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Abstract

Recent success in fine-tuning large models, that are pretrained on broad data at scale,
on downstream tasks has led to a significant paradigm shift in deep learning, from
task-centric model design to task-agnostic representation learning and task-specific
fine-tuning. As the representations of pretrained models are used as a foundation
for different downstream tasks, this paper proposes a new task-agnostic framework,
SynBench, to measure the quality of pretrained representations using synthetic data.
Our framework applies to a wide range of pretrained models taking continuous
data inputs and is independent of the downstream tasks and datasets. Evaluated
with several pretrained vision transformer models, the experimental results show
that our SynBench score well matches the actual linear probing performance of the
pre-trained model , and can inform the design of robust linear probing on pretrained
representations to mitigate the robustness-accuracy tradeoff in downstream tasks.
Code are available at https://github.com/IBM/synbench.

1 Introduction

In recent years, the use of large pretrained neural networks for efficient fine-tuning on downstream
tasks has prevailed in many application domains such as vision, language, and speech. Instead of
designing task-dependent neural network architectures for different downstream tasks, the current
methodology focuses on the principle of task-agnostic pretraining and task-specific finetuning, which
uses a neural network pretrained on a large-scale dataset (often in a self-supervised or unsupervised
manner) to extract generic representations of the input data, which we call pretrained representations
for simplicity. The pretrained representations are then used as a foundation [1] to solve downstream
tasks by training a linear head (i.e., linear probing) on the data representations with the labels provided
by a downstream dataset, or by simply employing zero-shot inference.

As large pretrained models are shown to achieve state-of-the-art performance on a variety of down-
stream tasks with minimal fine-tuning, there is an intensified demand for using pretrained represen-
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Figure 1: Overview of our SynBench framework. Step 1: generate class conditional Gaussian and
form the inputs to the pretrained model; Step 2: gather rendered representations; Step 3: measure
and plot the expected bound under a range of threshold accuracy for both input raw data and
representations according to equation 2; Step 4: calculate SynBench score by the relative area under
curve of the representations to the input data in the expected bound-threshold accuracy plot.

tations from a large model for efficient finetuning. However, if the underlying pretrained model is
at risk, such as lacking robustness to adversarial examples, this trending practice of pretraining and
fine-tuning also signifies the immediate damage to all downstream tasks. To address this emerging
challenge, we propose a novel framework named SynBench to evaluate the quality of pretrained
representations, in terms of quantifying the tradeoff between standard accuracy and adversarial robust-
ness to input perturbations. Specifically, SynBench uses synthetic data generated from a conditional
Gaussian distribution to establish a reference characterizing the robustness-accuracy tradeoff based
on the Bayes optimal linear classifiers. Then, SynBench obtains the representations of the same
synthetic data from the pretrained model and compare them to the reference for performance bench-
marking. Finally, we define the ratio of area-under-curves in robustness-accuracy characterization as
a quantifiable metric of the quality of pretrained representations. The entire procedure of SynBench
is illustrated in Figure 1. Our SynBench framework features the following key advantages.

1. Soundness: We formalize the fundamental tradeoff in robustness and accuracy of the considered
conditional Gaussian model and use this characterization as a reference to benchmark the quality
of pretrained representations.

2. Task-independence: Since the pretraining of large models is independent of the downstream
datasets and tasks (e.g., through self-supervised or unsupervised training on broad data at scale),
the use of synthetic data in SynBench provides a task-agnostic approach to evaluating pretrained
representations without the knowledge of downstream tasks and datasets.

3. Completeness and privacy: The flexibility of generating synthetic data (e.g., by adopting a dif-
ferent data sampling procedure) offers a good proxy towards a more comprehensive evaluation
of pretrained representations when fine-tuned on different downstream datasets, especially in the
scenario when the available datasets are not representative of the entire downstream datasets. More-
over, the use of synthetic data enables full control and simulation over data size and distribution,
protects data privacy, and can facilitate model auditing and governance.

2 SynBench: Methodology and Evaluation

On the whole, we want to measure the idealized robustness-accuracy tradeoff using synthetic data.
By propagating the realizations through representation networks, we can also measure the robustness-
accuracy tradeoff for representations. We start the section by giving the desired synthetic data.

2.1 Linear Classifier

We consider binary classification problems with data pair (x, y) generated from the mixture of two
Gaussian distributions

x|y ∼ N (yµ,Σ), (1)

where y ∈ C = {+1,−1}, P (y = +1) = p, and P (y = −1) = 1 − p. When sampling from
this idealized distribution, we eliminate the factor of data bias and can benchmark the robustness
degradation in an ideal setting.
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(a) 2D Gaussian case (b) Theoretical robustness-accuracy tradeoff

Figure 2: Illustration of robustness-accuracy tradeoff suggested by ϵ-robust Bayes optimal classifiers.
Figure (a) depicts a class conditional 2D Gaussian case with decision boundaries drawn by ϵ-robust
Bayes optimal classifiers of varying ϵ values. Figure (b) draws the theoretically characterized
robustness-accuracy tradeoff given in Result 2.3.

For a given classifier f and input x with f(x) = y, where y is the predicted label, it is not rational
for the classifier to respond differently to x+ δ than to x for a small perturbation level measured by
∥δ∥p, i.e. inconsistent top-1 prediction [2, 3]. Therefore, the level of (adversarial) robustness for a
classifier can be measured by the minimum magnitude of perturbation that causes misclassification,
i.e. minδ:f(x+δ)̸=f(x) ∥δ∥p. For a generic function f , solving the optimization problem exactly is
hard [4, 5]. Luckily, one can readily solve for the optimization if f is affine [6].

In the following, we will exploit this point and consider the linear classifier that minimizes the robust
classification error. An ideal candidate classifier for the class conditional Gaussian (equation 1)
is specified by the robust Bayes optimal classifier [7, 8]. Specifically, it is stated that the optimal
robust classifier (with a robust margin ϵ) for data generated from equation 1 is a linear classifier
f(x) = sign(wT

0 x), where w0 = Σ−1(µ− zΣ(µ)), zΣ(µ) = argmin∥z∥2≤ϵ(µ− z)TΣ−1(µ− z),
and sign(·) is the typical sign function. To simplify the exposition, we focus on ℓp with p = 2 in the
remainder of this paper (We put Bayes optimal ℓ∞ robust classifier in the appendix ??). We derive
the following result as a direct application of the fact:
Result 2.1. For samples x following the conditional Gaussian in equation 1 with Σ = Id (d by d
identity matrix) , given an ℓ2 adversarial budget ϵ ≤ ∥µ∥2, the robust Bayes optimal classifier has the
decision margin δ lower bounded by |q/2−xTµ(1−ϵ/∥µ∥2)|

(1−ϵ/∥µ∥2)∥µ∥2
, where q = ln{(1 − p)/p}. With p = 1

2 ,

the lower bounds become |xTµ|
∥µ∥2

.

Since the bound is subject to the distance between two Gaussians, we scale the bound by ∥µ∥ and
obtain the minimal scaled perturbation δ̄ as ∥δ̄∥2 ≥ |xTµ|

∥µ∥2
2
. We note that when the classes are balanced,

for samples generated from 1 and Σ = σ2Id, all ϵ-robust Bayes optimal classifier overlap with each
other. However, for data generated from conditional Gaussian with general covariance matrices, the ϵ
of a ϵ-robust Bayes classifier specifies the desired size of margin and demonstrates the robustness
accuracy tradeoff (see Figure 2). We give an illustrative 2D class conditional Gaussian example
in Figure 2(a), where as the ϵ increases, robust Bayes optimal classifier rotates counterclockwise,
leading to misclassifications, but overall bigger margins.

2.2 Objective

For a given representation network, we are interested in evaluating the expected bounds under a
thresholding accuracy at, i.e. Eµ∼Pµ,Σ∼PΣ,x−µ̄|y∼N (yµ,Σ)

[
∥δ̄∥2 | ŷ∗(x) = y, a > at

]
, where Pµ

and PΣ characterize the probability density function of the synthetic data manifold of interest, and µ̄
is a translation vector allowing non-symmetric class conditional Gaussian. Here, without the prior of
applications, we assume µ = s · 1d/

√
d, where s denotes a random variable that follows uniform

distribution and 1d/
√
d is the normalized all-ones vector. For simplicity, we let Σ = Id. Formally,
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we define Eθ,ϵ(at) as

Eθ,ϵ(at) =Es,x

[
∥δ̄∥2 | ŷ∗(x) = y, a > at, µ = s · 1d/

√
d,Σ = Id

]
=
1

n

∑
i

Ex−µ̄|y∼N (ysi·1d/
√
d,Id)

[
∥δ̄∥2 | ŷ∗(x) = y

]
1a(si·1d/

√
d,Id,ϵ)>at

, (2)

where 1a(si·1d/
√
d,Id,ϵ)>at

is the indicator function specifying the si, ϵ-dependent a that surpasses
the threshold accuracy at. In the following sections, we will illustrate how to calculate the inner
expectation term Ex−µ̄|y∼N (ysi·1d/

√
d,Id)

[
∥δ̄∥2 | ŷ∗(x) = y

]
for both the raw data and representa-

tions.

2.2.1 Raw data

Denote the CDF of the standard normal distribution as Φ, we rely on the below two theorems to
obtain the expected bounds for the generated synthetic data:
Result 2.2. Assume a balanced dataset (p = 1

2 , q = 0) where samples x follow the general
conditional Gaussian x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ), given an ℓ2 adversarial budget
ϵ, the robust Bayes optimal classifier gives a standard accuracy of Φ( µ̃TΛ−1(µ̃−zΛ(µ̃))

∥Λ−1(µ̃−zΛ(µ̃))∥Λ
), where

µ̃ = FT µ1−µ2

2 , FΛFT = Σ is the economy-size (thin) decomposition with nonzero eigenvalues, and
zΛ is the solution of the convex problem argmin∥z∥2≤ϵ(µ̃− z)TΛ−1(µ̃− z).

While Result 2.2 gives us the theoretical classification accuracy as a function of synthetic conditional
Gaussian parameters, the following result establishes a direct link between the expected scaled bound
and accuracy (i.e. robustness-accuracy tradeoff).
Result 2.3. Assume a balanced dataset (p = 1

2 , q = 0) where samples x follow the general
conditional Gaussian x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ), given an ℓ2 adversarial budget
ϵ, the robust Bayes optimal classifier gives an expected scaled bound of E

[
∥δ̄x∥2 | ŷ∗(x) = y

]
≥

1√
2π

1
aΦ−1(a)e

− 1
2 (Φ

−1(a))
2

+ 1, where a denotes the standard accuracy.

The subscript x in the expected scaled bound E
[
∥δ̄x∥2 | ŷ∗(x) = y

]
indicates the raw data space, to

distinguish from the scaled bound to be derived for representations. We highlight that Result 2.3
directly gives a robustness-accuracy tradeoff. We plot the expected scaled bound as a function of
accuracy in Figure 2(b). This tradeoff holds true when the data follow the conditional Gaussian
exactly. In the proposed SynBench framework, we treat this theoretically-derived robustness-accuracy
tradeoff as the reference, enabling a fair comparison among representations induced by different
pretrained models.

By now, with Result 2.3, we can already calculate the inner expectation term in equation 2 for the raw
data and provide a theoretically-sounded characterization of robustness-accuracy tradeoff of Bayes
optimal classifiers on raw data.

2.2.2 Representations

Given a pretrained network , we gather the representations of the Gaussian realizations and quantify
the desired bound induced by robust Bayes optimal classifier in the representation space. When
deriving the robust Bayes optimal classifier, we model the representations by a general conditional
Gaussian z|y = 1 ∼ N (µ1,Σ), z|y = −1 ∼ N (µ2,Σ). It is worthwhile to note that now the Bayes
optimal classifier does not necessarily coincide with robust Bayes optimal classifier even when the
dataset is class balanced (see Figure 2(a)). The following result is essential to the development of the
robustness-accuracy quantification of representations.
Result 2.4. For representations z following the general class-balanced conditional Gaussian z|y =
1 ∼ N (µ1,Σ), z|y = −1 ∼ N (µ2,Σ), given an ℓ2 adversarial budget ϵ, the robust Bayes optimal

classifier has the decision margin δz lower bounded by |(z−µ1+µ2
2 )TFΛ−1(µ̃−zΛ(µ̃))|

∥FΛ−1(µ̃−zΛ(µ̃))∥2
, and a scaled

bound of ∥δ̄z∥2 ≥ |(z−µ1+µ2
2 )TFΛ−1(µ̃−zΛ(µ̃))|

|µ̃TΛ−1(µ̃−zΛ(µ̃))| , where µ̃ = FT µ1−µ2

2 , FΛFT = Σ is the economy-
size (thin) decomposition with nonzero eigenvalues, and zΛ is the solution of the convex problem
argmin∥z∥2≤ϵ(µ̃− z)TΛ−1(µ̃− z).
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Figure 3: An example of the robustness-accuracy quantification for ViT-B/16 representations. (Left)
The expected bound as a function of the threshold accuracy, E(at) and Eθ,ϵ(at), for ϵ = 0 ∼ 0.8.
(Right) The SynBench-Score = area B/(area A + area B) (equation 3) for ϵ = 0 (top) and 0.6 (bottom).

2.3 Robustness-Accuracy Quantification of Representations

Recall that we want to calculate

Eθ,ϵ(at) =
1

n

∑
i

Ex|y∼N (ysi·1d/
√
d,Id)

[
∥δ̄∥2 | ŷ∗(x) = y

]
1a(si·1d/

√
d,Id,ϵ)>at

for both raw data and the representations (i.e. ∥δ̄x∥ and ∥δ̄z∥). We treat the expected bounds of the
raw data under a threshold accuracy as the reference. Given a representation network, we compare
the expected bounds of the representations rendered by representation networks with the reference.

We take s ∼ U{0.1, 5} under the guidance of Result 2.2. Specifically, as Results 2.2 gives an
analytical expected accuracy for class conditional Gaussian, we can obtain the desired range of s
by giving the accuracy. Now since we are interested in having the reference as a class conditional
Gaussian that yields accuracy from 55% to almost 100%, we set the starting and ending s by the
fact that Φ(0.1) ∼ 0.55 and Φ(5) ∼ 1.0. We reiterate that with more accurate modelling of the
data manifold of interest, SynBench can give more precise capture of the pretrained representation
performance.

When the data is perfect Gaussian (e.g. raw data), we calculate Eθraw,ϵ(at) with the help of Result 2.3.
Since Eθraw,ϵ(at) of the raw data is defined for a specific representation network parameter θraw, and
all the ϵ-robust classifiers overlap with each other, we further denote it by E(at) to differentiate it
from that of the representations. For representations, we calculate Eθ,ϵ(at) with the help of Result 2.4
and the expectation is estimated empirically. We show an example of the probing results in Figure 3.

To integrate over all the desired threshold accuracy, we use the area under the curve (AUC) and give
the ratio to the reference by

SynBench-Score(θ, ϵ, at) =

∫ 1

at
Eθ,ϵ(a)da∫ 1

at
E(a)da

, (3)

which correspond to area B/(area A + area B) in Figure 3. Larger value of SynBench-Score implies
better probing performance on pretrained representations.

3 Experimental Results

In this experiment, we exemplify the use of SynBench given a pretrained representation network. In
order to compare among network attributes, it is desirable to control the variates. In the appendix
Table 4, we list severeal pretrained vision transformers (ViTs)[9, 10] from Pytorch Image Models
package and make comparisons to our best knowledge. We note that the performance of these models
might be nuanced by scheduler, curriculum, and training episodes, which are not captured in the above
table. To provide a comprehensive evaluation, we give SynBench-Score(θ, ϵ, at) with at ranging
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at = 0.7 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2

ViT-B/16-in21k 0.20 0.23 0.18 0.07 0.01 89.6 71.4
Table 1: Comparisons on the finetuning procedure in pretraining. We report the SynBench-Score of
ViTs with or without finetuning pretrained representations, and the standard linear probing accuracy
on CIFAR10 and transfer accuracy on CIFAR10-c.

at Model ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c

0.7
ViT-Ti/16 0.01 0 0 0 0 81.9 59.1
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2
ViT-L/16 0.26 0.33 0.30 0.22 0.11 98.0 90.3

0.8
ViT-Ti/16 0 0 0 0 0 81.9 59.1
ViT-B/16 0.19 0.23 0.17 0.04 0 95.0 81.2
ViT-L/16 0.12 0.21 0.18 0.09 0 98.0 90.3

0.9
ViT-Ti/16 0 0 0 0 0 81.9 59.1
ViT-B/16 0.02 0.04 0.01 0 0 95.0 81.2
ViT-L/16 0 0.04 0.03 0 0 98.0 90.3

Table 2: Comparisons on the model sizes. The SynBench-Score of ViTs of different sizes, and the
standard linear probing accuracy on CIFAR10 and transfer accuracy on CIFAR10-c.

from 0.7 to 0.9, and ϵ from 0 to 0.8. Due to space limit, some at results are deferred to the appendix.
The runtime of SynBench depends on the number of outcomes of the discrete uniform distribution
U{0.1, 5}. For one s ∼ U{0.1, 5}, it costs 59 seconds to generate 2048 Gaussian samples, 37 and 81
seconds to obtain the SynBench-Score for ViT-B/16 and ViT-L/16 on one GeForce RTX 2080 super.

Apart from the task-agnostic metrics SynBench-Score developed in this paper, we also report linear
probing accuracy on CIFAR10 and CIFAR10-c [11] to validate the standard and transfer accuracy
(use the probing layer trained on CIFAR10 to probe CIFAR10-c). We emphasize that SynBench-Score
offers a quantifiable score for robustness-accuracy performance benchmarking and is intrinsically a
task-agnostic evaluation of the pretrained model. Therefore, although SynBench-Score may share
trends with empirical real-life tasks (e.g. CIFAR10), it is meant to characterize a general behavior of
the pretrained representations.

Fine-tuned pretraining representation. When applying a pretrained representation network to the
desired task, one can either only train a linear head on top of a fixed pretrained model, or perform
fine-tuning of both the representation network and the linear head. Thus, in Table 1, we investigate
how the fine-tuning process is affecting the representation networks. Specifically, both networks in
Table 1 is pretrained on Imagenet 21k with supervision. After the pretraining, ViT-B/16 is further
finetuned on Imagenet 1k. Interestingly, SynBench-Score shows that this finetuning is beneficial
as improvements are witnessed across all ϵ with SynBench-Score, which well match the empirical
observation give by CIFAR10 and CIFAR10-c and prior results [12].

Model size. In Table 2, we compare ViTs of different sizes. Specifically, we
perform SynBench on ViT-Tiny, ViT-Base, and ViT-Large with patch size being 16.

argmaxϵ ∆ robust linear probing
SynBench-Score mean (CIFAR10/-c)

ViT-Ti/16 0 69.7+0
ViT-B/16 0.2 87.6+1.0
ViT-L/16 0.2 94.2+0.4

ViT-B/16-in21k 0.2 80.0+0.4
ViT-B/32 0.2 83.9+0.8

Table 3: CIFAR10 and CIFAR10-c accuracy changes using
ϵ-robust linear probing with ϵ = argmaxϵSynBench-Score.

The model parameter θ is provided by
the pretrained model. It is noticeable
that ViT-B/16 is generally on par with
ViT-L/16. When we set the thresh-
old accuracy to be higher values, ViT-
L/16 starts to give slightly better eval-
uations especially with larger ϵ. One
interesting observation is that for each
model, SynBench score is not neces-
sarily monotonic in ϵ, which indicates
standard linear probing (i.e., ϵ = 0)
may not be the most effective way to probing pretrained representations in terms of robustness-
accuracy performance, which is consistent with recent findings [13]. See the “Robust linear probing”
paragraph below for detailed analysis. We also observe that larger models exhibit better resilience
(slower reduction in SynBench score) as ϵ increases.
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Robust linear probing. According to Table 2, 0.2-robust Bayes classifiers consistently give better
scores compared to 0-robust (standard) Bayes classifiers with ViT-B/16 and ViT-L/16. This offers us
a quick way of gauging the suitable downstream robust probing parameter for the given pretrained
model. We stipulate that observing a 0.2-robust Bayes classifier to yield better SynBench-Score than
a 0-robust Bayes classifier may suggest the pretrained network to produce representations that have
better overall performance with linear classifiers trained by 0.2-robust linear probing. We validate this
by performing robust linear probing on representations rendered by ViTs for CIFAR10 classifications.
From Table 3, we see that robust linear probing with ϵ = argmaxϵSynBench-Score generally gives
a decent robustness-accuracy tradeoff. We refer the readers to the appendix for the robust linear
probing procedures and a more complete table on ϵ-robust linear probing results with different ϵ.

4 Discussion and Conclusion

In this paper, we propose a new task-agnostic framework SynBench for benchmarking the robustness-
accuracy performance of pretrained representations. SynBench is fundamentally task-independent
and provides a quantifiable score that does not reply on any real-life data. SynBench exploits an
idealized data distribution, class conditional Gaussian mixture, to establish a theoretically-derived
robustness-accuracy tradeoff, which serves as the reference for pretrained representations. Finally, a
quantifiable score SynBench-Score is provided that compares the ratio of area-under-curve between
the reference and the pretrained representations. We validate the usefulness of SynBench on several
pretrained vision transformers in giving insightful comparisons on different model attributes (e.g.
model size, fine-tuned pretraining representations, ViT patch size, linear probing).

While we delved into the robustness-accuracy performance of pretrained representations of vision
transformers, we envision the SynBench framework to be further extended to other trustworthiness
dimensions such as privacy, fairness, etc. Moreover, as the popularization of pretrained representations
in various domains (e.g. vision, language, speech), we foresee SynBench to be generalized to more
domains, and shed light on task-agnostic benchmarking designs.
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A Related Work

Pretrained models in vision. In the past few years, much focus in the machine learning community
has been shift to train representation networks capable of extracting features for a variety of down-
stream tasks with minimal fine-tuning. Nowadays, many common vision tasks are achieved with the
assistant of good backbones, e.g. classifications [14, 15, 16, 17, 9, 18], object detection [19, 20], seg-
mentation [21, 22], etc. Among the popular backbones, vision transformers (ViT) [9] have attracted
enormous interest. ViTs stem from Transformers [23] and split an image into patches, which are then
treated as tokens as for the original Transformers. We will exemplify the use of SynBench using
several pretrained ViTs.

Benchmarking pretrained models. Since pretrained models are used as a foundation for different
downstream tasks, it is central to transfer learning [24, 25], and also tightly related to model general-
ization [26, 27]. To benchmark the performance of a pretrained model, it is a convention to apply
the pretrained model for a number of popular tasks and conduct linear probing on the representa-
tions [28, 9, 18, 10]. Besides linear probing, evaluation frameworks have been proposed based on
mutual information [29] and minimum description length (MDL) [30, 31], which are reliant on the
label information of the downstream tasks and are hence task-specific. Moreover, recent work [32]
also discussed the sensitivity of validation accuracy (nonlinear probes) and MDL to evaluation dataset
size, and proposed a variant of MDL and a sample complexity based quantifier that depends on the
data distribution.

It was not until recently that more fundamental questions are brought up related to the pretrained
models [1, 33, 34]. Lately, authors of [1] raised practical concerns about the homogenization
incentivized by the scale of the pretraining. Although the homogenization might help in achieving
competitive performance for some downstream tasks, the defects are also inherited by all these
downstreams. On that account, a more careful study of the fundamentals of pretrained models is of
paramount importance. Plex [33] was dedicated to explore the reliability of pretrained models by
devising 10 types of tasks on 40 datasets in evaluating the desired aspect of reliability. Furthermore, it
is pointed out [34] that pretrained models may not be robust to subpopulation or group shift as shown
in 9 benchmarks. The adversarial robustness is benchmarked by authors of [35, 36], where [36]
demonstrated the superior robustness of ViTs through Imagenet and [35] conducted white-box and
transfer attacks on Imagenet and CIFAR10.

Optimal representations. In the seminal work of deep representation theory, [37] depicted the
desired optimal representations in supervised learning to be sufficient for downstream task, invariant
to the effect of nuisances, maximally disentangled, and has minimal mutual information between
representations and inputs. Focusing more on generalization than compression, [38] gave the opti-
mal representation based on V-information [39] and probed generalization in deep learning. More
recently, [40] defined the optimal representations for domain generalization. In [41], authors char-
acterize the idealized representation properties for invariant self-supervised representation learning.
Specifically, idealized representation should be well-distinguished by the desired family of probes
for potential invariant tasks, have sufficiently large dimension, and be invariant to input augmenta-
tions. [42] discusses the necessary conditions for avoiding degenerate solutions when performing
self-supervised pretraining.

SynBench differs from the above quantifiers as it does not need knowledge of any downstream data
and has controls over the evaluation set size since we could draw arbitrary number of synthetic data.
With the assumed synthetic data distribution, we could theoretically characterize the robustness-
accuracy tradeoff that is independent to the downstream tasks. Therefore, SynBench provides a
predefined standard of the tradeoff, which serves as the reference for representations induced by
pretrained models. It should be also mentioned that, recently sim-to-real transfer paradigm has been
leveraged to test the quality of real data, by projecting those onto the space of a model trained on
large-scale synthetic data generated from a set of pre-defined grammar rules [43]. SynBench, though
conceptually similar at a very high level, is different from that line of work – as the focus of this work
is to quantify the accuracy-robustness tradeoff of pretrained representations using synthetic data from
conditional distributions.
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B Proofs

Result B.1. For samples x following the conditional Gaussian in equation 1 with Σ = Id (d by d
identity matrix) , given an ℓ2 adversarial budget ϵ ≤ ∥µ∥2, the robust Bayes optimal classifier has the
decision margin δ lower bounded by |q/2−xTµ(1−ϵ/∥µ∥2)|

(1−ϵ/∥µ∥2)∥µ∥2
, where q = ln{(1 − p)/p}. With p = 1

2 ,

the lower bounds become |xTµ|
∥µ∥2

.

Proof. Consider the Bayes optimal ℓ2 ϵ-robust classifier [8, Theorem 4.1]

ŷ∗(x) = sign{xTµ(1− ϵ/∥µ∥2)− q/2},

where q = ln{(1− p)/p}. For a realization x, we give the lower bound on the decision margin δ

(x+ δ)Tµ(1− ϵ/∥µ∥2)− q/2 = 0

⇔ δTµ(1− ϵ/∥µ∥2) = q/2− xTµ(1− ϵ/∥µ∥2)

⇒ ∥δ∥2 ≥ |q/2− xTµ(1− ϵ/∥µ∥2)|
(1− ϵ/∥µ∥2)∥µ∥2

.

Result B.2. Assume a balanced dataset (p = 1
2 , q = 0) where samples x follow the general

conditional Gaussian x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ), given an ℓ2 adversarial budget
ϵ, the robust Bayes optimal classifier gives a standard accuracy of Φ( µ̃TΛ−1(µ̃−zΛ(µ̃))

∥Λ−1(µ̃−zΛ(µ̃))∥Λ
), where

µ̃ = FT µ1−µ2

2 , FΛFT = Σ is the economy-size (thin) decomposition with nonzero eigenvalues, and
zΛ is the solution of the convex problem argmin∥z∥2≤ϵ(µ̃− z)TΛ−1(µ̃− z).

Proof. With a general non-symmetric conditional Gaussians

x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ),

we apply proper translation to symmetric conditional Gaussians

FTx|y = 1 ∼ N (FTµ1,Λ), FTx|y = −1 ∼ N (FTµ2,Λ),

FTx− FT µ1 + µ2

2
|y = 1 ∼ N (µ̃,Λ), FTx− FT µ1 + µ2

2
|y = −1 ∼ N (−µ̃,Λ),

where µ̃ = FT µ1−µ2

2 . Then, following [7, 44], we have the Bayes optimal robust classifier

ŷ∗(x) = sign{(x− µ1 + µ2

2
)TFΛ−1(µ̃− zΛ(µ̃))}, (4)

where zΛ is the solution of the convex problem argmin∥z∥2≤ϵ(µ − z)TΛ−1(µ − z). With this
classifier, we can calculate the analytical standard accuracy by

P(y = 1)P [ŷ∗(x) = 1 | y = 1] + P(y = −1)P [ŷ∗(x) = −1 | y = −1]

=P [ŷ∗(x) = 1 | y = 1]

=P
[
(FTx− FT µ1 + µ2

2
)TΛ−1(µ̃− zΛ(µ̃)) > 0 | y = 1

]
=P

[
(µ̃+ w)TΛ−1(µ̃− zΛ(µ̃)) > 0

]
, w ∼ N (0,Λ)

=P
[
wTΛ−1(µ̃− zΛ(µ̃)) > −µ̃TΛ−1(µ̃− zΛ(µ̃))

]
, w ∼ N (0,Λ)

=P
[
wTΛ−1(µ̃− zΛ(µ̃))

∥Λ−1(µ̃− zΛ(µ̃))∥Λ
> − µ̃TΛ−1(µ̃− zΛ(µ̃))

∥Λ−1(µ̃− zΛ(µ̃))∥Λ

]
,

wTΛ−1(µ̃− zΛ(µ̃))

∥Λ−1(µ̃− zΛ(µ̃))∥Λ
∼ N (0, 1)

=Φ(
µ̃TΛ−1(µ̃− zΛ(µ̃))

∥Λ−1(µ̃− zΛ(µ̃))∥Λ
)
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Result B.3. Assume a balanced dataset (p = 1
2 , q = 0) where samples x follow the general

conditional Gaussian x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ), given an ℓ2 adversarial budget
ϵ, the robust Bayes optimal classifier gives an expected scaled bound of E

[
∥δ̄x∥2 | ŷ∗(x) = y

]
≥

1√
2π

1
aΦ−1(a)e

− 1
2 (Φ

−1(a))
2

+ 1, where a denotes the standard accuracy.

Proof. Let a denote the accuracy, t denote FTx− FT µ1+µ2

2 , and w denote Λ−1(µ̃− zΛ(µ̃)). From

Result 2.2, we have that the standard accuracy for the Bayes optimal (robust) classifier is Φ( µ̃Tw
∥w∥Λ

),

so
∑d µ̃iwi√∑d λiw2

i

= Φ−1(a). Since for binary classification, we only care about accuracy from 0.5 to 1,

so we should have
∑d

µ̃iwi > 0.

Now consider the classifier in equation 4, the corresponding lower bound and scaled lower bound can
be given as

∥δx∥2 ≥
|(x− µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
∥FΛ−1(µ̃− zΛ(µ̃))∥2

,

∥δ̄x∥2 ≥
|(x− µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
∥FΛ−1(µ̃− zΛ(µ̃))∥2

∥FΛ−1(µ̃− zΛ(µ̃))∥2
|µ̃TΛ−1(µ̃− zΛ(µ̃))|

=
|(x− µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
|µ̃TΛ−1(µ̃− zΛ(µ̃))|

.

When t = FTx− FT µ1+µ2

2 , and w = Λ−1(µ̃− zΛ(µ̃)),

∥δ̄x∥2 ≥ |tTw|
|µ̃Tw|

=
|
∑d

tiwi|
|
∑d

µ̃iwi|
=

|
∑d

tiwi|∑d
µ̃iwi

.

Since t|y ∼ N (yµ̃,Λ), we have tiwi|y ∼ N (yµ̃iwi, λiw
2
i ) and

d∑
tiwi|y ∼ N (

d∑
yµ̃iwi,

d∑
λiw

2
i ).

When we only want to get the expected scaled bound of the correctly-classified samples, we have that

E
[
∥δ̄∥2 | ŷ∗(x) = y

]
≥ 1∑d

µ̃iwi

E

[
|

d∑
tiwi| | ŷ∗(x) = y

]

=
p∑d
µ̃iwi

E

[
|

d∑
tiwi| | ŷ∗(x) = y = 1

]

+
1− p∑d
µ̃iwi

E

[
|

d∑
tiwi| | ŷ∗(x) = y = −1

]

=
p∑d
µ̃iwi

E

[
d∑

tiwi | y = 1,

d∑
tiwi ≥ 0

]

+
1− p∑d
µ̃iwi

E

[
−

d∑
tiwi | y = −1,

d∑
tiwi < 0

]
.

Recall that
∑d

tiwi|y ∼ N (
∑d

yµ̃iwi,
∑d

λiw
2
i ), then by the mean of truncated normal distribution,

it is true that

E

[
d∑

tiwi | y = 1,

d∑
tiwi ≥ 0

]
=

d∑
µ̃iwi +

√
d∑

λiw2
i

ϕ( 0−
∑d µ̃iwi√∑d λiw2

i

)

1− Φ( 0−
∑d µ̃iwi√∑d λiw2

i

)

=

d∑
µ̃iwi +

√
d∑

λiw2
i

ϕ(−
∑d µ̃iwi√∑d λiw2

i

)

1− Φ(−
∑d µ̃iwi√∑d λiw2

i

)
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=

d∑
µ̃iwi

+

√
d∑

λiw2
i

1
√
2πΦ(

∑d µ̃iwi√∑d λiw2
i

)
e
− 1

2

( ∑d µ̃iwi√∑d λiw
2
i

)2

E

[
−

d∑
tiwi | y = −1,

d∑
tiwi < 0

]
= −E

[
d∑

tiwi | y = −1,

d∑
tiwi < 0

]

= −

−
d∑

µ̃iwi −

√
d∑

λiw2
i

ϕ( 0+
∑d µ̃iwi√∑d λiw2

i

)

Φ( 0+
∑d µ̃iwi√∑d λiw2

i

)


=

d∑
µ̃iwi

+

√
d∑

λiw2
i

1
√
2πΦ(

∑d µ̃iwi√∑d λiw2
i

)
e
− 1

2

( ∑d µ̃iwi√∑d λiw
2
i

)2

.

Therefore

E
[
∥δ̄x∥2 | ŷ∗(x) = y

]
≥ 1∑d

µ̃iwi

 d∑
µ̃iwi +

√
d∑

λiw2
i

1
√
2πΦ(

∑d µ̃iwi√∑d λiw2
i

)
e
− 1

2

( ∑d µ̃iwi√∑d λiw
2
i

)2


= 1 +

√∑d
λiw2

i∑d
µ̃iwi

1
√
2πΦ(

∑d µ̃iwi√∑d λiw2
i

)
e
− 1

2

( ∑d µ̃iwi√∑d λiw
2
i

)2

.

By replacing
∑d µ̃iwi√∑d λiw2

i

by Φ−1(a), we got

E
[
∥δ̄x∥2 | ŷ∗(x) = y

]
≥ 1√

2π

1

aΦ−1(a)
e−

1
2 (Φ

−1(a))
2

+ 1.

Result B.4. For representations z following the general class-balanced conditional Gaussian z|y =
1 ∼ N (µ1,Σ), z|y = −1 ∼ N (µ2,Σ), given an ℓ2 adversarial budget ϵ, the robust Bayes optimal

classifier has the decision margin δz lower bounded by |(z−µ1+µ2
2 )TFΛ−1(µ̃−zΛ(µ̃))|

∥FΛ−1(µ̃−zΛ(µ̃))∥2
, and a scaled

bound of ∥δ̄z∥2 ≥ |(z−µ1+µ2
2 )TFΛ−1(µ̃−zΛ(µ̃))|

|µ̃TΛ−1(µ̃−zΛ(µ̃))| , where µ̃ = FT µ1−µ2

2 , FΛFT = Σ is the economy-
size (thin) decomposition with nonzero eigenvalues, and zΛ is the solution of the convex problem
argmin∥z∥2≤ϵ(µ̃− z)TΛ−1(µ̃− z).

Proof. The proof follows similarly as before and is the intermediate result in the proof of Result 2.3.
With a general non-symmetric conditional Gaussians

z|y = 1 ∼ N (µ1,Σ), z|y = −1 ∼ N (µ2,Σ),

and after translation

FT z − FT µ1 + µ2

2
|y = 1 ∼ N (µ̃,Λ), FT z − FT µ1 + µ2

2
|y = −1 ∼ N (−µ̃,Λ),

where µ̃ = FT µ1−µ2

2 . Following [7, 44], we have the Bayes optimal robust classifier

ŷ∗(z) = sign{(z − µ1 + µ2

2
)TFΛ−1(µ̃− zΛ(µ̃))}, (5)
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where zΛ is the solution of the convex problem argmin∥z∥2≤ϵ(µ−z)TΛ−1(µ−z). The corresponding
lower bounds is

∥δz∥2 ≥
|(z − µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
∥FΛ−1(µ̃− zΛ(µ̃))∥2

,

∥δ̄z∥2 ≥
|(z − µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
∥FΛ−1(µ̃− zΛ(µ̃))∥2

∥FΛ−1(µ̃− zΛ(µ̃))∥2
|µ̃TΛ−1(µ̃− zΛ(µ̃))|

=
|(z − µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
|µ̃TΛ−1(µ̃− zΛ(µ̃))|

C ℓp Results

We note that our results can be straightforwardly generalized to ℓp.
Result C.1. Assume a balanced dataset where samples x follow the general conditional Gaussian
x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ), given an ℓp adversarial budget ϵ, the robust

Bayes optimal classifier gives a standard accuracy of Φ( µ̃TΛ−1(µ̃−zΛ(µ̃))
∥Λ−1(µ̃−zΛ(µ̃))∥Λ

), where µ̃ = FT µ1−µ2

2 ,
FΛFT = Σ is the economy-size (thin) decomposition with nonzero eigenvalues, and zΛ is the
solution of the convex problem argmin∥z∥p≤ϵ(µ̃− z)TΛ−1(µ̃− z).
Result C.2. Assume a balanced dataset where samples x follow the general conditional Gaus-
sian x|y = 1 ∼ N (µ1,Σ), x|y = −1 ∼ N (µ2,Σ), given an ℓp adversarial budget ϵ, the
robust Bayes optimal classifier gives an expected scaled bound of E

[
∥δ̄x∥p | ŷ∗(x) = y

]
≥

1√
2π

1
aΦ−1(a)e

− 1
2 (Φ

−1(a))
2

+ 1, where a denotes the standard accuracy.

Proof. We follow the proof of Thm B.3 and observe that we now have the corresponding lower bound
and scaled lower bound can be given as

∥δx∥p ≥
|(x− µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
∥FΛ−1(µ̃− zΛ(µ̃))∥q

,

∥δ̄x∥p ≥
|(x− µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
∥FΛ−1(µ̃− zΛ(µ̃))∥q

∥FΛ−1(µ̃− zΛ(µ̃))∥q
|µ̃TΛ−1(µ̃− zΛ(µ̃))|

=
|(x− µ1+µ2

2 )TFΛ−1(µ̃− zΛ(µ̃))|
|µ̃TΛ−1(µ̃− zΛ(µ̃))|

,

where 1
p + 1

q = 1. The remainder of the proof will then follows as in Thm B.3 which renders

E
[
∥δ̄x∥p | ŷ∗(x) = y

]
≥ 1√

2π

1

aΦ−1(a)
e−

1
2 (Φ

−1(a))
2

+ 1.

Result C.3. For representations z following the general class-balanced conditional Gaussian
z|y = 1 ∼ N (µ1,Σ), z|y = −1 ∼ N (µ2,Σ), given an ℓp adversarial budget ϵ, the robust

Bayes optimal classifier has the decision margin δz lower bounded by |(z−µ1+µ2
2 )TFΛ−1(µ̃−zΛ(µ̃))|

∥FΛ−1(µ̃−zΛ(µ̃))∥q
,

and a scaled bound of ∥δ̄z∥p ≥ |(z−µ1+µ2
2 )TFΛ−1(µ̃−zΛ(µ̃))|

|µ̃TΛ−1(µ̃−zΛ(µ̃))| , where 1
p + 1

q = 1, µ̃ = FT µ1−µ2

2 ,
FΛFT = Σ is the economy-size (thin) decomposition with nonzero eigenvalues, and zΛ is the
solution of the convex problem argmin∥z∥p≤ϵ(µ̃− z)TΛ−1(µ̃− z).

D Robust linear probing procedure

For a given pretrained model, let f and g be the pretrained network and linear probing layer, we solve
the optimization problem ming max∥δ∥≤ϵ L(g(f(x+ δ)), y) using the PyTorch library Torchattacks2

and 10-step PGDL2 attacks [45] for adversarial training.
2https://github.com/Harry24k/adversarial-attacks-pytorch
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E Tables

Model Arch. pretraining fine-tuning patch # parameters (M)
ViT-Ti/16 ViT-Tiny Imgn21k Imgn1k 16 5.7
ViT-B/16 ViT-Base Imgn21k Imgn1k 16 86.6

ViT-B/16-in21k ViT-Base Imgn21k No 16 86.6
ViT-B/32 ViT-Base Imgn21k Imgn1k 32 88.2
ViT-L/16 ViT-Large Imgn21k Imgn1k 16 304.3
Variation:
Model size (ViT-Ti/16, ViT-Base/16, ViT-Large/16)
Finetuning (ViT-B/16, ViT-B/16-in21k)

ViT patch size (ViT-B/16, ViT-B/32)
Table 4: Model descriptions.

at Model ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c

0.7
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2

ViT-B/16-in21k 0.20 0.23 0.18 0.07 0.01 89.6 71.4

0.75
ViT-B/16 0.26 0.30 0.25 0.11 0.01 95.0 81.2

ViT-B/16-in21k 0.12 0.16 0.10 0.02 0 89.6 71.4

0.8
ViT-B/16 0.19 0.23 0.17 0.04 0 95.0 81.2

ViT-B/16-in21k 0.06 0.09 0.04 0 0 89.6 71.4

0.85
ViT-B/16 0.10 0.15 0.09 0 0 95.0 81.2

ViT-B/16-in21k 0.01 0.02 0 0 0 89.6 71.4

0.9
ViT-B/16 0.02 0.04 0.01 0 0 95.0 81.2

ViT-B/16-in21k 0 0 0 0 0 89.6 71.4
Table 5: Full table of Table 1.

at Model ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c

0.7
ViT-Ti/16 0.01 0 0 0 0 81.9 59.1
ViT-B/16 0.33 0.37 0.32 0.20 0.06 95.0 81.2
ViT-L/16 0.26 0.33 0.30 0.22 0.11 98.0 90.3

0.75
ViT-Ti/16 0 0 0 0 0 81.9 59.1
ViT-B/16 0.26 0.30 0.25 0.11 0.01 95.0 81.2
ViT-L/16 0.19 0.27 0.24 0.16 0.04 98.0 90.3

0.8
ViT-Ti/16 0 0 0 0 0 81.9 59.1
ViT-B/16 0.19 0.23 0.17 0.04 0 95.0 81.2
ViT-L/16 0.12 0.21 0.18 0.09 0 98.0 90.3

0.85
ViT-Ti/16 0 0 0 0 0 81.9 59.1
ViT-B/16 0.10 0.15 0.09 0 0 95.0 81.2
ViT-L/16 0.05 0.13 0.10 0.03 0 98.0 90.3

0.9
ViT-Ti/16 0 0 0 0 0 81.9 59.1
ViT-B/16 0.02 0.04 0.01 0 0 95.0 81.2
ViT-L/16 0 0.04 0.03 0 0 98.0 90.3

Table 6: Full table of Table 2
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argmaxϵ linear probing 0.1-robust linear probing 0.2-robust linear probing 0.3-robust linear probing 0.4-robust linear probing
SynBench-Score CIFAR10 CIFAR10-c CIFAR10 CIFAR10-c CIFAR10 CIFAR10-c CIFAR10 CIFAR10-c CIFAR10 CIFAR10-c

ViT-Ti/16 0.1 80.5±0.17 58.9±0.39 79.0±0.13 59.1±0.22 76.2±0.13 58.2±0.41 - - - -
ViT-B/16 0.2 94.5±0.05 80.7±0.15 95.2±0.04 81.6±0.33 95.1±0.05 82.0±0.18 95.0±0.05 81.9±0.43 - -
ViT-L/16 0.2 98.0±0.03 90.3±0.14 98.2±0.02 90.4±0.56 98.4±0.04 90.7±0.26 98.3±0.10 90.9±0.18 - -

ViT-B/16-in21k 0.1/0.2 88.9±0.36 70.8±0.37 89.3±0.03 71.5±0.43 89.1±0.14 71.6±0.29 89.2±0.16 71.4±0.10 - -
ViT-B/32 0.2/0.3 92.0±0.15 75.8±0.33 92.5±0.04 76.9±0.30 92.4±0.06 76.9±0.27 92.4±0.07 77.1±0.18 92.4±0.05 77.0±0.05

Table 7: Full table of Table 3

at = 0.6 ϵ = 0 ϵ = 0.2 ϵ = 0.4 ϵ = 0.6 ϵ = 0.8 CIFAR10 CIFAR10-c
ViT-B/16 0.45 0.47 0.44 0.36 0.25 95.0 81.2
ViT-B/32 0.02 0.03 0.03 0.01 0 92.2 76.6

Table 8: Comparisons on the ViT patch size. The SynBench-Score of ViTs of different patch sizes,
and the standard linear probing accuracy on CIFAR10 and transfer accuracy on CIFAR10-c. The
Imagenet result shows an average accuracy over 6 Imagenet variants.

attack success rate on standard linear probing attack success rate on robust linear probing
ViT-Ti/16 98.9 98.9
ViT-B/16 80.1 60.1
ViT-L/16 53.2 37.2

ViT-B/16-in21k 92.1 81.5
ViT-B/32 58.5 44.3

Table 9: Auto-attack success rates on standard CIFAR10 classifiers that built on pretrained models.
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