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ABSTRACT

Deep neural networks, despite their success in numerous applications, often func-
tion without established theoretical foundations. In this paper, we bridge this gap
by drawing parallels between deep learning and classical numerical analysis. By
framing neural networks as operators with fixed points representing desired solu-
tions, we develop a theoretical framework grounded in iterative methods for op-
erator equations. Under defined conditions, we present convergence proofs based
on fixed point theory. We demonstrate that popular architectures, such as diffusion
models and AlphaFold, inherently employ iterative operator learning. Empirical
assessments highlight that performing iterations through network operators im-
proves performance. We also introduce an iterative graph neural network, PIGN,
that further demonstrates benefits of iterations. Our work aims to enhance the un-
derstanding of deep learning by merging insights from numerical analysis, poten-
tially guiding the design of future networks with clearer theoretical underpinnings
and improved performance.

1 INTRODUCTION

Deep neural networks have become essential tools in domains such as computer vision, natural
language processing, and physical system simulations, consistently delivering impressive empirical
results. However, a deeper theoretical understanding of these networks remains an open challenge.
This study seeks to bridge this gap by examining the connections between deep learning and classical
numerical analysis.

By interpreting neural networks as operators that transform input functions to output functions,
discretized on some grid, we establish parallels with numerical methods designed for operator equa-
tions. This approach facilitates a new iterative learning framework for neural networks, inspired by
established techniques like the Picard iteration.

Our findings indicate that certain prominent architectures, including diffusion models, AlphaFold,
and Graph Neural Networks (GNNs), inherently utilize iterative operator learning (see Figure 1).
Empirical evaluations show that adopting a more explicit iterative approach in these models can
enhance performance. Building on this, we introduce the Picard Iterative Graph Neural Network
(PIGN), an iterative GNN model, demonstrating its effectiveness in node classification tasks.

In summary, our work:

• Explores the relationship between deep learning and numerical analysis from an operator
perspective.

• Introduces an iterative learning framework for neural networks, supported by theoretical
convergence proofs.

• Evaluates the advantages of explicit iterations in widely-used models.

• Presents PIGN and its performance metrics in relevant tasks.

• Provides insights that may inform the design of future neural networks with a stronger
theoretical foundation.
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Figure 1: Overview of iterative framework. (A) Popular architectures which incorporate iterative
components in their framework. (B) Convergence behavior of an iterative solver. (C) Behavior of
iterative solver converging to a fixed point in the data manifold.

The remainder of this manuscript is organized as follows: We begin by delving into the background
and related work to provide the foundational understanding for our contributions. This is followed
by an introduction to our theoretical framework for neural operator learning. Subsequently, we
delve into a theoretical exploration of how various prominent deep learning frameworks undertake
operator learning. We conclude with empirical results underscoring the advantages of our proposed
framework.

2 BACKGROUND AND RELATED WORK

Numerical Analysis. Numerical analysis is rich with algorithms designed for approximating so-
lutions to mathematical problems. Among these, the Banach-Caccioppoli theorem is notable, used
for iteratively solving operator equations in Banach spaces. The iterations, often called Fixed Point
iterations, or Picard iterations, allow to solve an operator equation approximately, in an iterative
manner. Given an operator T , this approach seeks a function u such that T (u) = u, called a fixed
point, starting with an initial guess and refining it iteratively.

The use of iterative methods has a long history in numerical analysis for approximate solutions of
intractable equations, for instance involving nonlinear operators. For example, integral equations,
e.g. of Urysohn and Hammerstein type, arise frequently in physics and engineering applications and
their study has long been treated as a fixed point problem (Krasnosel’skii, 1964; Atkinson & Han,
2005; Atkinson & Potra, 1987).

Convergence to fixed points can be guaranteed under contractivity assumptions by the Banach-
Caccioppoli fixed point theorem (Atkinson & Han, 2005). Iterative solvers have also been crucial
for partial differential equations and many other operator equations (Kelley, 1995).

Operator Learning. Operator learning is a class of deep learning methods where the objective of
optimization is to learn an operator between function spaces. Examples and an extended literature
can be found in Kovachki et al. (2021); Lu et al. (2021). The interest of such an approach, is
that mapping functions to functions we can model dynamics datasets, and leverage the theory of
operators. When the operator learned is defined through an equation, e.g. an integral equation
as in Zappala et al. (2022), along with the training procedure we also need a way of solving said
equation, i.e. we need a solver. For highly nonlinear problems, when deep learning is not involved,
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these solvers often utilize some iterative procedure as in Kelley (1995). Our approach here brings the
generality of iterative approaches into deep learning by allowing to learn operators between function
spaces through iterative procedure used in solving nonlinear operator equations.

Transformers. Transformers (Vaswani et al. (2017), Devlin et al. (2019), Radford & Narasimhan
(2018)), originally proposed for natural language processing tasks, have recently achieved state-of-
the-art results in a variety of computer vision applications (Dosovitskiy et al. (2020), Chen et al.
(2020), He et al. (2022), Baevski et al. (2022), Assran et al. (2023)). Their self-attention mecha-
nisms make them well-suited for tasks beyond just sequence modeling. Notably, transformers have
been applied in an iterative manner in some contexts, such as the “recycling” technique used in
AlphaFold2 (Jumper et al., 2021).

AlphaFold. DeepMind’s AlphaFold (Senior et al., 2020) is a protein structure prediction model,
which was significantly improved in Jumper et al. (2021) with the introduction of AlphaFold2 and
further extended to protein complex modeling in AlphaFold-Multimer (Evans et al., 2022). Al-
phaFold2 employs an iterative refinement technique called ”recycling”, which recycles the pre-
dicted structure through its entire network. The number of iterations was increased from 3 to 20
in AF2Complex (Gao et al., 2022), where improvement was observed. An analysis of DockQ
scores with increased iterations can be found in Johansson-Åkhe & Wallner (2022). We only look at
monomer targets, where DockQ scores do not apply and focus on global distance test (GDT) scores
and root-mean-square deviation (RMSD).

Diffusion Models. Diffusion models were first introduced in Sohl-Dickstein et al. (2015) and were
shown to have strong generative capabilities in Song & Ermon (2019) and Ho et al. (2020). They
are motivated by diffusion processes in non-equilibrium thermodynamics (Jarzynski, 1997) related
to Langevin dynamics and the corresponding Kolmogorov forward and backward equations. Their
connection to stochastic differential equations and numerical solvers is highlighted in Song et al.
(2021), Kingma et al. (2021), Dockhorn et al. (2022), and Meng et al. (2022). We focus on the
performance of diffusion models at different amounts of timesteps used during training, including
an analysis of FID (Heusel et al., 2017) scores.

Graph Neural Networks (GNNs). GNNs are designed to process graph-structured data through
iterative mechanisms. Through a process called message passing, they repeatedly aggregate and
update node information, refining their representations. The iterative nature of GNNs was explored
in Tang et al. (2020), where the method combined repeated applications of the same GNN layer
using confidence scores. Although this shares similarities with iterative techniques, our method
distinctly leverages fixed-point theory, offering specific guarantees and enhanced performance, as
detailed in Section 5.1.

3 ITERATIVE METHODS FOR SOLVING OPERATOR EQUATIONS

In the realm of deep learning and neural network models, direct solutions to operator equations
often become computationally intractable. This section offers a perspective that is applicable to
machine learning, emphasizing the promise of iterative methods for addressing such challenges
in operator learning. We particularly focus on how the iterative numerical methods converge and
their application to neural network operator learning. These results will be used in the Appendix
to derive theoretical convergence guarantees for iterations on GNNs and Transformer architectures,
see Appendix A.

3.1 SETTING AND PROBLEM STATEMENT

Consider a Banach space X . Let T : X −→ X be a continuous operator. Our goal is to find
solutions to the following equation:

λT (x) + f = x, (1)

where f ∈ X and λ ∈ R− {0} is a nontrivial scalar. A solution to this equation is a fixed point x∗

for the operator P = λT + f :
λT (x∗) + f = x∗. (2)
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3.2 ITERATIVE TECHNIQUES

It is clear that for arbitrary nonlinear operators, solving Equation (1) is not feasible. Iterative tech-
niques such as Picard or Newton-Kantorovich iterations become pivotal. These iterations utilize a
function g and progress as:

xn+1 = g(T, xn). (3)

Central to our discussion is the interplay between iterative techniques and neural network operator
learning. We highlight the major contribution of this work: By using network operators iteratively
during training, convergence to network fixed points can be ensured. This approach uniquely relates
deep learning with classical numerical techniques.

3.3 CONVERGENCE OF ITERATIONS AND THEIR APPLICATION

A particular case of great interest is when the operator T takes an integral form and X represents
a function space, our framework captures the essence of an integral equation (IE). By introducing
Pλ(x) = λT (x) + f , we can rephrase our problem as a search for fixed points.

We now consider the problem of approximating a fixed point of a nonlinear operator. The results
of this section are applied to various deep learning settings in Appendix A to obtain theoretical
guarantees for the iterative approaches.
Theorem 1. Let ϵ > 0 be fixed, and suppose that T is Lipschitz with constant k. Then, for all λ such
that |λk| < 1, we can find y ∈ X such that ||λT (y)+f −y|| < ϵ for any choice of λ, independently
of the choice of f .

Proof. Let us set y0 := f and yn+1 = f + λT (yn) and consider the term ||y1 − y0||. We have

||y1 − y0|| = ||λT (y0)|| = |λ|||T (y0)||.

For an arbitrary n > 1 we have

||yn+1 − yn|| = ||λT (yn)− λT (yn−1)|| ≤ k|λ|||yn − yn−1||.

Therefore, applying the same procedure to yn−yn−1 = T (yn−1)−T (yn−2) until we reach y1−y0,
we obtain the inequality

||yn+1 − yn|| ≤ |λ|nkn||T (y0)||.
Since |λ|k < 1, the term |λ|nkn||T (y0)|| is eventually smaller than ϵ, for all n ≥ ν for some choice
of ν. Defining y := yν for such ν gives the following

||λT (yν) + f − yν || = ||yν+1 − yν || < ϵ.

The following now follows easily.
Corollary 1. Consider the same hypotheses as above. Then Equation 1 admits a solution for any
choice of λ such that |λ|k < 1.

Proof. From the proof of Theorem 1 it follows that the sequence yn is a Cauchy sequence. Since X
is Banach, then yn converges to y ∈ X . By continuity of T , y is a solution to Equation 1.

Recall that for nonlinear operators, continuity and boundedness are not equivalent conditions.
Corollary 2. If in the same situation above T is also bounded, then the choice of ν of the iteration
can be chosen uniformly with respect to f , for a fixed choice of λ.

Proof. From the proof of Theorem 1, we have that

||yn+1 − yn|| ≤ |λ|nkn||T (y0)|| = |λ|nkn||T (f)||.

If T is bounded by M , then the previous inequality is independent of the element f ∈ X . Let
us choose ν such that |λ|nkn < ϵ/M . Then, suppose f is an arbitrary element of X . Initializing
y0 = f , yν will satisfy ||λT (yν) + f − yν || < ϵ, for any given choice of ϵ.
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The following result is classic, and its proof can be found in several sources. See for instance Chapter
5 in Atkinson & Han (2005).

Theorem 2. (Banach-Caccioppoli fixed point theorem) Let X be a Banach space, and let T :
X −→ X be contractive mapping with contractivity constant 0 < k < 1. Then, T has a unique
fixed point, i.e. the equation T (x) = x has a unique solution u in X . Moreover, for any choice of
u0, un = Tn(u0) converges to the solution with rate of convergence

||un − u|| <
kn

1− k
||u0 − u1||, (4)

||un − u|| <
k

1− k
||un−1 − un||. (5)

The possibility of solving Equation 1 with different choices of f is particularly important in the
applications that we intend to consider, as it is interpreted as the initialization of the model. While
various models employ iterative procedures for operator learning tasks implicitly, they lack a general
theoretical perspective that justifies their approach. Several other models can be modified using
iterative approaches to produce better performance with lower number of parameters. We will give
experimental results in this regard to validate the practical benefit of our theoretical framework.

While the iterations considered so far have a fixed procedure which is identical per iteration, more
general iterative procedures where the step changes between iterations are also diffused, and this can
be done also adaptively.

3.4 APPLICATIONS

Significance and Implications. Our results underscore the existence of a solution for Equation 1
under certain conditions. Moreover, when the operator T is bounded, our iterative method show-
cases uniform convergence. It follows that ensuring that the operators approximated by deep neural
network architectures are contractive, we can introduce an iterative procedure that will allow us to
converge to the fixed point as in Equation 2.

Iterative Methods in Modern Deep Learning. In contemporary deep learning architectures, es-
pecially those like Transformers, Stable Diffusion, AlphaFold, and Neural Integral Equations, the
importance of operator learning is growing. However, these models, despite employing iterative
techniques, often lack the foundational theoretical perspective that our framework provides. We will
subsequently present experimental results that vouch for the efficacy and practical advantages of our
theoretical insights.

Beyond Basic Iterations. While we have discussed iterations with fixed procedures, it is im-
perative to highlight that more general iterative procedures exist, and they can adapt dynamically.
Further, there exist methods to enhance the rate of convergence of iterative procedures, and our
framework is compatible with them.

4 NEURAL NETWORK ARCHITECTURES AS ITERATIVE OPERATOR
EQUATIONS

In this section, we explore how various popular neural network architectures align with the frame-
work of iterative operator learning. By emphasizing this operator-centric view, we unveil new av-
enues for model enhancements. Notably, shifting from implicit to explicit iterations can enhance
model efficacy, i.e. through shared parameters across layers. A detailed discussion of the various
methodologies given in this section is reported in Appendix B. In the appendix, we investigate archi-
tectures such as neural integral equations, transformers, AlphaFold for protein structure prediction,
diffusion models, graph neural networks, autoregressive models, and variational autoencoders. We
highlight the iterative numerical techniques underpinning these models, emphasizing potential ad-
vancements via methods like warm restarts and adaptive solvers. Empirical results substantiate the
benefits of this unified perspective in terms of accuracy and convergence speed.
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Figure 2: Left and Middle: Losses always decrease with more iterations in DDPMs. Training is
stable and overfitting never occurs. EMA smoothing with α = 0.1 is used for the loss curves to make
the differences clearer. Right: DDPMs show FID and loss improves with an increased number of
iterations on CIFAR-10. The number of iterations represent the denoising steps during training and
inference. All diffusion models, UNets of identical architecture, are trained on CIFAR-10’s training
dataset with 64-image batches.

Diffusion models. Diffusion models, especially denoising diffusion probabilistic models
(DDPMs), capture a noise process and its reverse (denoising) trajectory. While score matching with
Langevin dynamics models (SMLDs) is relevant, our focus is primarily on DDPMs for their simpler
setup. These models transition from complex pixel-space distributions to more tractable Gaussian
distributions. Notably, increasing iterations can enhance the generative quality of DDPMs, a con-
nection we wish to deepen. This procedure can be seen as instantiating an iteration procedure, where
iterations are modified as in the methods found in Wolfe (1978). This operator setting and iterative
interpretation is described in detail in Appendix B.1.

To empirically explore convergence with iterations in diffusion models, we train 10 different DDPMs
with 100-1000 iterations and analyze their training dynamics and perceptual quality. Figure 2 re-
veals that increasing timesteps improves FID scores of generated images. Additionally, Figure 2
demonstrates a consistent decrease in both training and test loss with more time steps, attributed to
the diminished area under the expected KL divergence curve over time (Figure 8). Notably, FID
scores decline beyond the point of test loss convergence, stabilizing after approximately 150,000
steps (Figure 8). This behavior indicates robust convergence with increasing iterations.

AlphaFold. AlphaFold, a revolutionary protein structure prediction model, takes amino acid se-
quences and predicts their three-dimensional structure. While the model’s intricacies can be found
in Jumper et al. (2021), our primary interest lies in mapping AlphaFold within the operator learn-
ing context. Considering an input amino acid sequence, it undergoes processing to yield a multiple
sequence alignment (MSA) and a pairwise feature representation. These data are subsequently fed
into Evoformers and Structure Modules, iteratively refining the protein’s predicted structure. We can
think of the output of the Evoformer model as pair of functions lying in some discretized Banach
space, while the Structure Modules of AlphaFold can be thought of as being operators over a space
of matrices. This is described in detail in Appendix B.2.

To empirically explore the convergence behavior of AlphaFold as a function of iterations, we applied
AlphaFold-Multimer across a range of 0-20 recycles on each of the 29 monomers using ground truth
targets from CASP15. Figure 3 presents the summarized results, which show that while on average
the GDT scores and RMSD improve with AlphaFold-Multimer, not all individual targets consistently
converge, as depicted in Figures 4 and 5. Given that AlphaFold lacks a convergence constraint in its
training, its predictions can exhibit variability across iterations.

Graph Neural Networks. Graph neural networks (GNNs) excel in managing graph-structured
data by harnessing a differentiable message-passing mechanism. This enables the network to as-
similate information from neighboring nodes to enhance their representations. We can think of the
feature spaces as being Banach spaces of functions, which are discretized according to some grid.
The GNN architecture can be thought of as being an operator acting on the direct sum of the Banach
spaces, where the underlying geometric structure of the graph determines how the operator com-
bines information through the topological information of the graph. A detailed description is given
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Figure 3: On average, additional iterations enhance AlphaFold-Multimer’s performance, though the
model doesn not invariably converge with more iterations. Target-specific trends can be seen in
Figures 4 and 5.

in Appendix A.3, where theoretical guarantees for the convergence of the iterations are given, and
Appendix B.3.

Neural Integral Equations. Neural Integral Equations (NIEs), and their variant Attentional Neu-
ral Integral Equations (ANIEs), draw inspiration from integral equations. Here, an integral operator,
determined by a neural network, plays a pivotal role.

Denoting the integrand of the integral operator as Gθ within an NIE, the equation becomes:

y = f(y,x, t) +

∫
Ω×[0,1]

Gθ(y,x, z, t, s)dzds

To solve such integral equations, one very often uses iterative methods, as done in Zappala et al.
(2022) and the training of the NIE model consists in finding the parameters θ such that the solutions
of the corresponding integral equations model the given data. A more detailed discussion of this
model is given in Appendix B.4.

5 EXPERIMENTS

In this section, we showcase experiments highlighting the advantages of explicit iterations. We
introduce a new GNN architecture based on Picard iteration and enhance vision transformers with
Picard iteration.

5.1 PIGN: PICARD ITERATIVE GRAPH NEURAL NETWORK

To showcase the benefits of explicit iterations in GNNs, we developed Picard Iteration Graph neural
Network (PIGN), a GNN that applies Picard iterations for message passing. We evaluate PIGN
against state-of-the-art GNN methods and another iterative approach called IterGNN (Tang et al.,
2020) on node classification tasks.

GNNs can suffer from over-smoothing and over-squashing, limiting their ability to capture long-
range dependencies in graphs (Nguyen et al., 2023). We assess model performance on noisy citation
graphs (Cora and CiteSeer) with added drop-in noise. Drop-in noise involves increasing a percentage
p of the bag-of-words feature values, hindering classification. We also evaluate on a long-range
benchmark (LRGB) for graph learning (Dwivedi et al., 2022).

Table 5 shows PIGN substantially improves accuracy over baselines on noisy citation graphs. The
explicit iterative process enhances robustness. Table 1 illustrates PIGN outperforms prior iterative
and non-iterative GNNs on the long-range LRGB benchmark, using various standard architectures.
Applying Picard iterations enables modeling longer-range interactions.
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GCN (Kipf & Welling, 2017) GAT (Veličković et al., 2018) GraphSAGE (Hamilton et al., 2017b)

w/o iterations 0.1510± 0.0029 0.1204± 0.0127 0.3015± 0.0032
IterGNN 0.1736± 0.0311 0.1099± 0.0459 0.1816± 0.0014
PIGN (Ours) 0.1831± 0.0038 0.1706± 0.0046 0.3560± 0.0037

Table 1: F1 scores of different models on the standard test split of the LRGB PascalVOC-SP dataset.
Rows refer to model frameworks and columns are GNN backbone layers. A budget of 500k trainable
parameters is set for each model. Each model is run on the same set of 5 random seeds. The
mean and standard deviation are reported. For IterGNN with GAT backbone, two of the runs keep
producing exploding loss so the reported statistics only include three runs.

The PIGN experiments demonstrate the benefits of explicit iterative operator learning. Targeting
weaknesses of standard GNN training, PIGN effectively handles noise and long-range dependencies.
A theoretical study of convergence guarantees is given in Appendix A.3.

Algorithm 1 Picard Iteration Graph Neural Network (PIGN)

Require:
f : Backbone GNN block
Smoothing factor: α ∈ [0, 1]
Max number of iterations: n
Input graph: G = (V,E) with node features X
Convergence threshold: ϵ

1: x0 ← X ▷ Initilization
2: k ← 0
3: while ||xk+1 − xk|| > ϵ & k < n do
4: zk+1 ← f(G, xk) ▷ One iteration of Message Passing
5: xk+1 ← αxk + (1− α)zk+1 ▷ Update the node embedding with smoothing
6: k ← k + 1
7: return xn

5.2 ENHANCING TRANSFORMERS WITH PICARD ITERATION

We hypothesize that many neural network frameworks can benefit from Picard iterations. Here, we
empirically explore adding iterations to Vision Transformers. Specifically, we demonstrate the bene-
fits of explicit Picard teration in transformer models on the task of solving the Navier-Stokes partial
differential equation (PDE) as well as self-supervised masked prediction of images. We evaluate
various Vision Transformer (ViT) architectures (Dosovitskiy et al., 2020) along with Attentional
Neural Integral Equations (ANIE) (Zappala et al., 2022).

For each model, we perform training and evaluation with different numbers of Picard iterations as
described in Section 3.2. We empirically observe improved performance with more iterations for all
models, since additional steps help better approximate solutions to the operator equations.

Table 2 shows lower mean squared error on the PDE task for Vision Transformers when using up
to three iterations compared to the standard single-pass models. Table 3 shows a similar trend for
self-supervised masked prediction of images. Finally, Table 4 illustrates that higher numbers of
iterations in ANIE solvers consistently reduces error. We observe in our experiments across several
transformer-based models and datasets that, generally, more iterations improve performance.

Overall, these experiments highlight the benefits of explicit iterative operator learning. For
transformer-based architectures, repeating model application enhances convergence to desired solu-
tions. Our unified perspective enables analyzing and improving networks from across domains. A
theoretical study of the convergence guarantees of the iterations is given in Appendix A.2.
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Model Niter = 1 Niter = 2 Niter = 3

ViT 0.2472± 0.0026 0.2121± 0.0063 0.0691± 0.0024
ViTsmall 0.2471± 0.0025 0.1672± 0.0087 0.0648± 0.0022
ViTparallel 0.2474± 0.0027 0.2172± 0.0066 0.2079± 0.0194
ViT3D 0.2512± 0.0082 0.2237± 0.0196 0.2529± 00.0079

Table 2: ViT models used to solve a PDE (Navier-Stokes). The mean squared error is reported for
each model as the number of iterations varies. A single iteration indicates the baseline ViT model.
Higher iterations perform better than the regular ViT (Niter = 1).

Model Niter = 1 Niter = 2 Niter = 3

ViT (MSE) 0.0126± 0.0006 0.0121± 0.0006 0.0122± 0.0006
ViT (FID) 20.0433 20.0212 19.2956

Table 3: ViT models trained with a pixel dropout reconstruction objective on CIFAR-10. The ViT
architecture contains 12 encoder layers, 4 decoder layers, 3 attention heads in both the encoder and
decoder. The embedding dimension and patch size are 192 and 2. The employed loss is MSE((1−
λ)T (xi) + λxi, y), computed on the final iteration Niter = i. Images are altered by blacking out
75% of pixels. During inference, iterative solutions are defined as xi+1 = (1− λ)T (xi) + λxi, for
i ∈ {0, 1, . . . N}. Here, N = 2 and λ = 1/2.

Model size Niter = 1 Niter = 2 Niter = 4 Niter = 6 Niter = 8

1H|1B 0.0564± 0.0070 0.0474± 0.0065 0.0448± 0.0062 0.0446± 0.0065 0.0442± 0.0065
4H|1B 0.0610± 0.0078 0.0516± 0.0083 0.0512± 0.0070 0.0480± 0.0066 0.0478± 0.0066
2H|2B 0.0476± 0.0065 0.0465± 0.0067 0.0458± 0.0067 0.0451± 0.0064 0.0439± 0.0062
4H|4B 0.0458± 0.0062 0.0461± 0.0065 0.0453± 0.0063 0.0453± 0.0061 0.0445± 0.0059

Table 4: Performance of ANIE on a PDE (Navier-Stokes) as the number of iterations of the integral
equation solver varies, and for different sizes of architecture. Here H indicates the number of heads
and B indicates the number of blocks (layers). A single iteration means that the integral operator is
applied once. As the number of iterations of the solver increases, the performance of the model in
terms of mean squared error improves.

6 DISCUSSION

We introduced an iterative operator learning framework in neural networks, drawing connections
between deep learning and numerical analysis. Viewing networks as operators and employing tech-
niques like Picard iteration, we established convergence guarantees. Our empirical results, exempli-
fied by PIGN—an iterative GNN, as well as an iterative vision transformer, underscore the benefits
of explicit iterations in modern architectures.

For future work, a deeper analysis is crucial to pinpoint the conditions necessary for convergence
and stability within our iterative paradigm. There remain unanswered theoretical elements about
dynamics and generalization. Designing network architectures inherently tailored for iterative pro-
cesses might allow for a more effective utilization of insights from numerical analysis. We are also
intrigued by the potential of adaptive solvers that modify the operator during training, as these could
offer notable advantages in both efficiency and flexibility.

In summation, this work shines a light on the synergies between deep learning and numerical analy-
sis, suggesting that the operator-centric viewpoint could foster future innovations in the theory and
practical applications of deep neural networks.
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A THEORETICAL GUARANTEES ON CONVERGENCE

In this section we consider the problem of convergence of the iterations for certain classes of models
considered in the article.

A.1 GENERALITIES ON OPERATOR DIFFERENTIATION

We recall some general facts about Frechet and Gateaux differentiation of operators between Banach
spaces which will be used later in the article to provide criteria for the convergence of the iterations.
Definition 1. Let X,Y be a Banach spaces, let T : X −→ Y be a continuous mapping, and let
u ∈ X be an arbitrary element in the domain of T . We say that T is Frechet differentiable at u if it
holds that

T (u+ h) = T (u) +Ah+ o(||h||) (6)

for some linear operator A : X −→ Y , for h→ 0. In such a situation we say that A is the Frechet
derivative of T at u, and denote the operator A by the symbol T ′(u).

We say that T is Gateaux differentiable at u if it holds that

lim
t→0

T (u+ th)− T (u)

t
= Ah (7)

for some linear operator A : X −→ Y , and for all h ∈ X . In such a situation we say that A is the
Gateaux derivative of T at u, and denote the operator A by the symbol T ′(u).
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Remark 1. Observe that the derivative is a mapping from the domain of T to the space of linear
maps X −→ Y , which we denote (following common notational convention) by L(X,Y ). The
latter is a Banach space whenever Y is a Banach space, where the norm is the usual norm of linear
operators.

Of course, the notion of Frechet derivative is stronger than that of Gateaux derivative. In other
words, if T is Frechet differentiable, then it is also Gateax differentiable. The converse is not always
true if the spaces X and Y are infinite dimensional.

Differentiability of operators is a fundamental notion in functional analysis. We recall here an
important property, namely the Mean Value Theorem.

Proposition 1. (Mean Value Theorem for operators) Let X,Y be Banach spaces, and assume that
T : U ⊂ X −→ Y is an operator where U ⊂ X is an open set of X . Suppose that T is (either
Frechet or Gateaux) differentiable on U and that T ′ : U −→ L(X,Y ) is a continuous mapping. Let
u, v ∈ U and assume that the segment between u and v lies in U . Then we have

||T (u)− T (v)||Y ≤ sup
θ∈[0,1]

||T ′((1− θ)u+ θw)|| ||u− w||X . (8)

As a consequence, we obtain the following useful criterion for an operator to be Lipschitz.

Lemma 1. Let T : U ⊂ X −→ Y be an operator betweem Banach spaces that is (either Frechet or
Gateaux) differentiable with continuous derivative over the open and convex U . If ||T ′(x)|| ≤ M
for all x ∈ U and some M > 0, then T is Lipschitz continuous on U with Lipschitz constant at most
M .

Proof. Let u,w be arbitrary elements of U . Since U is convex, the line segment between u and w is
inside U :

(1− θ)u+ θv ∈ U

for all θ ∈ [0, 1], which by assumption implies that ||T ′((1 − θ)u + θv)|| ≤ M . From the Mean
Value Theorem for operators (Proposition 1) we have that

||T (u)− T (v)|| ≤ sup
θ∈[0,1]

||T ′((1− θ)u+ θv)|| ||u− v||X ≤M · ||u− v||X , (9)

from which it follows that T is Lipschitz continuous on U with Lipschitz constant at most M .

A.2 ITERATIONS AND TRANSFORMER MODELS

While iterative approaches as those in ANIE have been explicitly used to solve a corresponding
fixed-point type of problem for a transformer operator that mimics integration, one can imagine to
generalize such a procedure to any transformer architecture, and iterate through the same transformer
several times during training and evaluation.

This formulation of transformer models, as operators whose corresponding Equation 1 we want to
solve, is inspired by integral equation methods, and will be shown to give better performance with
fixed number of parameters in the experiments. In fact, one similar approach has been followed for
some transformer architectures in the diffusion models, as we discuss in Subsection 4.

We consider a transformer consisting of a single self-attention layer. A generalization to multiple
layers is obtained straightforwardly from the considerations given in this subsection. We want to
show that Theorem 1 is applicable when considering iterations of a transformer architecture.

Here we set T : X −→ X to be a single layer transformer architecture consisting of a self-attention
mechanism with matrices WQ,WK ,WV , which are known in the literature as queries, keys and
values, respectively.

First, we will show that transformers are Frechet and Gateaux differentiable. Then, making use of
Lemma 1 we will find a criterion to force the iteration method applied to a transformer to converge
to a solution of an equation of the same type as in Equation 1. Here we consider the space X of
continuous (and therefore bounded) functions [0, 1] −→ R. We assume that the space is appropri-
ately discretized through a grid of points {ti}N−1

i=0 ⊂ [0, 1] with t0 = 0 and tN−1 = 1. The same
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reasoning can be applied to discretizations of higher dimensional domains, but we will explicitly
consider only this simpler situation. Here a function f is given by a sequence of points f(ti) which
coincides with the value of f on ti for all i = 0, . . . , N − 1.

Lemma 2. Let T denote a single layer transformer architecture where WQ,WK ,WV denote its
query, key and value matrices. Then T is Frechet (hence Gateaux) differentiable.

Proof. Let y be a discretized function in X , i.e. y ≈ {y(ti)}. Then we have

T (y) = (yWQ)(yWK)T (yWV ) = WyK
T
y Vy.

We observe that this is cubic in the input y. Let us consider h ∈ X which is a discretized function
as well. Then we can write

T (y + h) = ((y + h)WQ)((y + h)WK)T ((y + h)WV ) (10)

= (yWQ)(yWK)T (yWV ) + (hWQ)(yWK)T (yWV ) (11)

+(yWQ)(hWK)T (yWV ) + (yWQ)(yWK)T (hWV ) (12)
+R(h) (13)

= T (y) + T ′
1(y)(h) + T ′

2(y)(h) + T ′
3(y)(h) +R(h), (14)

where R(h) contains terms that are quadratic and cubic in h, and we have set T ′
i (y)(h) to be the

components that are linear in h and where h appears in the position i with respect to the product
QKTV . Therefore, we have written T (y+h) as T (y) plus terms that are linear in h, and a remainder
that is at least quadratic in h, and that it is therefore an o(||h||) when h −→ 0. It follows that T is
Frechet at y, and since y was arbitrarily chosen, T is Frechet in the whole domain.

Theorem 3. Let T denote a single layer transformer such that its Frechet derivative has norm
bounded by some M such that λM < 1 for all y ∈ U , where U is defined to be the unit ball around
0 in X . Then, Equation 1 admits a solution for any initialization f , and this is the limit of the
iterations yk := f + T (yk−1) for all k > 1 with y0 := f .

Proof. We observe first that by applying Lemma 2 it follows that T admits Frechet derivative ev-
erywhere on its domain, so that T ′ exists, and the assumption in the statement of this theorem is
meaningful. Since M < 1/λ, it follows from Lemma 1 that T is Lipschitz over U with Lipschitz
constant L such that λL < 1. It follows that the assumptions in Theorem 1 and its corollaries hold
and the result now follows.

In practice, in order to enforce the convergence of the iterative method to a solution of Equation 1 we
can add a term in the loss where the Frechet derivative as computed in Lemma 2 appears explicitly.

The algorithm for the iterations takes in the case of transformers a similar form as in the case of
Algorithm 1. This is given in Algorithm 2.

Algorithm 2 Iterative procedure for solving Equation 1 with a transformer based model T

Require:
T : Transformer architecture
f : Free function in Equation (1)
Smoothing factor: α ∈ [0, 1]
Max number of iterations: n

1: x0 ← f
2: k ← 0
3: while ||xk+1 − xk|| > ϵ & k < n do
4: zk+1 ← T (xk) + f ▷ Iteration
5: xk+1 ← αxk + (1− α)zk+1 ▷ Update the new solution using the previous two iterations

and smoothing
6: k ← k + 1
7: return xn
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A.3 GRAPH NEURAL NETWORKS

We now consider the case of GNNs, and reformulate them as an operator learning problem in some
space of functions. We analyze one well known type of GNN architecture and show that under
certain constraints, the convergence of the iterations is guaranteed.

First, recall that a GNN hads a geometric support, the graph Γ = {VΓ, EΓ}, where VΓ is the set of
vertices and EΓ is the set of edges, along with spaces of features Xv for each v ∈ VΓ. The neural
network T acts on the spaces of features based on the geometric information given by EΓ, which
determine the neighborhoods of the vertices. Here we consider a slightly more general situation
where we have a copy of the Hilbert space Xv = L2([−1, 1]) associated to each vertex v, and we
define T to be an operator on the direct sum of spaces X =

⊕
v∈EΓ

Xv . The operator T uses the
geometric information of EΓ to act on X . The case of neural networks, in practice, can be thought
of as a case where the function spaces L2([−1, 1]) are discretized, giving rise to the feature spaces.
The discussion that follows can be recovered adapted to the discretized case as well. More generally,
one can think of each Xv as being a Banach space of functions, but we will not discuss this more
general case in detail here.

At each vertex, GNNs apply an aggregate function that depends on the architecture used. A common
choice is to use some pooling function such as applying a matrix W to each feature vector on a
neighborhood of the vertex v, use a RELU nonlinearity, and take the maximum (component-wise)
over the outputs. See Hamilton et al. (2017a). This operation is followed by some combination
function, which in the variant Hamilton et al. (2017a) that we are considering, usually consists of
concatenation (followed by a linear map). We translate the aggregate function described above into
operators over the direct sum Hilbert space X . Since our discussion can be directly extended to
operators including the combine function as well, we will consider our operator T as consisting
only of the aggregation functions. We indicate the aggregation operator at node v ∈ VΓ by Av . This
is obtained as a composition of a linear operator W : L2([−1, 1]) −→ L2([−1, 1]) (a matrix in the
discretized form), which is applied over all the function in Xvi for all vi ∈ N(v) , the neighborhood
of v. This is followed by the mapping R, which is performs RELU nonlinearity over the entries of
the function output of W component-wise. Finally, we take the maximum over i of component-wise.
This procedure is a direct generalization to our setting of the common pooling aggregation function,
which is recovered when we discretize the space using a grid in the domain [−1, 1]. The linear map
W , here, is assumed to be shared among operators Av , but our discussion can be straightforwardly
adapted to the case of non-shared linear maps W .

Recall that an element of the direct sum of Hilbert spaces X =
⊕

i Xi takes the form f = f1 +
· · ·+ fk, where k = |VΓ|. We write the operator Av as

Av(f)(t) = max
i
{R(W (fi))(t) | vi ∈ N(v)}. (15)

Note that the dependence of Av on the edges of the geometric support Γ gets manifested through
the neighborhood of v, N(v). The GNN operator T , then, is given by

T (f) =
∑
i

πiT (f) =
∑
i

Avi(f), (16)

where πi : X −→ Xvi is the canonical projection and each summand is defined through Equa-
tion 15.

Before finding explicit guarantees on the convergence of the iterations for GNNs, we have the fol-
lowing useful result.

Lemma 3. Let T denote the GNN operator described above, let Γ be its geometric support, and let
X be the total Hilbert space. Assume that W is a Lipschitz operator with constant L. Then, there
exists a polynomial of degree 1 with non-negative coefficients, P (z1, . . . , zk) ∈ Z[z1, . . . , zk], such
that the following inequality holds

||T (f)− T (g)|| ≤ L · P (||f1 − g1||, . . . , ||fk − gk||), (17)

where f =
∑

i fi and g =
∑

i gi, with fi, gi ∈ Xvi
for all i = 1, . . . , k. Moreover, P depends only

on Γ.
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Proof. By definition of norm in the direct sum space, and considering the fact that T decomposes
into a direct sum as in Equation 16, we have

||T (f)− T (g)|| = ||
⊕
v

Av(f)−
⊕
v

Av(g)|| (18)

= ||
⊕
v

[Av(f)−Av(g)]|| (19)

=
⊕
v

||Av(f)−Av(g)||. (20)

We consider therefore the term ||Av(f)−Av(g)|| for an arbitrary v ∈ VΓ. It holds

||Av(f)−Av(g)|| = ||max
i

(RW (fi))−max
i

(RW (gi))|| (21)

≤ ||max
i

(RW (fi)−RW (gi))|| (22)

≤
∑
i

||RW (fi)−RW (gi)|| (23)

≤
∑
i

L||fi − gi||, (24)

where we have used the fact that if W is Lipschitz with constant L, then RW is also Lipschitz with
constant at most L (since RELU only zeroes the negative part). Therefore, we have

||T (f)− T (g)|| ≤
∑
v

∑
i

L||fi − gi||. (25)

Some of the ||fi − gi|| appear in multiple v’s, depending on the nieghborhoods determined by EΓ.
However, this is a degree 1 polynomial in the ||fi− gi||’s, and since it is determined uniquely by the
graph Γ, we have completed the proof.

Now we can show that when the maps W are contractive, the iterations are guaranteed to converge.
Theorem 4. Let T be a GNN operator acting on X as above. Suppose W is Lipschitz and let
α := maxi αi, where αi are the coefficient of the polynomial P in Lemma 3, such that Lα < 1.
Then, the fixed point problem

T (y) + f = y

has a unique solution for any choice of f ∈ X , and the iterations yn converge to such solution,
where y0 = f and yn+1 = T (yn) + f .

Proof. Using Lemma 3 and the hypothesis, we can reduce this result to an application of Theorem 1.
In fact, let P (z1, . . . , zk) = α1z1 + · · · , αkzk. Then, from Lemma 3 we have

||T (f)− T (g)|| ≤ L(α1||f1 − g1||+ · · ·+ αk||fk − gk||) (26)
≤ Lα(||f1 − g1||+ · · ·+ ||fk − gk||) (27)
= Lα||f − g||. (28)

Since Lα < 1 we have that T is contractive in the direct sum Hilbert space X , and we can apply
the previous machinery to enforce convergence and uniqueness. This result is independent of f as
in Corollay 2.

While we have considered here the specific architecture of SAGE Hamilton et al. (2017a), a similar
approach can be pursued in general for aggregation functions, at least with well behaved pooling
functions.

B NEURAL NETWORK ARCHITECTURES AS ITERATIVE OPERATOR
EQUATIONS IN DETAIL

This section underscores how some prominent deep learning models fit within our iterative operator
learning framework. While many architectures employ implicit iterations, transitioning to an explicit
approach has proven to yield improvements in model efficacy and data efficiency.
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We delve into a range of architectures including neural integral equations, transformers, AlphaFold
for protein structure prediction, diffusion models, graph neural networks, autoregressive models,
and variational autoencoders. For each, we elucidate their alignment with the operator perspective
and the compatibility with our framework.

Recognizing the underlying iterative numerical procedures in these models grants opportunities for
enhancements using strategies such as warm restarts and adaptive solvers. Empirical results on
various datasets underscore improvements in accuracy and convergence speed, underscoring the
merits of this unified approach. In summary, the iterative operator perspective merges theoretical
robustness with tangible benefits in modern deep learning.

B.1 DIFFUSION MODELS

Diffusion models Sohl-Dickstein et al. (2015) are a class of generative models that take a fixed
noise process and learn the reverse (denoising) trajectory. Although our discussion applies to score
matching with Langevin dynamics models (SMLDs) Song & Ermon (2019), we focus on denoising
diffusion probabilistic models (DDPMs) Ho et al. (2020) due to their simpler setup. Typically,
DDPMs are applied to images to learn a mapping from the intractable pixel-space distribution to the
standard Gaussian distribution that can easily be sampled. It has been observed (and briefly shown
in Kingma et al. (2021)) that more iterations improve the generative quality of DDPMs, and our aim
is to thoroughly explore this connection.

Let us review the setup for DDPMs from Ho et al. (2020). For a fixed number of time steps t =
0, 1, 2, . . . , T , diffusion schedule β1, β2, . . . , βT , and unknown pixel-space distribution q(x0), the
forward process is a Markov process with a Gaussian transition kernel

q(xt|xt−1) ∼ N (
√
1− βtxt−1, βtI).

Let αt := 1 − βt and ᾱt :=
∏t

i=1 αi. Given x0, we can deduce from the Markov property and the
form of q(xt|xt−1) a closed form for q(xt|x0):

q(xt|x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I).

A sample from this distribution can be reparametrized as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I).

Since q(x0) is unknown, the reverse process q(xt−1|xt) cannot be analytically derived from Bayes’
rule so it must be approximated. The goal of a DDPM is to approximate the reverse process by
learning a noise model ϵθ(xt, t) that predicts ϵ from the noisy image xt at time step t. During
training, a timestep t is chosen uniformly at random, and then the loss is C(t)||ϵ − ϵθ(xt, t)||2,
where C(t) is some weighting depending on t or equal to 1. At inference, the denoising trajectory
is computed via Langevin sampling using the model as predictor of partial denoising at each time
step.

The connection to operator learning is as follows (our discussion follows Song et al. (2021)). In
the continuous setting, we can let β(t) be the continuous diffusion schedule corresponding to the
discrete diffusion schedule {βi}, and let w be a Wiener process. In , it is shown that the forward
SDE is given by

dx = −1

2
β(t)xdt+

√
β(t)dw,

and the reverse SDE is

dx = −β(t)
(
1

2
+∇x log pt(x)

)
dt+

√
β(t)dw̄,

where pt(x) is the probability distribution of x at time t and time flows backwards. SMLDs and
DDPMs learn a discretized version of the reverse SDE by approximating the score ∇x log pt(x),
which is easily seen to be the KL divergence terms in the loss function of DDPMs up to a constant.

Diffusion training details. We use Hugging Face’s von Platen et al. (2022) UNet2D model with
5 downsampling blocks and 5 upsampling blocks where the 4th downsampling and 2nd upsam-
pling blocks contain attention blocks. Each block contains 2 ResNet2D blocks, and the number of
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outchannels is (128, 128, 256, 256, 512, 512) from the first input convolutional layer up to the mid-
dle of the UNet, and the number of outchannels is reversed during upsampling. We set β1 = .95,
β2 = .999, ϵ = 1e− 8 for the Adam optimizer with learning rate 1e-4, weight decay 1e-6, and 500
warmup steps. The loss function is mean-square-error loss on noise prediction for a single uniformly
sampled timestep for each image. The batch size is set to 64 images, and each model is trained up
to 200,000 steps.

B.2 ALPHAFOLD

AlphaFold is a deep learning approach to predict the three-dimensional structure of proteins based
on given amino acid sequences Jumper et al. (2021). For the sake of this paper, we briefly explain
the AlphaFold model and then formulate it in the context of an operator learning problem.

Each input amino acid sequence is first processed to create a multiple sequence alignments (MSA)
representation of dimension s× r× c and a pairwise feature representation of dimension r× r× c.
Both representations are passed to repeated layers of Evoformers to encode physical, biological and
geometric information into the representations. The representations are then passed to a sequence of
weight-sharing Structure Modules to predict and iteratively refine the protein structure. The entire
process is recycled for N times in order to further refine the prediction. See Jumper et al. (2021) for
details.

In the context of operator learning, we think of the input to the model as a pair of functions (f, g),
where f : [0, 1] → Rc and g : [0, 1] × [0, 1] → Rc. We discretize the interval [0, 1] to a grid of r
points to represent the input functions so that they can be processed by the model.

Let X and Y denote the function spaces where f and g lives respectively. The entire sequence of
Evoformer can be described as an operator

E : X × Y → X × Y

Since the Structure Modules share the same weights, we consider each one of them as an operator
S and the sequence of k Structure Modules as composing S for k times. We have

S : X ×M3(R)× R3 → X ×M3(R)× R3

The output space of AlphaFold is M3(R)×R3, consisting of pairs of rotation matrices and translation
vectors. Denote y = (f, g) ∈ X × Y . One cycle of the AlphaFold model can be described as an
operator

AF : X × Y →M3(R)× R3

y 7→ SkT (y)

AlphaFold does not impose any conditions to guarantee convergence of its recycles, but it shows
convergence behavior at inference in Figure 3. We look at the GDT scores and RMSD for up to
20 iterations across 29 different monomeric proteins and 44 targets from the CASP15 dataset cas
(2022). While convergence behavior is seen on average, Figures 4 and 5 suggest that AlphaFold
may benefit from an explicit convergence constraint.

AlphaFold inference details. We use the full database and multimer settings at inference. 5 ran-
dom seeds are chosen for each of the 5 models. We do not fix the random seeds—each prediction
uses a different set of random seeds. Our max template date is set to 2022-01-01 to avoid leakage
with CASP15. The targets were selected from CASP15 and filtered on public availability of targets.

B.3 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) specialize in processing graph-structured data by utilizing a differ-
entiable message-passing mechanism. This mechanism assimilates information from neighboring
nodes to refine node representations.

For a given graph
G = (V, E),
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with V as the node set and E as the edge set, the feature vector of a node v ∈ V is represented by
xv . A frequently used aggregation strategy is:

x′
v = f(xv,AGGN (v)({xu |u ∈ N (v)})) (29)

Here, N (v) specifies the neighbors of node v, AGG is an aggregation function (e.g., sum or mean)
applied over the neighboring nodes’ features, and f acts as a neural network-based update function.

Interpreting the aggregation within the framework of operator equations, let us denote X as R|V|×d,
representing the space of node feature matrices. The aggregation and subsequent node feature up-
dates can be described by an operator T : X −→ X , transforming the existing features into their
refined versions. The equilibrium or fixed points X∗ are achieved when:

X∗ = T (X∗) (30)

Training GNNs thus involves setting initial features as X0 and allowing the operator T to iteratively
refine them until convergence. This operator-centric viewpoint naturally extends to multi-layered
architectures, reminiscent of the GraphSAGE approach, integrating seamlessly within the proposed
framework. A more theoretical framework for this setup is given in Appendix A.3.

B.4 NEURAL INTEGRAL EQUATIONS

Neural Integral Equations (NIEs), and their variation Attentional Neural Integral Equations (ANIEs),
are a class of deep learning models based on integral equations (IEs) Zappala et al. (2022). Recall
that an IE is a functional equation of type

y = f(y,x, t) +

∫
Ω×[0,1]

G(y,x, z, t, s)dzds, (31)

where the integrand function G is in general nonlinear in y. Several types of IEs exist, and this class
contains very important examples but it is not exhaustive.

If G is contractive with respect to y, then we can adapt the proof of Theorem 1 to show that the
equation admits a unique solution y, and the iteration thereby described converges to a solution. In
fact, IEs are a class of equations where iterative methods have found important applications due to
their non-local nature. More specifically, we observe that when solving an IE, this cannot be solved
in a sequential manner, since in order to evaluate y at any point (x, t) we need to integrate y over
the full domain Ω× [0, 1], which requires knowledge of a solution globally. This is in stark contrast
with ODEs, where knowledge of y(t) at one point determines y(t) at a “close” next point.

NIEs are equations as 31, where the integral operator
∫
Ω×[0,1]

G(•,x, z, t, s)dzds is determined by
a neural network. More specifically, G := Gθ is a neural network, where θ indicates the parameters:

y = f(y,x, t) +

∫
Ω×[0,1]

Gθ(y,x, z, t, s)dzds, (32)

Optimization of an NIE consists in finding parameters θ such that the solutions y of Equation 32,
with respect to different choices of f called initialization, fit a given dataset. See Zappala et al.
(2022) for details.

ANIEs are a more general approach to IEs based on transformers (Zappala et al. (2022)). The
corresponding equation takes the form

T (y) + f(y) = y, (33)

where T indicates a transformer architecture. In Zappala et al. (2022), it is argued that a self-
attention layer can be seen as an integration operator of the type given in Equation 32, so that
these models are conceptually the same as NIEs, but their convenience relies in the implementation
of transformers. As an operator, T here is assumed to map a function space into itself, where a
discretization procedure has been applied on Ω × [0, 1] to obtain functions on grids. The iterative
method described in Theorem 1 is used for ANIEs as well, under the constraint that during training
the transformer architecture determines a contractive mapping on y.
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Cora Cora-50% CiteSeer CiteSeer-50%
GCN 80.9± 0.6 33.2± 12.2 71.3± 0.6 18.7± 6.3
GAT 80.4± 1.1 56.3± 4.4 69.9± 1.0 26.4± 5.4

IterGNN with GCN 60.9± 17.4 36.9± 13.3 45.33± 10.06 25.7± 7.4
IterGNN with GAT 60.5± 17.5 38.84± 15.24 49.91± 4.94 30.20± 7.20

PIGN with GCN (Ours) 76.7± 1.4 43.4± 6.8 68.4± 1.5 31.0± 3.1
PIGN with GAT (Ours) 79.2± 0.9 57.3± 4.8 66.1± 1.7 34.3± 4.6

Table 5: Accuracy scores of the three model frameworks with two GNN backbone layers on the
standard test split of the original and noisy Cora and CiteSeer datasets. Each model is run for 100
times and mean and standard deviation are reported. Our PIGN framework achieves comparable
performance on orginal datasets and better performance on noisy datasets.

Neural Integro-Differential Equations (NIDEs) are deep learning models closely related to NIEs and
ANIEs, and are based on Integro-Differential Equations (IDEs) Zappala et al. (2023). The iterations
for IDEs are conceptually similar to those discussed for IEs, but they also contain a differential
solver step due to the presence of the differential operator in IDEs. We refer the reader to Zappala
et al. (2023) for a more detailed treatment of the solver procedure.

B.5 AUTOREGRESSIVE MODELS

Autoregressive models, inherent in sequence-based tasks, predict elements of a sequence by lever-
aging the history of prior elements. Given a sequence x = (x1, x2, ..., xn), the joint distribution
p(x) is expressed as:

p(x) =

n∏
i=1

p(xi|x<i) (34)

where x<i represents the history, i.e., (x1, ..., xi−1). Each term p(xi|x<i) uses a neural architecture
to predict the distribution of xi based on its antecedents.

Widely-recognized autoregressive networks like PixelCNN, used for images, and Transformer-based
decoders like GPT for text, employ this approach. Training involves assessing the difference be-
tween predicted p(xi|x<i) and the actual xi from the dataset.

Incorporating the iterative operator framework, consider X as a functional space appropriate for se-
quences. This allows the definition of an operator T : X → X that iteratively updates the sequence:

T (x) = (x1, f2(x1), ..., fn(x<n)) (35)

Here, fi is the neural component predicting p(xi|x<i). The model aims for fixed points x∗ where
x∗ = T (x∗), equating predicted and actual subsequences.

By repeatedly applying T to an initial sequence and utilizing metrics like the Kullback-Leibler
divergence to measure proximity to fixed points, we establish a systematic approach to maximize
the likelihood, aligning it with our framework.

C MORE NUMERICAL RESULTS AND FIGURES
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Figure 4: Average GDT scores across all 25 AlphaFold-Multimer predictions (5 seeds per each
of the 5 models) for each CASP15 target vs number of recycles, min-max normalized. Larger
values are better. The model diverges in GDT for some targets indicating that there is no guaranteed
convergence with more recycling.
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Figure 5: Average RMSD across all 25 AlphaFold-Multimer predictions (5 seeds per each of the
5 models) for each CASP15 target, min-max normalized vs number of recycles. Lower values
are better. The model diverges in RMSD for some targets indicating that there is no guaranteed
convergence with more recycling.
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Figure 6: A grid of 10 unconditionally generated images from diffusion models. Each column
represents a model trained with a certain number of iterations, and the images are denoised with
the same number of iterations. Trained with few iterations, DDPMs are unable to create trajectories
back to the data manifold. When trained with at least 400 iterations, the model is able to generate
semantically meaningful images.
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Figure 7: A grid of 10 images where each column represents the number of denoising steps used to
return to the data manifold. The same diffusion model trained with 1000 iterations is used for all
generations. Note that the same model can produce semantically different images for the same noise
vector when the number of timesteps changes, but the reverse trajectories stabilize as the number of
timesteps grow.
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Figure 8: Further analysis with DDPMs. Top: The area under the loss curve when predicting the
noise is always decreasing with more iterations in DDPMs. Furthermore, the loss curves are roughly
monotonically decreasing with time indicating the denoising model converges to a ”reasonable”
minimum where the model is not better at denoising from a step with more noise compared to one
with less noise. The timesteps are normalized to be between 0 and 1. Bottom: FID on CIFAR-
10 improves with more time steps (in 10000s) at training. After around 500 timesteps, minimal
improvement is observed, but FID is never worse. Also, the same amount of training is required to
reach optimal FID values regardless of the number of timesteps. All models are UNets with the same
exact architecture trained on CIFAR-10’s training set with a batch size of 64 images. Convergence
on FID was always observed within 150000 steps. Models trained with 100 and 200 timesteps are
removed due to their relatively high FID scores, but they also exhibit convergence in FID.
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