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Abstract

This extended abstract reviews differentiable
Bayesian causal structure learning (CSL) and dis-
cusses why recent works on Bayesian causal dis-
covery published in top-tier conference do not yet
meet important desiderata. In particular, we advo-
cate against the current trend of global regulariza-
tion via prior terms.

Introduction Approximately 30 years have passed since
seminal research papers [Heckerman et al., 1994, Hecker-
man, 1995, Friedman and Koller, 2000] provided the impe-
tus for the research on Bayesian approaches to learning the
structure of probabilistic graphical models. With the discov-
ery of identifiable semi-parametric models [Shimizu et al.,
2006, Hoyer et al., 2008, Zhang and Hyvärinen, 2009, Loh
and Bühlmann, 2014, Peters et al., 2014] and the combina-
tion with interventional data, learning of Bayesian networks
became gradually a causal problem.

Bayesian formulation In our analysis, we focus on dif-
ferentiable Bayesian approaches to causal structure learn-
ing (CSL) that learn a generative model for both the causal
graph G and the data X := {X(n)}Nn=1 without the restric-
tion to discrete random variables nor linear relationships:

p(G,X) = p(G)

N∏
n=1

p(X(n)|G) , (1)

where X(n) are i.i.d. according to the underlying Func-
tional Causal Model (FCM)1. The posterior over the graph
is proportional to the joint probability in Equation 12:

p(G|X) = p(G,X)∑
G p(G,X)

∝ p(G,X) . (2)

1FCM, DAGs & CSL are properly introduced in Appendix A.
2See Appendix B for the full model including parameter

uncertainty.

The Bayesian formulation allows models to express uncer-
tainty in the prediction of the causal structure.
In recent years the number of publications at top-tier confer-
ences that follow this line of research and explicitly claim a
Bayesian formulation of CSL have increased significantly.
From the authors’ viewpoint, a substantial number of these
works rather resemble point predictors with regularization
than truly Bayesian posteriors for the causal graph. The con-
tribution of this work on Bayesian CSL is to review general
desiderata, to address common shortcomings in recent mod-
els, and to share new insights hopefully encouraging further
research on the outlined issues.

Probability distribution over DAGs For acyclic FCMs
the support of both, the prior and posterior distribution,
should be restricted to Directed Acyclic Graphs (DAGs)1.
Non-negative, differentiable constraint functions h(G) al-
low relaxation of the combinatorial search problem to a
continuous program [Zheng et al., 2018, Yu et al., 2019,
Bello et al., 2022]. The more cycles a graph has, the greater
h(G) ≥ 0, with equality only for acyclic graphs. Lorch et al.
[2021] propose a Gibbs prior in which such constraint func-
tion is incorporated via an exponential term with a prefactor
λ that is annealed over the training:

p(G) ∝ exp
(
− λh(G)

)
. (3)

Increasing λ decreases the probability mass of any weighted
adjacency matrix with cycles. For a sufficiently high λ, the
posterior in Equation 2 is almost exclusively concentrated
on acyclic graphs. We argue that due to the interference with
the likelihood that scales with N in Equation 1, the regular-
ization strength λ and therefore the prior should depend on
the sample size N which is rather untypical for Bayesian
priors. Moreover, when modeling the probabilities of edges
in G independently, the prior regularizes them equally via
h(G) to avoid any cycle. Consequently, it locks the distri-
bution to some ordering over the nodes. To overcome this
limitation, Lorch et al. [2021] model the posterior by a par-
ticle representation. Otherwise, the acyclicity enforced via
a Gibbs factor rather limits any method to a point estimator
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for the most likely ordering in the causal graph [Annadani
et al., 2021, Geffner et al., 2022, Lorch et al., 2022, Ashman
et al., 2023].
Another line of research considers the restriction of the pos-
terior distribution to DAGs via modeling a permuted, upper
triangular adjacency [Cundy et al., 2021, Charpentier et al.,
2022, Annadani et al., 2023] or restricting possible edges
iteratively [Deleu et al., 2022]. With the notable exception
of DPM-DAG [Rittel and Tschiatschek, 2023], these ap-
proaches do not allow to specify probabilistic knowledge on
particular causal relations in the prior. The novelty of DPM-
DAG consists in an ordering-based, probabilistic model
that empowers domain experts to build a consistent prior
over DAGs by iteratively specifying marginal probabilities
over direct causal edges. In contrast to [Cundy et al., 2021],
the authors of DPM-DAG mask a full adjacency matrix
to ensure acyclicity and that the modeled graph parame-
ters correspond to the same causal relation under different
permutations which is a necessary requirement for going be-
yond point estimation Rittel and Tschiatschek [2023]. The
corresponding probabilistic mask captures the idea of an
ordering-based search that allows to partially mediate the
super-exponentially space of DAGs [Friedman and Koller,
2000, Teyssier and Koller, 2005].
Modeling both the prior and posterior with the same distri-
bution facilitates simple sequential Bayesian updates and
continual learning. Note that both explicitly require model-
ing a distribution over parameters to update their uncertainty
from previously observed data correctly, cf. Appendix B.

Sparsity of the causal graph For supergraphs of the true
underlying causal graph the likelihood in Equation 1 can
only increase [Koller and Friedman, 2009]. Occam’s ra-
zor advocates to favor simpler models, i.e. ones with fewer
edges that yield the same likelihood, and motivates spar-
sity regularization of the predicted causal graphs. Sparsity-
favoring priors are reported to be beneficial compared to
uniform priors that assign a high probability on complex
structures, i.e. denser graphs [Eggeling et al., 2019].
Following Lorch et al. [2021], several recent works on dif-
ferentiable Bayesian CSL also introduce sparsity over l1
or l2 norms in an exponential term in the prior [Annadani
et al., 2021, Tigas et al., 2022, Hägele et al., 2023, Geffner
et al., 2022, Ashman et al., 2023]. Such a term was initially
motivated to express prior knowledge about the expected
number of edges. While the logarithm of the modeled joint
distribution renders it equivalent to an ordinary, additional
regularization term, we argue that the formulation within
the prior is misguiding for two reasons.
Firstly, domain experts barely have such knowledge that
applies equally to all variables. Since modeled variables are
distinct, labeled entities, experts rather have subjective be-
liefs about particular causal relations among them. Secondly
and more importantly, the likelihood term requires the regu-
larization of the number of edges, hence, its strength should

scale proportional to the number of observed samples N (cf.
Equation 1 and Appendix C). We agree with [Eggeling et al.,
2019] that a prior depending on N as the ’data prior’ [Pen-
sar et al., 2016] or a Horseshoe prior [Piironen and Vehtari,
2017] is not a prior in the Bayesian sense, but differ in our
conclusion that regularization has to be paired with the like-
lihood term.
Even in the wider field of differentiable CSL which is not
limited to only Bayesian approaches, the often used l1 regu-
larization provides a bias in contrast to the l0 penalty typi-
cally applied in discrete search approaches [Bhattacharya
et al., 2021, Ng et al., 2024]. An alternative to sparsity reg-
ularization is pruning a learned graph. Thresholding edge
probabilities or weights both require setting a hyperparame-
ter that plays a decisive role for the final results of CSL [Ng
et al., 2024].

Tuning any prefactor for the strength of the regularization or
thresholding remains necessary, though challenging, since
the contribution of parents can be nonlinear and differ in
its scale. To the best of the authors’ knowledge, there’s no
agreed consensus on hyperparameter tuning yet. Due to the
nature of the problem, hyperparameter training on a vali-
dation set generated from the same causal graph does not
help. We explicitly stress that using data that originate from
other causal graphs is not substantiated. While it does yield
improvements on metrics for synthetic data sets by hinting
information about the distribution of their underlying ran-
dom graphs, it should not help in learning a single graph.
We sincerely believe that this rather veiled hyperparameter
training hinders scientific progress in the field of CSL, since
the comparability of different methods is subverted.
For synthetic data sets researchers have access to the true
causal graph, hence, we argue that any hyperparameter
choice for sparsity regularization shall be conclusively sub-
stantiated. To compare different methods for CSL, it seems
best practice to evaluate all method using the same sparsity
regularization, thresholding or pruning if applicable.

Conclusion This review discusses some limitations of re-
cent works on Bayesian CSL. In particular, we argue that
from a Bayesian viewpoint the observation model has to be
regularized towards sparser graphs. The qualitative analysis
shows that neither sparsity nor acyclicity should be enforced
as additional terms in a Gibbs prior and calls for further re-
search on adaptive regularization, thresholding, and pruning.
Moreover, the expressivity of probabilistic models whose
support is limited to DAGs needs further investigation.
In closing, research on Bayesian CSL requires more atten-
tion on non-particle models that can approximate different
FCMs simultaneously, i.e. that can process the information
of different sampled graphs. Due to the outlined shortcom-
ings, we conclude that most Bayesian CSL algorithms that
learn a generative model over observed data alongside the
causal graph rather resemble point estimators.

2



Acknowledgements

This work was partially funded by the Federal Ministry
of Education, Science and Research (BMBWF) of Austria
within the interdisciplinary project "Digitize! Computational
Social Science in the Digital and Social Transformation".

References

Yashas Annadani, Jonas Rothfuss, Alexandre Lacoste,
Nino Scherrer, Anirudh Goyal, Yoshua Bengio, and Ste-
fan Bauer. Variational causal networks: Approximate
Bayesian inference over causal structures. KDD Work-
shop on Bayesian causal inference for real world interac-
tive systems, 2021.

Yashas Annadani, Nick Pawlowski, Joel Jennings, Stefan
Bauer, Cheng Zhang, and Wenbo Gong. BayesDAG:
Gradient-based posterior inference for causal discovery.
In Advances in Neural Information Processing System,
volume 36, 2023.

Matthew Ashman, Chao Ma, Agrin Hilmkil, Joel Jennings,
and Cheng Zhang. Causal reasoning in the presence
of latent confounders via neural ADMG learning. In
International Conference on Learning Representations.
Openreview, 2023.

Kevin Bello, Bryon Aragam, and Pradeep Ravikumar.
DAGMA: learning DAGs via M-matrices and a log-
determinant acyclicity characterization. In Advances
in Neural Information Processing Systems, volume 35,
2022.

Rohit Bhattacharya, Tushar Nagarajan, Daniel Malinsky,
and Ilya Shpitser. Differentiable causal discovery under
unmeasured confounding. In International Conference
on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 2314–
2322. PMLR, 2021.

Peter Bühlmann, Jonas Peters, and Jan Ernest. CAM: Causal
additive models, high-dimensional order search and pe-
nalized regression. The Annals of Statistics, 42(6):2526 –
2556, 2014.

Bertrand Charpentier, Simon Kibler, and Stephan Günne-
mann. Differentiable DAG sampling. In International
Conference on Learning Representations. Openreview,
2022.

Chris Cundy, Aditya Grover, and Stefano Ermon. Bcd nets:
Scalable variational approaches for Bayesian causal dis-
covery. In Advances in Neural Information Processing
Systems, volume 34, pages 7095–7110, 2021.

Tristan Deleu, António Góis, Chris Chinenye Emezue,
Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,

and Yoshua Bengio. Bayesian structure learning with gen-
erative flow networks. In Conference on Uncertainty in
Artificial Intelligence, volume 180 of Proceedings of Ma-
chine Learning Research, pages 518–528. PMLR, 2022.

Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, and
Mikko Koivisto. On structure priors for learning Bayesian
networks. In International Conference on Artificial In-
telligence and Statistics, volume 89 of Proceedings of
Machine Learning Research, pages 1687–1695. PMLR,
2019.

Nir Friedman and Daphne Koller. Being Bayesian about
network structure. In Proceedings of the 16th Conference
in Uncertainty in Artificial Intelligence, pages 201–210.
Morgan Kaufmann, 2000.

Tomas Geffner, Javier Antoran, Adam Foster, Wenbo Gong,
Chao Ma, Emre Kiciman, Amit Sharma, Angus Lamb,
Martin Kukla, Nick Pawlowski, Miltiadis Allamanis,
and Cheng Zhang. Deep end-to-end causal inference.
NeurIPS Workshop on Causality for Real-world Impact,
2022.

Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vig-
nesh Ram Somnath, Bernhard Schölkopf, and Andreas
Krause. BaCaDI: Bayesian causal discovery with un-
known interventions. In International Conference on Ar-
tificial Intelligence and Statistics, volume 206 of Proceed-
ings of Machine Learning Research, pages 1411–1436.
PMLR, 2023.

David Heckerman. A Bayesian approach to learning causal
networks. In Proceedings of the 11th Annual Conference
on Uncertainty in Artificial Intelligence, pages 285–295.
Morgan Kaufmann, 1995.

David Heckerman, Dan Geiger, and David Maxwell Chick-
ering. Learning Bayesian networks: The combination
of knowledge and statistical data. In Proceedings of the
10th Annual Conference on Uncertainty in Artificial In-
telligence, pages 293–301. Morgan Kaufmann, 1994.

Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Pe-
ters, and Bernhard Schölkopf. Nonlinear causal discovery
with additive noise models. In Advances in Neural Infor-
mation Processing Systems, volume 21, pages 689–696,
2008.

Marcus Kaiser and Maksim Sipos. Unsuitability of
NOTEARS for causal graph discovery when dealing with
dimensional quantities. Neural Processing Letters, 54(3):
1587–1595, 2022.

Daphne Koller and Nir Friedman. Probabilistic Graphical
Models - Principles and Techniques. MIT Press, 2009.

3



Po-Ling Loh and Peter Bühlmann. High-dimensional learn-
ing of linear causal networks via inverse covariance esti-
mation. Journal of Machine Learning Research, 15(1):
3065–3105, 2014.

Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, and An-
dreas Krause. Dibs: Differentiable Bayesian structure
learning. In Advances in Neural Information Processing
Systems, volume 34, pages 24111–24123, 2021.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause,
and Bernhard Schölkopf. Amortized inference for causal
structure learning. In Advances in Neural Information
Processing Systems, volume 35, 2022.

Ignavier Ng, Biwei Huang, and Kun Zhang. Structure learn-
ing with continuous optimization: A sober look and be-
yond. In Causal Learning and Reasoning, volume 236
of Proceedings of Machine Learning Research, pages
71–105. PMLR, 2024.

Judea Pearl. Causality. Cambridge University Press, 2nd
edition, 2009.

Johan Pensar, Henrik J. Nyman, Jarno Lintusaari, and Jukka
Corander. The role of local partial independence in learn-
ing of bayesian networks. International Journal of Ap-
proximate Reasoning, 69:91–105, 2016.

Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bern-
hard Schölkopf. Causal discovery with continuous ad-
ditive noise models. In Journal of Machine Learning
Research, volume 15(1), pages 2009–2053. JMLR, 2014.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf.
Elements of causal inference: Foundations and learning
algorithms. The MIT Press, 2017.

Juho Piironen and Aki Vehtari. On the hyperprior choice
for the global shrinkage parameter in the horseshoe prior.
In International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 905–913. PMLR, 2017.

Alexander G. Reisach, Christof Seiler, and Sebastian We-
ichwald. Beware of the simulated DAG! causal discovery
benchmarks may be easy to game. In Advances in Neu-
ral Information Processing Systems, volume 34, pages
27772–27784, 2021.

Alexander G. Reisach, Myriam Tami, Christof Seiler, An-
toine Chambaz, and Sebastian Weichwald. A scale-
invariant sorting criterion to find a causal order in ad-
ditive noise models. In Advances in Neural Information
Processing Systems, volume 36, 2023.

Simon Rittel and Sebastian Tschiatschek. Specifying prior
beliefs over DAGs in deep Bayesian causal structure learn-
ing. In European Conference on Artificial Intelligence,
volume 372 of Frontiers in Artificial Intelligence and
Applications, pages 1962–1969. IOS Press, 2023.
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A PRELIMINARIES FOR CAUSAL MODELING

A Functional Causal Model (FCM)1 is a triple M := {Xd, (ϵd, Pϵd), fd}Dd of a set of endogenous variables X, a set of
exogenous noise variables ϵ with joint probability distribution Pϵ and a set of deterministic functions f , one to generate each
random endogenous variable Xd as a function of the other endogenous ones denoted as X∼d and its exogenous noise εd:

∀d : Xd := fd(X∼d, εd) . (4)

For this analysis we assume the absence of selection bias or latent confounders, i.e. causal sufficiency. The structure induced
by the direct functional dependencies is often restricted to be acyclic such that it can be represented by a Directed Acyclic
Graph (DAG) or equivalently by its adjacency matrix G ∈ {0, 1}D×D with a one-to-one correspondence between random
variables and nodes. The d-th column of G then encodes the parents PaG(Xd) of a node/random variable Xd, i.e. the subset
of X∼d that have a direct influence on Xd over fd and an edge directed at Xd in the causal DAG G. The task of Causal
Structure Learning (CSL), also known as causal discovery, is to identify the underlying causal graph from observed data X.
When approximating the generally nonlinear functions f by some function model f̂ parameterized by θ, the adjacency
matrix G can be used as a mask for X:

Xd ≈ f̂d(GX, εd) . (5)

B PARAMETER UNCERTAINTY

Due to the exogenous, random noise ϵ, a FCM is by definition inherently probabilistic. This aleatoric uncertainty can be
captured by the observation model p(X|G). In addition, the finite size N of the observed data set X introduces epistemic
uncertainty over the DAG G as well as over the underlying deterministic parameters of the structural functions. Denoting
the random functional parameters (and their realizations) by Θ, the full generative model including all three sets of random
variable, G, X and Θ, is depicted in Figure 1a and reads

p(G,Θ,X) = p(G) p(Θ|G) p(X|G,Θ) . (6)

For its marginal probability over the causal graph G and observed data X introduced in Equation 1, the expectation value
over p(Θ|G) can be upper-bounded by its maximum likelihood estimate θ∗

G:

p(G,X) =
∫

p(G,Θ,X) dΘ (7)

= p(G)

∫
p(Θ|G) p(X|G,Θ) dΘ (8)

≤ p(G) pθ∗
G
(X|G) , (9)

where θ∗
G
:= argmax

Θ
p(X|G,Θ) .

1Also known as Structural Causal Model (SCM) or Structural Equations Models (SEM), we avoid the latter term, since equations are
typically considered to be bidirectional.
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(a) Global model
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(b) Local model

Figure 1: Graphical models for Bayesian CSL. The unobserved exogenous noise ϵ is included for clarity, but typically
modeled by the observational distribution in Equation 12. (a) At a global scale the influence of the causal graph G on
parameters Θ and observed random variables X is emphasized. (b) At a local scale the modularity of the FCM becomes
evident. Here, PaG denotes the parents of an observed random variable Xd according to some fixed causal graph G.

Note that the parameters θ∗
G still depends on a particular graph G, otherwise CSL is limited to point estimation. Hence,

for such reduced model a different set of parameters governing the generation of some Xd ∈ X has to be modeled for
each graph. It is worth mentioning that even then only upper, but no lower bounds to the marginal probability p(G,X) and
evidence p(X) are obtained, yielding an over-confident estimation.

C OBSERVATION MODEL

The principle of independent causal mechanism Pearl [2009], Peters et al. [2017] —already incorporated by the definition of
the FCM in Appendix A— motivates two standard assumptions on the distribution over the FCM parameters Θ that allows
to relax the dependence on the complete causal graph Heckerman et al. [1994], Friedman and Koller [2000].

(1) Parameter modularity states that the parameters for the structural function of an observed random variable Θd depend
only on their corresponding variable Xd, its exogenous noise ϵd and its parents PaG(Xd), but not on any other observed
random variables:

Θd ⊥⊥ X∼d | Xd, ϵd,PaG(Xd) . (10)

(2) Global parameter independence postulates that two sets of FCM parameters for different variables, Θi and Θj , are
independent given the parents of their corresponding observed random variables Xi and Xj :

Θi ⊥⊥ Θj | PaG(Xi) ∪ PaG(Xj) . (11)

Under these assumptions, the FCM parameters can be interpreted as mutually independent, exogenous noise variables similar
to ϵ. Given global parameter independence (Equation 11) and parameter modularity (Equation 10), the observation model
for Equation 1 (including parameter uncertainty) is depicted in Figure 1b and can be split dimensionwise into likelihood
terms that are only coupled by the causal graph G:

p(X(n)|G,Θ) =

D∏
d=1

p
(

X(n)
d | Pa(n)G (Xd),Θd

)
. (12)

Recall from Equation 1 that the joint distribution over the observed data set X factorizes as a product over independent
samples X(n). This illustrates that for large sample sizes the likelihood term p(X|G) dominates any prior p(G) with
support for all DAGs (c.f. paragraph on sparsity). In the absence of interventions, semi-parametric assumption on the
structural functions of the FCM enable identification of the causal relations Shimizu et al. [2006], Hoyer et al. [2008],
Zhang and Hyvärinen [2009], Loh and Bühlmann [2014], Peters et al. [2014]. In order to learn them by maximization of the
likelihood, the observation model has to be correctly specified, i.e. for additive (post-)nonlinear models the distributions of
the exogenous, but unobserved noise variables has to be known Bühlmann et al. [2014], Reisach et al. [2021], Kaiser and
Sipos [2022], Seng et al. [2023]. Consequently, data normalization can shatter guarantees for structural identifiability of the
causal graph which poses an open problem and active research direction Reisach et al. [2023].
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