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ABSTRACT

Conventional methods, including Decision Tree (DT)-based methods, have been
highly effective in scientific tasks, such as non-image medical diagnostics, sys-
tem anomaly detection, and inorganic catalysis efficiency prediction. However,
most deep-learning techniques have struggled to surpass or even match this level
of success as traditional machine learning methods. The primary reason is that
these applications involve multi-source, heterogeneous data, where features lack
explicit relationships. This contrasts with image data, where pixels exhibit spatial
relationships; textual data, where words have sequential dependencies; and graph
data, where nodes are connected through established associations. The absence
of explicit Feature Relation Patterns (FRPs) presents a significant challenge for
deep learning techniques in scientific applications that are not image, text, and
graph-based. In this paper, we introduce EAPCR, a universal feature extractor
designed for data without explicit FRPs. Tested across various scientific tasks,
EAPCR consistently outperforms traditional methods and bridges the gap where
deep learning models fall short. To further demonstrate its robustness, we synthe-
size a dataset without explicit FRPs. While Kolmogorov—Arnold Network (KAN)
and feature extractors like Convolutional Neural Networks (CNNs), Graph Con-
volutional Networks (GCNs), and Transformers struggle, EAPCR excels, demon-
strating its robustness and superior performance in scientific tasks without FRPs.

1 INTRODUCTION

In various scientific applications, such as non-image medical diagnostics, system anomaly detection,
inorganic catalysis efficiency prediction, and etc., traditional machine learning techniques, such as
Decision Tree (DT) (Ali et al.|[2012) and DT-based method (e.g., Random Forest (RF) and Extreme
Gradient Boosting (XGBoost)), have been reported as highly effective (Coskun & Kuncan), 2022;
Mutlu et al., 2023} |Alizargar et al., 2023} |Schossler et al.,|2023; Mallioris et al.| 2024). In contrast,
few studies have reported deep learning models as the best-performing methods, indicating that
more complex deep learning techniques, such as Convolutional Neural Network (CNN)s (LeCun
et al.,|[1998), Graph Convolutional Network (GCN)s (Kipf & Welling, |2016; Bronstein et al.,|2017)),
and Transformers (Vaswani, 2017)), have not shown the same level of success in those scientific
applications.

The primary reason deep learning techniques often underperform in scientific applications is that
the data in these fields differ significantly from traditional tasks like images, text, and graphs. For
example, in non-image medical diagnostics, patient data come from diverse sources, such as physical
measurements (e.g., weight, blood pressure) and chemical tests (e.g., glucose levels) (Fig. [T}a-1).
Unlike pixels in images or words in text, which have spatial or sequential relationships (LeCun
et al., |1998; Bronstein et al., 2017) (Fig. b—l), or nodes in graphs with known connections (Kipf]
& Welling,, 2016} Bronstein et al.l [2017) (Fig. E]-b-Z), features in scientific data lack such explicit
relationships. This absence of explicit feature relationships is common across various scientific
tasks, such as system anomaly detection (Wang et al., 2023} [Tian| [2023) (Fig.[T}a-2) and inorganic
catalysis efficiency prediction (Sun et al., 2024) (Fig. [l}a-3), where features are collected from
heterogeneous sources, such as electrical signals and temperature, and have different units, like pH
levels and illumination time.
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Figure 1: Motivation for designing feature extractors for data without FRPs.

The feature relationship patterns, including spatial relationships and connections, are referred to as
Feature Relation Patterns (FRPs) in this work. FRPs are critical for deep learning-based feature
extractors as they contain essential information about feature associations or correlations. For in-
stance, in image and text data, spatial relationships between pixels and words reveal correlations
where nearby features have stronger associations and distant ones weaker. This inherent relational
information enables feature extractors to quickly identify important combinations of strongly inter-
acting features. For example, CNNs in image data leverage spatial relationships to focus on local
feature patterns while ignoring irrelevant non-local ones (Bronstein et al, 2017, [Yun et al. [2023)
(Fig. [T}b-1). Similarly, GCNs use adjacency matrices in graph data to capture meaningful node
connections (Bronstein et al., 2017} [Schlichtkrull et al’, 2018)) (Fig. [T}b-2). However, when explicit
FRPs, like spatial relationships or known connections, are absent, deep learning methods often strug-




Under review as a conference paper at ICLR 2025

gle (Fig.[T}b-3) as assumed FRPs may not match the actual implicit relationships. This raises a key
question:

How can we design universal feature extraction modules for data that lack explicit FRPs?

In this paper, we propose a feature extraction module, EAPCR, designed as a universal feature
extractor for data without explicit FRPs. Traditional feature extraction modules rely on known
FRPs to distinguish between important and unimportant feature combinations. However, without the
guidance of FRPs, EAPCR adopts a different approach. First, it exposes all possible FRPs. Second,
it accelerates the sampling of these combinations to ensure a wide range of feature interactions are
evaluated, allowing it to effectively identify important combinations of strongly interacting features.

To evaluate EAPCR’s effectiveness, we apply it to various scientific domains, including non-image
medical diagnostics (Anderies et al., [2022)), system anomaly detection (Tian, [2023), and inorganic
catalysis efficiency prediction (Liu et al.,[2022). EAPCR consistently outperforms traditional meth-
ods in such tasks lacking explicit FRPs. To further assess its robustness, we synthesize a dataset
without explicit FRPs, where models like CNNs (LeCun et al.L{1998)), GCNs (Kipf & Welling, 2016;
Bronstein et al.,[2017)), Transformers (Vaswani,[2017), and KAN (Liu et al.,|2024b;a) struggle, while
EAPCR excels in capturing meaningful features.

In summary:

* EAPCR is designed as a universal feature extractor for tasks lacking explicit FRPs, address-
ing a critical gap in deep learning for scientific applications. It consistently outperforms
other models across various real-world scientific applications.

* We synthesize a representative dataset to investigate the challenges of modeling without
FRPs, revealing the limitations of traditional methods and validating the robustness and
effectiveness of EAPCR.

Related Works Feature engineering at the early stage: Feature engineering (Bengio et al., [2013)
plays a crucial role in improving the accuracy of classification models. Early approaches primar-
ily focus on addressing feature redundancies and nonlinear relationships. For instance, principal
component analysis (PCA) (Abdi & Williams, |2010) reduces linear correlations, while nonlinear
methods like nonlinear PCA (Linting et al., |2007) and autoencoders (Bank et al.| 2023)) handle re-
dundancies through nonlinear transformations. Although classifiers such as Support Vector Machine
(SVM)s (Hearst et al., [1998)), Multi-layer Perceptron (MLP)s (Rumelhart et al.,|1986)), and more re-
cent models like Kolmogorov—Arnold Network (KAN) (Liu et al., 2024bza) can manage complex
nonlinear feature relationships, their performance heavily depends on how input data is represented.
For example, using large pre-trained models to encode images improves classification and retrieval
accuracy by emphasizing critical features like edges and shapes (Liu et al., 2023} Holliday & Dudekl,
2020; Zhou et al., 2024)). Therefore, more advanced feature extraction techniques are required to go
beyond capturing nonlinear relationships, further refining feature representations for better perfor-
mance.

Feature engineering for data with FRPs: Accurately capturing implicit correlations between fea-
tures is essential for effective classification. For example, determining obesity cannot solely rely on
weight; height must also be considered to provide a more accurate assessment. In more complex
scenarios, classification depends on interactions between features, where their joint contribution
exceeds the sum of their individual effects (Koh & Liang, 2017} Ali et al., 2012} Beraha et al.,
2019; |Deng et al) 2022). This is why traditional classifiers, like MLPs (Rumelhart et al.| |1986),
rely on advanced feature extractors to improve performance by identifying complex feature inter-
actions. In this vein, recent advancements, such as ConvNeXt (Woo et al.l [2023)), Bidirectional
Encoder Representation from Transformers (BERT) (Devlin, |2018), Generative Pre-trained Trans-
former (GPT) (Radford et al., [2019)), Vision Transformer (ViT) (Dosovitskiyl [2020), and Temporal
Fusion Transformers (TFT) (Lim et al.| [2021), efficiently capture interaction patterns of features in
structured or Euclidean data like images and texts. For non-Euclidean data, techniques like mani-
fold learning (Mclnnes et al., 2018; [Tenenbaum et al., 2000) and Graph Neural Network (GNN)s,
including Graph SAmple and aggreGatE (GraphSAGE) (Hamilton et al.| |2017) and Deep Graph
Convolutional Neural Network (DGCNN) (Wang et al., 2019)), address unique challenges. Regard-
less of the data type, these methods rely on explicit FRPs (e.g., spatial, sequential, or relational
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connections) of data, which contain the implicit feature correlations essential for effective feature
extraction.

Feature engineering for data without FRPs: As discussed earlier, many scientific tasks lack explicit
FRPs. Machine learning techniques like Decision Tree (DT) and DT-based methods perform well
in these tasks by handling various data types (numerical and categorical) and automatically captur-
ing interaction effects between features, as each decision split evaluates the relationship between a
feature and the target variable (Gregorutti et al [2017). In contrast, deep learning models, such as
CNNs, GCNs, and Transformers, struggle due to their reliance on predefined FRPs. For example,
in heart failure and maternal health risk prediction, the best-performing models are RF (Coskun
& Kuncan, 2022) and DT (Mutlu et al., [2023). Similarly, in hepatitis C (Alizargar et al., |2023),
TiO4 photocatalytic degradation (Schossler et al., 2023), and centrifugal pump health status predic-
tion (Mallioris et al.| [2024), XGBoost, another DT-based method, consistently outperforms deep
learning methods. Despite advancements in multimodal techniques (Lahat et al., 2015) and meth-
ods for non-Euclidean data (Bronstein et al., 2017), feature heterogeneity does not always align
with distinct modalities. Even features from the same source may lack explicit FRPs, rendering
multimodal approaches ineffective. Moreover, inconsistent feature dimensions complicate the def-
inition of feature distances in Euclidean space. For instance, determining how a 1 kg increase in
weight correlates with a change in height for a particular disease is non-trivial. Data without explicit
FRPs differ from traditional Euclidean and non-Euclidean data (Bronstein et al.,2017)), making deep
learning techniques less effective in these applications.

2 EAPCR: A FEATURE EXTRACTOR WITHOUT THE NEED OF EXPLICIT
FEATURE RELATION PATTERNS

In many applications, identifying feature combinations with strong interactions is not difficult, as
feature extraction modules like CNNs and GCNs use predefined FRPs to narrow the range of pos-
sible combinations. For example, CNNs leverage spatial relationships between pixels to efficiently
sample local regions and filter out weak feature interactions, quickly identifying critical patterns like
textures in image recognition. However, when explicit FRPs are absent, searching for important fea-
ture interactions becomes more random and inefficient. Traditional methods often fail in these cases
because the FRPs chosen by feature extraction modules may not align with the implicit patterns in
the data. Additionally, the sample complexity increases exponentially with the number of features,
making exhaustive search impractical. Unlike these traditional approaches, EAPCR exposes all fea-
ture combinations to ensure no fundamental interaction patterns of features are missed (Fig. 2}b),
then optimizes the efficiency of combination sampling to address this challenge (Fig. 2}c).

Further discussion about why FRPs is important gives in App. [l where the relationship between
feature interaction, feature correlation, and FRPs is discussed.

2.1 EXPOSE POSSIBLE FEATURE RELATIONS: EMBEDDING AND BILINEAR ATTENTION

Unlike existing works that use one-hot encoding for categorical feature representation (Seger, [2018])
and bilinear attention to focus on interactions between two input modalities (Fukui et al., [2016)),
we leverage Embedding (Mikolov, [2013) and bilinear Attention (Kim et al.l |2018) to construct a
correlation matrix.

For an input with IV features, we first convert each feature into a categorical (string-based) one.
Categorical features, like gender or catalyst substrate, remain unchanged, while numerical features
are discretized into categories (e.g., “high”, “medium”, “low”) based on context-specific thresholds.
These thresholds are chosen to balance between overly fine granularity, which leads to sparse cat-
egories, and overly coarse granularity, which reduces feature separation. For example, temperature
might be categorized into “very high”, “high”, “medium”, “low”, and “very low”. This process
generates an input matrix of shape [N, 1], where each element is an integer index, assigned via a
dictionary mapping categorical values to indices.

The embedding operation substitutes each component by a corresponding dense vector, giving F
with shape [N, E|, where F is the embedding size. Then, we consider the bilinear attention defined
as:

A =Tanh(EE"), (1)
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Figure 2: The illustration of the method. (a) an overview of EAPCR. (b) an illustration of how
Embedding and bilinear Attention can expose all possible FRPs. (c) an illustration of how the
permuted CNNs considers combinations of originally close matrix elements as well as combinations
of originally distant elements.

where the matrix A with shape [N, N] is the constructed correlation matrix (Fig. [2la-1). Tanh(z)
is Hyperbolic Tangent function. The matrix A is important, because each element in the matrix
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represents the relationship between two features, with any combination of these elements exposing
corresponding potential FRPs. Thus, by using matrix A, all possible relation patterns between fea-
tures are being exposed in a matrix form, as shown in Fig. [2}b. The target combinations that consist
of features with strong interactions are encapsulated within the matrix A.

Additionally, the embedding process not only captures feature relationships but also helps the model
understand nuances across multi-source heterogeneous features.

2.2  EFFICIENTLY SAMPLE FEATURE RELATIONS: PERMUTED CNN

To identify the target combinations that consist of features with strong interactions within the matrix
A, we leverage CNN to sample such combinations of elements in matrix A defined in equation
Because CNNs can efficiently focus on local elements within a matrix (Bronstein et al., [2017).
Instead of expanding the receptive field of CNNs by increasing kernel size or layers, we propose a
Permuted CNN that efficiently samples diverse element combinations from the matrix A.

The designed permutation matrix M. The designed permutation M rearranges the matrix elements
of A, bringing originally distant elements closer and pushing originally close elements further apart,
as shown in Fig.[2}c. The details of constructing the designed permutation matrix M can be found
in App.[Al We apply a designed permutation matrix M on A giving a new matrix P, defined as:

PA2MAMT. 2

The permuted CNN. The permuted CNN architecture is designed to capture both local and non-local
relationships within the matrix elements by applying the CNN to two different representations of
the matrix A, as illustrated in Fig. 2}a-2. Specifically, the CNN is applied to the raw matrix A as
well as to a permuted version of A, that is P in equation 2] The CNN varies on different tasks but
is only equipped with a lightweight structure (e.g., a two-layered architecture with kernel sizes of
3 x 3 and channel numbers of 8 and 16). Afterward, the outputs from the CNN operations on both
the raw matrix A and the permuted matrix P are transformed into vectors. These vectors are then
concatenated, resulting in a single feature vector of size [C, 1] by dense connection, where C' is the
number of classes.

Moreover, by incorporating existing feature extraction modules, such as MLP, as a Residual connec-
tion, we combine the strengths of different feature extractors to further enhance feature extraction
efficiency. As shown in Fig.[2}a-3, the average pooling is applied on E, resulting in a vector z with
shape [N, 1]. Then, an MLP transforms z into a vector with shape [C,1]. Therefore, the residual
networks also help the model better train the embedding vectors.

3 MAIN EXPERIMENT RESULTS

In Sec.[3.1] we present experimental results on real-world applications, including non-image medical
diagnostics, inorganic catalysis efficiency prediction, and system anomaly detection. The EAPCR
can also be used in a wider range of scientific applications beyond experiments mentioned in this
section; see Tab. [T1] Tab.[I2] Tab.[I3] Tab.[I4} and Tab. [15]in App.[E]for more discussion. In sum-
mary, the experiment results show that EAPCR as a deep learning method outperforms traditional
deep/non-deep methods, including the SOTA DT-based methods, demonstrating the effectiveness of
the proposed EAPCR method for tasks involving data without explicit FRPs.

In Sec. [3.2] to investigate the challenges of modeling without FRPs, we construct an illustrative
dataset lacking explicit FRPs. The results reveal the limitations of traditional deep learning meth-
ods, such as CNN (LeCun et al.,|[1998), GCN (Kipf & Welling, 2016} Bronstein et al.,[2017), Trans-
former (Vaswani, 2017), MLP (Rumelhart et al., |1986), and KAN (Liu et al., [2024a), which are
often underutilized in scientific tasks. We then validate the robustness and effectiveness of EAPCR.
This dataset highlights the shortcomings of traditional models in tasks that lack explicit FRPs while
demonstrating EAPCR’s superior performance in such scenarios.

3.1 BENCHMARKING COMPARISON OF EAPCR ON SCIENTIFIC TASKS

Non-image medical diagnostics: In this study, we validated the proposed EAPCR method using
the UCI Cleveland heart disease dataset (Janosi et al.l [1989). The dataset consists of 13 feature
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attributes (including Sex, Age, and CP [Chest Pain] Type) and one categorical attribute, comprising
eight categorical (string-based) and five numerical features (details in App. [E). Following the data
processing approach outlined in Sec. [2.1] all features were converted to categorical form, and a
dictionary was created to map each categorical feature to an integer index. These indices were then
mapped to 128 dimensions using an embedding mechanism and fed into the model for training.
We benchmarked the EAPCR method against various machine learning algorithms, including SVM,
Naive Bayes algorithm (NB), logistic regression, DT, and k-Nearest Neighbor algorithm (KNN), as
presented in Tab. |1} based on the study by Anderies et al. (Anderies et al.,|2022). The results show
that EAPCR outperforms conventional machine learning techniques.

Table 1: Comparison of our method with others in the diagnosis of non-image medical data.

Method Accuracy Precision Recall F1 Score
DT 70% 86% 63% 72%
KNN 78% 90% 74% 81%
Logistic Regression 83% 94% 79% 86%
NB 83% 96% 76% 85%
SVM 85% 97% 79% 87%
EAPCR 93% 97 % 92 % 94%

Inorganic catalysis efficiency prediction: In this study, we used the TiO, photocatalysts dataset
from|L1u et al.|(2022)) to evaluate the performance of our EAPCR model in inorganic catalysis appli-
cations. The dataset contains nine attributes, including dopant, molar ratio, calcination temperature,
and pollutant, with a total of 760 samples (details in App.[E). Using a 256-dimensional embedding,
we benchmarked EAPCR against LightGBM, the best-performing model in |Liu et al.|(2022). As
shown in Tab.[2, EAPCR outperforms LightGBM in terms of the R? metric.

Table 2: Comparison of our method with others in the Inorganic catalysis data set.

Model MAE MSE RMSE R?
Linear Regression 0.513£0.104 0.601 £0.237 0.762£0.401 0.048 +£0.014
RF 0.2354+0.062 0.180+0.126 0.417+0.148 0.805+ 0.035
XGBoost 0.1454+0.103 0.086 +0.034 0.293 £0.136 0.884 £ 0.024
LightGBM (Liu et al., 2022) / / / 0.928
EAPCR 0.128 £ 0.003 0.041 £ 0.001 0.203 £ 0.004 0.937 £ 0.003

System anomaly detection:

In our study on system anomaly detection, we used sensor data

from the Kaggle dataset (https://www.kaggle.com/datasets/umerrtx/machine-failure-prediction-
using-sensor-data), which is designed for predicting machine failures in advance. The dataset con-
sists of 944 samples with nine feature attributes, including sensor readings like footfall and temp-
Mode, and a binary target attribute (1 for failure, O for no failure) (details in App. [E). Using a
64-dimensional embedding, we benchmarked our model against RF, Logistic Regression, SVM,
and Gradient Boosting. As shown in Tab. [3] our model outperformed the others across all metrics.

3.2 BENCHMARKING COMPARISON OF EAPCR ON SYNTHESIZED DATA

Synthesize data without explicit FRPs. In image recognition, the correlation between pixels and
their spatial positions is typically consistent, with nearby pixels having higher correlations and dis-
tant ones having lower correlations (see App. [B). Previous research (Yun et al., [2023) shows that
random transformations can disrupt this spatial relationship, such as by shuffling pixel positions.
However, our approach differs by using a carefully designed permutation, as outlined in Sec. 2.2}
which strategically moves adjacent matrix elements further apart and brings distant elements closer
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Table 3: Comparison of our method with others in the Sensor data-based system anomaly detection
tasks

Algorithm Accuracy Precision  Recall ~ Fl-score
RF 87.83% / / /
Logistic Regression ~ 87.83% / / /
SVM 87.83% / / /
Gradient Boosting 88.89% 87.50%  88.51%  88.00%
EAPCR 89.42% 87.64%  89.66%  88.64%

(Fig.[3la). As an example, we used the handwritten digit recognition MNIST dataset (LeCun et al.
1998) to generate data without explicit FRPs, see Figs.[3}b and [3}c.

This designed permutation more effectively disrupts spatial relationships while visually maintaining
them, thereby concealing underlying FRPs more thoroughly compared to random permutations (Yun
et al.,[2023). The proof can be found in Fig. [3}b, where CNN performance degrades progressively,
demonstrating that the designed permutation more effectively breaks spatial correlations. This is
why we applied the designed permutation when synthesizing the dataset.

Although both the permuted CNN in EAPCR and the synthesized data use a permutation matrix that
disrupts the original spatial relationships, they are not identical. For instance, the synthesized data
matrix is [28, 28], while the model’s matrix is [784, 784], ensuring the model has no prior knowledge
of hidden FRPs and preventing leakage. Further evidence comes in Fig. [3}b, where EAPCR performs
consistently across raw data, randomly permuted data, and data with designed permutation.

We conducted extensive experiments on both the original data and the synthesized data, using exist-
ing machine learning models, mainstream deep learning models, and our proposed EAPCR model.
For convenience, we refer to these two datasets as the “raw image (data with predefined FRPs)” and
“synthesized data (data without explicit FRPs),” since the format of the synthesized data is no longer
important.

Performance of different models on data with FRPs and synthesized data without explicit
FRPs. We summarize the results of this section in Fig. [3}c, where the horizontal axis represents
the parameters of different models and the vertical axis shows the accuracy of these models on
Data With/Without explicit FRPs. Fig.[B}c is essential to understanding the limitations of traditional
methods and the robustness and effectiveness of EAPCR.

MLP as the baseline. The MLP is a basic neural network architecture that uses fully connected
layers to process input data. As shown in Fig. Bfc-1, MLP performs similarly on tasks with and
without explicit FRPs. Thus, we use MLP’s performance as a baseline to assess the feature extraction
effectiveness of other models. Models that exceed MLP’s performance demonstrate effective feature
extraction capabilities, while those with similar or lower performance indicate insufficient feature
extraction.

EAPCR demonstrated superior performance. Interestingly, on raw data, both the CNN (CNN+MLP)
and the ensemble model CNN+KAN exhibited strong performance, as shown in Fig. [B}c-3 and
Fig. [Bfc-8, respectively. However, when evaluated on synthesized data, only EAPCR and EACR
(the ablation model of EAPCR where permuted CNN is eliminated) obviously outperforms the
MLP, with results depicted in Fig. [B}c-7 for EAPCR and Fig. B}c-6 for EACR. Notably, EAPCR
achieved 94.5% accuracy with 37,355 parameters, outperforming its ablation model EACR, which
achieved 94.3% accuracy with 59,361 parameters. Other models, such as the RF, CNN, and GCN
(uses the data’s correlation matrix as its adjacency matrix), only slightly surpassed the MLP. Their
performances are shown in Fig.[3}c-2 for CNN, Fig. [3}c-4 for GCN, and Fig.[3}¢c-5 for RF. It is im-
portant to note that the GCN’s performance declined significantly when provided with a randomly
generated adjacency matrix instead of the correlation matrix (Fig. [3fc-4). Transformer (Vaswanil
2017) (Fig.B}c-11) and KAN (Liu et al., 2024a) (Figs. B}c-10 and [3}c-9) do not exhibit obvious
impact on synthesized data without FRPs. More details of the models’ parameter settings are given
in the Tabs. [5]and[6]and in App.[D]
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EAPCR recovers hidden FRPs. The reason EAPCR demonstrates supreme performance compared
to other methods is that it successfully reconstructs the implicit FRPs in the synthesized dataset. We
verify this by comparing the correlation matrix recovered by EAPCR with the original correlation
matrix. The details about the result are shown in App.[G]
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3.3 ROBUSTNESS AND ABLATION STUDY

To further validate the robustness of EAPCR, we synthesized additional datasets beyond the MNIST
dataset to Flower (Nilsback & Zisserman| [2008), ImageNet (Deng et all} 2009), and CIFAR-
10 (Krizhevsky & Hinton|, 2009) datasets. We also conducted experiments comparing EAPCR to
EACR, an ablation model without permutation but with larger convolutional kernels and more layers,
to demonstrate that EAPCR’s permuted CNN is more effective than simply increasing the capacity
of standard CNNs. In addition, experiments in App.[C|show that the permutation we designed in the
permuted CNN outperforms a random one. The results (Fig. ) show: 1) traditional CNN-based al-
gorithms, such as ConvNeXt-V2 [2023), perform well on data with FRPs but fail on data
without explicit FRPs; 2) EAPCR consistently performs well across all three synthesized datasets
without explicit FRPs; and 3) EAPCR outperforms EACR, even though EACR uses larger kernels
and more layers.

Permutation T

—
T4
Dataset Method Raw ¥ Number of parameters(104) Sythesized

! / d4qenead
Our method: EAPCR \ 24 I 50 il
Our Ablation method: EACR (Kernel:10x10) 3 |
‘ \ o -
Flower* Our Ablation method: EACR (CNN Layerx6) 54 34.49
Our Ablation method: EACR (CNN Layerx4) 17 34.72
ConvNeXt-V2 90.74 8,770 I 3738
MLP 28.47 10 28.81
Our method: EAPCR 24 I 2:.00
Our Ablation method: EACR (Kernel:10x10
i ( ) - 19 I 190.80
ImageNet* Our Ablation method: EACR (CNN Layerx6) &g 54 20.00
Our Ablation method: EACR (CNN Layerx4) 17 21.60
ConvNeXt-V2 92.58 8,770 I 16.80
MLP 14.83 10 15.40
Our method: EAPCR A 5 I s <0 2::5&3': i
Our Ablation method: EACR (Kernel:8x8) 6 - 30.20 r £1¢
Our Ablation method: EACR (CNN Layerx6) 14 31.60 mut‘\{
CIFAR-10" | our Ablation method: EACR (CNN Layerxd) 4 29.00 o e
ConvNeXt-v2 o320 [N 8,770 I 2550
MLP 26.00 3 26.40
75 50 25 25 50 75

Accuracy (%)

Figure 4: The comparison and ablation experiments conducted on the more synthesized data. As-
terisks indicate that only subsets of gray data were used for experimental efficiency. This involves
employing limited random sampling to create combined training and testing datasets. For example,
from ImageNet, 10 categories, each comprising 400 randomly selected images, were selected for
training and 50 for testing, optimizing both time and computational resources.

4 CONCLUSION

The absence of explicit Feature Relation Patterns (FRPs) presents a significant challenge in many
scientific tasks that are often overlooked by the ML community. This limitation contributes to the
underperformance of deep learning methods compared to traditional methods, such as Decision
Tree-based (DT-based) machine learning approaches, in scientific applications. To address this is-
sue, we introduce an innovative method, EAPCR, specifically designed for data lacking FRPs. We
evaluate the effectiveness and efficiency of EAPCR across a variety of real-world scientific tasks
and demonstrate that it consistently outperforms established methods on several scientific datasets.
Additionally, we synthesize a dataset that deliberately excludes explicit FRPs to further assess the
performance of EAPCR. The results demonstrate that EAPCR outperforms CNN, GCN, MLP, RF,
Transformer, and KAN on the dataset without explicit FRPs. Our findings underscore the potential
of EAPCR as a robust solution for scientific tasks lacking explicit FRPs, bridging the gap where
deep learning models fall short and paving the way for enhanced data analysis in this domain.
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A GENERATING PERMUTATION MATRIX M

Constructing the designed permutation matrix in Sec. is a key aspect of this paper. Although
the method is relatively simple, we describe the process in detail in the appendix. The core idea is
to create a reversible operation that rearranges the positions of /N elements (1,2, 3,--- , V), ensur-
ing that originally adjacent elements are no longer adjacent while non-adjacent elements become
adjacent. This generates the reversible permutation matrix M.

The process works as follows: First, arrange the IV elements in order into an R x L matrix, where
N = R x L with R and L being roughly equal in size. Transpose of this matrix and then reshape it
into an NV x 1 vector. This new sequence represents the transformed positions of the original data.
Next, create an all-zero matrix M of size N x N. Using the transformed positions, place 1s in the
corresponding row and column positions of M, resulting in the reversible permutation matrix.

For example, with N = 9, arrange the numbers 1 to 9 into a 3 x 3 matrix [[1, 2, 3], [4, 5, 6], [7, 8, 9]].
Transposing the matrix and reshaping it gives the new sequence [1,4,7,2,5,8,3,6,9]. Using this
sequence, place 1s in the appropriate positions in a 9 X 9 matrix M. The result is a permutation
matrix where the distance between two adjacent elements in the new sequence is at least 3, mean-
ing originally adjacent elements are no longer adjacent, and previously distant elements are now
adjacent. Further details can be found in the code.

B ANALYSIS OF PIXEL DISTANCE VS. PIXEL RELATIONS

To investigate the relationship between pixel distance and correlation in images, we randomly se-
lected 200 images from 10 subfolders of the MNIST handwriting dataset. We calculated the Pearson
correlation coefficient and mutual information for different pixel pairs based on their distance. Us-
ing the reference point (5, 5), we compared its relationship with all other pixels in each image. The
results were sorted by distance, and for each unique distance, we retained only the highest corre-
lation coefficient. We then plotted the variation of the Pearson correlation coefficient and mutual

information with pixel distance at distances of 1, V2, 2, etc., as shown in Fig.
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Figure 5: Analysis of inter-pixel distance and statistical correlations. (a) Relationship between the
Pearson correlation coefficient and inter-pixel distance. (b) Relationship between mutual informa-
tion and inter-pixel distance.

C THE PERMUTED CNN WITH DESIGNED PERMUTATION OUTPERFORMS
THAT WITH RANDOM PERMUTATION

To demonstrate that the designed permutation used in our permuted CNN (see Sec. [2.2)) outper-
forms random permutation, we conducted comparative experiments on synthesized data based on
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the MNIST dataset. The experimental results are presented in Tab. i} The results show that the de-
signed permutation performs better, as it maximally separates nearby matrix elements while bringing
distant ones closer, enabling the CNN to effectively sample both nearby and distant matrix elements.

Table 4: Experiment of permuted CNN with designed permutation versus that with random permu-
tation.

Method Parameters ~ Accuracies
EAPCR with designed permuted CNN 37355 94.5%
EAPCR with random permuted CNN 37355 93.2%

D EXPERIMENT DETAILS: SYNTHESIZED DATASET WITHOUT EXPLICIT FRPS

An illustration of the EAPCR for the synthesized data of the handwritten digital MNIST dataset is
given in Fig.[6] Tab.[5|shows the details of the structure and parameters of our EACPR and ablation
model EACR. Tab. [f|shows the details of the structures and parameters of other models used in the
experiment of synthesized data.

EAPCR Layer 1: kernel size 4x4, channels 4
Max pooling kernel size 2x2
c-2 CNN Layer 2: 4x4, 8, 2x2
1 Layer 3: 4x4, 16, 2x2
& Layer 4: 4x4, 32, 2x2
. bilinear CNN
Embedding Attention
Input A:[b,1,784,784] Unfold & concate
X: [b,784] . . 1
E: [b,784,128] c-3 c-4
CNN
Adaptive Average Pooling Permutation
A:[b,1,784,784]
c-6
c-5
c-7
MLP as
. D |
Residual connections Weighted ense layer
summation
X C: [b,10;
[b,784] R:[b10] 10 T: [b,288]
Output: [b,10]

Figure 6: An illustration of the EAPCR, showing the detailed structure and parameter setting for the
synthesized data without FRPs.

Table 5: The details of EAPCR and its ablation model EACR on synthesized data without FRPs.

Model Our ablation model EACR Our model EAPCR
Parameters 29151 59361 79236 37355 67565 87440
Train 30000 30000 30000 30000 30000 30000
Test 5000 5000 5000 5000 5000 5000
Batch size 64 64 64 64 64 64
Epoch 100 100 100 100 100 100
Learning rate 0.003 0.003 0.003 0.003 0.003 0.003
Dropout 0.5 0.5 0.5 0.5 0.5 0.5
Embedding size 128 128 128 128 128 128
CNN Layerl Conv1(4x4, 4,2x2) Conv1(4x4, 4,2x2) Convi(4x4,4,2x2) Convl(4x4,4,2x2) Convl1(4x4,4,2x2) Convl1(4x4, 4,2x2)
kernel size Conv2(4x4, 8, 2x2 ) Conv2(4x4, 8, 2x2) Conv2(4x4, 8, 2x2 ) Conv2(4x4, 8,2x2) Conv2(4x4, 8,2x2) Conv2(4x4, 8,2x2)
Channels Conv3(4x4, 16,2x2) Conv3(4x4, 16,2x2) Conv3(4x4, 16,2x2) Conv3(4x4, 16,2x2) Conv3(4x4,16,2x2) Conv3(4x4, 16,2x2)
Max pooling kernel size  Conv4(4x4, 16, 2x2) Conv4(4x4, 16, 2x2) Conv4(4x4, 16,2x2) Conv4(4x4, 16,2x2) Conv4(4x4, 16,2x2) Conv4(4x4, 16, 2x2)
CNN Layer2 Convl1(4x4,4,2x2) Conv1(4x4,4,2x2) Conv1(4x4,4,2x2)
kernel size / / / Conv2(4x4, 8,2x2) Conv2(4x4, 8,2x2) Conv2(4x4, 8,2x2)
Channels Conv3(4x4, 16,2x2) Conv3(4x4, 16,2x2) Conv3(4x4, 16,2x2)
Max pooling kernel size Conv4(4x4, 16,2x2) Conv4(4x4, 16,2x2) Conv4(4x4, 16, 2x2)
Residual 7841026,26t010 784t064,64t010 784t089,89t010 784t026,26t010 784t064,64t010 784t089,89t010
MLP 144t010 144t010 144t010 288t010 288t010 288to10
Permutation matrix size / / / 784x784 784x784 784x784
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Table 6: The details of other models on synthesized data without FRPs.

Model MLP CNN GCN Transformer
Train 30000 30000 30000 30000
Test 5000 5000 5000 5000
Batch size 16 16 128 64
Epoch 100 100 1000 100
Learning rate 0.001 0.001 0.003 0.0003
Dropout 0.5 0.5 0.5 0.5
Embedding / / / Embedding (2,128)
Feature extraction / CC OOHILVZI((SSXXSS’ ’186”22XX22)) G%%I;(léi ?42% ) Transformer (128,4,1)

Linear1(784,128) Linear1(784, 64)
Linear2(128, 10) Linear2(64, 10)

. Linear1(784,128
Linear1(128,10) Linear2((128 10))

Residual / /

Linear1(784 ,64) Linear1(784, 64)

Classification layer 7y 5 ) 0(64.10)  Linear2(64, 10)

GCNs primarily extract features through the relationships between nodes within a graph structure.
Unlike MLP’s fully connected layers and CNN’s convolutional layers, GCN use adjacency matrices
and node feature matrices for feature extraction, leveraging the graph’s local structure to capture
relationships between nodes. Here we test GCN only on data without FRPs. When GCN with
adjacency matrices (AM) given by the correlation matrix recovered from simple statistics on the
data, its performance slightly improved, achieving an accuracy of 91.2%, as shown in Fig. [3}c-4.
However, the classification accuracy of GCN with random AM drops to only 88.2%.

RF is an algorithm in machine learning that can consider the information gain from combinations of
features. It enhances prediction accuracy and stability by constructing multiple DT and aggregating
their predictions. Unlike MLP, RF can naturally account for the combinations and interactions be-
tween features when processing various types of data, thereby demonstrating certain effectiveness
in feature extraction. Particularly in tasks that require capturing complex data structures and rela-
tionships, RF can utilize the structure of its DT to assess and exploit the information gain among
features. In this experiment, as shown in Fig. [B}c-5, RF generally outperforms MLP. However, the
advantage of RF over MLP is not obvious, showing only a slight improvement in performance.

Our ablation model, EACR, which differs from EAPCR with no permuted CNN, also achieved out-
standing performance with fewer parameters than MLP, highlighting its advanced feature extraction
capabilities. For example, experimental results demonstrate that despite using fewer parameters (for
example, 29,151 parameters achieving 93.3% accuracy, 59,361 parameters achieving 94.3% accu-
racy, and 79,236 parameters achieving 95.2% accuracy, as shown in Fig. B}c-6), EACR still exhibits
exceptional performance in handling complex tasks, surpassing traditional models like MLP.

KAN is a neural network based on the Kolmogorov-Arnold representation theorem (Liu et al.|
2024a). Compared with MLP, KAN does not only rely on fully connected layers to process data but
builds a network formed by a combination of nested functions. This structure can more effectively
capture and represent the complex features of the input data. However, our experimental results
show that when the number of parameters is large, the effect of KAN does not reach the level of
MLP. As shown in Fig. c—lO, when the number of parameters is about 100,000, the accuracy of
KAN is less than 90%. However, when CNN is combined with KAN, the feature extraction capa-
bility of CNN can effectively extract local features and edge information from the image, and these
features are used as input to KAN. The results show that this combination significantly improves the
performance of the model. As shown in Fig. E]-C-S, when the number of parameters is 93,624, the
accuracy is 97.5%. However, when processing data without FRPs, it is difficult for CNN to capture
effective features for KAN to use, resulting in a decline in overall model performance. As shown in
Fig. Bfc-9, under the same parameters, the accuracy rate is only 89.7%.

Transformers (Vaswani, |2017), through their attention mechanisms, are capable of capturing global
dependencies among all elements in the input data. Transformers calculate the mutual influences
of all pairs of elements within the input sequence using self-attention layers, providing high flex-
ibility and strong capability for information integration. However, this mechanism also leads to a
significant increase in the number of model parameters. Despite the large number of parameters,
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Transformers did not significantly outperform MLP in our experiments on new types of image pro-
cessing tasks. Specifically, even though a Transformer was configured with 1,252,949 parameters,
its accuracy was the same as that of an MLP configured with 101,770 parameters, both achieving
94.4% (Fig.[3}c-11).

The specific parameters and accuracy of MLP, CNN, GCN, RF, DT, Transformers,Least absolute
shrinkage and selection operator (LASSO), Elastic Net Regression (Elastic Net),our ablation method
EACR and our method EAPCR results are shown in the Tab.

Table 7: Experimental results of MLP, CNN,GCN,RF,DT, Transformers, our ablation method
EACR, and our method EAPCR.

Raw Image (data with FRPs) Synthesized data (data without FRPs)
Method Parameter quantity ~ Accuracy Method Parameter quantity ~ Accuracy
MLP-1 20680 90.5% MLP-1 20680 90.6%
MLP-2 31810 91.4% MLP-2 31810 91.5%
MLP-3 41350 92.3% MLP-3 41350 92.0%
MLP-4 50890 92.7% MLP-4 50890 92.8%
MLP-5 63610 93.5% MLP-5 63610 93.5%
MLP-6 71560 93.7% MLP-6 71560 93.6%
MLP-7 83485 94.2% MLP-7 83485 93.9%
MLP-8 91435 94.2% MLP-8 91435 94.3%
MLP-9 101770 94.3% MLP-9 101770 94.4%
RF-1 28729 92.0% RF-1 29241 91.7%
RE-2 57831 93.7% RE-2 58390 93.6%
RF-3 87038 94.2% RF-3 87377 94.2%
RF-4 116294 94.7% RF-4 116168 94.2%
RE-5 145773 94.7% RE-5 145613 94.8%
RF-6 291533 94.9% RF-6 292517 94.9%
RE-7 584091 95.2% RE-7 583980 95.2%
RF-8 876758 95.2% RF-8 875610 95.1%
RF-9 1169481 95.3% RF-9 1168306 95.1%
RF-10 1461923 95.4% RF-10 1461973 95.1%
DT 4815 83.3% DT 4815 83.1%
LASSO 7850 88.7% LASSO 7850 88.8%
Elastic Net 7850 88.9% Elastic Net 7850 88.9%
KAN 91390 87.4% KAN 91390 88.0%
KAN 118386 86.6% KAN 118386 87.5%
CNN+KAN 93624 97.5% CNN+KAN 93624 89.7%
CNN+MLP 21928 97.7% CNN+MLP 21928 90.8%
/ / / GCN with Random AM 22451 88.2%
/ / GCN with AM given by correlation matrix 22451 91.2%
/ / / Transformer 1252949 94.4%
/ / / Ablation EACR-1 29151 93.3%
/ / / Ablation EACR-2 59361 94.3%
/ / / Ablation EACR-3 79236 95.2%
/ / / Our EAPCR-1 37355 94.5%
/ / / Our EAPCR-2 67565 95.0%
/ / / Our EAPCR-3 87440 95.5%

E EXPERIMENT DETAILS: SCIENTIFIC TASKS

Tab. [8| provides details of the heart disease dataset from the UCI Machine Learning Repository,
consisting of 13 feature attributes and 1 target attribute. The attributes are as follows: age (age
in years), sex (1 = male, 0 = female), cp (chest pain type, where 1 = typical angina, 2 = atypical
angina, 3 = non-anginal pain, 4 = asymptomatic), trestbps (resting blood pressure in mm Hg on
admission to the hospital), chol (serum cholesterol in mg/dl), fbs (fasting blood sugar > 120 mg/dl,
1 =true, 0 = false), restecg (resting electrocardiographic results, where O = normal, 1 = having ST-T
wave abnormality such as T wave inversions or ST elevation/depression > 0.05 mV, 2 = showing
probable or definite left ventricular hypertrophy by Estes’ criteria), thalach (maximum heart rate
achieved), exang (exercise-induced angina, 1 = yes, 0 = no), oldpeak (ST depression induced by
exercise relative to rest), slope (slope of the peak exercise ST segment, where 1 = upsloping, 2 =
flat, 3 = downsloping), ca (number of major vessels colored by fluoroscopy, ranging from 0 to 3),
thal (where 3 = normal, 6 = fixed defect, 7 = reversible defect). The target attribute indicates the
presence of heart disease, where 0 represents no disease and 1 represents disease.
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Tab. 0] provides details of the inorganic catalysis dataset. The value ranges for the characteristic
variables are as follows: Dopant (Ag, Bi, C, Ce, Cd, F, Fe, Ga, I, Mo, N, Ni, S), Dopant/Ti mole
ratio (0-93:5), Calcination temperature (400-900°C), Pollutant (Methylene blue [MB], phenol, rho-
damine B [RhB], methyl orange [MO], methyl red [MR], acid orange [AQO]), Catalyst/pollutant mass
ratio (5:1-1000:1), pH (2-13), Experimental temperature (16-32°C), Light wavelength (254-600
nm), and [llumination time (5-480 minutes).

Tab. [I0] provides details of the sensor dataset. The dataset includes the following variables: footfall
(the number of people or objects passing by the machine), tempMode (the temperature mode or
setting of the machine), AQ (air quality index near the machine), USS (ultrasonic sensor data, indi-
cating proximity measurements), CS (current sensor readings, indicating the electrical current usage
of the machine), VOC (volatile organic compounds level detected near the machine), RP (rotational
position or RPM of the machine parts), IP (input pressure to the machine), Temperature (the oper-
ating temperature of the machine), and fail (binary indicator of machine failure, where 1 indicates
failure and O indicates no failure).

Table 8: UCI heart disease dataset

age sex cp trestbops chol fbs restecg thalach exang oldpeak slope ca thal target
63 1 1 145 233 1 2 150 0 2.3 3 0 6 0
67 1 4 160 286 O 2 108 1 1.5 2 3 3 2
67 1 4 120 229 0 2 129 1 2.6 2 2 7 1
37 1 3 130 250 0 0 87 0 35 3 0 3 0
41 0 2 130 204 0 2 172 0 1.4 1 0 3 0
56 1 2 120 236 0 0 178 0 0.8 1 0 3 0
62 0 4 140 268 0 2 160 0 3.6 3 2 3 3
Table 9: Inorganic catalysis dataset
. Dopant/Ti  Calcination ] Catalyst/Pollutant Experimental Light Ilumination  Degradation
Dopant mole ratio  temperature Pollutant mass ratio H temperature wavelength time rate
C 16 400 MB 100 7 25 425 20 30
C 16 400 MB 100 7 25 425 40 43
C 16 400 MB 100 7 25 425 60 48
Fe 0 500 MB 100 7 0 545 60 281
Fe 0 500 MB 100 7 0 545 120 44
Fe 0 500 MB 100 7 0 545 180 52.8
Fe 0 500 MB 100 7 0 545 300 69

Table 10: Sensor measurements dataset
footfall tempMode AQ USS CS VOC RP IP Temperature fail

0 7 7 1 6 6 36 3 1 1
190 1 3 3 5 1 20 4 1 0
5 5 3 3 6 1 24 6 1 0
74 7 4 4 7 2 88 2 2 0
190 0 2 4 6 2 20 4 2 0
12 3 4 6 3 2 27 3 2 0
0 7 6 1 6 6 44 4 2 1
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We also applied our EAPCR method to additional non-image medical data, inorganic catalysis data,
and system anomaly detection data, with the specific results shown below.

More non-image medical diagnosis: Datal: Lung cancer dataset (Mamun et al., 2022), which
contains 309 samples, 15 feature attributes, and 1 classification attribute. The feature attributes
include: Gender (M = male, F = female), Smoking (YES =2, NO = 1), Yellow fingers (YES = 2,
NO = 1), Anxiety (YES =2, NO = 1), Peer pressure (YES = 2, NO = 1), Chronic disease (YES =2,
NO = 1), Fatigue (YES =2, NO = 1), Allergy (YES =2, NO = 1), Wheezing (YES =2, NO = 1),
Alcohol consumption (YES =2, NO = 1), Coughing (YES =2, NO = 1), Shortness of breath (YES
=2, NO = 1), Swallowing difficulty (YES =2, NO = 1), and Chest pain (YES =2, NO = 1). The
classification attribute is Lung Cancer (YES, NO). The specific results are shown in Tab.

Data2: Breast cancer dataset (https://www.kaggle.com/datasets/abdelrahmanl6/breast-cancer-
prediction), which contains 213 samples and 9 feature attributes. The attributes include: Year (the
year when the data was recorded), Age (age of the patient), Menopause (menopausal status of the
patient, 1 for postmenopausal, O for premenopausal), Tumor Size (size of the tumor in centimeters),
Inv-Nodes (presence of invasive lymph nodes), Breast (breast affected: Left or Right), Metastasis
(presence of metastasis, O for no, 1 for yes), Breast Quadrant (quadrant of the breast where the tumor
is located, e.g., Upper inner, Upper outer), History (patient’s history of breast cancer, O for no, 1 for
yes), and Diagnosis Result (Benign or Malignant). The specific experimental results are shown in

Tab.[12]

Table 11: Comparison of our method with others in the diagnosis of Lung cancer dataset

Method Accuracy Precision  Recall  F1 Score AUC

Bagging 89.76% 91.88%  89.35%  90.00%  95.30%
AdaBoost  90.70% 90.70%  90.70%  90.70%  97.62%
LightGBM  92.56% 93.93%  92.10%  92.71%  92.71%
XGBoost 94.42% 95.66%  94.46%  94.74%  98.14%
EAPCR 96.30% 96.49%  96.49%  96.49%  98.61%

Table 12: Comparison of our method with others in the diagnosis of Breast cancer dataset

Method Accuracy Precision  Recall  F1 Score
XGBoost 83.72% 81.25%  7647%  78.79%
DT 83.72% 81.25%  7647%  78.79%
KNN 86.05% 82.35%  8235%  82.35%

Logistic Regression 88.37% 87.50%  82.35%  84.85%
Extra Trees Classifier  88.37% 87.50% 82.35% 84.85%
EAPCR 93.02 % 100% 82.35% 90.32%

More inorganic catalysis efficiency prediction: Data 1: Thermocatalytic dataset (Schossler,
et al.l |2023), which includes three metal elements (M1, M2, M3), support ID, M1M2M3 ratio,
temperature, volume flow rate, methane flow rate, time, and methane/O2 ratio. The specific experi-
mental results are shown in Tab.[I3]

Data 2: Each sample in Dataset 2 (Puliyanda, |2024) contains 8 experimental variables, including
organic pollutants (OC), UV light intensity (I, mW/cm?), wavelength (W, nm), dosage (D, mg/ch),
humidity (H, %), experimental temperature (T, °C), reactor volume (R, L), and initial concentration
of pollutants (InitialC, ppmv). The light intensity ranges from 0.36 to 75 mW/cm?, the illumination
wavelength ranges from 253.7 to 370 nm, the titanium dioxide dosage ranges from 0.012 to 5.427
mg/cm?, the humidity ranges from 0 to 1600%, the experimental temperature ranges from 22 to
350°C, the reactor volume ranges from 0.04 to 216 L, and the initial concentration of pollutants
ranges from 0.001 to 5944 ppmv. The photodegradation rate (k, min~!/cm?) is set as the response
variable. The specific experimental results are shown in Tab.
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Table 13: Comparison of our method with others in the Inorganic catalysis data set.

Model MAE MSE RMSE R?
ANN with BO (Puliyanda/[2024) / 0.559 / 0.438
Catboost + adaboost (Puliyanda![2024) / 0.064 / 0.922
GBM with BO (Puliyanda!|2024) / 0.117 / 0.882
XGB with HYPEROPT (Puliyandal|2024) / 0.073 / 0.927
EAPCR 0.131 £ 0.004 0.054 £0.001 0.233 =0.003 0.940 = 0.002

Table 14: Comparison of our method with others in the Inorganic catalysis data set.

Model MAE MSE RMSE R?

RF / / 3.40 0.89
EAPCR 1.27+0.02 2.88+0.09 1.69+0.02 0.97+0.00

More system anomaly detection: Centrifugal pumps dataset (Mallioris et al. 2024). The
dataset contains 5,118 rows of measurements from two centrifugal pumps from the same manu-
facturer. These measurements include key features: value_ISO, value_DEM, value_ACC, value_P2P,
value_TEMP, minute, second, year, month, day, hour, and Machine_ID (1 for healthy, 2 for mainte-
nance status). The specific results are shown in Tab. [I3]

Table 15: Comparison of our method with others in the diagnosis of Centrifugal pumps dataset.

Method  Accuracy Precision Recall F1 Score

SVM 96.51% 971.77%  95.50%  96.66%
NB 96.51% 97.77%  95.50%  96.66%
RF 98.25% 96.73% 100% 98.33%

XGBoost  98.83% 97.82% 100% 98.89%
EAPCR 100 % 100% 100% 100 %

F WHY FRPS MATTERS?

In this study, we show that FRPs are an important type of prior knowledge for the application of
deep learning methods in various tasks. Another well-recognized prior knowledge is the annotated
dataset. Despite significant research on overcoming the scarcity of annotated data in various scien-
tific applications (Zhou et al., [2022; |Gao et al., 2023} [Liu et al., 2023), fewer efforts have focused
on designing feature extractors without prior knowledge of FRPs.

The key to designing an effective feature extractor is to effectively sample the feature combinations
consisting of strongly interactive features where the combined effect exceeds the sum of their indi-
vidual contributions (Koh & Liang} 2017} |Ali et al., 2012; Beraha et al., [2019} |Deng et al., [2022).
In this section, we demonstrate that these interactive feature combinations are selected from the
combinations of correlated features. Typically, FRPs contain the underlying correlation informa-
tion between features. As a result, combinations of related features often lead to combinations of
correlated features, highlighting the importance of FRPs.

Here, we prove that these interactive features are correlated.
Proposition E.1. If features A and B are independent, then:

IGY,A)+1IG(Y,B)=IG(Y, A, B)
where:

IG(Y,A) 2 H(Y) — H(Y|A)
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IG(Y,B) £ H(Y) — H(Y|B)
IG(Y,A,B) 2 HYY) — H(Y|A, B)

with H(Y') the entropy of Y, IG(Y, A) the information gain of Y given A, H(Y |A) the conditional
entropy of Y given A, and IG(Y, A, B) the information gain of Y given A and B

Proof. Since A and B are independent, their information contribution to Y is completely indepen-
dent; therefore, their joint effect equals the simple sum of their individual effects minus the entropy
of Y,ie.:

H(Y|A, B) = H(Y|A) + H(Y|B) — H(Y)

Substituting the definition of information gain into the assumption of independent conditional en-
tropy:

IGY,A,B)=H(Y)-H(Y|A,B)=H(Y)—- (HY|A)+ HY|B) — H(Y))
IG(Y,A,B)=2H(Y) - H(Y|A) — H(Y|B)
The sum of information gains:
IG(Y, A)+IG(Y, B) = (H(Y)~ H(Y|A))+(H(Y)~ H(Y|B)) = 2H(Y) ~ H(Y|A)~ H(Y|B)
Thus, it is proved that IG(Y, A) + IG(Y,B) = IG(Y, A, B). O

Proposition F.2. If:
IG(Y,A,B) > IG(Y,A) +IG(Y,B), 3)

then, features A and B are correlated.

Proof. Rearranging equation 3] gives us
IG(Y,A,B) > IG(Y,A)+IG(Y,B)
Following the definition of information gain, we have:
H(Y) ~ H(Y|A,B) > (H(Y) - H(Y|A)) + (H(Y) - H(Y|B))
HY)-HY|A,B)>2H(Y)—-H(Y|A) — H(Y|B)
H(Y|A)+ H(Y|B)—H(Y) > H(Y|A,B)

The above inequalities imply that A and B jointly provide more information than the sum of the
information provided individually. This is typically because there is some interaction or dependency
between A and B that causes their combined information gain to exceed the individual gains, hence
A and B are not independent. O

Proposition F.3. [f feature A and B have an interaction, i.e.:
H(Y|A,B) < H(Y|A)+ H(Y|B)— H(Y), (G))
then:
IG(Y,A,B)>IG(Y,A)+IG(Y,B)
Proof. Rewriting information gain:
IG(Y, A)+IG(Y,B) = (H(Y)-H(Y|A)+(H(Y)-H(Y|B)) = 2H(Y) - H(Y[A) - H(Y|B)
Substituting equation [ into the calculation of information gain gives:
IG(Y,A,B)=H(Y)—- H(Y|A,B)
IGY,A,B)>H(Y)—- (HY|A)+HY|B)—H(Y))
IG(Y,A,B)>2H(Y)—- H(Y|A) — H(Y|B)

This implies that the joint information gain IG(Y, A, B) exceeds the sum of the individual gains.
This indicates a positive interaction between features A and B in influencing Y, where their com-
bined impact reduces the uncertainty of ¥ more than their individual effects summed simply. [
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Design a feature extractor with FRPs. If the feature correlation patterns are embedded in the
FRPs, it is only necessary to sample the combinations of features that are known to be correlated,
Because those features that are not correlated do not have interaction effects, there is no need to
consider their combinations, as proved in [F2] The sampling scope will be largely limited.

The challenge of designing a feature extractor without FRPs. When the FRPs is unknown
correlation patterns among features are unknown, for NV features, combinations of different features
need to be considered. For example, when sampling one feature, the number of samplings is C3;,
when sampling two features, it is 012\/’ and when sampling all N features, it is C ]I\\,[ . Therefore, for a
sample composed of NV features, the total number of samplings required is: C}, + C% + Ca + - - -
+ON=2N—1.

G EAPCR RECOVERS THE HIDDEN FRPS

The effectiveness of our method lies in its ability to accurately reconstruct the correlation patterns
within the data, even when these patterns become less apparent or lost after transformations. As
shown in Fig. [/| whether the images are in their original state or transformed, the matrices recon-
structed by our EAPCR model consistently reflect the true pixel correlation patterns with a recall
rate of 84.6%. This highlights the model’s precision and reliability in restoring these patterns, even
when pixel positions are altered.

In a more detailed analysis, we observed a 55.0% recall rate when comparing the correlation matrix
of transformed images to the original pixel patterns. Conversely, comparing the correlation matrix
from the original images to the transformed image patterns yielded a recall rate of 66.3%. This
indicates that for data containing different feature correlation patterns, the patterns restored by our
model vary significantly. This demonstrates that our EAPCR is capable of adaptively restoring
the unique hidden relationships between features. EAPCR shows a strong ability to recover un-
derlying data relationships, further emphasizing its robustness and effectiveness in scenarios where
explicit correlation patterns are not directly accessible.
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Figure 7: The alignment between the pixel correlation matrices reconstructed using our technique
and the actual pixel correlation patterns in both original and transformed images is demonstrated.
The correlation matrices were binarized.
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H DATA AND CODE

The public datasets can be found in the corresponding references. Other data and code will be
released.

The experiments were conducted on devices with the following specifications. GPU: NVIDIA
GeForce RTX 3090 with 24GB, RTX4080 with 16GB, and RTX4090 with 24GB of VRAM,
CPU: 13th Gen Intel(R) Core(TM) 19-13900K. The source code is freely available at
the GitHub repository after the peer review process.
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