes can remove concepts (e.g. “a young man” from “a snake and a young man.” or “on a flower” 876

from “a bee sitting on a flower.”) but fail to perform targeted attacks (e.g. changing “a bee sitting on a 877

flower.” to “a bee sitting on a leaf.”). We suspect that this is mainly because ASCII tokens can perturb 878

CLIP’s embedding but are unable to add additional information to it. 879

Blocking Selection of Target Tokens Another potential use case is preventing the selection of the exact 880

target word. However, we find that the algorithm simply finds a synonym or subword tokenization for the 881

target word when the exact target word (token) is restricted. For example, when attempting to attack the 882

input text “a backpack on a mountain.” to “a castle on a mountain.”, restricting the token corresponding 883

to “castle” leads to the algorithm including synonyms like “palace”, “chateau”, “fort” or subword 884

tokenization like “cast le” or “ca st le” in the adversarial suffix. We find that the effectiveness of the 885

algorithm isn’t affected when the exact target token is restricted and it still finds successful adversarial 886

suffixes using synonyms (when preconditions are met). 887

Changing the Number of Adversarial Tokens k We set the number of adversarial tokens to k = 5 888

for all experiments. However, we observe that not all input text-target text pairs require k = 5. “a red 889

panda/car in a forest.” can be attacked with a few as k = 2, i.e. “a red panda/car in a forest.” while “a 890

guitar/piano in a music store.” required all k = 5 (see Appendix D). We leave a comprehensive study on 891

the effect of changing the number of tokens for future work. 892

G.2 Certain Adjectives Resist Adversarial Attacks 893

We observed that adversarial attacks targeting certain adjectives, such as color, had a very low ASR. For 894

example, swapping out “red” with “blue” in the prompt “a red car on a city road.” failed in all instances. 895

Further challenging examples include “a red/purple backpack on a mountain.” and “a white/black swan on 896

a lake.”. However, other adjectives like “a sapling/towering tree in a forest” or “a roaring/sleeping lion 897

in the Savannah.” had high ASR in at least one direction. We leave further analysis of this phenomenon 898

for future work. 899

G.3 Adversarial Suffixes Do Not Transfer across T2I Models 900

We use SD 2.1-base which uses OpenCLIP-ViT/H (Cherti et al., 2023) internally. We find that adversarial 901

suffixes generated using this version of SD do not work on older versions such as SD 1.4, likely because 902

SD 1.4 uses CLIP ViT-L/14 (Radford et al., 2021). Similarly, the attacks did not transfer to DALL·E 3 903

(Betker et al., 2023). 904
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H Human Evaluation WebUI905

Figure 10: UI presented to human evaluators.
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