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Abstract

Achieving high accuracy on data from domains
unseen during training is a fundamental challenge
in machine learning. While state-of-the-art neural
networks have achieved impressive performance
on various tasks, their predictions are biased to-
wards domain-dependent information (ex. im-
age styles) rather than domain-invariant informa-
tion (ex. image content). This makes them un-
reliable for deployment in risk-sensitive settings
such as autonomous driving. In this work, we
propose a novel inference procedure, Test-Time
Neural Style Smoothing (TT-NSS), that produces
risk-averse predictions using a “style smoothed”
version of a classifier. Specifically, the style
smoothed classifier classifies a test image as the
most probable class predicted by the original clas-
sifier on random re-stylizations of the test image.
TT-NSS uses a neural style transfer module to
stylize the test image on the fly, requires black-
box access to the classifier, and crucially, abstains
when predictions of the original classifier on the
stylized images lack consensus. We further pro-
pose a neural style smoothing-based training pro-
cedure that improves the prediction consistency
and the performance of the style-smoothed classi-
fier on non-abstained samples. Our experiments
on the PACS dataset and its variations, both in sin-
gle and multiple source domain settings highlight
the effectiveness of our methods at producing risk-
averse predictions on unseen domains.

1. Introduction
A fundamental challenge in machine learning is to produce
classifiers that can withstand a domain shift at test time with-
out having any knowledge of the shift during training. Pre-
vious works (Bulusu et al., 2020; Hendrycks & Dietterich,
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2019; Alcorn et al., 2019; Geirhos et al., 2018; Beery et al.,
2018) have demonstrated that variations in styles/textures,
weather changes, etc., unseen during training can drastically
reduce the classifier’s performance. Recent works (Geirhos
et al., 2018; Nam et al., 2021; Hermann et al., 2020; Baker
et al., 2018) brought to light the fact that predictions from
state-of-the-art (SOTA) neural networks are biased towards
the information unrelated to the content of the images but are
dependent on the image styles, that can vary across domains.
Due to the vast practical implications of this problem many
works have studied this problem both analytically (Ben-
David et al., 2007; 2010; Mansour et al., 2009; Shen et al.,
2018; Zhao et al., 2019; Johansson et al., 2019; Blanchet &
Murthy, 2019; Mehra et al., 2021b) and empirically (Albu-
querque et al., 2019; Zhang et al., 2021a; Ganin et al., 2016;
Zhao et al., 2018; Qiao et al., 2020; Gulrajani & Lopez-Paz,
2020; Mehra et al., 2022). However, in scenarios such as in
autonomous driving, medical diagnoses, or using drones for
rescue operations, where a risky misclassification could be
catastrophic, augmenting the classifier with an abstaining
mechanism or involving a human in the loop becomes cru-
cial (Settles, 2009; Cortes et al., 2016). Thus, in this work
we focus on problem of image classification under distri-
bution shifts which comprise of differences in styles. To
safeguard the classifier against risky misclassification (and
enable risk-averse predictions) we augment the classifier
with a capability to defer making a prediction on samples
where it lacks confidence. However, since the softmax score
of the classifier is known to be uncalibrated (Hein et al.,
2019; Hendrycks et al., 2019; Hendrycks & Gimpel, 2016)
on data from unseen domains, we propose a novel method
that uses neural style information to estimate classifier’s
confidence in it’s prediction under style changes.

Our inference procedure, Test-Time Neural Style Smooth-
ing (TT-NSS), outlined in Fig. 1, first transforms a classifier
(base classifier) into a style-smoothed classifier and then
uses it to either predict the label of an incoming test sample
or abstain on it. Specifically, the prediction of the style
smoothed classifier, ψ, constructed from a base classifier
f , on a test input x is defined as the class that the base
classifier f would predict most often on stylized versions
of the input. TT-NSS uses a style transfer network based
on AdaIN (Huang & Belongie, 2017) to produce stylized
versions of the test input in real time. While AdaIN can



Risk-Averse Predictions on Unseen Domains via Neural Style Smoothing

Figure 1. Overview of our Test-Time Neural Style Smoothing (TT-NSS) inference procedure for obtaining risk-averse predictions. TT-NSS
works by stylizing a test sample into source domain styles and classifies the sample as the most probable class assigned by the classifier to
the stylized samples if that class is much more likely than the other classes. Otherwise, it abstains from making a prediction and refers the
sample to an expert thereby avoiding a risky misclassification.

transform the style of x to any arbitrary style, we specifi-
cally transform it into the style of the data from the domain
used for training. This choice is based on the fact f can be
easily made agnostic to the styles of a domain used for train-
ing. Moreover, changing the styles of x to arbitrary styles,
unknown to f , can worsen the classifier’s performance due
to a widened distribution shift. TT-NSS can be used to eval-
uate any classifier with only black-box access to it, i.e., it
does not require the knowledge of weights, architecture, or
training procedure used to train the classifier and only needs
its predictions on stylized samples. However, computing the
prediction of a style-smoothed classifier requires comput-
ing the probability with which the base classifier classifies
the stylized images of x. Following works in Randomized
Smoothing (Cohen et al., 2019), we propose a Monte Carlo
algorithm to estimate this probability. When this estimated
probability exceeds a set threshold it implies that the predic-
tions of the classifier f on stylized images of x achieve a
desired level of consensus and the prediction is reliable. In
other cases, TT-NSS abstains due to lack of consensus.

Furthermore, we propose a novel training method that im-
proves the consistency of the predictions of the classifier
on stylized images. The improved consistency leads to
lower abstaining rates and improved performance on non-
abstained samples thereby improving the reliability of the
predictions from the classifier. Our training method cre-
ates a style smoothed version of the soft base classifier and
uses stylized versions of the source domain data (generated
by stylizing the source domain images into random styles
of other source domain images) to train the base classifier.
Similar to previous works (Jeong & Shin, 2020; Sohn et al.,
2020; Sun et al., 2021), we incorporate consistency regu-
larization during training to further boost the performance
of the classifier on non-abstained samples at various ab-

staining rates. Similar to TT-NSS, our NSS-based training
losses can be combined with any training method and can
improve the reliability of the classifier’s predictions without
significantly degrading their accuracy. We present results
of using our inference and training procedures on PACS (Li
et al., 2017) dataset and its variations generated by applying
style changes and common corruptions, in both single and
multiple source domain settings. Our results show that our
proposed methods improve the reliability of the classifier’s
predictions on unseen domains. Our main contributions are:

• We propose a simple and effective inference procedure
based on neural style smoothing for obtaining risk-
averse predictions. Our method returns the prediction
of the style-smoothed classifier in real time with only
black-box access to the underlying classifier.

• We propose a novel training procedure to improve the
performance of style-smoothed classifier by incorporat-
ing neural style smoothing during training and enforc-
ing prediction consistency under random stylizations
of the source domain data.

• We evaluate the effectiveness of methods on benchmark
datasets and their novel variations created by stylizing
and applying common corruptions to them.

2. Neural style smoothing
2.1. Background

Problem setup: GivenN i data samples fromNS source do-
mains as Di

source = {(xij , yij)}N
i

j=1 each following a distribu-
tion P i

S(X,Y ), the goal is to learn a classifier f(X) whose
performance does not degrade on a sample from an unseen
test domain with distribution PT (X,Y ) ̸= P i

S(X,Y ), for



Risk-Averse Predictions on Unseen Domains via Neural Style Smoothing

all i ∈ {1, · · · , NS}. Based on the number of source do-
mains available during training we consider a single and a
multiple source domain setting. The lack of information
about the target domain makes the problem challenging and
previous works have proposed training methods focusing on
capturing domain invariant information from source domain
data to generalize well to unseen domains at test time. How-
ever, learning a classifier by minimizing its empirical risk
on all available source domains has been shown to achieve
competitive performance on various benchmark datasets
(Gulrajani & Lopez-Paz, 2020), especially in the multiple
source domain setting.

Neural style transfer with AdaIN (Huang & Belongie,
2017): Given a content image, xc and a style image xs,
AdaIN generates an image having the content of xc and style
of xs. AdaIN works by first extracting the intermediate fea-
tures (output of block4 conv1) of the style and content
image by passing them through a VGG-19 (Simonyan &
Zisserman, 2014) encoder, g, pretrained on Imagenet. Using
these features AdaIN aligns the mean (µ) and variance (σ)
of the two feature maps using

t = AdaIN(g(xc), g(xs))

= σ(g(xs))

(
g(xc)− µ(g(xc))

σ(g(xc))

)
+ µ(g(xs)).

(1)

A decoder, h, is then used to map the AdaIN-generated
feature back to the input space to produce a stylized image
xstylized = h(t). We follow the design of the decoder as
proposed in (Huang & Belongie, 2017) and train the de-
coder to minimize the content loss between the features of
the stylized image, g(xstylized) and the AdaIN transformed
features of the content image, i.e.

Lcontent = ∥g(xstylized)− t∥22, (2)

along with a style loss that measures the distance between
the feature statistics of the style and the stylized image using
L layers of the pretrained VGG-19 network, ϕ. In particular,
the style loss is computed as

Lstyle =

L∑
i=1

∥µ(ϕi(xs))− µ(ϕi(xstylized)∥22

+

L∑
i=1

∥σ(ϕi(xs))− σ(ϕi(xstylized)∥22.

(3)

We measure the style loss, using block1 conv1,
block2 conv1, block3 conv1, and
block5 conv1 layers of the VGG-19 network. We
pre-train the decoder using images from MS-COCO (Lin
et al., 2014) as content images and images from Wikiart
(Nichol., 2016) as style images.

2.2. Neural style smoothing-based inference

Consider a classification problem from Rd to the label space
Y . Neural style smoothing produces an output, for a test
image x, that a base classifier, f is most likely to return when
x is stylized into the style of the source domain data, i.e., the
data used for training f . Formally, given a base classifier f ,
we construct a style smoothed classifier ψ : Rd → Y , whose
prediction on a test image x is the most probable output of
f on x converted into the style of the source domain data,
i.e.,

ψ(x) := argmax
y∈Y

P(f(h(t)) = y), (4)

where t = AdaIN(g(x), g(xs)), xs ∼ PS , and PS is the
distribution of the source domain. When data from multiple
source domains are available we combine the data from
all the domains and use the combined data as source do-
main data. If the base classifier, f , correctly classifies the
test image x, stylized into the styles of the source domain,
then the style-smoothed classifier also correctly classifies
that sample. However, computing the actual prediction of
the style-smoothed classifier requires computing the exact
probabilities assigned by the base classifier to stylized test
samples. Thus, following (Cohen et al., 2019), we propose
a Monte Carlo algorithm to estimate these probabilities and
the prediction of the style-smoothed classifier. The first step
in estimating the prediction of the style smoothed classifier
on a test image x is to generate a stylized version of the
image using the styles from the source domain. To achieve
the style conversion in real-time, we use the AdaIN frame-
work described previously with the content image as the test
image x and n randomly chosen images from the training
dataset used for training the classifier. The style transfer
network then produces n images stylized into the style of
the source domain data, as illustrated in Fig. 1. The stylized
images are then passed through the base classifier and the
class that is predicted the most often (majority class) is re-
turned as the prediction of the test image. Alg. 1 Test-Time
Neural Style Smoothing (TT−NSS).

To ascertain that the prediction returned by TT-NSS is re-
liable, we estimate the confidence of the style smoothed
classifier on its prediction. In particular, we compute the
proportion of the re-stylized test images that are classified
as a particular class by the base classifier and obtain a vec-
tor containing counts of how often each class is predicted.
Based on the entries in this vector, we compute the class
which has the highest occurrence and if the proportion of
the highest class exceeds a threshold α, TT-NSS classifies
the test image as this class with the highest counts. How-
ever, if the proportion remains less than the threshold, then
TT-NSS abstains due to a lack of consensus among the pre-
dictions. The abstained samples can then be sent for further
processing to experts and save the system from returning a
potentially incorrect prediction. A high value of α makes
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Algorithm 1 Test-Time Neural Style Smoothing (TT-NSS)
Input: Test image x, base classifier f , VGG-19 encoder
g, AdaIN decoder h, number of source style images n,
Dstyles = {xis}ni=1, threshold α.
Output: Prediction for x or ABSTAIN.

Initialize class-wise counts class counts to zeros

# Generate n stylized images from x using Dstyles

for i = 1, · · · , n do
t = AdaIN(g(x), g(xis))
xstylized = h(t)
prediction = f(xstylized)
class counts[prediction]+ = 1

end for

# Get the top predicted class on stylized images
cmax = index of class counts with highest count
nmax = class counts[cmax]

# Predict or ABSTAIN
if nmax

n < α then
return ABSTAIN

else
return cmax

end if

TT-NSS, produce better predictions i.e., accuracy on non-
abstained samples increases but it also increases the number
of abstained samples. On the other hand, a low value of α
leads to decreased abstaining with an increased chance that
the prediction is not confident and may lead to an incorrect
decision. In our empirical analysis in Sec. 3, we use various
values of α ranging from 0 to 1 and show how the accuracy
on non-abstained samples and the proportion of abstained
samples change as the value of α is increased.

2.3. Neural style smoothing-based training

The performance of our inference procedure, TT-NSS, relies
on the assumption that the base classifier, f , can classify the
test image stylized into the source domain styles correctly
and consistently. This requires that the base classifier be
accurate on the images generated by the decoder used in the
AdaIN-based neural style transfer network. However, our
empirical evaluation of using TT-NSS on classifiers trained
with ERM on benchmark datasets shows a relatively low
accuracy on non-abstained samples at smaller abstaining
rates. This suggests that the base classifier cannot accurately
classify the stylized images generated through the AdaIN
decoder. Thus, we propose a new training procedure based
on neural style smoothing (NSS) that enables consistent and
accurate predictions from the classifiers when evaluated us-
ing TT-NSS. The proposed loss functions can be combined

with any training algorithm and can be used to improve the
reliability of the predictions from classifiers when evaluated
with TT-NSS. To achieve this, we propose to train the clas-
sifier f , by minimizing the sum of two loss functions. The
first loss penalizes misclassification of the stylized images
w.r.t. the label of the content image i.e., given a sample
(x, y) ∼ Dsource, the stylized misclassification loss is

Lstylized aug = Exs∼PS
[ℓ(f(h(t)), y)], (5)

where t = AdaIN(g(x), g(xs)) and ℓ is the cross entropy
loss. Specifically, we first stylize a sample x from the source
domain using multiple randomly sampled style images from
the source domain and then penalize the misclassification
loss of the classifier f on these stylized images. For a sin-
gle source domain problem, even though all images from
a domain may be considered as being in the same broad
set of styles such as Art or Photos, individually the images
have different non-semantic information such as textures,
colors, patterns, etc., and thus stylizing an image into the
styles of other source domain images is still effective and
meaningful. The second loss which helps improve the trust-
worthiness of the predictions enforces consistency among
the predictions of the stylized versions of the content im-
age, generated using AdaIN. Previous works (Sohn et al.,
2020; Jeong & Shin, 2020; Sun et al., 2021; Zhao et al.,
2022b), have also demonstrated the effectiveness of enforc-
ing consistency among the predictions of the classifier to be
helpful for semi-supervised learning, randomized smooth-
ing, and other settings. To define the style consistency
loss, let (x, y) ∼ Dsource, F : Rd → ∆K−1 be the soft-
max output of the classifier such that the prediction of the
base classifier f(x) = argmaxk∈Y F (x), ∆K−1 be the
probability simplex in RK , F (x) = Exs∼PS

[F (h(t))] with
t = AdaIN(g(x), g(xs)) be the average softmax output
of the classifier on stylized images, KL(·∥·) be the Kull-
back–Leibler divergence (KLD) (Joyce, 2011) and H(·) be
the entropy. Then the style consistency loss is given by

Lconsistency = Exs∼PS
[KL(F (x)∥F (h(t)))]

+ H(F (x), y).
(6)

In practice, we minimize the empirical version of the two
losses using multiple-style images sampled randomly from
the available source domain data. These losses can be easily
combined with losses of other training methods and enable
training a classifier that can achieve high accuracy on non-
abstained samples even at low abstaining rates. The trained
classifier can then be evaluated using TT-NSS as in Alg. 1 to
gauge the reliability of their predictions on domains unseen
during training.

3. Experiments
In this section, we present the evaluation results of using our
inference and training procedures for obtaining and improv-
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(a) Original style

0 20 40 60 80 100
70

80

90

100
A

0 20 40 60 80 100

60

80

100
C

0 20 40 60 80 100

60

80

100
P

0 20 40 60 80 100
40

60

80

100
S

Percentage of abstained samples (%)

Ac
cu

ra
cy

 (
%

)
(b) Wikiart style

0 20 40 60 80 100

70

80

90

100
A

0 20 40 60 80 100

40

60

80

100
C

0 20 40 60 80 100
40

60

80

100
P

0 20 40 60 80 100
40

60

80

100
S

Percentage of abstained samples (%)

Ac
cu

ra
cy

 (
%

)

(c) Gaussian noise with sev. 3
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(d) Gaussian noise with sev. 5

Figure 2. Comparison of TT-NSS (dashed lines) and confidence-based method (solid lines) in a single source domain setup on models
trained with ERM. The graphs show accuracy vs abstained points for different datasets ((a) original, (b) wikiart, (c,d) corrupted), and
different source/target domains. For most settings, the accuracy of the TT-NSS (dashed line) is higher than the corresponding accuracy
of the confidence-based method (solid line) for most of the range of the percentage of abstained points. This demonstrates the superior
performance of our style smoothing-based method as opposed to the conventional confidence-based method for producing risk-averse
predictions. (Note: The source domain from PACS used for training is denoted in the title.)

ing the reliability of the predictions from classifiers. We
present evaluations and comparisons with classifiers trained
with Empirical Risk Minimization (ERM) which achieves
competitive results in single and multiple source domain
settings (Gulrajani & Lopez-Paz, 2020) on the PACS (Li
et al., 2017) dataset consisting of images from Art, Car-
toons, Photos, and Sketch domains. Along with this we
also present evaluations on variations of the PACS dataset
generated by stylizing the images into the styles of Wikiart
(Nichol., 2016) and adding common corruptions (Hendrycks
& Dietterich, 2018) such as Gaussian noise to the images.
These novel variations allow us to evaluate the performance
of the classifiers on realistic changes that do not affect the se-
mantic content of the images. To stylize PACS images into
the style of Wikiart, we use the AdaIN decoder pre-trained
using MS-COCO (Lin et al., 2014) along with images from
Wikiart (Nichol., 2016) as style images. To create corrupted
versions, we follow (Hendrycks & Dietterich, 2018) and use
corruption with severity levels 3 and 5. Following previous
works (Gulrajani & Lopez-Paz, 2020), we use a ResNet50
pre-trained on the Imagenet dataset as our backbone net-
work augmented with a fully connected layer with softmax
activation to produce predictions. We use this network for
training ERM and for neural style smoothing-based training.
For all experiments in the single source domain setup, we
train the classifiers with a single source domain and eval-
uate the performance of the remaining three domains. For
multiple source domains setup, we train the classifiers with
three domains and test on the fourth unseen domain. We
compare the performance of TT-NSS (Alg. 1) with another
abstaining mechanism, applicable in a black box setting,
that relies on the classifier’s confidence on the original test
sample. For the confidence-based method, we abstain if the
highest softmax score for a sample is below a set threshold.
For TT-NSS we use 100 randomly sampled style images
(n = 100) for the single source domain setup and 150 for

the multiple source domain setup. We use a subsample of
the test set to report our results (see Appendix B.2). Eval-
uating a single test sample with TT-NSS using 150 styles
requires ≈ 1.3 seconds on our hardware. We present the
results of our evaluation with multiple source domains in
the Appendix along with other implementation details.

3.1. TT-NSS improves the reliability of the predictions
from existing classifiers

In this section, we demonstrate the effectiveness of TT-NSS
at producing reliable predictions from classifiers trained
with ERM when evaluated on domains unseen during train-
ing. The results in Fig. 2 and 5 (in the Appendix) show the
advantage of using the confidence of the style-smoothed
classifier over the confidence of the original classifier to
produce a risk-averse prediction on a test sample. Higher
accuracy of the classifiers with TT-NSS at the same ab-
staining rates compared to the confidence-based strategy
shows improved prediction reliability. This advantage of
TT-NSS becomes more apparent on stylized and corrupted
variants of the PACS dataset where the standard accuracy
of the classifier drops significantly and necessitates abstain-
ing for safeguarding against risky misclassifications. The
classifier’s high confidence incorrect predictions on unseen
domains is the primary reason that prevents the confidence-
based strategy from producing risk-averse predictions. This
is in line with the findings from previous works which have
shown that a classifier can produce high-confidence mis-
classification on samples from unseen domains (Hein et al.,
2019; Mallick et al., 2020; Hendrycks & Gimpel, 2016;
Zhang et al., 2017; 2020). On the other hand, using the
confidence of the style-smoothed classifier, by stylizing the
test sample into source domain styles, can mitigate the clas-
sifier’s bias to non-semantic information in the test samples
and produce better quality predictions.
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(a) Original style
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(b) Wikiart style
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(c) Gaussian noise with sev. 3
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(d) Gaussian noise with sev. 5

Figure 3. Comparison of NSS training (dashed lines) vs ERM training (solid lines) in a single source domain setup. (See Fig. 2 for the
explanation of settings.) NSS-trained classifiers evaluated with TT-NSS produce better accuracy on non-abstained samples at different
abstaining rates compared to ERM-trained classifiers in the single source domain setup on different variants of the PACS dataset.
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(b) Wikiart style
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(c) Gaussian noise with sev. 3
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(d) Gaussian noise with sev. 5

Figure 4. Comparison of NSS training (dashed lines) vs ERM training (solid lines) in a single source domain setup. (See Fig. 2 for the
explanation of settings.) NSS-trained classifiers when evaluated with the confidence-based method also produce better accuracy on
non-abstained samples at different abstaining rates compared to ERM-trained classifiers on different variants of the PACS dataset.

3.2. Effectiveness of NSS at producing reliable classifiers

Here we demonstrate the advantage of using the NSS train-
ing procedure for improving the reliability of the classifier’s
predictions. Our results in Fig. 3 and 6 (in the Appendix)
shows that classifiers trained with NSS achieve significantly
better accuracy on non-abstained samples than the classifiers
trained with ERM on all domains of PACS in both single
and multiple source domain settings. Models trained with
NSS show a significant advantage when the accuracy of
the base classifier deteriorates such as in the case when cor-
rupted variants of the PACS dataset are used. While results
in Fig. 4 and 7 (in the Appendix) show that NSS-trained
models achieve better accuracy at different abstaining rates
even when evaluated with the confidence-based strategy,
evaluating models with TT-NSS achieves significantly bet-
ter results across all settings. Moreover, NSS also leads to
an improved performance without any abstaining (i.e. at 0%
abstaining) highlighting the improved performance of the
NSS-trained classifiers on unseen domains.

4. Discussion and Conclusion
Our work proposed and demonstrated the effectiveness of
incorporating an abstaining mechanism based on neural

style smoothing to improve the reliability of a classifier’s
predictions on unseen domains. Using advances in neural
style transfer, our inference procedure uses the prediction
consistency of the classifier on stylized images to predict or
abstain on a test sample and requires only black-box access
to the classifier. We also proposed a novel training proce-
dure to improve the reliability of a classifier’s prediction at
different levels of abstaining. While neural style smoothing
is an effective way to gauge the prediction consistency of
the classifier on test samples, ascertaining robustness to ar-
bitrary style changes is important to ensure that classifiers
make trustworthy predictions when used in the real world
and will be dealt in our future works.
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Appendix

A. Related work
Domain generalization: The goal of domain generalization () is to produce classifiers whose accuracy remains high when
faced with data from domains unseen during training. Many works have proposed to address this problem by capturing
invariances in the data by learning a representation space that reduces the divergence between multiple source domains
thereby promoting the use of only domain invariant features for prediction (Albuquerque et al., 2019; Zhang et al., 2021a;
Ganin et al., 2016; Zhao et al., 2018; Qiao et al., 2020; Gulrajani & Lopez-Paz, 2020). Another line of work learns to
disentangle the style and content information from the source domains and trains the classifier to be agnostic to the styles of
the source domains (Arjovsky et al., 2019; Zhang et al., 2021b; Dittadi et al., 2020; Montero et al., 2020). Yet another line
of research focuses on diversifying the source domain data to encompass possible variations that may be encountered at test
time (Hendrycks et al., 2019; Wang et al., 2021; Kireev et al., 2021; Calian et al., 2021; Sun et al., 2021). Unlike previous
works which focus on improving classifier accuracy on unseen domains, we focus on making risk-averse and improving the
reliability of classifier predictions on unseen domains.

Certified robustness via randomized smoothing: Many works have demonstrated the failure of SOTA machine learning
classifiers on adversarial examples which are crafted by adding imperceptible perturbations to test samples (Szegedy et al.,
2013; Chen et al., 2018; Xiao et al., 2018; Chen et al., 2017; Ilyas et al., 2018). In response, many works proposed to provide
empirical (Athalye et al., 2018) and provable (Li et al., 2018; Lecuyer et al., 2019; Cohen et al., 2019; Raghunathan et al.,
2018; Zhang et al., 2018) robustness to these examples. Among them, Randomized Smoothing (RS) (Li et al., 2018; Lecuyer
et al., 2019; Cohen et al., 2019) is one of the popular methods which provides provable robustness to adversarial examples
by considering a smoothed version of the original classifier and certifying that no adversarial perturbation exists within a
certified radius (in ℓ2 norm) that can change the prediction of the classifier. RS uses Gaussian noise to produce a smoothed
version of the base classifier. For a test sample, it then assigns the label which is most likely to be predicted by the base
classifier on Gaussian perturbations of the test sample. While RS was proposed to certify the robustness to additive noise, the
idea has been extended to certify robustness to parameterized transformations of the data such as geometric transformation
(Fischer et al., 2020; Li et al., 2021) where the noise is added to the parameters of the transformations. Our neural style
smoothed classifier is in a similar spirit to RS with crucial differences. Firstly, we use neural styles for smoothing (which
cannot be parameterized) instead of adding Gaussian noise to the input or parameters of specific transformations. Secondly,
our goal is not to provide certified robustness guarantees against style changes but to provide a practical method to produce
reliable predictions on test samples and an abstaining mechanism to curb incorrect predictions.

Neural style transfer: Following the work of (Gatys et al., 2016), which for the first time demonstrated the effectiveness
of using the convolutional layers of CNN for style transfer, several ways have been proposed to achieve better and faster
neural style transfer (Gatys et al., 2017; Johnson et al., 2016; Ulyanov et al., 2016; Wang et al., 2017; Ulyanov et al., 2017;
Dumoulin et al., 2016). AdaIN (Huang & Belongie, 2017) is a popular approach that allows arbitrary style transfer in real
time by changing only the mean and variance of the convolutional feature maps. Other ways of generating stylized images
include mixing styles (Zhou et al., 2021), exchanging (Tang et al., 2020; Zhao et al., 2022a) styles, or using adversarial
learning (Zhong et al., 2022; Shu et al., 2021).

Test-time adaptation: Recent works have demonstrated the effectiveness of using test-time adaptation for improving
generalization to unseen domains, where the classifier is updated on the incoming batch of test samples (Wang et al., 2020;
Sun et al., 2020). This approach has also been shown to be effective in the setup (Iwasawa & Matsuo, 2021). Our approach
is different from these methods since we do not update the classifier but rather only assume black-box access to it and
produce the prediction of the smoothed classifier. Moreover, we use a single test sample, unlike previous methods which
assume that the data from various unseen domains arrives in batches at test time.

Classification with abstaining: A learning framework allowing a classifier to abstain on samples has been studied
extensively (Chow, 1970; Bartlett & Wegkamp, 2008; Ni et al., 2019; Charoenphakdee et al., 2021; Cortes et al., 2016). Two
main approaches in these works include a confidence-based rejection where the classifier’s confidence is used to abstain
based on a predefined threshold and a classifier-rejector approach where the classifier and rejector are trained together. Our
work is closer to the former since we do not train a rejector and abstain when the top class is not much more likely than
other classes.
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(b) Wikiart style
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(c) Gaussian noise with sev. 3
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(d) Gaussian noise with sev. 5

Figure 5. Comparison of TT-NSS (dashed lines) and confidence-based method (solid lines) in a multiple source domain setup with models
trained with ERM. The graphs show accuracy vs abstained points for different datasets ((a) original, (b) wikiart, (c,d) corrupted), and
different source/target domains. For most settings, the accuracy of the TT-NSS (dashed line) is higher than the corresponding accuracy
of the confidence-based method (solid line) for most of the range of the percentage of abstained points. This demonstrates the superior
performance of our style smoothing-based method as opposed to the conventional confidence-based method for producing risk-averse
predictions. (Note: The target domain from PACS used for evaluation is denoted in the title.)
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(d) Gaussian noise with sev. 5

Figure 6. Comparison of NSS training (dashed lines) vs ERM training (solid lines) in the multiple source domain setup. (See Fig. 5 for the
explanation of settings.) NSS-trained classifiers evaluated with TT-NSS produce better accuracy on non-abstained samples at different
abstaining rates compared to ERM-trained classifiers in the multiple source domain setup on different variants of the PACS dataset.

B. Dataset and experimental details
All codes are written in Python using Tensorflow/Pytorch and were run on an AMD EPYC 7J13 CPU with 200 GB of RAM
and an Nvidia A100 GPU. Implementation and hyperparameters are described below.

B.1. Dataset description

In this work, we use the PACS dataset comprising of 9991 images belonging to 7 categories from four domains Art, Cartoons,
Photos, and Sketches along with its stylized and corrupted version to evaluate the performance of various methods. For
single source domain setting, we use 90% of the data for training and 10% for hyperparameter tuning, and for multiple
source domains setting, we use 80% of the data for training and 20% for hyperparameter tuning.

B.2. Details of the subsample used for reporting the evaluation results

As mentioned in Sec. 3, to speed up the evaluation process when using TT-NSS, we present results on a subsample of the
target domain. This approach has been used to report the results in previous works related to randomized smoothing (Cohen
et al., 2019; Sun et al., 2021; Zhai et al., 2020; Mehra et al., 2021a). For the single source domain setting, we report the
results on a balanced subsample of the dataset containing 50 images from each class and each target domain for PACS. For
the multiple source domains setting, we use 100 images for each class of the target domain for PACS. For classes with fewer
samples, we use all the samples from that class. This subsample is used to report the results for the dataset in the original
style and the Wikiart style. For reporting results on the corrupted version of the dataset, we create a balanced subsample of
roughly one-fifth of the samples chosen for other styles (e.g. we used 10 images per class for each target domain in a single
source domain setting for PACS) and report the results by averaging over all ten corruption types.
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(a) Original style
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(b) Wikiart style
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(c) Gaussian noise with sev. 3
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(d) Gaussian noise with sev. 5

Figure 7. Comparison of NSS training (dashed lines) vs ERM training (solid lines) in multiple source domain setup. (See Fig. 5 for
the explanation of settings.) NSS-trained classifiers when evaluated with the confidence-based method also produce better accuracy on
non-abstained samples at different abstaining rates compared to ERM-trained classifiers in the multiple source domains setup on different
variants of the PACS dataset.

B.3. Experimental details

To train the classifiers with NSS, we incorporate style augmentation and style consistency losses computed on stylized
versions of the source domain images generated through the AdaIN decoder. We additionally incorporate the ERM training
loss which minimizes the misclassification on original source domain samples. As mentioned in Sec. 2 other losses used
in specific algorithms can also be incorporated to improve the quality of risk-averse predictions from classifiers trained
with those methods. To compute the style consistency loss we use four different styles for every sample in the batch and
use a batch size of 16. These losses are then used to fine-tune the ResNet50 backbone augmented with a fully connected
layer used for classification. For the multiple source domains setting, the classifier that achieves the highest accuracy on the
validation set is used for final evaluation whereas for the single source domain setting, the classifier at the last step is used
for final evaluation.


