
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLUSTER TOPOLOGY-DRIVEN PLACEMENT OF EX-
PERTS REDUCES NETWORK TRAFFIC IN MOE INFER-
ENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient deployment of a pre-trained LLM to a cluster with multiple servers is
a critical step for providing fast responses to users’ queries. The recent success
of Mixture-of-Experts (MoE) LLMs raises the question of how to deploy them
efficiently, considering their underlying structure. During the inference in MoE
LLMs, only a small part of the experts is selected to process a given token. More-
over, in practice, the experts’ load is highly imbalanced. For efficient deployment,
one has to distribute the model across a large number of servers using a model
placement algorithm. Thus, to improve cluster utilization, the model placement
algorithm has to take into account the network topology. This work focuses on the
efficient topology-aware placement of the pre-trained MoE LLMs in the inference
stage. We propose an integer linear program (ILP) that determines the optimal
placement of experts, minimizing the expected number of transmissions. Due to
the internal structure, this optimization problem can be solved with a standard
ILP solver. We demonstrate that ILP-based placement strategy yields lower net-
work traffic than competitors for small-scale (DeepSeekMoE 16B) and large-scale
(DeepSeek-R1 671B) models.

1 INTRODUCTION

This paper proposes a novel ILP-based framework for placing the Mixture of Experts (MoE) trans-
former model (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022) over diverse cluster
topologies. We consider cluster topology as an undirected graph, where vertices correspond to GPUs
on servers and edges are direct links between GPUs and servers. The granularity of the connections
between GPUs from the same server and the connections between different servers is modeled with
edge weights. In particular, the edges between GPUs on the same server have zero weights due
to the extremely fast interconnect between GPUs. MoE transformer model is a modification of the
classic transformer model, where a linear layer after the attention block is replaced by a dynamically
routed set of linear layers called experts. This modification of the classic transformer model leads
to better performance (Fedus et al., 2022). Although the necessary VRAM increases, the number
of loaded experts during every token processing in the inference stage remains limited. Therefore,
the latency of the MoE transformer model is comparable to that of much smaller and less accurate
models (Fedus et al., 2022). Since a limited number of experts is used to process each token, a large
batch size is used to increase the utilization of GPUs by each expert. Thus, the increasing VRAM
and large batch size require multiple GPUs and, thus, servers for efficient deployment of the MoE
transformer model. At the same time, the imbalanced loading of expert layers (Zhang et al., 2022)
and distributed setup make the proper placement of expert layers crucial for efficient utilization of
available GPUs by the entire MoE transformer model. Our framework optimizes the placement of
the MoE transformer model on GPUs, ensuring that the path length from the highly loaded experts
to the previous and subsequent attention layers is minimized.

The problem of placing deep learning models in the cluster is not novel (Verbraeken et al., 2020).
However, the primary purpose of standard placement approaches is to enhance the GPUs’ efficiency
during the training stage (Gusak et al., 2022) since the inference task in the distributed setup was
not challenging for non-MoE-based models. In contrast, inference performance in MoE transformer
models is more sensitive to the placement of experts, and proper placement can significantly enhance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cluster utilization. The known underlying structure of such models leads to a specific, tractable ILP
problem. The ILP framework was also used in MoETuner (Go & Mahajan, 2025), which aims to bal-
ance the load of experts. Additionally, the authors considered only one or two servers and assumed
that the network topology is represented as a complete graph, which is an infeasible assumption for
a multi-server cluster. In this work, we also utilize the statistics of the experts’ load, which makes
our framework more robust to an imbalanced distribution of experts’ loads.

The main contributions of our work are the following:

• We formalize the problem of placing the MoE layers over a cluster using integer linear
programming.

• We demonstrate that exploiting statistics of experts’ load in the optimization problem sig-
nificantly improves the placement of experts.

• We empirically confirm that the proposed ILP-based placement strategy yields lower net-
work traffic for the DeepSeek-MoE 16B and DeepSeek-R1 671B models across four dif-
ferent network topologies.

2 RELATED WORKS

The efficient deployment of the pre-trained model remains a challenging task due to the significant
increase in model size and architectural features. Further in this section, we describe the main
directions used to make the efficient deployment only for the inference stage.

Cluster topology. The naı̈ve approach to managing the topology of the computational cluster is
to connect every server with all others. This approach corresponds to the complete graph, where
vertices are servers and edges are links between servers. However, it is not scalable and costs a
lot compared to custom sparse topologies (Hoefler et al., 2024). To reduce the cluster construction
costs, numerous topologies were proposed, e.g., FatTree (or Clos) (Singh et al., 2015), Dragon-
fly (Kim et al., 2008), Dragonfly+ (Shpiner et al., 2017), Slim Fly (Besta & Hoefler, 2014), and
others (Hoefler et al., 2024). Most of them were initially designed for general-purpose Ethernet
clusters, rather than AI applications. In addition, general routing algorithms (Besta et al., 2020) and
efficient collectives implementations (Prisacari et al., 2013; Zahavi, 2012) are proposed, while they
still ignore issues raised in the inference stage. Such issues arise only for large MoE LLMs and have
not been so viable for the previous models. Therefore, the architecture of deep learning models, and
in particular MoE LLMs, can mismatch the cluster topology, making heuristic placement algorithms
inefficient. Thus, the specific approaches for efficient placement of the MoE LLMs in the clusters
with a given topology are necessary for the successful deployment of such models in services.

Expert placement. There are two complementary stages of expert placement. First, initial place-
ment distributes experts across GPUs before request processing begins. Second, adaptive balancing
involves replicating hot or imbalanced experts on additional GPUs to absorb spikes in activation
frequency. Initial placement targets expert imbalance arising from imperfect training (Shazeer et al.,
2017) and from data shifts coming from the deployment for domain-specific tasks. MoETuner (Go
& Mahajan, 2025) performs initial placement by formulating an ILP problem that balances expert
load. We show in Table 1 that using the same objective at the cluster scale leads to an intractable
optimization problem that can not be used in practice. In this paper, we address the initial placement
problem. However, instead of directly optimizing load equality as MoETuner does, we minimize
the datacenter traffic amount subject to balancing constraints.

At the same time, adaptive balancing of experts’ load complements the initial placement of experts.
Lynx (Gupta et al., 2024) observes that production servers batch requests, which can activate many
experts. To address this problem, the authors propose dynamic, batch-aware expert selection to
shrink the active expert set per batch and reduce decode-phase latency. Complementary techniques,
such as dynamic gating, expert buffering, and expert load balancing, are outlined in (Huang et al.,
2024). Balmau et al. (2025) propose sharding expert matrices to distribute the load evenly across
GPUs. However, the induced tensor-parallel execution becomes increasingly network-bound as
the degree of parallelism increases. Finally, works such as (Guo et al., 2024) modify the gating
mechanism itself to better align with parallel execution. The proper combination of the proposed
approach to initial placement and adaptive balancing methods is the topic for future work.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 MODEL PLACEMENT PROBLEM

This section presents the considered expert placement problem for MoE models and discusses why
this problem appears to be actual and relevant for this class of Transformer models. In the inference
stage, networking issues were not typically a significant concern, as inference time scaling tech-
niques like pipelining are typically implemented within a single server or a tightly clustered group.
Therefore, the deployment can be scaled by the number of such groups. However, there is a dif-
ferent situation with MoE models since the experts’ activation per token appears to be very sparse,
i.e., only a few experts process every token. Based on the theoretical analysis, a MoE model may
have a very small memory footprint in inference (up to 3-10% of all model parameters). However,
in practice, there are several challenges:

1. Most computations performed by experts consist of matrix multiplications. This compute-
bound operation requires a large number of matrices to utilize GPUs efficiently.

2. Although MoE models are trained to ensure a balanced load between experts, experts are
unevenly balanced during inference in practice. For example, some experts can be activated
twice as often as others.

3. Dynamic experts routing per token leads to an impossible prior placement of experts since
one can not know which will be picked until per-layer router activations are computed.
Therefore, any static placement of experts may lead to poor GPU utilization.

4. The recent pretrained MoE models (Guo et al., 2025; Dai et al., 2024; Team et al., 2025)
are designed to have a large number of total parameters. Therefore, if the model can even
be fitted inside a single server, there may be insufficient VRAM space to store KVCache
activations.

A possible solution to deal with the first three challenges is significantly increasing the load per
model instance. In this case, each expert will be statistically loaded enough to achieve efficiency
in performing the individual expert’s matrix multiplication. However, this approach leads to high
memory demand for one deployment unit. To handle such a load per unit, one needs to support
a high parallelization degree over dimensions of weights and experts. For example, the Deepseek
team reported using at least 320 GPU inference pods with 320 degree parallelism of experts (256
GPUs for each unique expert and 64 redundancy experts).

Another thing about inference is that all cross-GPU communications can be considered as point-to-
point, since there is only token dispatch and collect network communication for parallelized model
state. This is partially applicable for training, except that the All-Reduce operation for gradient
averaging across servers typically uses complicated implementations to deal with network topologies
and congestion efficiently.

Thus, the experts’ placement of the pre-trained large-scale MoE models has to consider the topology
of the network and expectations on the experts’ loading. Further, we propose the ILP-based approach
that considers both these ingredients. However, to smoothly introduce the reader to our approach,
we briefly describe the necessary concepts and provide the key notations.

3.1 NETWORK SETUP

Let Gn = (Vn, En) be a graph of the network, where the vertices are computational servers and the
edges are cross-server connections. Denote by S = |Vn| the number of servers and by n = |En| the
number of edges. There are multiple classic topologies for the cluster network configurations, like
Fat-Tree (Clos) (Singh et al., 2015), Slim Fly (Besta & Hoefler, 2014), Dragonfly (Kim et al., 2008),
Dragonfly+ (Shpiner et al., 2017). However, we consider FatTree (Singh et al., 2015) and Dragon-
fly (Kim et al., 2008) topologies as the most representative ones. The visualizations corresponding
to these topologies are presented in Figures 1a and 1b.

One of the main features of the topologies is the length of the shortest path between two arbitrary
servers. To illustrate this feature for the FatTree and DragonFly topologies, we present Figure 2,
where the difference in the topologies is represented through the corresponding pairwise distance
matrices. So, the FatTree corresponds to the block diagonal pairwise distance matrix, and the Drag-
onFly corresponds to the same block diagonal matrix plus a grid of non-diagonal elements.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Server
Server
Server
Server

Switch

Rack

DRAGONFLY
DRAGONFLY SPARSE

(without)

(a) Dragonfly and Dragonfly Sparse topologies, with
rack notation.

LS LS LS

AS

LS LS LS

AS

AS AS

FAT TREE FAT TREE TWO LEVEL

LS - LEAF SWITCHAS - AGGREGATE SWITCH

LS LS LS LS LS LS

(b) Fat Tree and two-level Fat Tree topologies, with
dotted boxes denoting racks (see Fig. 1a).

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

0
20
40
60
80

100
120
140
160
180
200
220
240

0

1

2

3

4

5

6

(a) FatTree

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

0
20
40
60
80

100
120
140
160
180
200
220
240

0

1

2

3

4

5

(b) DragonFly

Figure 2: Pairwise distance heatmaps with the lengths of shortest paths between every two servers
for the considered topologies. Each topology is built over 256 GPUs, with four servers per rack and
4 GPUs per server. Distances inside the server are zero because a fast interconnect is assumed.

3.2 MODEL SETUP

To demonstrate the proof of concept and scalability of the proposed approach, we consider
DeepSeekMoE 16B (Dai et al., 2024) and DeepSeek-R1 (Guo et al., 2025) models. In Mixture-
of-Experts (MoE) models, a standard Feedforward block (FFN) with linear layers and activations is
replaced by a MoE block with many dynamically routed experts. Experts have an identical structure
and size as FFN blocks with different weights and transform the input for the t-th token ut to the
output ht according to the following equation:

ht = ut +

Ns∑
i=1

FFN
(s)
i (ut) +

Nr∑
j=1

gjt FFN
(r)
j (ut), (1)

gjt =
g′jt∑Nr

k=1 g
′
kt

, g′kt =

{
skt skt ∈ Top Kr

1≤k≤Nr

({skt})

0 otherwise,
(2)

skt = σ
(
u⊤
t ek

)
, (3)

where the Ns shared experts FFN
(s)
i , i = 1, . . . , Ns and the Nr routed experts FFN

(r)
j , j =

1 . . . , Nr are processed input embedding ut. The routed experts are controlled by the normalized
gate gjt such that it is nonzero only for the top-Kr routed experts selected by the FFN router with
trainable weights ek. Further, we denote by L the number of transformer blocks, containing MoE
layers. We also consider models where Ns = 1, and to simplify notations, we denote the number of
routed experts per MoE layer by E := Nr.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The experts’ placement problem arises explicitly from the dynamical router outputs and, thus, the
selection of routed experts. The imbalanced loading of experts for the DeepSeek-R1 model is shown
in Figures 3a and 3b and confirms the practical importance of the proper experts’ placement for such
MoE models. This feature of the MoE transformer model motivates the development of the specific
placement algorithm for the inference stage.

0 10 20 30 40 50 60 70 80 90 100
Expert ID

0
1

2
3

4
5

6
7

8
9

La
ye

r I
D

0.005
0.010
0.015
0.020
0.025
0.030
0.035

(a) Heatmap from first 10 MoE layers and 100 experts

0 10 20 30 40 50
Layer ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
eq

ue
nc

y

0th percentile
50th percentile
90th percentile
99th percentile
100th percentile

(b) Percentiles for activation frequencies

Figure 3: Imbalanced expert load in inference for DeepSeek-R1 model and OASST1 dataset.

3.3 OBJECTIVE FUNCTION

We optimize the average number of network hops for processed tokens. A hop is a single point-to-
point activation communication between two servers connected by a link. Each token goes through
all shared layers of models (mostly, attentions) and an individual subset of routed experts on each
MoE layer. The objective function averages hops over all such communications. Each logical com-
munication is translated into a sequence of point-to-point communications, so the hop corresponds
to the length of the OSPF (Moy, 1998) path between the source and destination servers. The for-
malization of the introduced objective function is presented in Section 4.3.

3.4 CONSTRAINTS

To balance the distribution of experts between servers, we introduce the following constraints. The
first constraint forces that only a single expert is placed on the server. This constraint prevents the
under-utilization of the available resources. The second constraint limits the total number of experts
that a server can store by Cexp. The third constraint limits the total number of experts from one layer
that a server can store by Clayer. This constraint prevents unequal load distribution, high peak GPU
memory consumption, and imbalanced KVCache during inference. The formal definitions of these
constraints are presented in Section 4.3.

4 METHODS

This section describes the proposed ILP-based placement algorithms and the baselines. In particular,
we consider the Round-Robin Buyya et al. (1999) (RR) and greedy placement algorithms since they
are the standard options that could be used in practice and perform the model placement fast.

4.1 ROUND ROBIN (RR) PLACEMENT.

The first baseline is the classical Round Robin algorithm adjusted for our domain. This adjustment is
performed in the following way. Firstly, the available GPUs in servers are enumerated sequentially
such that the closer GPUs to each other according to the shortest path length (see Figure 2), the
closer their indices. After that, for every attention layer, we take the index i of the GPU, where it
is stored, and place the experts, following this attention, on GPUs corresponding to the d/2 left and
d/2 right indices, where d = E

Clayer
and E is the number of routed experts per MoE layer. Since the

considered topologies are symmetric, the sorted list of GPU indices can be represented as a circle,
so the boundary effects if k is small or large are avoided. This approach leads to tight packing of
experts to GPUs and aims to preserve locality for the dispatch attention layer. However, RR fails

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

to capture the distance to the collect attention layer, which uses the output of experts as input for
further processing. This drawback is addressed by the Greedy approach, which is presented in the
following section.

4.2 GREEDY PLACEMENT.

A more complicated strategy compared to RR placement is the Greedy approach. This approach also
starts from the enumeration of available GPUs, similar to RR. However, the next step significantly
differs. For every layer ℓ and every expert e, the indices of GPUs are sorted in ascending order
according to the following key dist(dℓ, s) + dist(s, cℓ), where dℓ and cℓ correspond to the current
(dispatch) and next (collect) attention layers and s denotes the GPU’s index. After such sorting, the
experts are placed on a GPU such that its index in the sorted list is the smallest and the placement
constraints are satisfied.

We expect that the Greedy approach dominates RR since it takes into account distances to both
dispatch and collect attention layers. However, it has two natural drawbacks: the greedy approach
does not necessarily provide the optimal solution for the entire placement of all experts, and it
ignores the statistics of experts’ loading, which is typically imbalanced (see Figures 3a and 3b) and
affects the proper placement.

4.3 INTEGER LINEAR PROGRAMMING PLACEMENT.

Although the heuristics mentioned above are straightforward, they do not guarantee the optimal-
ity of the placement. In contrast, the 0–1 Integer Linear Programming approach explicitly opti-
mizes the introduced objective function and provides the optimal placement of experts for a given
network topology and pre-defined model setup. To formalize the placement of experts in MoE
model, we introduce the binary variables yℓes ∈ {0, 1}, where ℓ ∈ {1, . . . , L}, e ∈ {1, . . . , E} and
s ∈ {1, . . . , S}. The interpretation of these variables is the following: yℓes = 1 iff the expert e
corresponding to the MoE layer ℓ is put on the server s. Then, the straightforward objective function
is the number of network hops per forward pass. This quantity can be computed as

L∑
ℓ=1

E∑
e=1

S∑
s=1

pℓsyℓes,

where pℓs = dist(dℓ, s) + dist(s, cℓ) and dist(s, cℓ) denotes the length of the shortest path from s
and cℓ. We denote by dℓ and cℓ the indices of attention blocks corresponding to layers ℓ that dispatch
and collect experts, respectively. Thus, taking into account the constraints from, we can state the
following integer linear optimization problem:

min
y

L∑
ℓ=1

E∑
e=1

S∑
s=1

pℓsyℓes s.t.
S∑

s=1

yℓes = 1,∀ ℓ ∈ L, e = 0, . . . , E − 1

L∑
ℓ=1

E−1∑
e=0

yℓes ≤ Cexp,∀s ∈ S
E−1∑
e=0

yℓes ≤ Clayer,∀ ℓ ∈ L, s ∈ S

(4)

The problem (4) provides the optimal solution that takes into account only the distance between
servers. The placement given by the solution of problem (4) is further referred to as ILP. At the
same time, according to Figure 3b, the load of experts is not uniform, which directly affects the
utilization of available hardware. To avoid a utilization drop and include the prior knowledge on
expected experts’ load, we modify the objective function from (4) and propose to use the experts’
load frequencies estimated from a reference dataset. We use the OASST1 dataset (Köpf et al., 2023)
and provide more details about it in Section 5. Denote by fℓe the frequency of loading expert e from
layer ℓ, so

∑E
e=1 fℓe = 1 for every layer ℓ. Then, the load-aware objective function looks as follows

L∑
ℓ=1

E∑
e=1

S∑
s=1

fℓepℓsyℓes

and could be interpreted as the expected load of experts. The resulting optimization problem is
composed with this objective function and the constraints from (4). The placement obtained from
the load-aware optimization problem is further referred to as ILPLoad.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1 provides the summary of the considered methods with the type of the solution and the
runtime to obtain it for the DeepSeek-16b model. We observe that heuristic methods work very
fast but provide only sub-optimal solutions. At the same time, our approaches (ILP and ILPLoad)
give the optimal solutions and require much less runtime than MOETuner. The runtime of ILP
and ILPLoad does not prevent the use of these approaches in practice since the initial placement of
experts is performed for a sufficiently long period of operating the queries.

Table 1: Summary of the presented methods. * - timeout after 12 hours, even on the toy DeepSeek-
16b model. The proposed ILP and ILPLoad provide exact solutions while requiring reasonable
runtime compared to MOETuner.

Method Exact solution Runtime, s

MOETuner Yes timeout∗
Round-robin No 0.19

Greedy No 0.79
ILP Yes 1185.9

ILPLoad Yes 1397.5

5 EXPERIMENTS

In this section, we show the gain from the proposed ILP framework on two MoE models (DeepSeek-
MoE 16B and DeepSeek-R1 671B) and four cluster topologies.

5.1 TEST CLUSTER CONFIGURATION.

We evaluate the performance of the proposed ILP and ILPLoad approaches for the following cluster
configuration. The total number of GPUs is 256, and each server contains 4 GPUs. Each leaf
switch is connected to 4 servers; thus, we have 16 leaf switches. Leaf switches are connected
in the following topologies: Dragonfly, Fat-Tree, Sparse Dragonfly (two neighbour links and one
diameter), and hierarchical Fat-Tree (aggregation switches form 4 groups and they are connected
via one top switch). If two GPUs reside on the same server, we assume a distance of 0 between them
since NVLink has a bigger bandwidth magnitude.

5.2 PERFORMANCE OF THE ILP FRAMEWORK.

We evaluate the performance of the placement algorithm on real statistics collected from the
DeepSeek-R1 MoE model with 256 routed experts per layer (8 experts are loaded per token). To
collect statistics, we used the OASST1 dataset (Köpf et al., 2023). The evaluation metric is the
average number of network hops in the corresponding network topologies for the described model.
We use a disjoint subset of activations from the OASST1 dataset as a dataset for activations.

Table 2 shows that only ILPLoad leads to significantly better placement of experts than competitors
if the number of racks in the topologies is large. A large number of racks makes the influence
of the topology on the placement quality dominant. Therefore, this artificial setup demonstrates
that since ILPLoad takes into account both network topology and load statistics, it outperforms the
competitors. Moreover, these results indicate that if we increase the total number of GPUs, we can
expect a more significant gain.

Now, we consider the DeepSeek-R1 model, and the constraint Clayer = 1 is taken from tech re-
port (Liu et al., 2024). Table 3a shows significant degradation of the basic ILP, yet ILPLoad out-
performs competitors. Note that ILPLoad has the largest standard deviation because prioritizing
experts’ usage results in short paths for commonly used experts and long paths for rare experts.

The experimental results presented in Table 3b correspond to the relaxing constraints on Clayer value,
setting it Clayer = 8, while preserving the MoE model and other cluster parameters. In this scenario,
ILPLoad still provides the best placement of experts. In addition, note that the basic ILP approach
gives worse placement than the Greedy algorithm. The analysis of the reason for this observation is
the topic of future work.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Only ILPLoad performs significantly better than Round-Robin (RR), if we model a very
diverse cluster with 64 servers, each equipped with 1 GPU, and one server per rack. For this artificial
setup, we use statistics from the DeepSeek-MoE 16B model with 27 layers, each with 64 experts.
We use weak constraint Clayer = 1.

Network Placement Hops Gain

FatTree RR 1819.75±6.70
Greedy 1815.80±11.41 0.2%
ILP 1827.71±7.91 -0.4%
ILPLoad 1750.95±43.15 3.9%

Dragonfly RR 1366.48±6.24
Greedy 1364.06±9.93 0.2%
ILP 1367.39±6.81 -0.1%
ILPLoad 1289.53±41.24 6.0%

Network Placement Hops Gain

FatTree RR 2148.93±11.36
Sparse Greedy 2137.15±16.60 0.6%

ILP 2154.07±11.89 -0.2%
ILPLoad 1999.03±77.34 7.5%

Dragonfly RR 1736.71±14.37
Sparse Greedy 1724.76±14.77 0.7%

ILP 1732.91±10.33 0.2%
ILPLoad 1574.85±79.58 10.3%

Table 3: ILPLoad is the best among all topologies with DeepSeek-R1 inference pod’s like (Clayer =
1) and with relaxed (Clayer = 8) constraints. Performance comparison for different Clayer. Each
topology is displayed with a real-world cluster model, featuring four servers per rack, 4 GPUs per
server, and assumed GPUs interconnect usage.

(a) ILPLoad is the best among all topologies
with DeepSeek-R1 inference pod’s like constraints
(Clayer = 1). Greedy gives moderate gain, and ba-
sic ILP performs close to Round-Robin.

Network Placement Hops Gain

FatTree RR 5003.98±19.72
Greedy 4755.52±48.03 5.2%
ILP 4952.75±27.12 1.0%
ILPLoad 4391.73±186.00 13.9%

Dragonfly RR 3757.23±14.78
Greedy 3561.30±34.66 5.5%
ILP 3699.78±18.43 1.6%
ILPLoad 3280.58±140.82 14.5%

FatTree RR 5980.81±33.91
Sparse Greedy 5547.00±66.66 7.8%

ILP 5896.66±49.12 1.4%
ILPLoad 4995.65±273.06 19.7%

Dragonfly RR 4009.85±20.05
Sparse Greedy 3757.44±41.46 6.7%

ILP 3935.40±24.67 1.9%
ILPLoad 3421.65±160.87 17.2%

(b) ILPLoad performs consistently better even with
relaxing constraints (Clayer = 8). ILP provides a mi-
nor gain compared to the RR. The Greedy algorithm
is still the second-best.

Network Placement Hops Gain

FatTree RR 2872.62±20.92
Greedy 2426.58±30.08 18.4%
ILP 2649.11±18.51 8.4%
ILPLoad 2198.12±117.68 30.7%

Dragonfly RR 2258.62±13.18
Greedy 1990.23±21.82 13.5%
ILP 2151.10±17.17 5.0%
ILPLoad 1826.13±84.02 23.7%

FatTree RR 2992.34±22.46
Sparse Greedy 2442.58±30.08 22.5%

ILP 2643.34±16.22 13.2%
ILPLoad 2229.95±117.47 34.2%

Dragonfly RR 2258.62±13.18
Sparse Greedy 1990.23±21.82 13.5%

ILP 2128.97±10.70 6.1%
ILPLoad 1826.66±83.97 23.6%

Ablation study of Clayer values. This paragraph presents how the value of Clayer affects the per-
formance of the considered methods while other cluster parameters are the same as in previous
experiments. We expect that the larger the Clayer is, the smaller the gap between the approaches
is. The reason for this expectation is that a large Clayer enables tight packing of experts by all
algorithms. Figure 4a shows the dependence of ILPLoad and Greedy placements quality on the
Clayer. We begin an ablation study using these algorithms, as they are the two best methods from
the previous experiments. Note that increasing Clayer leads to a lower relative difference between
algorithms. Lower Clayer leads to higher variance, as unfrequent experts are placed much further
from their dispatch and collect servers.

Figure 4b shows the difference between ILPLoad and Round-Robin placements when Clayer is
changing. Note that increasing Clayer leads to a lower relative difference between algorithms, and
Round-Robin has much lower variance than ILPLoad. Figure 4c shows the difference between
ILPLoad and ILP placements when Clayer is changing. Note that increasing Clayer leads to a lower
relative difference between algorithms and ILP, as others have much lower variance than ILPLoad.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 4 8
experts from one layer per server, Clayer

2

3

4

5

6

M
ea

n
Ho

ps
 p

er
 to

ke
n

Dragonfly Greedy
Dragonfly ILPLoad
Dragonfly Sp Greedy
Dragonfly Sp ILPLoad
FatTree Greedy
FatTree ILPLoad
FatTree Sp Greedy
FatTree Sp ILPLoad

(a) The gap between ILPLoad
and Greedy narrows as Clayer in-
creases.

1 4 8
experts from one layer per server, Clayer

2

3

4

5

6

M
ea

n
Ho

ps
 p

er
 to

ke
n

Dragonfly RR
Dragonfly ILPLoad
Dragonfly Sp RR
Dragonfly Sp ILPLoad
FatTree RR
FatTree ILPLoad
FatTree Sp RR
FatTree Sp ILPLoad

(b) ILPLoad outperforms RR uni-
formly while RR shows lower vari-
ance.

1 4 8
experts from one layer per server, Clayer

2

3

4

5

6

M
ea

n
Ho

ps
 p

er
 to

ke
n

Dragonfly ILP
Dragonfly ILPLoad
Dragonfly Sp ILP
Dragonfly Sp ILPLoad
FatTree ILP
FatTree ILPLoad
FatTree Sp ILP
FatTree Sp ILPLoad

(c) ILPLoad dominates ILP in
terms of mean while providing
larger variance.

Figure 4: Dependence of the average numbers of hops on the Clayer. The gap between algorithms is
lower, while the Clayer becomes larger.

5.3 INTERPRETATION OF THE ILP-GENERATED PLACEMENT.

This section presents how the ILPLoad-generated placement differs from the second-best approach
for Dragonfly and FatTree topologies. In particular, Figure 5 shows that for both topologies the
ILPLoad adjusts the experts’ placement according to the distance matrices presented in Figure 2.
This observation is especially clear from Figure 5b, where many non-zero elements out of the block
diagonal structure are aligned with the similar structure of the distance matrix in Figure 2b.

0 50 100 150 200
Destination Server ID

0

50

100

150

200

250

So
ur

ce
 S

er
ve

r I
D

0 50 100 150 200
Destination Server ID

0

50

100

150

200

250 0.00

0.02

0.04

0.06

(a) FatTree

0 50 100 150 200
Destination Server ID

0

50

100

150

200

250

So
ur

ce
 S

er
ve

r I
D

0 50 100 150 200
Destination Server ID

0

50

100

150

200

250 0.00

0.02

0.04

0.06

(b) DragonFly

Figure 5: Expert’s frequency weighted communication map for two best placements for different
topologies: left - Greedy, right - ILPLoad. DeepSeekR1 model statistics and Clayer = 8 are used.

6 CONCLUSION

This study presents an ILP-based framework for the optimal placement of MoE LLM models within
a cluster to reduce the traffic load between servers during the inference regime. The reduction of
traffic load is crucial for the deployment of LLM models to generate responses to users’ queries
efficiently. We consider several of the most popular topologies of clusters and pre-trained advanced
MoE LLM models. To minimize the traffic load for inner communications between servers during
inference in the considered models, we state the ILP problem such that its solution corresponds to
the optimal placement of MoE LLM over the available servers. The experimental comparison of
our approach and standard heuristics demonstrates that the ILP-based framework provides better
utilization of the cluster and minimizes communication overhead. The moderate runtime for solving
the target ILP problem makes our approach practically essential and relevant for the industry.

LIMITATIONS

The most significant limitation of the presented work is the lack of access to the standalone cluster,
which would enable us to benchmark the network load reduction for the compared configurations of
the MoE LLM models. Another limitation is the assumptions used in the ILP problem that focus on
the high-level distributions of experts and attention layers only.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

Oana Balmau, Anne-Marie Kermarrec, Rafael Pires, André Loureiro Espı́rito Santo, Martijn de Vos,
and Milos Vujasinovic. Accelerating moe model inference with expert sharding. In Proceedings
of the 5th Workshop on Machine Learning and Systems, pp. 192–199, 2025.

Maciej Besta and Torsten Hoefler. Slim fly: A cost effective low-diameter network topology. In
SC’14: proceedings of the international conference for high performance computing, networking,
storage and analysis, pp. 348–359. IEEE, 2014.

Maciej Besta, Marcel Schneider, Marek Konieczny, Karolina Cynk, Erik Henriksson, Salvatore
Di Girolamo, Ankit Singla, and Torsten Hoefler. Fatpaths: Routing in supercomputers and data
centers when shortest paths fall short. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–18. IEEE, 2020.

Rajkumar Buyya et al. High performance cluster computing: Architectures and systems (volume 1).
Prentice Hall, Upper SaddleRiver, NJ, USA, 1(999):29, 1999.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Seokjin Go and Divya Mahajan. Moetuner: Optimized mixture of expert serving with balanced
expert placement and token routing. arXiv preprint arXiv:2502.06643, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, Zhaopeng Tu, and Tao Lin. Dynamic mix-
ture of experts: An auto-tuning approach for efficient transformer models. arXiv preprint
arXiv:2405.14297, 2024.

Vima Gupta, Kartik Sinha, Ada Gavrilovska, and Anand Padmanabha Iyer. Lynx: Enabling efficient
moe inference through dynamic batch-aware expert selection. arXiv preprint arXiv:2411.08982,
2024.

Julia Gusak, Daria Cherniuk, Alena Shilova, Alexandr Katrutsa, Daniel Bershatsky, Xunyi Zhao,
Lionel Eyraud-Dubois, Oleh Shliazhko, Denis Dimitrov, Ivan V Oseledets, et al. Survey on
efficient training of large neural networks. In IJCAI, pp. 5494–5501, 2022.

Torsten Hoefler, Tommaso Bonato, Daniele De Sensi, Salvatore Di Girolamo, Shigang Li, Marco
Heddes, Deepak Goel, Miguel Castro, and Steve Scott. Hammingmesh: A network topology for
large-scale deep learning. Communications of the ACM, 67(12):97–105, 2024.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin Lee, Carole-Jean
Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. Advances in Neural
Information Processing Systems, 37:84033–84059, 2024.

John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. Technology-driven, highly-scalable drag-
onfly topology. ACM SIGARCH Computer Architecture News, 36(3):77–88, 2008.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
conversations-democratizing large language model alignment. Advances in neural information
processing systems, 36:47669–47681, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

John T Moy. OSPF: anatomy of an Internet routing protocol. Addison-Wesley Professional, 1998.

Bogdan Prisacari, German Rodriguez, Cyriel Minkenberg, and Torsten Hoefler. Bandwidth-optimal
all-to-all exchanges in fat tree networks. In Proceedings of the 27th international ACM conference
on International conference on supercomputing, pp. 139–148, 2013.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Alexander Shpiner, Zachy Haramaty, Saar Eliad, Vladimir Zdornov, Barak Gafni, and Eitan Zahavi.
Dragonfly+: Low cost topology for scaling datacenters. In 2017 IEEE 3rd International Workshop
on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB),
pp. 1–8. IEEE, 2017.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon, Seb Bov-
ing, Gaurav Desai, Bob Felderman, Paulie Germano, et al. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter network. ACM SIGCOMM computer
communication review, 45(4):183–197, 2015.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
1–33, 2020.

Eitan Zahavi. Fat-tree routing and node ordering providing contention free traffic for mpi global
collectives. Journal of Parallel and Distributed Computing, 72(11):1423–1432, 2012.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. MoEfication:
Transformer Feed-forward Layers are Mixtures of Experts. In Findings of the Association for
Computational Linguistics: ACL 2022, pp. 877–890, 2022.

A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

For completeness, we present an additional table with raw measurements used in Clayer ablation.
In main text, there are results for Clayer = 1 in Table 3a, and for Clayer = 8 - Table 3b. Table 4
completes raw measurements, displayed in ablation Figure 4a- 4c, by showing measurements for
Clayer = 4. ILP Load, as in previous comparisons, is best among the compared algorithms.

A.2 EVALUATION SETUP

We run the experiments and provide measurements (including runtime in Table 1) on a machine
equipped with a 128-core Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz CPU and 512Gb DDR3
RAM. All experiments are conducted with the Python 3 programming language. For ILP and ILP
Load algorithms, the CVXPy library Diamond & Boyd (2016); Agrawal et al. (2018) was used.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table 4: ILPLoad is the best among all topologies with Clayer = 4. Greedy gives gain closer to
ILPLoad, yet still lose up 10%, and basic ILP performs in the middle between Greedy and Round-
Robin placement. Each topology is displayed with a real-world cluster model, featuring four servers
per rack, 4 GPUs per server, and assumed GPUs interconnect usage.

Network Placement Hops Gain

FatTree RR 3656.54±23.57
Greedy 3011.46±37.52 21.4%
ILP 3195.22±16.80 14.4%
ILPLoad 2773.21±128.52 31.9%

Dragonfly RR 2762.66±17.22
Greedy 2350.61±24.85 17.5%
ILP 2461.85±7.21 12.2%
ILPLoad 2184.53±84.14 26.5%

FatTree RR 3903.67±31.77
Sparse Greedy 3027.46±37.52 28.9%

ILP 3224.80±14.44 21.1%
ILPLoad 2805.65±127.95 39.1%

Dragonfly RR 2762.66±17.22
Sparse Greedy 2350.61±24.85 17.5%

ILP 2460.62±13.97 12.3%
ILPLoad 2184.29±84.38 26.5%

Table 5: Test configuration parameters for each experiment YAML file.

Model R1 R1 R1 16b
Clayer 1 4 8 1

L 58 58 58 27
E 256 256 256 64
S 256 256 256 32
Cexp 64 64 64 54
num nodes per leaf 4 4 4 1
num gpus per server 4 4 4 1

A.3 EXPERIMENTS DESCRIPTION

In this section, we list values of hyperparameters used in our experiments. There are two experiments
for the DeepSeek 16b model to test the scalability of the ILPLoad approach, using real experts’
activation statistics with an artificial setup of 1 GPU per server and 1 server per rack. This totally
results in 64 racks and a broad network topology.

Main experiments are performed on a real-world model and network setups. For model setup, we
collect loaded experts from each layer for 19529 tokens from the OASST1 dataset Köpf et al. (2023).
They are extracted from 150 entries of the dataset. Then we split activations on test and train:

1. Train: 13838 activation tokens from 100 dialogs.
2. Test: 5691 activation tokens from 50 dialogs.

Then, we use the train data split only for the ILPLoad objective to obtain load-aware placements.
In the evaluation phase, all algorithms are compared to each other using a test data split. Table 5
provides parameters for individual runs.

12

	Introduction
	Related works
	Model placement problem
	Network setup
	Model setup
	Objective function
	Constraints

	Methods
	Round Robin (RR) placement.
	Greedy placement.
	Integer linear programming placement.

	Experiments
	Test cluster configuration.
	Performance of the ILP framework.
	Interpretation of the ILP-generated placement.

	Conclusion
	Appendix
	Additional experiments
	Evaluation setup
	Experiments description

