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Abstract
Experimental design is crucial in evidence-based
decision-making with multiple treatment arms,
such as online advertisements and medical treat-
ments. This study investigates an experiment
whose task is to identify the best treatment arm
with the highest expected outcome. In our ex-
periments, given a fixed sequence of sample-
allocation rounds and multiple treatment arms,
we allocate a sample to a treatment arm and ob-
serve a corresponding outcome at each round. At
the end of the experiment, we recommend one of
the treatment arms as the best based on the obser-
vations. We aim to design an experiment that min-
imizes the probability of misidentifying the best
treatment arm. This problem has been explored
under various names across numerous research
fields, including best arm identification (BAI) and
ordinal optimization. With this objective in mind,
we initially derive lower bounds for the probabil-
ity of misidentification through an information-
theoretic approach, enabling discussions on the
asymptotic optimality of experiments. In our anal-
ysis, we discover that the available information
on the distribution of rewards for each treatment
arm significantly influences the asymptotic opti-
mality of experiments. Moreover, we find that the
asymptotic optimality depends on a pre-specified
set of hypothetical best treatment arms utilized
for sample allocation. Existing experiments be-
come asymptotically optimal when the true best
treatment arm is in the set. The standard BAI is a
special case in which all treatment arms are hypo-
thetical best treatment arms. Based on the lower
bounds, we design experiments whose probabil-
ity of misidentification matches the lower bounds
given the available information.

1. Introduction
Experimental design is integral to decision-making pro-
cesses (Fisher, 1935; Robbins, 1952). This study explores
scenarios involving multiple treatment arms, such as on-

line advertisements, slot machine arms, diverse therapeutic
strategies1, or assorted unemployment assistance programs.
The objective is to identify the treatment arm that provides
the highest expected outcome at the end of an experiment.
During the experiment, we allocate each sample to a treat-
ment arm and recommend the treatment arm deemed the
best at the end, with the aim of minimizing the probabil-
ity of incorrectly identifying the best treatment arm. Both
non-adaptive and adaptive experiments are considered. In
non-adaptive experiments, we fix the sample allocation rule
at the beginning of an experiment, while adaptive experi-
ments allow us to optimize sample allocation throughout the
experiment based on acquired data. This issue of designing
such experiments has been examined in various research
areas under a range of names, including best arm identifica-
tion (BAI, Audibert et al., 2010), ordinal optimization (Ho
et al., 1992), optimal budget allocation (Chen et al., 2000),
and policy choice (Kasy & Sautmann, 2021).

Design of an optimal experiment depends on how much
information on the distribution of treatment arms’ rewards
is available before the experiment. In scenarios where com-
plete distributional information is available, we can discuss
experimental designs that are globally asymptotically op-
timal for any instances, grounded on the large-deviation
principle (Glynn & Juneja, 2004; Chen et al., 2000; Gärt-
ner, 1977; Ellis, 1984). However, we often face situations
where only partial or no distributional knowledge is avail-
able. Because optimal experiments are characterized by
distributional information, incomplete information prevents
attaining a globally asymptotically optimal experiments. Al-
though we can obtain distributional information during an
adaptive experiment, the estimation error from the missing
information affects performance. We consider that such
a information loss is a cause of non-existence of globally
optimal experiments in this problem (Kaufmann, 2020).

The design of an optimal experiment depends on the ex-

1The term treatment arm is frequently used in clinical trials and
economic contexts (Nair, 2019). Other literature refers to treatment
arms by various names, including arms (Lattimore & Szepesvári,
2020), policies (Kasy & Sautmann, 2021), treatments (Hahn et al.,
2011), designs (Chen et al., 2000), systems, populations (Glynn &
Juneja, 2004), and alternatives (Shin et al., 2018).
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tent of available information regarding the distribution of
rewards of treatment arms prior to the experiment. In situ-
ations where complete distributional information is acces-
sible, we can deliberate on experimental designs that are
globally asymptotically optimal for all instances, based on
the large-deviation principle (Glynn & Juneja, 2004; Chen
et al., 2000; Gärtner, 1977; Ellis, 1984). However, it is
common to encounter scenarios where only partial or no
distributional knowledge is available. Since optimal ex-
periments are characterized by distributional information,
the lack of complete information hinders the attainment of
globally asymptotically optimal experiments. Even though
distributional information can be acquired during an adap-
tive experiment, the estimation error stemming from the
absence of complete information impacts the experiment’s
performance. We propose that such information loss con-
tributes to the nonexistence of globally optimal experiments
in this context (Kaufmann, 2020; Degenne, 2023).

To explore the asymptotic optimality of experiments un-
der information loss, we first establish lower bounds for
the probability of misidentification based on the available
information. From a theoretical perspective, information
theory implies that the lower bounds for the probability of
misidentification in experiments with complete information
are characterized by the Kullback–Leibler (KL) divergence
(Lai & Robbins, 1985; Kaufmann et al., 2016). However,
when only incomplete information is available, we need to
reflect this limitation in the lower bounds.

To address this issue, we perform a worst-case analysis,
where the expected outcomes of both the optimal and sub-
optimal treatment arms converge to zero. We term this
condition as the small-gap regime. In this regime, the infor-
mation loss becomes relatively insignificant in comparison
to the challenge of identifying the optimal treatment arm
presented by the small gap. This scenario thus facilitates
the evaluation of worst-case or local asymptotic optimality.

While the lower bounds with complete information are char-
acterized by the KL divergence (Lai & Robbins, 1985; Kauf-
mann et al., 2016), those in the small-gap regime are char-
acterized by variance, which arises from a second-order
approximation of the KL divergence. Hence, knowledge
of at least the variances is sufficient to design worst-case
optimal experiments within the small-gap regime. Based
on the lower bounds and available information, we design
experiments that are either globally or locally optimal.

Furthermore, during our analysis, we find that experiments
proposed in existing studies, such as Chen et al. (2000),
Glynn & Juneja (2004), and Shin et al. (2018), achieve
asymptotic optimality only when a specific treatment arm
is presumed to be the best prior to an experiment. We refer
to these treatment arms as the hypothetical best treatment
arms. We demonstrate that such redesigned experiments

are asymptotically optimal in that their misidentification
probability matches the lower bounds when the hypothet-
ical best treatment arm is, indeed, the best one. In this
context, the lower bounds of experiments depend on the
hypothetical best treatment arm and the knowledge about
the distributional information.

Therefore, our analysis begins with the reformulation of
the standard problem setting. We initially specify one or
multiple hypothetical treatment arms and allocate samples
to minimize the probability of misidentification when the
hypothetical best treatment arms include the true optimal
treatment arm. When all treatment arms are considered as
hypothetical best treatment arms, this setting reduces to the
standard setting of ordinal optimization and BAI.

Based on available information on distributions and hypo-
thetical treatment arms, we classify experimental designs
into four scenarios: globally optimal non-adaptive exper-
imental design (GO-NonAED), hypothetical locally opti-
mal non-adaptive experimental design (H-LO-NonAED),
hypothetical locally optimal adaptive experimental design
(H-LO-AED), and locally optimal adaptive experimental
design (LO-AED). When complete information is available,
we conduct non-adaptive experiments, referred to as the
GO-NonAED. For instance, with Gaussian distributions and
known means and variances, optimal experimental design
can be computed (Chen et al., 2000). If only variances are
known, we design locally optimal experiments under small
gaps and refer to it as the H-LO-NonADE. As explained
above, under the small-gap regime, optimal experiments
depend only on variances because of the second-order ap-
proximation of the KL divergence. If we lack variances, we
resort to adaptive experiments to estimate them, which al-
lows in-experiment treatment allocation optimization based
on past observations. When we have hypotheses, we refer
to the problem as the H-LO-AED. When we do not have
any hypotheses, we refer to it as the LO-AED. Experimental
design without hypothetical treatment arms is the standard
setting in BAI and ordinal optimization. In the LO-AED,
we show the asymptotic optimality of experiments for the
standard BAI and ordinal optimization under the small-gap.
We also refer to experiments with known variances without
a hypothetical best treatment arm as the locally optimal non-
adaptive experimental design (LO-NonAED), which is just
a special case of the LO-AED, and we omit the details. We
summarize our categorization in Table 1.

In the GO-NonAED and the H-LO-NonAED, based on argu-
ments by Glynn & Juneja (2004), we design non-adaptive ex-
periments, referred to as the Non-Adaptive sampling (NA)-
Empirical Best Arm recommendation (EBA) experiment.
For the H-LO-ADE and the LO-ADE, we design adaptive
experiments, referred to as the Two-Stage sampling (TS)-
EBA experiment. We derive their upper bounds for the
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Table 1. Comparison of experimental design when the number of treatment arms is more than three.
Complete information is available Incomplete or no information is available

Variances are known No prior information

GO-NonAED
Hypothetical best treatment arm (Non-adaptive experiments) (Adaptive experiments)

One arm is a candidate for the best. H-LO-NonAED H-LO-AED
No information LO-NonAED LO-AED

misidentification probability and validate their asymptotic
optimality through matching lower and upper bounds as the
sample size goes to infinity, and gaps converge to zero.

Organization. In Section 2, we define our problem. In Sec-
tion 3, we summarize our main contributions. In Section 4,
we derive the lower bounds for an experiment based on the
available information. In Section 5, we categorize problem
settings based on the lower bounds and available informa-
tion. In Appendix C and Section 6, for the established lower
bounds, we design optimal experimental strategies. This
study incorporates the findings from Kato et al. (2023b). To
better highlight our contributions, we significantly revised
the previous draft. Notably, we expanded the discussion on
the asymptotic optimality of experiments. Moreover, while
the previous draft tackled the aspect of contextual informa-
tion, we omitted this section in this study, choosing to focus
more on the problem of asymptotic optimal experiments in
BAI. We intend to address the contextual information issue
independently in a future publication.

2. Problem Setting
We consider the following setting. Given a fixed number
of rounds T , referred to as a sample size or a budget, in
each round t ∈ [T ] := {1, 2, . . . , T}, an experimenter al-
locates a treatment arm At ∈ [K] := {1, 2, . . . ,K} to an
experimental subject. Then, the experimenter immediately
receives an outcome (or a reward) Yt linked to the allocated
treatment arm At. This setting is called bandit feedback.
Our goal is to find a treatment arm with the highest expected
outcome with a minimal probability of misidentification
after observing the outcome in the round T .

Potential outcomes. To describe the data-generating
process, we introduce potential outcomes following the
Neyman-Rubin causal model (Neyman, 1923; Rubin, 1974).
An outcome in round t ∈ [T ] is Yt =

∑
a∈[K] 1[At = a]Y a

t ,
where Y a

t ∈ R is a potential independent outcome (random
variable), and Y 1

t , Y
2
t , . . . , Y

K
t are independent and identi-

cally distributed (i.i.d.) over t ∈ [T ] = {1, 2, . . . , T}.

Let P be a joint distribution of K-potential outcomes,
(Y 1, Y 2, . . . , Y K), and (Y1,t, Y2,t, . . . , YK,t) be an inde-
pendent copy of (Y 1, Y 2, . . . , Y K) at round t ∈ [T ] un-
der P . We refer to P as a statistical model2. For P , let
PP , and EP be the probability and expectation under P
respectively and µa(P ) = EP [Y

a] be the expected out-

2In particular, we refer to distributions of the potential out-
comes (Y 1, Y 2, . . . , Y K) as full-data statistical models.

come. Let P be a set of all joint distributions P such that
the the best treatment arm a∗(P ) = argmaxa∈[K] µ

a(P )
uniquely exists; that is, there exists a∗(P ) ∈ [K] such that
µa∗

0 (P ) > maxb∈[K]\a∗
0
µb(P ). Let P0 ∈ P be the true

statistical model that generates the potential outcomes.

Probability of misidentification. Our goal is to minimize
the probability of misidentification, defined as PP0

(âT ̸=
a∗(P0)). It is known that for each fixed P ∈ P , when
a∗(P0) is unique, PP0(âT ̸= a∗(P0)) converges to zero
with an exponential speed as T → ∞. Therefore, to evaluate
the exponential speed, we employ the following measure,
called the complexity: − 1

T logPP0
(âT ̸= a∗(P0)).

Experiment. We define an experiment as a combina-
tion of treatment allocation and best-treatment-arm rec-
ommendation rules; formally, with the sigma-algebras
Ft = σ(A1, Y1, . . . , At, Yt), an experiment is a pair
((At)t∈[T ], âT ), where ((At)t∈[T ] is a sampling rule, which
allocates a treatment arm At ∈ [K] in each round t based
on the past observations Ft−1, and âT is a recommenda-
tion rule, which is an FT -measurable estimator of the best
treatment arm â∗(P ) using observations up to round T . We
denote an experiment by π and denote At and âT by Aπ

t

and âπT when we emphasize that At and âT depend on π. In
existing studies, an experiment is also referred to as different
names, such as strategy and an algorithm. Our goal is equal
to designing an experiment that minimizes its probability of
misidentification when the null hypothesis false.

Hypothetical best treatment arm. In the following analy-
sis, we also consider a situation where there is a candidate
of the best treatment arm, denoted by ã ∈ [K]. We re-
fer to it as a hypothetical best treatment arm and consider
minimizing the probability of misidentification when ã is
equal to a∗0; that is, PP0(âT ̸= a∗(P0)) for P0 ∈ P such
that a∗(P0) = ã. We refer to the treatment arm ã as the
hypothetical best treatment arm. We raise the following
examples for this problem.

Example (Online advertisement). Let ã ∈ [K] be a treat-
ment arm corresponding to a new advertisement. Our null
hypothesis a∗ ̸= ã implies that the existing advertisements
a ∈ [K]\{ã} are superior to the new advertisement. Our
goal is to reject the null hypothesis with a maximal prob-
ability when the null hypothesis is not correct; that is, the
new hypothesis is better than the others.

Example (Clinical trial). Let ã ∈ [K] be a new drug. Our
null hypothesis a∗ ̸= ã implies that the existing drug a ∈
[K]\{ã} is superior to the new drug (equivalently, the new
drug is not good as the existing drugs). Our goal is to reject
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the null hypothesis with a maximal probability when the
new drug is better than the others.

This setting corresponds to considering a null and alternative
hypotheses H0 and H1 such that H0 : a∗(P0) ̸= ã ∈ [K]
and H1 : a∗(P0) = ã; that is, the null hypothesis corre-
sponds to a situation where the hypothetical best treatment
arm is not the best, while the alternative hypothesis posits
that the hypothetical best treatment arm is the best. Then,
we consider minimizing the probability of misidentification
when the alternative hypothesis is correct. This probability
corresponds to power in hypothesis testing. We aim to mini-
mize misidentification probability when the null hypothesis
is false, corresponding to the power of the test.

We consider this setting not only because of its practical im-
portance but also because the existence of the hypothetical
best treatment arm is technically required in several existing
methods. For instance, although not explicitly stated, the ex-
periments in Glynn & Juneja (2004) require a hypothetical
best treatment arm for asymptotic optimality.

Notation. For all P ∈ P , and all a ∈ [K], let (σa(P ))
2

be the variance of Y a. For the true statistical model
P0 ∈ P , we denote µa(P0) = µa

0 , (σa(P0))
2
= (σa

0 )
2,

and a∗(P0) = a∗0. Let Y a∗
0

t = Y ∗
t , and µa∗

0 (P0) = µ∗
0.

Let ∆a(P ) = µa∗(P )(P ) − µa(P ) and ∆a
0 = ∆a(P0) =

µ∗
0 − µa

0 . For P ∈ P , let P a be a distribution of a reward
of treatment arm a ∈ [K]. For the two Bernoulli distribu-
tions with mean parameters µ, µ′ ∈ [0, 1], we denote the KL
divergence by d(µ, µ′) = µ log(µ/µ′) + (1− µ) log((1−
µ)/(1−µ′)) with the convention that d(0, 0) = d(1, 1) = 0.

3. Summary of Main Contributions:
Information-Loss in Experimental Design

Experiments are designed based on information that is avail-
able prior to the experiments. We focus on hypothetical
best treatment arm in hypothesis testing and distributional
information. For example, when P a follows a Gaussian dis-
tribution, we can consider the following information that can
be used for experimental design: hypothetical Best treat-
ment arm: a treatment arm ã ∈ [K] that an experimenter
expects that it is the best among treatment arms; mean
parameter: a set (µa

0)a∈[K]; variance parameter: a set
((σa

0 )
2)a∈[K]. Mean and variance parameters correspond to

the distributional information. In general, statistical models
can include more various parameters.

A hypothetical best treatment arm may not be the true best
treatment arm. As well as statistical hypothesis testing, an
experimenter has a null hypothesis that the hypothetical best
treatment arm does not have the highest expected outcomes
and an alternative hypothesis that the hypothetical best treat-
ment is the best. As explained in Section 2, by regarding a

hypothesis such that a∗0 ̸= ã as a null hypothesis, we discuss
an experimental design that maximizes the probability of
misidentification when the null is not correct; that is, the
power of the test, P (âT = a∗0).

First, we consider an experimental design where the distri-
butional information is completely known, and we have a
hypothetical best treatment arm. This situation corresponds
to a case such that we have conjectures on the distribution
from pilot experiments conducted before the experiments
that we aim to design. We refer to this experiment as an ex-
periment with complete information or the globally optimal
non-adaptive experimental design (GO-NonAED).

Following this, we analyze an experimental design when the
only variances are known, and we have a hypothetical best
treatment arm. Other information such as means is unknown.
In such instances, we discuss the worst-case scenario of
an experiment when the difference between µa∗

0 and µa

converges zero, which allows us to characterize optimal
experiments by the variances. We refer to this experiment as
the hypothetical locally optimal non-adaptive experimental
design (H-LO-NonAED). We also refer to the evaluation
under µa∗

0 − µa → 0 as the small-gap regime.

Our subsequent question is an optimal experiment even
when the variance is unknown although we still have a hypo-
thetical best treatment arm. In this case, we employ adaptive
experiments, in which we can gather information during an
experiment and update the sampling rule in the experiment.
We refer to this experiment as the hypothetical locally op-
timal adaptive experimental design (H-LO-AED). We still
evaluate the performance under the small-gap regime.

Lastly, we address the situation where we do not have a
hypothetical best treatment arm (or all treatment arms are
hypothetical best treatment arms). We refer to this setting
as the locally optimal adaptive experimental design (LO-
AED).

In the following sections, we first discuss information the-
oretic lower bounds that derive the experimental designs
in Section 4. The lower bounds differ according to our
amount of knowledge. Based on the lower bounds and the
information loss, we introduce the above four scenarios, the
GO-NonADE, the H-LO-NonAED, the H-LO-ADE, and
the LO-ADE, in Section 5. Then, we introduce asymptoti-
cally optimal non-adaptive experiments in Appendix C and
adaptive experiments for the H-LO-ADE, and the LO-ADE
in Section 6. In Appendix E, we show experimental results.

4. Information Theoretic Lower Bounds and
Information Loss

We derive lower bounds for PP (âT ̸= a∗0) (upper bound of
− 1

T logPP (âT ̸= a∗0)) under large and small gaps (∆a
0 → 0



Submission and Formatting Instructions for ICML 2022

for all a ∈ [K]). We call an experiment asymptotically opti-
mal if the asymptotic upper bound matches the lower bound
under a large gap. We also call an experiment asymptot-
ically locally (wost-case) optimal if the asymptotic upper
bound matches the lower bound under a small gap.

4.1. Information Theoretic Lower Bounds

To derive the lower bound, we first restrict our experiment
to a consistent experiment, which is also considered in Kauf-
mann et al. (2016).

Definition 4.1 (Consistent experiment). A consistent exper-
iment π is an experiment such that for each P ∈ P∗, if a∗0
is unique, then PP (â

π
T = a∗0) → 1 as T → ∞.

In large deviation efficiency of hypothesis testing, a similar
consistency is assumed (van der Vaart, 1998).

Let us define an average sample allocation ratio κπT,P :
[K] → (0, 1) such that

∑
a∈[K] κ

π
T,P (a) = 1 under a

statistical model P ∈ P and an experiment π ∈ Π as
κπT,P (a) = 1

T

∑T
t=1 EP [1[Aπ

t = a]]. This quantity repre-
sents the average sample allocation to each treatment arm a
under an experiment. Then, Kaufmann et al. (2016) presents
the following lower bounds for the probability of misidenti-
fication PP0(â

π
T ̸= a∗0).

Proposition 4.2 (From Lemma 1 in Kaufmann et al. (2016)).
For each P0 ∈ P , any consistent (Definition 4.1) exper-
iment π satisfies lim supT→∞ − 1

T logPP0
(âπT ̸= a∗0) ≤

lim supT→∞ infQ∈P:a∗(Q)̸=a∗
0

∑
a∈[K] κ

π
T,Q(a)KL(Qa, P a

0 ).

Note that upper bounds for − 1
T logPP0(â

π
T ̸= a∗0) corre-

sponds to lower bounds for PP0
(âπT ̸= a∗0). Also see Kauf-

mann et al. (2016) and Remark 4.8. We use this measure to
evaluate the tail probability of misidentification.

When K = 2, the lower bound can be simplified (Also see
Appendix D and Theorem 12 in Kaufmann et al. (2016)).
However, to the best of our knowledge, for the general case
with K ≥ 3, the existence of lower bounds is an open issue.
One of the difficulties comes from the problem that the term
κπT,Q(a) does not correspond to sample allocation under P
(Kaufmann, 2020). To derive lower bounds, we connect
κπT,Q(a) to κπT,P (a) by restricting experiments.

4.2. Asymptotically Invariant Experiment

Thus, further restrictions on a class of experiments are re-
quired to derive lower bounds when K ≥ 3. In this study,
we consider restricting strategies to ones such that its limit
limT→∞ κπT,P (a) is invariant across P ∈ P∗. We refer to
the limit limT→∞ κπT,P (a) as the target allocation ratio.

Definition 4.3 (Asymptotically invariant experiment). An
experiment π is called asymptotically invariant if there exists
a function wπ : [K] → (0, 1) such that for any Q ∈ P , and

all a ∈ [K], as T → ∞,

κπT,Q(a) = wπ(a) + o(1). (1)

We raise examples for consistent and asymptotically invari-
ant experiments in Appendix A, which also implies their
existence.

Let W be a set of all functions wπ : [K] →
(0, 1) such that

∑
a∈[K] w(a) = 1, defined as W ={

w : [K] → (0, 1)
∣∣∑

a∈[K] w(a) = 1
}
. Given a class of

asymptotic invariant experiments, there exists w ∈ W
such that for all P ∈ P , and a ∈ [K], it holds that∣∣∣w(a)− 1

T

∑T
t=1 EQ [1[At = a]]

∣∣∣→ 0. Therefore, we ob-
tain the following theorem.
Theorem 4.4. For each P0 ∈ P , any consistent (Defini-
tion 4.1) and asymptotically invariant (Definition 4.3) ex-
periment π satisfies

lim sup
T→∞

− 1

T
logPP0(â

π
T ̸= a∗0)

≤ max
w∈W

min
a∈[K]\{a∗

0}
inf

Q∈P∗:

µ∗(Q)−µa(Q)<0

w(a)KL(Qa, P a
0 ) + o(1).

To prove this statement, from Lemma 4.6 and (1)
(Definition 4.3), there exists wπ and bound the prob-
ability as lim supT→∞ − 1

T logPP0(â
π
T ̸= a∗0) ≤

mina∈[K]\{a∗
0} inf Q∈P∗:

µ∗(Q)−µa(Q)<0

∑
a∈[K] w

π(a)KL(Qa, P a
0 )+

o(1) ≤ mina∈[K]\{a∗
0} inf Q∈P∗:

µ∗(Q)−µa(Q)<0
maxw∈W w(a)KL(Qa, P a

0 ).

Thus, we can link the average sample allocation ratio to an
actual experiment because we can compute w∗, independent
from Q. For the asymptotically invariant experiment, we
can show that the optimal allocation strategies proposed
by Glynn & Juneja (2004) are asymptotically optimal for
the information-theoretic lower bounds with asymptotically
invariant experiments if we can compute KL(Qa, P a).

However, in many applications, KL(Qa, P a) (or complete
information) is unavailable. We discuss lower bounds under
such information loss in the following sections.

We discuss the relationship woth static proportions of De-
genne (2023) in Appendix B

4.3. Localization and Fisher Information

We introduced the lower bound by Kaufmann et al. (2016).
However, the lower bound depends on the full-distributional
information, which may require the information in an ex-
periment. Assuming the full-knowledge before experiments
is unrealistic in many applications. For such cases, we
consider localization (Huber, 1964; Shin et al., 2018).

The following arguments are intuitive and not rigorous. For
the details, see the following sections. Suppose that there
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is a statistical model Qε parameterized by ε = (εa)a∈[K]

such that µa∗(Qε)(Qε) − µa(Qε) = µ∗
0 − µa

0 + εa and
P0 = Q0. Then, we consider lower bounds when εa → 0
and ∆a(P ) → 0 for all a ∈ [K] by expanding the KL
divergence between P0 and Qε around εa = 0. Because
the second-order approximation of the KL divergence is
the Fisher information of statistical models, and the in-
verse of the Fisher information corresponds to the vari-
ances of potential outcomes, we can characterize the lower
bounds by the variances. We refer to the lower bounds
as localized lower bounds under the small-gap regime,
roughly given as lim supT→∞ − 1

T logPP0
(âπT ̸= a∗0) ≤

maxw∈W
∑

a∈[K] w(a)2I
a
0 (∆a

0)
2
+o
(
(∆a

0)
2
)

as ∆a
0 → 0

for all a ∈ {a∗0}, where Ia0 is some Fisher information for
∆a under P0. This argument is not rigorous because the
definition of the Fisher information is unclear. In particular,
when the distributions are nonparametric, they may not be
unique. To deal with this problem, we consider the semi-
parametric analysis and derive the semiparametric efficiency
bound, a lower bound.

A model is referred to as semiparametric if its distribution
is characterized by finite-dimensional parameters of inter-
est (gaps in expected outcomes) and other other (finite or
infinite-dimensional) parameters. Different from paramet-
ric models, the expected value of a squared second-order
approximated log-likelihood, which may not be unique in
semiparametric models, equates to the Fisher information
in parametric models. We then evaluate models where the
information, measured as the squared second derivative of
the log-likelihood on the gaps, is minimized (equivalently,
variance is maximized). These models are called least-
favorable models. In our study, we use the variance under
the least-favorable models to derive lower bounds for the
misidentification probability under the alternative.

Similar localization has been employed in existing studies,
such as Dong & Zhu (2016) and Shin et al. (2018). However,
their localization considers parametric models. Our result is
a generalization of their approaches.

4.4. Local Location-Shift Models

To conduct localized analysis under the small-gap regime,
we define a distribution at the limit of ∆a

0 → 0. We consider
the following location-shift statistical models.

Definition 4.5 (Local location-shift models). Statistical
models P∗ are local location-shift statistical models if the
following conditions are satisfied:
(i) Absolute continuity. For all P,Q ∈ P∗ and all a ∈ [K],
the distributions P a andQa are mutually absolutely continu-
ous and have density functions with respect to the Lebesgue
measure.
(ii) Lipschitz continuity. For all a ∈ [K], there ex-

ists a (unknown) constant C > 0 independent of T
such that for all P, P ′ ∈ P∗,

∣∣∣(σa(P ))
2 − (σa(P ′))

2
∣∣∣ <

C |µa(P )− µa(P ′)|.
(iii) Boundedness of the moments. There exists a (un-
known) constant C > 0 independent of T such that for all
P ∈ P∗, a ∈ [K], and γ ∈ N, EP [|Y a|γ ] < C.
(iv) Lower bounds of variances. There exists a known
constant Cσ > 0 such that for all P ∈ P∗ and a ∈ [K],
(σa(P ))

2
> Cσ .

(v) Uniqueness of the best treatment arm. For all P ∈
P∗, there exists an (unknown) unique best treatment arm
a∗(P ); that is, there exits a∗(P ) such that µa∗(P )(P ) >
maxa∈[K]\{a∗(P )} µ

a(P ).

We refer to this class of statistical models as local location-
shift bandit models. Our lower bounds are characterized by
σa
0 , a variance under the “true” statistical model P0 ∈ P∗.

We raise two examples for this class. The first class is a class
of Gaussian models defined in Definition C.1. Another class
is a class of Bernoulli bandits, which are statistical models
whose potential outcomes follow Bernoulli distributions.

4.5. Localized Lower Bounds

Then, we show the following lower bounds. The proof is
shown in Appendix J.

Lemma 4.6 (General lower bound for the local loca-
tion-shift models). For any P ∈ P∗ (Definition 4.5), any
consistent (Definition 4.1) experiment π satisfies

lim sup
T→∞

− 1

T
logPP0

(âπT ̸= a∗0) ≤ min
a∈[K]\{a∗

0}
(2)

inf
Q∈P∗:

µ∗(Q)−µa(Q)<0

lim sup
T→∞

(∆a
0)

2

2Ωa
0(κ

π
T,Q)

+ o
(
(∆a

0)
2
)

as ∆a
0 → 0 for all a ∈ [K]\{a∗0}, and Ωa

0(κ
π
T,Q) =

(σ∗
0 )

2

κπ
T,Q(a∗

0)
+

(σa
0 )

2

κπ
T,Q(a) .

For ∆0 = maxa∈[K]\{a∗
0} ∆

a
0 , the RHS in (2) is

lower bounded as lim supT→∞ − 1
T logPP0(â

π
T ̸= a∗0) ≤

mina∈[K]\{a∗
0} inf Q∈P∗:

µ∗(Q)−µa(Q)<0
lim supT→∞

(∆0)
2

2Ωa
0 (κ

π
T,Q)+

o
((

∆0

)2)
. Then, by restricting experiments to asymp-

totically invariant ones and maximizing the target
allocation ratio, we can further lower bound the above
lower bound as lim supT→∞ − 1

T logPP0
(âπT ̸= a∗0) ≤

mina∈[K]\{a∗
0} maxw∈W

(∆0)
2

2Ωa
0 (w) + o

((
∆0

)2)
. Note

that by definition, mina∈[K]\{a∗
0} maxw∈W

(∆0)
2

2Ωa
0 (w) =

maxw∈W mina∈[K]\{a∗
0}

(∆0)
2

2Ωa
0 (w) . Let w∗ ∈
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argmaxw∈W mina∈[K]\{a∗
0}

1
2Ωa

0 (w) be the target al-
location ratio. By solving the maximization, under the
small gap regime, the probability of misidentification is
lower bounded as follows.

Theorem 4.7 (Localized lower bounds). For any P0 ∈ P∗,
any consistent (Definition 4.1) and asymptotically invariant
(Definition 4.3) experiment π satisfies

lim sup
T→∞

− 1

T
logPP0

(âπT ̸= a∗0)

≤
(
∆0

)2
2
(
σ∗
0 +

√∑
a∈[K]\{a∗

0}
(σa

0 )
2
)2 + o

((
∆0

)2)

as ∆0 → 0, where ∆0 = maxa∈[K]\{a∗
0} ∆

a
0 , and the target

allocation ratio is given as

w∗(a∗0) =
σ∗
0

σ∗
0 +

√∑
b∈[K]\{a∗

0}
(
σb
0

)2 , (3)

w∗(a) = (1− w∗(a∗0))
(σa

0 )
2∑

b∈[K]\{a∗
0}
(
σb
0

)2 , ∀a ∈ [K]\{a∗0}.

Note that as shown in Section D, we can derive a lower
bound that only holds for K = 2 without using additional
restrictions on experiments.
Remark 4.8 (Complexity of Experiments and Bahadur Effi-
ciency). The complexity − 1

T logPP0
(âπT ̸= a∗0), has been

widely adopted in the literature of ordinal optimization and
BAI (Glynn & Juneja, 2004; Kaufmann et al., 2016). In the
filed of hypothesis testing, Bahadur (1960) suggests a simi-
lar measure to asses a power of a test. The efficiency of a test
under the criterion proposed by Bahadur (1960) is known
as Bahadur efficiency. Although our problem is not hypoth-
esis testing, it can be considered that our global asymptotic
optimality parallels the global Bahadur efficiency, and our
asymptotic optimality under the small-gap regime is analo-
gous to the local Bahadur efficiency (Bahadur, 1960; Wie-
and, 1976; Akritas & Kourouklis, 1988). From a technical
perspective, such localization has been utilized in evaluating
various statistical procedures, such as estimation and hy-
pothesis testing, since it enables us to approximate a broad
range of distributions using Gaussian ones (Huber, 1964).

4.6. Target Allocation Ratio Independent from the True
Best Treatment Arm

In the target allocation in (3), we use a∗0, which is the true
best treatment arm. Therefore, to design an optimal ex-
periment, we need to know a∗0, and under target sample
allocation using a∗0, we can show that the probability of
misidentification is asymptotically optimal. This property
requires us to introduce a proxy of a∗0, and we refer to it
as a hypothetical treatment arm, denoted by ã. We design

experiments using ã, and the experiment is asymptotically
optimal when ã = a∗0.

While there are various applications where we can set such
a hypothetical treatment arm, there are still many situations
where we cannot specify it, as well as the standard setup of
BAI. Therefore, we consider lower bounds under which the
target allocation ratio is independent from a∗0.

Consider experiments where an experimenter cannot specify
a unique hypothetical best treatment arm. If an experimenter
has null hypotheses that both of ã ∈ [K] and b̃ ∈ [K]

(ã ̸= b̃) are not best, we consider minimize the probability
of misidentification when the two null H ã

0 : a∗0 ̸= ã and
H b̃

0 : a∗0 ̸= ã are not true; that is, under P such that a∗(P ) =
ã or a∗(P ) = b̃, we minimize PP (âT ̸= a∗0).

We consider restricted bandit models P† ⊂ P∗ such that
there is an unique set of constants

{
(σa)

2
}
a∈[K]

such that

for all P ∈ P† and a, b ∈ [K], it holds that (σa)
2
,
(
σb
)2
>

Cσ, and (σa(P ))
2 → (σa)

2 and
(
σb(P )

)2 →
(
σb
)2

as µa(P ) − µb(P ) → 0. Then, by using Lemma 4.6,
we can obtain the following theorem. For these mod-
els with multiple hypothetical treatment arms, we con-
sider the following localized lower bounds for the choice
of ã, b̃: supP∈P∗:a∗(P )∈{ã,̃b} lim∆(P )→0 lim supT→∞

− 1

T∆
2
(P )

logPP (â
π
T ̸= a∗(P )), where ∆(P ) =

maxa∈[K]\{a∗(P )} ∆
a(P ).

Furthermore, by considering worst-cases for all possible hy-
pothetical best treatment arms, we define the complexity as
supP∈P∗ lim∆(P )→0 lim supT→∞ − 1

T∆
2
(P )

logPP (â
π
T ̸=

a∗(P )), where ∆(P ) = maxa∈[K]\{a∗(P )} ∆
a(P ).

Theorem 4.9 (Localized lower bounds). When K = 2, for
any P ∈ P†, any consistent (Definition 4.1) and asymptoti-
cally invariant (Definition 4.3) experiment π ∈ Π satisfies
supP∈P† limµ1(P )−µ2(P )→0 lim supT→∞ − 1

T (µ1(P )−µ2(P ))2

logPP (â
π
T ̸= a∗(P )) ≤ 1

2(σ1+σ2)2
+ o (1) , and the tar-

get allocation ratio is given as w∗(1) =
σ1
0

σ1
0+σ2

0
and

w∗(2) = 1 − w∗(1). When K ≥ 3, for any P ∈ P†, any
consistent (Definition 4.1) and asymptotically invariant
(Definition 4.3) experiment π ∈ Π,

sup
P∈P†

lim
∆(P )→0

lim sup
T→∞

− 1

T∆
2
(P )

logPP (â
π
T ̸= a∗(P ))

≤ max
w∈W

min
b∈[K],a∈[K]\{b}

1

2Ωb,a(w)
+ o (1) ,

where Ωb,a(w) =
(σb)

2

w(b) + (σa)2

w(a) . Here, the target allocation
ratio is given as

w∗(a) = argmax
w∈W

min
b∈[K],a∈[K]\{b}

1

2Ωb,a(w)
. (4)
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The target allocation ratio is in-
dependent from a∗0. The metric
supP∈P∗ lim∆(P )→0 lim supT→∞ − 1

T∆
2
(P )

logPP (â
π
T ̸=

a∗(P )) captures two worst-cases: one of the worst-cases is
about P ∈ P∗ and another is about the small gap.

5. Categories of Experimental Designs based
on a Information Loss

In this section, we categorize experiments based on the
perspective of information loss, building on the arguments
on lower bound, established in Section 4.

(A) GO-NonAED. When complete distributional informa-
tion is available, we design experiments in which the proba-
bility of misidentification matches the lower bound in Theo-
rem 4.4. This setting has been tackled by Glynn & Juneja
(2004), so we directly utilize their experiment, which we
refer to as the non-adaptive (NA)-EBA experiment. For
more details, see Appendix C. In this instance, since the
distributional information is known, we consider that the
hypothetical treatment arm can also be deduced from the
available information.

(B) H-LO-NonADE. Requiring complete information can
often be costly or even unfeasible. Therefore, we consider
an experimental design that works with limited information.
In particular, we explore optimal experiments when only
variances are known. In this situation, the optimal experi-
mental design is characterized by a worst-case scenario with
regard to other parameters (localization). We specifically
use the lower bounds in Theorem 4.7 under the small-gap
regime. We employ the NA-EBA experiment with a target
allocation ratio that differs from that of GO-NonADE.

(C) H-LO-ADE. The H-LO-NonADE still requires knowl-
edge of the variances. We consider a situation where even
the variances are unknown but can be estimated during an
experiment. In this section, contrary to standard BAI, we
consider a setting where we hypothesize that a treatment
arm a ∈ [K] is the best, as well as the GO-NonADE and the
H-LO-NonADE. This setting is referred to as H-LO-ADE.
Lower bounds for the probability of misidentification are
given as in H-LO-NonADE; that is, the ones in Theorem 4.7.
However, we need to design an adaptive experiment that
efficiently allocates treatment arms and identifies the best
one. Therefore, our focus is on the issue of whether there
exists an optimal experiment, whose upper bound matches
the lower bounds. In Section 6, we introduce the TS-EBA
experiment, which is inspired from Kato et al. (2023a).

(D) LO-ADE. Lastly, we consider the LO-ADE, where
neither the hypothetical best treatment nor distributional
information is given. Interpreting the absence of a hypo-
thetical best treatment as a scenario where all treatment

Algorithm 1 TS-EBA experiment.

Parameter: Hypothetical best treatment arm ã ∈ [K].
The sample splitting ratio r ∈ (0, 1).
Initialization: for t = 1 do Draw At = t. For each
a ∈ [K], set ŵt(a) = 1/K. end for
Stage 1:
for t = K + 1 to ⌈rT ⌉ do

Draw a treatment arm a with probability w(1).
end for
Estimating the variances, for the H-LO-ADE, construct
ŵ(2) as (6); for the LO-ADE, construct ŵ(2) as 8.
Stage 2:
for t = ⌈rT ⌉+ 1 to T do
At = 1 if γt ≤ ŵ(2)(1) and At = a for a ≥ 2 if
γt ∈

(∑a−1
b=1 ŵ

(2)(b),
∑a

b=1 ŵ
(2)(b)

]
.

end for
Construct µ̂SA,a

T for each a ∈ [K].
Recommend âEBA

T = argmaxa∈[K] µ̂
SA,a
T .

arms are potential best treatment arms, we lower bound
supP∈P∗ lim∆(P )→0 lim supT→∞ − 1

T∆
2
(P )

logPP (â
π
T ̸=

a∗(P )) using Theorem 4.9. Then, we use the TS-EBA ex-
periment with the target allocation ratio different from the
one for the H-LO-ADE.

6. The TS-EBA Experiment
This section introduces our experiment, which is inspired
by adaptive experiments using propensity score proposed by
Hahn et al. (2011). Our experiment comprises the following
sampling and recommendation rules: First, we divide the
budget into two parts. In the first stage, we uniformly ran-
domly draw a treatment arm. In the second stage, we draw
treatment arms with the goal of achieving the target alloca-
tion ratio. After drawing treatment arms, we recommend the
empirical best arm (EBA) using the sample average estima-
tor. We refer to this experiment as the TS-EBA experiment.

6.1. The TS-EBA Experiment for the H-LO-ADE

First, we define a target allocation ratio, which is used to
determine our sampling rule. Let σã

0 be σ̃0. As shown in
(3), we set the target allocation as

wTS-EBA(ã) =
σ̃0

σ̃0 +
√∑

b∈[K]\{ã}
(
σb
0

)2 , (5)

wTS-EBA(a) =
(
1− wTS-EBA(ã)

) (σa
0 )

2∑
b∈[K]\{ã}

(
σb
0

)2
∀a ∈ [K]\{ã}.
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Here, we replaced the true best treatment arm a∗0 in (3) with
the hypothetical best treatment arm ã. This because we do
not know the true best treatment arm a∗0, but our goal is to
minimize the probability when the null hypothesis is not cor-
rect; that is, a∗0 = ã. When the variances are unknown, this
target allocation ratio is also unknown. Therefore, we esti-
mate it during the adaptive experiment and use the estimator
to estimate w∗.

The TS-EBA experiment consists of the following two stage
experiments. We first fix r ∈ (0, 1) independent from T 3

and w(1)(d) such that w(1)(d) > C and
∑

a∈[K] w
(1)(a) =

1, whereC is independent from T . Let t ∈ {1, 2, . . . , ⌈rT ⌉}
be Stage 1 and t ∈ {⌈rT ⌉+1, ⌈rT ⌉+2, . . . , T ⌉} be Stage 2.

In Stage 1, after drawing each treatment arm 1, 2, . . . ,K
at each round 1, 2, . . . ,K, we draw treatment arm At = a
with probability w(1)(a) until t = ⌈rT ⌉. After Stage 1,
we draw treatment arms with probability w(2), chosen to
minimize empirical version of the lower bounds as follows:

ŵ(2)(ã) =

̂̃σ⌈rT⌉̂̃σ⌈rT⌉+

√∑
b∈[K]\{a∗

0}

(
σ̂b
⌈rT⌉

)2
− rŵ(1)(a∗0)

1− r
,

(6)

ŵ(2)(a) =

(
1− ŵ(2)(ã)

) (σ̂a
⌈rT⌉)

2∑
b∈[K]\{ã}

(
σ̂b
⌈rT⌉

)2 − rŵ(1)(a)

1− r

∀a ∈ [K]\{ã},

where ̂̃σ⌈rT⌉ and σ̂a
⌈rT⌉ are sample variances that are es-

timators of σ̃0 and σa
0 using observations until t = ⌈rT ⌉,

respectively.

After Stage 2 (after round T ), for each a ∈ [K], we estimate
µa for each a ∈ [K] and recommend the maximum. To esti-
mate µa, we use the SA estimator. Finally, we recommend
âEBA
T = argmaxa∈[K] µ̂

SA,a
T as the best treatment arm (es-

timator of a∗0). We show the pseudo-code in Algorithm 1.
In practice, instead of random sampling, we can allocate
treatment arms by a way of a round-robin (Appendix N.2).

6.2. The TS-EBA Experiment for the LO-ADE

In the LO-ADE, the target sample allocation ratio is

wTS-EBA(a) = argmax
w∈W

min
b∈[K],a∈[K]\{b}

1

2Ωb,a(w)
, (7)

which is identical to that in (4). This is because it is inde-
pendent from ã.

Therefore, in the second stage, we compute the target allo-

3Although r is assumed to be independent from T , we use r
such that ⌈rT ⌉ > K + 1 in the following sections.

cation ratio as

ŵ(2) = argmax
w∈W

min
b∈[K],a∈[K]\{b}

1

2Ω̂b,a(w)
, (8)

where Ω̂b,a(w) =
(σ̂b

⌈rT⌉)
2

w(b) +
(σ̂a

⌈rT⌉)
2

w(a) . We replace ŵ(2) in
the previous section with this. Then, we conduct the same
experiment.

6.3. Probability of Misidentification and Asymptotic
Optimality of the TS-EBA Experiment

Next, we derive upper bounds for the probability of misiden-
tification under the TS-EBA experiment.

Proposition 6.1 (Upper bound of the TS-EBA experi-
ment). For each P0 ∈ P∗, a ∈ [K]\{a∗0}, and any
ε > 0, there exists T0 > 0 such that for all T >

T0, PP0

(
µ̂
SA,a∗

0

T ≤ µ̂SA,a
T

)
≤ exp

(
− T (∆a

0 )
2

2Ωa
0 (w

TS-EBA) +{ √
T∆a

0√
Ωa

0 (w
TS-EBA)

+
T (∆a

0 )
2

2Ωa
0 (w

TS-EBA)

}
ε

)
.

For the proof, see Appendix N.1. This proposition immedi-
ately yields the following theorem.

Theorem 6.2 (Asymptotic optimality of the TS-EBA exper-
iment). For each P0 ∈ P∗,

lim inf
T→∞

− 1

T
logPP0

(
âEBA
T ̸= a∗0

)
≥ min

a ̸=a∗
0

(∆0)
2

2Ωa
0(w

TS-EBA)
− o

(
(∆0)

2
)

as ∆0 → 0, where ∆0 = mina∈[K]\{a∗
0} ∆

a
0 .

Recall that a∗0 is unique; that is, µ∗
0 − µa

0 > 0 for all a ∈
[K]\{a∗0}.

In the H-LO-ADE, when using (5) as the target allocation
ratio, the probability of misidentification matches the lower
bound in Theorem 4.7. In the LO-ADE, when using (7) as
the target allocation ratio, the probability of misidentifica-
tion matches the lower bound in Theorem 4.9.

7. Conclusion
We investigate the problem of experimental design. We
found that depending on available information, different
experiments become asymptotically optimal. Based on our
findings, we categorized experimental design into the GO-
NonADE, the H-LO-NonADE, the H-LO-ADE, and the
LO-NonADE. For the H-LO-ADE and the LO-NonADE,
we proposed an asymptotically optimal adaptive experimen-
tal design. We confirmed the soundness of the proposed
methods via simulation studies.
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A. Examples of Consistent and asymptotically invariant strategies
Example (Consistent and asymptotically invariant strategies). One of the instances of consistent strategies involves sampling
all treatment arms with probabilities that are bounded below by a strictly positive value that is independent of T . Then,
we proceed to consider strategies that satisfy the definition of asymptotically invariant strategies. The first example is
uniform sampling, which allocates treatment arms with an equal allocation ratio, i.e., wπ(1) = · · · = w(K) = 1/K.
Additionally, we can consider wπ that depends solely on the fixed variance, fixed standard deviation, or fixed treatment arm,
independent of P . Consider a set of statistical models P† ⊂ P whose variances σa

0 are the same among P ∈ P†; that is,
for all P,Q ∈ P† and a ∈ [K], σa(P ) = σa

0 (Q) = σa
0 . Then, for example, wπ(a) =

σa
0∑

b∈[K] σ
b
0

and wπ(a) =
(σa

0 )
2∑

b∈[K](σ
b
0)

2

for all a ∈ [K] are members of the asymptotically invariant strategies because σa
0 is fixed among P ∈ P†. If we fix some

b ∈ [K], independent of P ∈ P†, then wπ that depends on b also belongs to the asymptotically invariant strategies, such as
wπ(b) = 1/2 and wπ(a) = 1/2(K − 1) for all a ∈ [K]\b. We can also construct wπ that depends on a∗0 for all P ∈ P†,
such as wπ(a∗0) = 1/2 and wπ(a) = 1/2(K − 1) for all a ∈ [K]\a∗0.

B. Static Proportions
Remark B.1 (Static proportions). While our previous version of this study at arXiv, Kato et al. (2023b), discusses asymptoti-
cally invariant experiments4, Degenne (2023) also independently proposes static proportions, which is a almost same notion
as our asymptotically invariant experiments. When they upload the draft with the finding that the experiment of Glynn &
Juneja (2004) is asymptotically optimal under that class of experiments, we were in the process of including the same finding.
However, the final conclusions between ours and Degenne (2023) are significantly different. While we show the existence of
asymptotically optimal experiments, they show the non-existence of them. These results are not contradict because while we
consider the small-gap regime, Degenne (2023) considers the fixed-gap regime (the gap is constant independent from T ) as
well as Carpentier & Locatelli (2016). Additionally, we further analyze the properties of the class from the viewpoint of
hypothetical best treatment arm and derive the analytical solutions of the target sample allocation ratio.

C. The NA-EBA Experiment
In this section, based on the arguments in Section 4, we design asymptotically optimal non-adaptive experiments for the
GO-NonADE and the H-LO-NonADE.

C.1. The NA-EBA Experiment for the GO-NonAED

We define an experiment, which consists of the non-adaptive (NA) sampling rule and the EBA recommendation rule.
We refer to our experiment as the NA-EBA experiment for the GO-NonAED. The experiment for the GO-NonAED is
non-adaptive; that is, we do not update the sampling rule during an experiment. Consider the following procedure of an
experiment. At the beginning of an experiment, we compute the target allocation ratio as

wNA-EBA = argmax
w∈W

min
Q∈P:a∗(Q)̸=a∗

0

∑
a∈[K]

w(a)KL(Qa, P a).

Then, we allocate samples t ∈ {1, 2, . . . , ⌊TwNA-EBA(1)⌋} to arm 1, and for a ≥ 2, samples t ∈ {⌊T
∑a−1

b=1 w
NA-EBA(b)⌋+

1, ⌊T
∑a−1

b=1 w
NA-EBA(b)⌋+2, . . . , ⌊T

∑a
b=1 w

NA-EBA(b)⌋} to each treatment arm a to arm a. At the end of an experiment,
we estimate the expected rewards and recommend a treatment arm with the highest expected reward as the best treatment
arm. To estimate µa, we use the following Sample Average (SA) estimator: µ̂SA,a

T = 1∑T
s=1 1[As=a]

∑T
s=1 1[As = a]Y a

s .
Then, we recommend the following empirical best treatment arm:

âEBA
T = argmax

a∈[K]

µ̂SA,a
T . (9)

Computation of the Target Allocation Ratio. Based on the result in Glynn & Juneja (2004), they show that the target

4The initial version of Kato et al. (2023b) uploaded in Sept. 2022 lacks the condition of the asymptotically invariant experiments
(Kato et al., 2022). After the initial upload, we found that the necessity of the condition and revised the draft in Jan. 2023.
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allocation ratio wNA-EBA that minimizes the probability of misidentification satisfies∑
a∈[K]\{a∗

0}

∂Ga(wNA-EBA(a∗0), w
NA-EBA(a))/∂wNA-EBA(a∗0)

∂Ga(wNA-EBA(a∗0), w
NA-EBA(a))/∂wNA-EBA(a)

= 1, (10)

Ga(wNA-EBA(a∗0), w
∗(a)) = Gb(wNA-EBA(a∗0), w

∗(a)) ∀(a, b) ∈ [K]\{a∗0}, (11)

where Ga(wNA-EBA(a∗0), w
NA-EBA(a)) = infz∈R

{
wNA-EBA(a∗0)Ia∗

0 (z) + wNA-EBA(a)Ia(z)
}

, and Ia(z) denote the
Fenchel-Legendre transform of the log-moment generating function Λa(θ) = logE[exp(θY a)] defined as Ia(z) =
supθ∈R{θz − Λa(θ)}.

Gaussian models. As an example, we consider Gaussian statistical models defined as follows.

Definition C.1. Statistical models PG ⊂ P are Gaussian statistical models if for any P ∈ P , Y a is generated from
N
(
µa(P ), (σa)

2
)

for all a ∈ [K], where µa(P ) ∈ R and (σa)
2
> Cσ are constants independent from T , and

N (µa(P ), (σa)
2
) is a Gaussian distribution with a mean µa(P ) and a variance (σa)

2 (variance is fixed for any P ∈ PG).

Let σa∗
0 = σ∗. For Gaussian models, Glynn & Juneja (2004) and Chen et al. (2000) show that

Ga(w(a∗0), w(a)) =
(µa

0 − µ∗
0)

2

2
(
(σ∗)

2
/w(a∗0) + (σa)

2
/w(a)

) .
Then, they derive that the target allocation ratio as w∗, satisfying

wNA-EBA(a∗0) = σ∗
√ ∑

a∈[K]\{a∗
0}

(wNA-EBA(a)/σa)
2
,

(µa
0 − µ∗

0)
2

(σ∗)2

wNA-EBA(a∗
0)

+ (σa)2

wNA-EBA(a)

=
(µb

0 − µ∗
0)

2

(σ∗)2

wNA-EBA(a∗
0)

+ (σb)2

wNA-EBA(b)

∀(a, b) ∈ [K]\{a∗0},∑
a∈[K]\{a∗

0}

(σ∗)
2
/wNA-EBA(a∗0)

(σa)
2
/wNA-EBA(a)

= 1.

C.2. The NA-EBA Experiment for the H-LO-NonAED

We use an experiment that is the basically same as the NA-EBA experiment for the GO-NonAED except for the target
allocation ratio. Instead of (10), we use the target allocation ratio defined in (3) by relacing a∗0 with a hypothetical treatment
arm ã. Let σã

0 be σ̃0. Therefore, we set the target allocation as

wNA-EBA(ã) =
σ̃0

σ̃0 +
√∑

b∈[K]\{ã}
(
σb
0

)2 , (12)

wNA-EBA(a) =
(
1− wTS-EBA(ã)

) (σa
0 )

2∑
b∈[K]\{ã}

(
σb
0

)2 ∀a ∈ [K]\{ã}. (13)

Comparison with results in Glynn & Juneja (2004). This allocation ratio matches the results of Glynn & Juneja (2004)
under the small-gap regime. First, consider a case with Gaussian models. By approximating the probability limit in (Chen
et al., 2000) and Glynn & Juneja (2004) under the small-gap regime, as a solution of a non-linear optimization problem, the
target allocation ratio satisfies

wNA-EBA(ã) = σã

√ ∑
a∈[K]\{ã}

(wNA-EBA(a)/σa)
2
, (14)

1
(σã)2

wNA-EBA(a∗
0)

+ (σa)2

wNA-EBA(a)

=
1

(σã)2

wNA-EBA(a∗
0)

+ (σb)2

wNA-EBA(b)

∀(a, b) ∈ [K]\{ã}, (15)
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∑
a∈[K]\{ã}

(
σã
)2
/wNA-EBA(ã)

(σa)
2
/wNA-EBA(a)

= 1. (16)

We can obtain the analytical solution for (14) as (3). Therefore, from the result of Glynn & Juneja (2004), we obtain an
upper bound of the experiment that matches the lower bound in Theorem 4.7.

C.3. Probability of Misidentification and Asymptotic Optimality of the NA-EBA Experiment

This experiment is the same as that presented in Glynn & Juneja (2004), which is shown as globally asymptotically optimal.
They find that the probability of misidentification is

lim
T→∞

− 1

T
logPP0

(âEBA
T ̸= a∗0) = min

a∈[K]\{a∗
0}
Ga(wNA-EBA(a∗0), w

NA-EBA(a)),

Note that from Sanov’s theorem (Sanov, 1958), it holds that

min
a∈[K]\{a∗

0}
Ga(wNA-EBA(a∗0), w

NA-EBA(a)) = inf
Q∈P:a∗(Q) ̸=a∗

0

∑
a∈[K]

wNA-EBA(a)KL(Qa, P a).

In summary, we obtain the following proposition from Glynn & Juneja (2004).
Proposition C.2.

lim
T→∞

− 1

T
logPP0(â

EBA
T ̸= a∗0) = inf

Q∈P:a∗(Q) ̸=a∗
0

∑
a∈[K]

wNA-EBA(a)KL(Qa, P a). (17)

Although Glynn & Juneja (2004) does not discuss lower bounds, we discover that the probability of misidentification under
the alternative hypothesis in Glynn & Juneja (2004) matches our lower bound in Theorem 4.4 under the asymptotically
invariant experiments. Note that Degenne (2023) independently gives the same explanation to experiments of Glynn &
Juneja (2004). See page 5 and Theorem 12 in Degenne (2023).

D. Experiments with Two Treatment Arms
Interestingly, even without assuming asymptotically invariant experiments, we can derive the same lower bound for
two-armed local location-shit statistical models only with assuming consistent experiments.
Theorem D.1 (Lower bound for two-armed local location-shift bandit models). When K = 2, for any P0 ∈ PG (Defini-
tion 4.5) and consistent (Definition 4.1) experiment π,

lim sup
T→∞

− 1

T
logPP0

(âπT ̸= a∗0) ≤
(
µ1
0 − µ2

0

)2
2 (σ1 + σ2)

2 + o
((
µ1
0 − µ2

0

)2)
as µ1

0 − µ2
0 → 0.

These results imply that even adding restrictions of Definitions 4.3, the lower bounds and the target allocation ratios do not
change. This is because the lower bounds are characterized by the best and one suboptimal treatment arm, and the choice of
the one suboptimal treatment arm affects the lower bound. However, when there are only two treatment arms, the pair of the
best treatment arm and one suboptimal treatment arm is fixed (only includes a = 1, 2).

E. Simulation Studies
We investigate performances of our experiments in the settings of the GO-NonADE, the H-LO-NonADE, the H-LO-ADE,
and the LO-ADE, and the existing Uniform-EBA experiment (Uniform, Bubeck et al., 2011) using simulation studies, which
allocates treatment arms with the same allocation ratio (1/K). Let K ∈ {2, 5, 10}. Let r in the TS-EBA experiment be
0.5. The best treatment arm is arm 1 and µ1

0 = 1. The expected outcomes of suboptimal treatment arms are drawn from
a uniform distribution with support [0.75, 0.90] for a ∈ [K]\{1, 2}, while µ2

0 = 0.75. The variances are drawn from a
uniform distribution with support [0.5, 5]. We continue the experiments until T = 5, 000 when µ̃ = 0.80 and T = 15, 000
when µ̃ = 0.90. We conduct 100 independent trials for each setting. At each T ∈ {100, 500, 1000, · · · , 14500, 15000}, we
plot the empirical probability of misidentification in Figure 1. From the results, as the theory predicts, experiments using
more information can achieve a lower probability of misidentification.
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Figure 1. Experimental results. The y-axis and x-axis denote the probability of misidentification and T , respectively.

F. Related Work
Researchers have acknowledged the importance of statistical inference and experimental approaches as essential scientific
tools (Peirce & Jastrow, 1884; Peirce & de Waal, 1887). With the advancement of these statistical methodologies, the
experimental design also began attracting attention. Fisher (1935) develops the groundwork for the principles of experimental
design. Wald (1949) establishes fundamental theories for statistical decision-making, bridging statistical inference and
decision-making. These methodologies have been investigated across various disciplines, such as medicine, epidemiology,
economics, operations research, and computer science, transcending their origins in statistics.

Ordinal optimization involves sample allocation to each treatment arm and selects a certain treatment arm based on a
decision-making criterion; therefore, this problem is also known as the optimal computing budget allocation problem. The
development of ordinal optimization is closely related to ranking and selection problems in simulation, originating from
agricultural and clinical applications in the 1950s (Gupta, 1956; Bechhofer, 1954; Paulson, 1964; Branke et al., 2007; Hong
et al., 2021). A modern formulation of ordinal optimization was established in the early 2000s (Chen et al., 2000; Glynn
& Juneja, 2004). Existing research has found that the probability of misidentification converges at an exponential rate for
a large set of problems. By employing large deviation principles (Cramér, 1938; Ellis, 1984; Gärtner, 1977; Dembo &
Zeitouni, 2009), Glynn & Juneja (2004) proposes asymptotically optimal algorithms for ordinal optimization.

However, a promising idea for enhancing the efficiency of experiments is adaptive experimental design. In this approach,
information from past experiments can be utilized to optimize the allocation of samples in subsequent trials. The concept of
adaptive experimental design dates back to the 1970s (Pong & Chow, 2016). Presently, its significance is acknowledged
(CDER, 2018; Chow & Chang, 2011). Adaptive experiments have also been studied within the domain of machine learning,
and the multi-armed bandit (MAB) problem (Thompson, 1933; Robbins, 1952; Lai & Robbins, 1985) is an instance. The
Best Arm Identification (BAI) is a paradigm of this problem (Even-Dar et al., 2006; Audibert et al., 2010; Bubeck et al.,
2011), influenced by sequential testing, ranking, selection problems, and ordinal optimization (Bechhofer et al., 1968).
There are two formulations in BAI: fixed-confidence (Garivier & Kaufmann, 2016) and fixed-budget BAI. In the former, the
sample size (budget) is a random variable, and an experimenter stops an experiment when a certain criterion is satisfied, as
well as sequential testing Wald (1945); Chernoff (1959). In contrast, the latter fixes the sample size (budget) and minimizes
a certain criterion given the sample size. BAI in this study corresponds to fixed-budget BAI (Bubeck et al., 2011; Audibert
et al., 2010; Bubeck et al., 2011). There is no strict distinction between the ordinal optimization and BAI 5.

A focal point of research interest has been to establish a tight lower bound on the probability of misidentification, representing
a theoretical performance limit (Kaufmann, 2020). A BAI strategy (algorithm) is termed asymptotically optimal if, under
this strategy, some criterion, such as the probability of misidentification and expected simple regret, matches the lower
bound as the budget goes infinity. The existence of such an asymptotically optimal strategy has long been a perplexing issue
in this field (Kaufmann, 2020; Qin & Russo, 2022). As an example, Glynn & Juneja (2004) proposes strategies that are
asymptotically optimal based on optimally selected sample allocation ratios in a non-adaptive experiment. However, their
approach requires complete distributional information. Kaufmann et al. (2016) derives lower bounds for the probability of
misidentification for general settings, including adaptive and non-adaptive experiments. Despite this significant contribution,
no optimal strategies corresponding to these lower bounds have been suggested. Indeed, Carpentier & Locatelli (2016)
demonstrates that no strategy exists whereby the probability of misidentification matches the lower bounds deduced by
Kaufmann et al. (2016). Also see (Kaufmann, 2020; Ariu et al., 2021). While the problem remains unresolved (Kaufmann,
2020; Qin & Russo, 2022), several approaches have been suggested (Komiyama et al., 2022; Degenne, 2023). The lower

5While ordinal optimization mainly addresses non-adaptive experiments, BAI mainly considers adaptive experiments. However, there
are also studies about adaptive experiments in ordinal optimization; similarly, BAI also discuss non-adaptive experiments
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bound of Carpentier & Locatelli (2016) is based on a minimax evaluation of the probability of misidentification under a
large gap. From a Bayesian perspective, Russo (2016), Qin et al. (2017), and Shang et al. (2020) propose Bayesian BAI
strategies that are optimal in terms of posterior convergence rate. However, it has been shown by Kasy & Sautmann (2021)
and Ariu et al. (2021) that such optimality does not extend to asymptotic optimality for the probability of misidentification.
From a different perspective, Atsidakou et al. (2023) proposes a Bayes optimal strategy for minimizing the probability of
misidentification. However, it is still an open issue whether there exists an experiment whose probability of misidentification
matches the lower bound conjectured by Kaufmann et al. (2016).

Independently of us, Degenne (2023) analyzes the BAI strategies under the class of static proportions, which correspond to
our asymptotically invariant experiments. That study shows some impossibility theorems under the fixed-gap regime; that is,
when the gap is fixed, there does not exist optimal experiments. In contrast, we show the existence of optimal experiments
under the small-gap regime.

Our problem has close ties to theories of statistical decision-making (Wald, 1949; Manski, 2000; 2002; 2004), limits of
experiments (Le Cam, 1972; van der Vaart, 1998), and semiparametric theory (Hahn, 1998). The semiparametric theory
is particularly crucial as it enables the characterization of lower bounds through the semiparametric analog of Fisher
information (van der Vaart, 1998).

G. Proof of General Lower Bound (Lemma 4.6)
In this section, we provide proof of Lemma 4.6. Our argument is based on a change-of-measure argument, which has been
applied to BAI (Kaufmann et al., 2016). In this derivation, we relate the likelihood ratio to the lower bound. Inspired
by Murphy & van der Vaart (1997), we expand the semiparametric likelihood ratio, where the gap parameter µ∗

0 − µa
0 is

regarded as a parameter of interest and the other parameters as nuisance parameters. By using a semiparametric efficient
score function, we apply a series expansion to the likelihood ratio of the distribution-dependent lower bound around the gap
parameter µ∗

0 − µa
0 under a statistical model of an alternative hypothesis. Then, when the gap parameter goes to 0, the lower

bound is characterized by the variance of the semiparametric influence function. Our proof is also inspired by van der Vaart
(1998) and Hahn (1998).

Kato et al. (2023a) also presents worst-case lower bounds for the expected simple regret employing our proof techniques, but
the proof procedure is different in some points. The difference mainly comes from the asymmetricity of the KL divergence.
In our case, when evaluating the performance for each given statistical model, we face the notorious problem of reverse KL
problem (Kaufmann, 2020). A technical issue with this problem is that the target allocation in theoretical analysis depends
on the hypothetical statistical models rather than the true statistical model. This dependency is one of the reasons why we
restrict our strategies to asymptotically invariant ones. However, in minimax evaluation, we do not suffer from the problem
of reverse KL problem. For this property, we do not have to put the restriction on the asymptotically invariant strategies.
Besides, this difference also affects the construction of parametric submodels. As a result, although the proofs might look
similar for some readers, the details are different and cannot be applied to each other without modifications of the proof.

Precisely, our proof follows these steps. First, the goal is to express the lower bound of the probability of misidentification
by using the gap parameter. In Proposition G.1 of Appendix G.1, we introduce a bound for some event based on a
change-of-measure argument (Kaufmann et al., 2016). We apply this bound to derive lower bounds for the probability
of misidentification in the final step of the proof. Next, we consider distributions of observations. Although we defined
distributions of the potential random variables (Y1,t, Y2,t, . . . , YK,t) (full-data statistical models), we can only observe an
outcome of a chosen treatment arm, Y At

t , and cannot observe other outcomes (Ya,t)a∈[K]\{At}. Therefore, distributions of
observations are different from the full-data statistical models. We induce the former from the latter in Appendix G.2 to
discuss optimality. With these preparations, in Appendix G.3, we introduce a parameter into the true nonparametric full-data
statistical models to differentiate the log-likelihood around the gap parameter; that is, the gap parameter is introduced so
that it corresponds to µ∗

0 − µa
0 . This parameter is a technical device for the proof, and the parametrized models are called

parametric submodels, which are subsets of P∗. The derivative is then defined with respect to this parameter, and we
consider applying the series expansion to the log-likelihood. However, the derivative (score function) is not uniquely defined
because it includes nuisance parameters other than the parameter of interest. Therefore, to specify a score function with
the tightest lower bound, it is necessary to consider information on the distribution of the observations. To perform these
operations, we associate the full-data statistical models with the distribution of the observed data in Appendix G.4. Then, in
Appendix G.5, we derive the parametric submodel of the distribution of observations from the parametric submodels of the
full-data statistical models and define a score function for the parametric submodel of the distribution of observations. For
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deriving lower bounds, an alternative hypothesis plays an important role, and we define a class of alternative hypotheses
(alternative statistical models) in Appendix G.6. For the score function and alternative statistical models in Appendix G.6,
we apply the series expansion to the log-likelihood in Appendix G.7 and characterize the bound in Proposition G.1 of
Appendix G.1 with the gap parameter. Then, in Appendix G.8, we derive the information bound of the second moment of
the score function; then, in Appendix G.9, we specify a score function whose second moment is equal to the information
bound in Appendix G.8. Finally, combining them, we derive the lower bound for the probability of misidentification in
Appendix G.10.

Throughout the proof, for simplicity, P∗ is denoted by P .

G.1. Transportation Lemma

Our lower bound derivation is based on change-of-measure arguments, which have been extensively used in the bandit
literature (Lai & Robbins, 1985). (Kaufmann et al., 2016) derives the following result based on change-of-measure argument,
which is the principal tool in our lower bound. Let us define a density of (Y 1, Y 2, . . . , Y K) under a statistical model P ∈ P
as

pP (y
1, y2, . . . , yK) =

∏
a∈[K]

faP (y
a)

Let fa
∗
0

P be denoted by f∗P .

Proposition G.1 (Lemma 1 in (Kaufmann et al., 2016)). For any two statistical model P,Q ∈ P with K treatment arms
such that for all a ∈ [K], faP (y

a) and faQ(y
a) are mutually absolutely continuous,

EQ

[
T∑

t=1

1[At = a] log

(
faQ(Y

a
t )

faP (Y
a
t )

)]
≥ sup

E∈FT

d(PQ(E),PP (E)).

Recall that d(p, q) indicates the KL divergence between two Bernoulli distributions with parameters p, q ∈ (0, 1).

This “transportation” lemma provides the distribution-dependent characterization of events under a given statistical model P
and corresponding perturbed statistical model P ′.

Between the true statistical model P ∈ P and a statistical model Q ∈ P , following the proof of Lemma 1 in Kaufmann et al.
(2016), we define the log-likelihood ratio as

LT =

T∑
t=1

∑
a∈[K]

1[At = a] log

(
faQ(Y

a
t )

faP (Y
a
t )

)
.

For this log-likelihood ratio, from Lemma G.1, between the true model P , we have

EQ[LT ] ≥ sup
E∈FT

d(PQ(E),PP0
(E)).

We consider an approximation of EQ[LT ] under an appropriate alternative hypothesis Q ∈ P when the gaps between the
expected outcomes of the best treatment arm and suboptimal treatment arms are small.

G.2. Observed-Data statistical models

Next, we define a semiparametric model for observed data (Yt, At), as we can only observe the triple (Yt, At) and cannot
observe the full-data (Y1,t, Y2,t, . . . , YK,t).

Then, we first show the following lemma. We show the proof in Appendix H.

Lemma G.2. For P,Q, P ∈ P ,

1

T
EP [LT ] =

∑
a∈[K]

EP

[
log

faQ(Ya,t)

faP (Ya,t)

]
κT,P (a).
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Based on Lemma G.2, for some κ ∈ W , we consider the following samples {(Y t, At)}Tt=1, instead of {(Yt, At)}Tt=1,
generated as

{(Y t, At)}Tt=1
i.i.d∼ r(y, d) =

∏
a∈[K]

{faP (ya)κ(a)}
1[d=a]

,

where κ(a) corresponds to the conditional expectation of 1[At = a]. The expectation of LT for {(Y t, At)}Tt=1 on P is
identical to that for {(Yt, At)}Tt=1 from the result of Lemma G.2 when κ = κT,P . Therefore, to derive the lower bound for
{(Yt, At)}Tt=1, we consider that for {(Y t, At)}Tt=1. Note that this data generating process is induced by a full-data statistical
model P ∈ P; therefore, we call it an observed-data statistical model.

Formally, for a statistical model P ∈ P and some κ ∈ W , by using a density function of P , let R
κ

P be a distribution of an
observed-data statistical model {(Y t, At)}Tt=1 with the density given as

rκP (y, d) =
∏

a∈[K]

{faP (y)κ(a)}
1[d=a]

.

We call it an observed-data distribution. To avoid the complexity of the notation, we will denote {(Y t, At)}Tt=1 as
{(Yt, At)}Tt=1 in the following arguments. Let R =

{
RP : P ∈ P

}
be a set of all observed-data statistical models RP . For

P ∈ P , let R
κ

P = R
κ

0 , and rκP = rκ0 .

G.3. Parametric Submodels for the Full-Data statistical models

The purpose of this section is to introduce parametric submodels for the true full-data statistical model P ∈ P , which is
indexed by a real-valued parameter and a set of distributions contained in the larger set P , and define the derivative of the
parametric submodels.

In Section G.5, we define parametric submodels for observed-data statistical models under the true full-data statistical model,
which is a set of distributions contained in the larger set R0, by using the parametric submodels for full-data statistical
models. These definitions of parametric submodels are preparations for the series expansion of the log-likelihood; that is, we
consider approximation of the log-likelihood LT =

∑T
t=1

∑
a∈[K] 1[At = a] log

(
fa
Q(Y a

t )

fa
P (Y a

t )

)
using µ∗

0 − µa
0 , where Q ∈ P

is an alternative statistical model.

This section consists of the following two parts. In the first part, we define parametric submodels as (18) with condition (19).
Then, in the following part, we confirm the differentiability (24) and define score functions.

Definition of parametric submodels for the observed-data distribution. First, we define parametric submodels for the
true full-data statistical model P with the density function pP (y1, . . . , yK) by introducing a parameter ε = (εa)a∈[K]\{a∗

0}
εa ∈ Θ with some compact space Θ. We construct our parametric submodels so that the parameter can be interpreted as the
gap parameter of a parametric submodel. For P ∈ P , we define a set of parametric submodels

{
Pε : ε ∈ ΘK−1

}
⊂ P as

follows: for a set of some functions (ga)a∈[K]\{a∗
0} such that ga : R × R → R, a parametric submodel Pε has a density

such that for each a ∈ [K]\{a∗0}, ga(ϕ∗τ (y), ϕ
a
τ (y)) = 0, and

pε(y∗, ya) = (1 + εaga (ϕ∗τ (y), ϕ
a
τ (y))) pP (y∗, ya), (18)

where for a constant τ > 0 and each d ∈ [K], ϕdτ : R×X → (−τ, τ) is a truncation function such that for εa < c(τ),

ϕdτ (y) = y1[|y| < τ ]− EP [Y
d
t 1[|Y d

t | < τ ]], |εaga
(
ϕ∗τ (y), ϕ

a
τ (y)

)
| < 1,

and c(τ) is some decreasing scalar function with regard to τ such that for the inverse c−1(e) = τ , τ → ∞ as e→ 0. Let ϕa
∗
0

be denoted by ϕ∗. This is a standard construction of parametric submodels with unbounded random variables (Hansen, 2022).
For a ∈ [K]\{a∗0}, this parametric submodel must satisfy EP [g

a(ϕ∗τ (Yt), ϕ
a
τ (Yt))] = 0, EP [(g

a(ϕ∗τ (Yt), ϕ
a
τ (Yt)))

2] <∞,
and ∫ ∫

(y∗ − ya) pε(y∗, ya)dy∗dyadx = µ∗ − µa + εa. (19)
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In Section G.8, we specify functions (ga)a∈[K]\{a∗
0} and confirm that the specified ga satisfies (19). Note that the parametric

submodels are usually not unique. For each a ∈ [K]\{a∗0}, the parametric submodel pε(y∗, ya) is equivalent to pP (y∗, ya)
when εa = 0 for any (εe)e∈[K]\{a∗,a}.

For each a ∈ [K]\{a∗0} and a parametric submodel Pε, let f∗ε (y) and faε (y) = faεa(y) be the densities of Y ∗
t and Ya,t,

which satisfies (18) and (19) as

pε(y∗, ya) = f∗ε (y)f
a
εa(y),∫ ∫

(y∗ − ya) f
∗
ε (y)fa,εa(y)dy∗dya = µ∗ − µa + εa.

According to the definition of the parametric submodels, f∗0(y) = f∗P (y), f
a
0 (y) = fa0 (y) = faP (y).

Differentiablity and score functions of the parametric submodels for the full-data distribution. Next, we con-
firm the differentiablity of pε(y∗, ya). Because

√
pε(y∗, ya) is continuously differentiable for every (y∗, ya), and∫ ( ṗε(y∗,ya)

pε(y∗,ya)

)2
pε(y∗, ya)dm are well defined and continuous in ε, where m is some reference measure on (y∗, ya),

from Lemma 7.6 of van der Vaart (1998), we see that the parametric submodel has the score function ga in the L2 sense;
that is, the density pε(y∗, ya) is differentiable in quadratic mean (DQM): for a ∈ [K]\{a∗}, and any (εb)b∈[K]\{a∗,a},∫ [

p1/2ε (y∗, ya)− p
1/2
P (y∗, ya)−

1

2
εaga(ϕ

∗
τ (y), ϕa,τ (y))p

1/2
P (y∗, ya)

]2
dm = o (εa) . (20)

This relationship is derived from

∂

∂εa

∣∣∣
εa=0

log pε(y∗, ya) =
ga(ϕ∗,τ (y), ϕa,τ (y))

1 + εaga(ϕ∗,τ (y), ϕa,τ (y))

∣∣∣
εa=0

= ga(ϕ∗,τ (y), ϕa,τ (y)),

for any (εb)b∈[K]\{a∗,a}.

To clarify the relationship between ga and a score function, for each a ∈ [K]\{a∗0}, and any (εb)b∈[K]\{a∗,a}, we express
the score function as

ga(ϕ∗,τ (y), ϕ
a
τ (y)) =

∂

∂εa

∣∣∣
εa=0

log pε(y∗, ya) = S
a,a∗

0

f (y) + Sa,a
f (y),

where

S
a,a∗

0

f (y) =
∂

∂εa

∣∣∣
εa=0

log f∗ε (y), Sa,a
f (y) =

∂

∂εa

∣∣∣
εa=0

log faεa(y).

G.4. Mapping from Observed-Data to Full-Data statistical models

According to Section 7.2 of Tsiatis (2007), we define a mapping from full-data to observed-data as y = T d(y∗, ya), where
T d : R2 → R is a known many-to-one function, which maps the full-data (y∗, ya) to observed-data statistical models (yd).

We only consider a case where (Y ∗
t , Ya,t) is continuous and define a function V d : R2 → R as a counterfactual value of the

observation; that is, V d(Y ∗
t , Ya,t) = ((Y b

t )b∈{a∗,a}\{d}). Then, the mapping

(Y ∗
t , Ya,t) 7→ {T d(Y ∗

t , Ya,t), V
d(Y ∗

t , Ya,t)}

is one-to-one for all a ∈ [K]\{a∗0} and d ∈ {a∗, a}. For a ∈ [K]\{a∗0}, d ∈ {a∗, a}, τd = (yd), and
vd = ((yb)b∈{a∗,a}\{d}), which correspond to T d and V d respectively, we define the inverse transformation as

(y∗, ya) = Hd(τd, vd),

Then, by the standard formula for change of variables, let us define the density of (τd, vd) under T d and V d as

pT d,V d(τd, vd) = pP (H
d(τd, vd))J(τd, vd), (21)
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where J is the Jacobian of Hd with respect to (τd, vd). To find the density of the observed data rκP (y, d), we can use

rκP (y, d) =

∫
rκP,V d(τ

d, d, vd)dvd, (22)

where

rκP,V d(τ
d, d, vd) = κ(d)pT d,V d(τd, vd). (23)

Consequently, using (21) and (23), we can rewrite (22) as

rκP (y, d) =

∫
κ
(
d
)
pP (H

d(τd, vd))J(τd, vd)dvd.

G.5. Parametric Submodels for the Observed-Data statistical models and Tangent Space

This section consists of the following three parts. In the first part, we define parametric submodels as (18) with condition (19).
Then, in the following part, we confirm the differentiability (24) and define score functions. Finally, we define a set of score
functions, called a tangent set in the final paragraph.

By using the parametric submodels and tangent set, in Section G.7, we demonstrate the series expansion of the log-likelihood
(Lemma G.5). In this section and Section G.7, we abstractly provide definitions and conditions for the parametric submodels
and do not specify them. However, in Sections G.8 and G.9, we show a concrete form of the parametric submodel by finding
score functions satisfying the conditions imposed in this section.

By using the parametric submodels for the true full-data statistical model P ∈ P in Section G.3, we define parametric
submodels for observed-data statistical models under the true full-data statistical model P ∈ P . Because we define the
density functions of the parametric submodel of the true full-data statistical model, the parametric submodels for the
observed-data statistical models are given as follows:

rκε(y, a) = faεa(y)κ(a) ∀a ∈ [K]\{a∗0}, rκε(y, a
∗
0) = f∗ε (y)κ(a

∗
0).

Differentiablity and score functions of the parametric submodels for the observed-data distribution. Next, we
confirm the differentiablity of rκε(y, d). Because

√
rκε(y, d) is continuously differentiable for every y given d ∈ [K],

and
∫ ( ṙ

κ
ε (y,d)

rκε (y,d)

)2
rκε(y, d)dm are well defined and continuous in ε, where m is some reference measure on (y, d), from

Lemma 7.6 of van der Vaart (1998), we see that the parametric submodel has the score function ga in the L2 sense; that is,
the density rκε(y, d) is differentiable in quadratic mean (DQM): for a ∈ [K]\{a∗0}, d ∈ {a∗, a}, and any (εb)b∈[K]\{a∗,a},

Then we show the differentiablity in quadratic mean at εa = 0 of rκ,1/2ε in the following lemma. We show the proof in
Appendix I.

Lemma G.3. For a ∈ [K]\{a∗0} and d ∈ {a∗, a},∫ [
rκ 1/2
ε (y, d)− r

κ 1/2
0 (y, d)− 1

2
εaSa(y, d)r

κ 1/2
0 (y, d)

]2
dm = o (εa) . (24)

where

Sa(y, d) = EP

[
ga (ϕ∗τ (Y

∗
t ), ϕ

a
τ (Ya,t)) |T d(Y ∗

t , Y
∗
t ) = y

]
. (25)

In the following section, we specify a measurable function Sa wigh ga, satisfying the conditions (18) and (19), which
corresponds to a score function of rκ0 (y, a) and rκε(y, a

∗
0) for each a ∈ [K]\{a∗0}. To clarify the relationship between ga

and a score function, for each a ∈ [K]\{a∗0}, and any (εb)b∈[K]\{a∗,a}, we denote the score function as

Sa(y, d) =
∂

∂εa

∣∣∣
εa=0

log rκε(y, d) = 1[d = a∗0]S
a,a∗

0

f (y) + 1[d = a]Sa,a
f (y) ∀d ∈ {a∗, a},

Sa(y, d) = 0 ∀d ∈ [K]\{a∗, a}.
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Note that ∂
∂εa log κ(a) = 0.

Definition of the tangent set. Recall that parametric submodels and corresponding score functions are not unique. Here, we
consider a set of score functions. For a set of the parametric submodels

{
R

κ

ε : ε ∈ ΘK−1
}

, we obtain a corresponding set

of score functions ga in the Hilbert space L2(RQ), which we call a tangent set of R at R
κ

0 and denote it by Ṙa. Because
ER

κ
0
[(ga(ϕAt

τ (Yt), At))
2] is automatically finite, the tangent set can be identified with a subset of the Hilbert space L2(R

κ

0 ),

up to equivalence classes. For our parametric submodels, the tangent set at R
κ

0 in L2(R
κ

0 ) is given as

Ṙa =
{
1[d = a∗0]S

a,a∗
0

f (y) + 1[d = a]Sa,a
f (y)

}
.

G.6. Alternative statistical model

Then, we define a class of alternative hypotheses. To derive a tight lower bound by applying the change-of-measure
arguments, we use an appropriately defined alternative hypothesis. Our alternative hypothesis is defined using the parametric
submodel of P as follows:

Definition G.4. Let Alt(P ) ⊂ P be alternative statistical models such that for all Q ∈ Alt(P ), a∗(Q) ̸= a∗, and
R

κT,Q

ε = R
κT,Q

Q , where ε = (εa)a∈[K]\{a∗
0}, εa =

(
µa∗

0 (Q)− µa(Q)
)
− (µ∗

0 − µa
0).

This also implies that for all Q ∈ Alt(P ), for all a ∈ [K]\{a∗0}, µ∗
0 − µa

0 > 0 and there exists a ∈ [K]\{a∗0} such that
µa∗

0 (Q)− µa(Q) < 0. Let µa∗
0 (Q) be denoted by µ∗(Q).

G.7. Semiparametric Likelihood Ratio

For a ∈ [K]\{a∗0}, let ε be (0, . . . , 0, εa, 0, . . . , 0). Let us also define

La
T =

T∑
t=1

{
1[At = a∗0] log

(
f∗ε (Y

∗
t )

f∗P (Y
∗
t )

)
+ 1[At = a] log

(
faε (Y

a
t )

faP (Y
a
t )

)}
.

We consider series expansion of the log-likelihood La
T defined between P ∈ P and Q ∈ Alt(P ), where EQ [LT ] works as

a lower bound for the probability of misidentification as shown in Appendix G.10. We consider an approximation of La
T

under a small-gap regime (small µ∗
0 − µa

0), which is upper-bounded by the variance of the score function. Our argument is
inspired by that in Murphy & van der Vaart (1997).

Then, we prove the following lemma:

Lemma G.5. For P ∈ P , Q ∈ Alt(P ), and each a ∈ [K]\{a∗0},

1

T
EQ [La

T ] =
(εa)

2

2
EP

[
(Sa(Yt, At))

2
]
+ o

(
(εa)

2
)
.

To prove this lemma, for a ∈ [K]\{a∗0} and d ∈ [K], we define

ℓaε(y, d) = 1[d = a∗0] log f
∗
ε (y) + 1[d = a] log faεa(y).

Note that if εa = 0, then

ℓaε(y, d) = 1[d = a∗0] log f
∗
P (y) + 1[d = a] log faP (y).

Proof of Lemma G.5. By using the parametric submodel defined in the previous section, from the series expansion,

La
T =

T∑
t=1

{
1[At = a∗0] log

(
f∗ε (Y

∗
t )

f∗P (Y
∗
t )

)
+ 1[At = a] log

(
faε (Y

a
t )

faP (Y
a
t )

)}

=

T∑
t=1

{
∂

∂εa

∣∣∣
εa=0

ℓaε(Yt, At)ε
a +

∂2

∂(εa)2

∣∣∣
εa=0

ℓaε(Yt, At)
(εa)

2

2
+O

(
(εa)

3
)}

,
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Here, we fix (εb)b∈[K]\{a∗,a}, where εb = 0. Note that

∂

∂εa

∣∣∣
εa=0

ℓaε(y, d) = Sa(y, d),
∂

∂(εa)2

∣∣∣
εa=0

ℓaε(y, d) = − (Sa(y, d))
2
.

Let R
κT,Q

ε = Rε, rκT,Q
ε (y, d) = rε(y, d), and rκT,Q

0 (y, d) = r0(y, d). Then,

EQ [Sa(Yt, At)] = ERε
[Sa(Yt, At)]

= ERε
[Sa(Yt, At)]−

∑
d∈[K]

∫
Sa(y, d)

(
1 +

1

2
εaSa(y, d)

)2

r0(y, d)dy

+
∑
d∈[K]

∫
Sa(y, d)

(
1 +

1

2
εaSa(y, d)

)2

r0(y, d)dy

=
∑
d∈[K]

∫
Sa(y, d)

{
rε(y, d)−

(
1 +

1

2
εaSa(y, d)

)2

r0(y, d)

}
dydx

+
∑
d∈[K]

∫
Sa(y, d)

(
1 +

1

2
εaSa(y, d)

)2

r0(y, d)dy

=
∑
d∈[K]

∫
Sa(y, d)

{
rε(y, d)−

(
1 +

1

2
εaSa(y, d)

)2

r0(y, d)

}
dy

+ EP [Sa(Yt, At)] + εaEP

[
(Sa(Yt, At))

2
]
+

1

4
(εa)2EP

[
(Sa(Yt, At))

2
]
,

where we used ∑
d∈[K]

∫
Sa(y, d)r0(y, d)dy

=
∑
d∈[K]

∫ {
1[d = a∗0]S

a,a∗
0

f (y) + 1[d = a]Sa,a
f (y)

}
r0(y, d)dy.

Then, because the density rε(y, d) is DQM (24), as εa → 0,

EQ [Sa(Yt, At)]− EP [Sa(Yt, At)]− εaEP

[
(Sa(Yt, At))

2
]
= o(εa).

Similarly,

−EQ

[
(Sa(Yt, At))

2
]
+ EP

[
(Sa(Yt, At))

2
]
− εaEP

[
(Sa(Yt, At))

3
]
= o(εa).

By using these expansions, we approximate EQ [LT ]. Here, by definition, EP [Sa(Yt, At)] = 0. Then, we approximate the
likelihood ratio as follows:

1

T
EQ[L

a
T ] =

(εa)
2

2
EP

[
(Sa(Yt, At))

2
]
+O

(
(εa)

3
)
.

G.8. Observed-Data Semiparametric Efficient Influence Function

Our remaining task is to specify the score function Sa. Because there can be several score functions for our parametric
submodel due to directions of the derivative, we find a parametric submodel that has a score function with the largest
variance, called a least-favorable parametric submodel (van der Vaart, 1998).
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In this section, instead of the original observed-data statistical model R
κT,Q

ε , we consider an alternative observed-data
statistical model R

κT,Q †
0 , which is a distribution of {(ϕAt

τ (Yt), At)}Tt=1. Let R
κT,Q †
ε be parametric submodel defined as

well as Section G.5, RκT,Q †
ε be a set of all R

κT,Q †
ε , and rκT,Q †

ε (y, d = fd,†
εd

(y)κT,Q(d)ε. For each a ∈ [K]\{a∗0}, let
Sa †(y, d) and Ṙa † be a corresponding score function and tangent space, respectively.

As a preparation, we define a parameter µ∗(Q) − µa(Q) as a function ψa : RκT,Q †
ε → R such that ψa(R

κT,Q †
ε ) =

µ∗
0 − µa

0 + εa. The information bound for ψa
(
R

κT,Q †
ε

)
of interest is called semiparametric efficiency bound. Let linṘa †

be the closure of the tangent space. Then, ψa
(
R

κT,Q †
ε

)
= µ∗

0 − µa
0 + εa is pathwise differentiable relative to the tangent

space Ṙa † if and only if there exists a function ψ̃a ∈ linṘa † such that

∂

∂εa

∣∣∣
εa=0

ψa
(
R

κT,Q †
ε

)(
=

∂

∂εa

∣∣∣
εa=0

{
µ∗
0 − µa

0 + εa
}
= 1

)
= E

R
κT,Q †
ε

[
ψ̃a(Yt, At)S

a †(Yt, At)
]
.

This function ψ̃a is called the semiparametric influence function.

Then, we prove the following lemma on the lower bound for EP

[
(Sa(Yt, At))

2
]
, which is called the semiparametric

efficiency bound:

Lemma G.6. Any score function Sa † ∈ Ṙa † satisfies

EP

[(
Sa †(Yt, At)

)2] ≥ 1

EP

[(
ψ̃a(Yt, At)

)2] .
Proof. From the Cauchy-Schwartz inequality, we have

1 = EP

[
ψ̃a(Yt, At)S

a †(Yt, At)
]
≤

√
EP

[(
ψ̃a(Yt, At)

)2]√
EP

[
(Sa †(Yt, At))

2
]
.

Therefore,

sup
Sa †∈Ṙa †

1

EP

[
(Sa †(Yt, At))

2
] ≤ EP

[(
ψ̃a(Yt, At)

)2]
.

For a ∈ [K]\{a∗0} and d ∈ [K]\{a∗, a}, let us define a semiparametric efficient score function Sa
eff(y, d) ∈ linṘa † as

Sa
eff(y, d) =

ψ̃a(y, d)

EP

[(
ψ̃a(Yt, At)

)2] .

Next, we consider finding ψ̃a ∈ linṘa †. We can use the result of Hahn (1998). Let us guess that for each a ∈ [K]\{a∗0}
and d ∈ {a∗, a}, ψ̃a(y, d) is given as follows:

ψ̃a(y, d) =
1[d = a](ϕ∗τ (y)− µ∗

0)

κT,Q(a∗0)
− 1[d = a](ϕaτ (y)− µa

0)

κT,Q(a)
. (26)

Then, as shown by Hahn (1998), the condition 1 = E
R

κT,Q †
ε

[
ψ̃a(Yt, At)S

a(Yt, At)
]

holds under (26) when for each
a ∈ [K]\{a∗0} and d ∈ {a∗, a}, the semiparametric efficient score functions are given as

Sa
eff(y, d) = 1[d = a∗0]S

a,a∗
0

f,eff (y) + 1[d = a]Sa,a
f,eff(y),
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S
a,a∗

0

f,eff (y) =
(ϕ∗τ (y)− µ∗

0)

κT,Q(a∗0)
/Ṽ a

0 (κT,Q; τ),

Sa,a
f,eff(y) =

(ϕaτ (y)− µa
0)

κT,Q(a)
/Ṽ a

0 (κT,Q; τ).

where

Ṽ a
0 (κT,Q; τ) =

(σ∗
0(τ))

2

κT,Q(a∗0)
+

(σa
0 (τ))

2

κT,Q(a)
,

(σ∗
0(τ))

2
:= (ϕ∗τ (Yt; τ)− µ∗

0)
2
,

(σa
0 (τ))

2
:= (ϕaτ (Yt; τ)− µa

0)
2
.

Here, note that for each d ∈ [K],

EP

[(
ϕdτ (Yt)− µd

0

)2]
= EP

[(
Y d
t 1[|Y d

t | < τ ]− Y d
t 1[|Y d

t | < τ ]
)2]

= EP

[(
Y d
t

)2
1[|Y d

t | < τ ]
]
−
(
EP [Y

d
t 1[|Y d

t | < τ ]]
)2
.

We also note that E
R

κT,Q †
ε

[Sa
eff(Yt, At)] = 0 and

E
R

κT,Q †
ε

[(
Sa
eff(Yt, At)

)2]
= Ṽ a

0 (κT,Q; τ) =

(
E
R

κT,Q †
ε

[(
ψ̃a(Yt, At)

)2])−1

.

Summarizing the above arguments, we obtain the following lemma.

Lemma G.7. For a ∈ [K]\{a∗0} and d ∈ [K]\{a∗, a}, the semiparametric efficient influence function is

ψ̃a(y, d) =
1[d = a∗0](ϕ

∗
τ (y)− µ∗

0)

κT,Q(a∗0)
− 1[d = a](ϕaτ (y)− µa

0)

κT,Q(a)
.

We also define the limit of the semiparametric efficient influence function when τ → ∞ and the variance as

ψ̃a
∞(y, d) =

1[d = a∗0](Y
∗
t − µ∗

0)

κT,Q(a∗0)
− 1[d = a](Ya,t − µa

0)

κT,Q(a)
,

Ṽ a
0 (κT,Q) = EP

[(
ψ̃a
∞(Yt, At)

)2]
= EP

[
(σ∗

0)
2

κT,Q(a∗0)
+

(σa
0 )

2

κT,Q(a)

]
≥ Ωa

0(κT,Q),

where C > 0 is a constant.

G.9. Specification of the Observed-Data Score Function

According to Lemma G.6, we can conjecture that if we use the semiparametric efficient score function for our score function,
we can obtain a tight upper bound for EP [L

a
T ], which is related to a lower bound for the probability of misidentification. Note

that the variance of the semiparametric efficient score function is equivalent to the lower bound in Lemma G.6. However,
we cannot use the semiparametric efficient score function because it is derived for R

κT,Q †
ε , rather than R

κT,Q

ε . Furthermore,
if we use the semiparametric efficient score function for our score function, the constant (19) is not satisfied. Therefore,
based on our obtained result, we specify our score function, which differs from the semiparametric efficient score function,
but they match when τ → ∞.

We specify our score function Sa(y, d) = 1[d = a∗0]S
a,a∗

0

f (y) + 1[d = a]Sa,a
f (y) as follows:

S
a,a∗

0

f (y) =
ϕ∗τ (y)− µ∗

0

κT,Q(a∗0)
/V a

0 (κT,Q; τ) = S
a,a∗

0)
f,eff (y)Ṽ a

0 (κT,Q; τ)/V
a
0 (κT,Q; τ),



Submission and Formatting Instructions for ICML 2022

Sa,a
f (y) =

ϕaτ (y)− µa
0

κT,Q(a)
/V a

0 (κT,Q; τ) = Sa,a
f,eff(y)Ṽ

a
0 (κT,Q; τ)/V

a
0 (κT,Q; τ),

where

V a
0 (κT,Q; τ) = Ṽ a

0 (κT,Q; τ) +
∑

d∈{a∗,a}

EP

[
µd
0EP [Y

d
t 1[|Y d

t | < τ ]]−
(
EP [Y

d
t 1[|Y d

t | < τ ]]
)2

κT,Q(d)

]

= EP

[
Y ∗
t (ϕ∗τ (Yt)− µ∗

0)

κT,Q(a∗0)
+
Ya,t (ϕ

a
τ (Yt)− µa

0)

κT,Q(a)
+
((
µ∗
0 − µa

0

)
−
(
µ∗
0 − µa

0

))2]
. (27)

Here, note that for d ∈ [K],

EP

[
Y d
t

(
ϕdτ (Yt)− µd

0

)]
= EP

[((
Y d
t

)2
1[|Y d

t | < τ ]− Y d
t EP [Y

d
t 1[|Y d

t | < τ ]]]
)]

= EP

[
EP

[(
Y d
t

)2
1[|Y d

t | < τ ]
]
− µd

0EP [Y
d
t 1[|Y d

t | < τ ]]
]
.

We note that V a
0 (κT,Q; τ) → Ṽ a

0 (κT,Q) as εa → 0 and τ → ∞,.

From the definition of the parametric submodel, we have

ga(ϕ∗τ (y), ϕ
a
τ (y)) = S

a,a∗
0

f (y) + Sa,a
f (y) =

{
(ϕ∗τ (y)− µ∗

0)

κT,Q(a∗0)
− (ϕaτ (y)− µa

0)

κT,Q(a)

)}
/V a

0 (κT,Q; τ).

Then, we can also confirm that condition (19) holds for our specified ga:∫ ∫
(y∗ − ya) (1 + εaga(ϕ∗τ (y), ϕ

a
τ (y))) pP (a

∗, a)dy∗dyadx

= µ∗
0 − µa

0 + εa
{∫ ∫

(y∗ − ya) ga(ϕ∗τ (y), ϕ
a
τ (y))r0(y, a

∗
0)dy

∗dyadx

}
= µ∗

0 − µa
0 + εa,

where we used the definition of the variance (27).

In summary, from Lemmas G.5, under our specified score function, we obtain the following lemma:
Lemma G.8. For P ∈ P and Q ∈ Alt(P ),

1

T
EQ[L

a
T ] =

(εa)
2

2V a
0 (κT,Q; τ)

+O
(
(εa)

3
)
.

G.10. Proof of Lemma 4.6: Derivation of a Lower Bound of the Probability of Misidentification

Here, we derive a lower bound for the probability of misidentification as follows, which is refined later:
Lemma G.9. For any P ∈ P , any consistent experiment satisfies

lim
∆0→0

lim sup
T→∞

− 1

T
logPP0

(âT ̸= a∗0)

≤ min
a∈[K]\{a∗

0}
inf

Q∈P∗

εa(Q)<−(µ∗
0−µa

0 )

lim sup
T→∞

1

2Ωa
0(κT,Q)

+ o(1).

Proof of Lemma G.9. For each Q ∈ Alt(P ), EQ[LT ] ≥ supE∈FT
d(PQ(E),PP (E)) holds from Proposition G.1. Let

E = {âT = a∗}. Because we assume that the experiment is consistent and asymptotically invariant for both models
and from the definition of Alt(P ), for each ϵ1 ∈ (0, 1) and ϵ2 > 0, there exists t0(ϵ1, ϵ2) such that for all T ≥ t0(ϵ1),
PQ(E) ≤ ϵ1 ≤ PP0

(E), and κT,Q(a) ≤ κT,P (a) + ϵ2. Then, for all T ≥ t0(ϵ1, ϵ2), EQ[LT ] ≥ d(ϵ1, 1− PP (âT ̸= a∗0)) =
ϵ log ϵ

1−PP0
(âT ̸=a∗

0)
+ (1− ϵ1) log

1−ϵ1
PP (âT ̸=a∗

0)
. Then, taking the limsup and letting ϵ1, ϵ2 → 0,

lim sup
T→∞

− 1

T
logPP0

(âT ̸= a∗0) ≤ inf
Q∈Alt(P )

lim sup
T→∞

1

T
EQ[LT ]
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Figure 2. An idea in the derivation of the lower bounds. To lower bound the probability of misidentification, or equivalently upper bound
− 1

T
log PP0(âT ̸= a∗

0), it is sufficient to consider a case in the fight figure.

≤ inf
Q∈Alt(P )

lim sup
T→∞

∑
a∈[K]

EQ

[
EQ

[
log

faQ(Y
a)ζQ

faP (Y
a)ζP

]
κT,Q(a)

]

= min
a∈[K]\{a∗

0}
inf
Q∈P

µ∗(Q)−µa(Q)<0

lim sup
T→∞

EQ

[
EQ

[
log

faQ(Y
a)ζQ

faP (Y
a)ζP

]
κT,Q(a)

]
.

For εa(Q) = (µ∗(Q)− µa(Q)) − (µ∗
0 − µa

0) < 0, we have εa(Q) < − (µ∗
0 − µa

0) ⇔ µ∗(Q) − µa(Q) < 0, where
µ∗(Q)− µa(Q) < 0. Therefore,

min
a∈[K]\{a∗

0}
inf
Q∈P

µ∗(Q)−µa(Q)<0

lim sup
T→∞

∑
a∈[K]

EQ

[
EQ

[
log

faQ(Ya,t)ζQ

faP (Ya,t)ζP

]
κT,Q(a)

]

= min
a∈[K]\{a∗

0}
inf

Q∈P∗

εa(Q)<−(µ∗
0−µa

0 )

∀b∈[K]\{a∗,a} εb=0

lim sup
T→∞

∑
a∈[K]

ERε

[
ERε

[
log

faε (Ya,t)ζε
faP (Ya,t)ζP

]
κT,Q(a)

]

= min
a∈[K]\{a∗

0}
inf

Q∈P∗

εa(Q)<−(µ∗
0−µa

0 )

lim sup
T→∞

∑
a∈{a∗,a}

ERε

[
ERε

[
log

faε (Ya,t)ζε
faP (Ya,t)ζP

]
κT,Q(a)

]

= min
a∈[K]\{a∗

0}
inf

Q∈P∗

εa(Q)<−(µ∗
0−µa

0 )

lim sup
T→∞

{
(εa)

2

2V a
0 (κT,Q; τ)

+O
(
(εa)

3
)}

≤ min
a∈[K]\{a∗

0}
inf

Q∈P∗

εa(Q)<−(µ∗
0−µa

0 )

lim sup
T→∞

{
(µ∗

0 − µa
0)

2

2V a
0 (κT,Q; τ)

−O
(
(µ∗

0 − µa
0)

3
)}

≤ min
a∈[K]\{a∗

0}
inf

Q∈P∗

εa(Q)<−(µ∗
0−µa

0 )

lim sup
T→∞

(µ∗
0 − µa

0)
2

2V a
0 (κT,Q; τ)

.

Then, as µ∗
0 − µa

0 → 0, we obtain V a
0 (w; τ) → Ṽ a

0 (κT,Q) by letting τ → ∞, which is the semiparametric efficiency bound
in Lemmas G.6 and G.7. This also implies 1/V a

0 (w; τ) = 1/Ṽ a
0 (κT,Q) + o(1) as µ∗

0 − µa
0 → 0.

Because all gaps µ∗
0 − µa

0 are assumed to be upper bounded by ∆a, we consider a situation where the expected outcomes
of all suboptimal treatment arms are in [µ∗

0 −∆0, µ
∗
0). To obtain lower bounds, it is sufficient to consider a case where

µb = µ∗
0 = ∆0, under which the largest lower bounds are given (Figure 2).

Therefore, for ∆0 > 0 such that µ∗
0 − µa

0 < ∆0 for all a ∈ [K],

lim
∆0→0

lim sup
T→∞

− 1

∆2
0T

logPP0(âT ̸= a∗0)

≤ min
a∈[K]\{a∗

0}
inf

Q∈P∗

εa(Q)<−(µ∗
0−µa

0 )

lim sup
T→∞

1

2Ṽ a
0 (κT,Q)

+ o(1).



Submission and Formatting Instructions for ICML 2022

From Ṽ a
0 (κT,Q) ≥ Ωa

0(κT,Q), the proof is complete.

H. Proof of Lemma G.2
Proof.

EQ[LT ] =

T∑
t=1

EQ

 ∑
a∈[K]

1{At = a} log
faQ(Y

a
t )

faP (Y
a
t )


=

T∑
t=1

EFt−1

Q

 ∑
a∈[K]

EYa,t,At

Q

[
1[At = a] log

faQ(Y
a
t )

faP (Y
a
t )

|Ft−1

]
=
∑

a∈[K]

EY a

Q

[
log

faQ(Y
a)

faP (Y
a)

] T∑
t=1

EFt

Q [EQ [1[At = a]|Ft−1]]

where EZ
Q denotes an expectation of random variableZ over the distributionQ. We used that the observations (Y1,t, . . . , YK,t)

are i.i.d. across t ∈ T .

I. Proof of Lemma G.3
Proof. For the parametric submodel of the observed-data statistical models, the log-likelihood for the observed data is

log rκε(y, d) = log

∫
κ(d)pε(H

d(τd, vd))J(τd, vd)dvd,

where note that pε(Hd(τd, vd)) = pε(y
∗, ya). Then, for d ∈ {a∗, a},

Sa(y, d) =
∂

∂εa

[
log

∫
κ(d)pε(H

d(τd, vd))J(τd, vd)dvd
] ∣∣∣∣∣

εa=0

=

∫
∂

∂εaκ(d)pε(H
d(τd, vd))J(τd, vd)dvd∫

κ(d)pε(y∗, ya)pε(Hd(τd, vd))J(τd, vd)dvd
. (28)

Dividing and multiplying by pε(Hd(τd, vd))J(τd, vd)dvd in the integral of the numerator of (28) yields∫
∂

∂εaκ(d)pε:εa=0(H
d(τd, vd))J(τd, vd)dvd∫

κ(d)pε:εa=0(Hd(τd, vd))J(τd, vd)dvd

=

∫
ga(ϕ∗τ (y), ϕ

a
τ (y))pε:εa=0(H

d(τd, vd))J(τd, vd)dvd∫
κ(d)pε:εa=0(Hd(τd, vd))J(τd, vd)dvd

=

∫
ga(ϕ∗τ (y), ϕ

a
τ (y))pP (H

d(τd, vd))J(τd, vd)dvd∫
κ(d)pP (Hd(τd, vd))J(τd, vd)dvd

.

Hence,

Sa(y, d) = EP

[
ga(ϕ∗τ (Y

∗
t ), ϕ

a
τ (Ya,t))|T d(Y ∗

t , Ya,t) = (y)
]

This concludes the proof.

J. Proofs of Theorem 4.7
Proof. From Lemma 4.6, if there exists ∆0 > 0 such that µ∗

0 −µa
0 ≤ ∆0 for all a ∈ [K], the lower bounds are characterized

by

max
w∈W

min
a ̸=a∗

0

1

(σ∗
0)

2

w(a∗
0)

+
(σa

0 )
2

w(a)

.
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We consider maximising R > 0 such that R ≤ 1/2
(σ∗

0 )
2

w(a∗
0)

+
(σa

0 )
2

w(a) for all a ∈ [K]\{a∗0} by optimizing w ∈ W . That is, we
consider the following non-linear programming:

max
R>0,w={w(1),w(2)...,w(K)}∈(0,1)K

R

s.t. R

(
(σ∗

0)
2

w(a∗0)
+

(σa
0 )

2

w(a)

)
ζ − 1 ≤ 0 ∀a ∈ [K]\{a∗0},∑

a∈[K]

w(a)− 1 = 0,

w(a) > 0 ∀a ∈ [K].

The maximum of R in the constraint optimization is equal to maxw∈W mina ̸=a∗
0

1
(σ∗

0 )
2

w(a∗
0)

+
(σa

0 )
2

w(a)

.

Then, for (K − 1) Lagrangian multiplies λ = {λa}a∈[K]\{a∗
0} and γ such that λa ≤ 0 and γ ∈ R, we define the following

Lagrangian function:

L(λ,γ;R,w)

= R+
∑

a∈[K]\{a∗
0}

λa

{
R

(
(σ∗

0)
2

w(a∗0)
+

(σa
0 )

2

w(a)

)
− 1

}
− γ

 ∑
a∈[K]

w(a)− 1


= R+

∑
a∈[K]\{a∗

0}

λa

{
R

(
(σ∗

0)
2

w(a∗0)
+

(σa
0 )

2

w(a)

)
− 1

}
− γ

 ∑
a∈[K]

w(a)− 1

 .

Note that the objective (R) and constraints (R
(

(σ∗
0 )

2

w(a∗
0)

+
(σa

0 )
2

w(a)

)
− 1 ≤ 0 and

∑
a∈[K] w(a) − 1 = 0) are differentiable

convex functions for R and w. Therefore, the global optimizer R∗ and w∗ = {w∗(a)} ∈ (0, 1)KN satisfies the KKT
condition; that is, there are Lagrangian multipliers λa∗, γ∗, and R∗ such that

1 +
∑

a∈[K]\{a∗
0}

λa∗

(
(σ∗

0)
2

w∗(a∗0)
+

(σa
0 )

2

w∗(a)

)
= 0 (29)

− 2
∑

a∈[K]\{a∗
0}

λa∗R∗ (σ∗
0)

2

(w∗(a∗0))
2
= γ∗ (30)

− 2λa∗R∗ (σa
0 )

2

(w∗(a))2
= γ∗ ∀a ∈ [K]\{a∗0} (31)

λa∗

{
R∗

(
(σ∗

0)
2

w∗(a∗0)
+

(σa
0 )

2

w∗(a)

)
− 1

}
= 0 ∀a ∈ [K]\{a∗0} (32)

γ∗

∑
c∈[K]

w∗(c)− 1

 = 0

λa∗ ≤ 0 ∀a ∈ [K]\{a∗0}. (33)

Here, (29) implies λa∗ < 0 for some a ∈ [K]\{a∗0}. This is because if λa∗ = 0 for all a ∈ [K]\{a∗0}, 1 + 0 = 1 ̸= 0.

With λa∗ < 0, since −λa∗R∗ (σa
0 )

2

(w∗(a))2 > 0 for all a ∈ [K], it follows that γ∗ > 0. This also implies that
∑

c∈[K] w
c∗−1 = 0.

Then, (32) implies that

R∗

(
(σ∗

0)
2

w∗(a∗0)
+

(σa
0 )

2

w∗(a)

)
= 1 ∀a ∈ [K]\{a∗0}.



Submission and Formatting Instructions for ICML 2022

Therefore, we have

(σa
0 )

2

w∗(a)
=

(
σb
0

)2
w∗(b)

∀a, b ∈ [K]\{a∗0}. (34)

Let (σa
0 )

2

w∗(a) =
(σb

0)
2

w∗(b) = 1
R∗ − (σ∗

0 )
2

w∗(a∗
0)

= U . From (34) and (29),∑
b∈[K]\{a∗

0}

λb∗ = − 1

(σ∗
0)

2

w∗(a∗
0)

+ U

(35)

From (30) and (31),

(σ∗
0)

2

(w∗(a∗0))
2

∑
b∈[K]\{a∗

0}

λb∗ = λa∗
(σa

0 )
2

(w∗(a))2
∀a ∈ [K]\{a∗0}. (36)

From (35) and (36),

− (σ∗
0)

2

(w∗(a∗0))
2
= λa∗

(σa
0 )

2

(w∗(a))2

(
(σ∗

0)
2

w∗(a∗0)
+ U

)
∀a ∈ [K]\{a∗0}. (37)

From (29) and (37),

w∗(a∗0) =

√√√√(σ∗
0)

2
∑

a∈[K]\{a∗
0}

(w∗(a))2

(σa
0 )

2 .

In summary, we have the following KKT conditions:

w∗(a∗0) =

√√√√(σ∗
0)

2
∑

a∈[K]\{a∗
0}

(w∗(a)2

(σa
0 )

2

(σ∗
0)

2

(w∗(a∗0))
2
= −λa∗ (σa

0 )
2

(w∗(a))2

((
(σ∗

0)
2

w∗(a∗0)
+

(σa
0 )

2

w∗(a)

))
∀a ∈ [K]\{a∗0}

− λa∗
(σa

0 )
2

(w∗(a))2
= γ̃∗ ∀a ∈ [K]\{a∗0}

(σa
0 )

2

w∗(a)
=

1

R∗ − (σ∗
0)

2

w∗(a∗0)
∀a ∈ [K]\{a∗0}∑

a∈[K]

w∗(a) = 1

λa∗ ≤ 0 ∀a ∈ [K]\{a∗0},

where γ̃∗ = γ∗/2R∗. From w∗(a∗0) =

√
(σ∗

0)
2∑

a∈[K]\{a∗
0}

(w∗(a))2

(σa
0 )

2 and −λa∗ (σa
0 )

2

(w∗(a))2 = γ̃∗, we have

w∗(a∗0) = σ∗
0

√ ∑
a∈[K]\{a∗

0}

−λa∗/
√
γ̃∗

w(a) =
√

−λa∗/γ̃∗σa
0 .

From
∑

a∈[K] w
∗(a) = 1,

σ∗
0

√ ∑
a∈[K]\{a∗

0}

−λa∗/
√
γ̃∗ +

∑
a∈[K]\{a∗

0}

√
−λa∗/γ̃∗σa

0 = 1.



Submission and Formatting Instructions for ICML 2022

Therefore, √
γ̃∗ = σ∗

0

√ ∑
a∈[K]\{a∗

0}

−λa∗ +
∑

a∈[K]\{a∗
0}

√
−λa∗σa

0 .

Hence,

w∗(a∗0) =
σ∗
0

√∑
a∈[K]\{a∗

0}
−λa∗

σ∗
0

√∑
a∈[K]\{a∗

0}
−λa∗ +

∑
a∈[K]\{a∗

0}
√
−λa∗σa

0

w(a) =

√
−λa∗σa

0

σ∗
0

√∑
a∈[K]\{a∗

0}
−λa∗ +

∑
a∈[K]\{a∗

0}
√
−λa∗σa

0

,

where from (σ∗
0 )

2

(w∗(a∗
0))

2 = −λa∗ (σa
0 )

2

(w∗(a))2

(
(σ∗

0 )
2

w∗(a∗
0)

+
(σa

0 )
2

w∗(a)

)
, (λa

∗
0 )a∈[K]\{a∗

0} satisfies,

1∑
a∈[K]\{a∗

0}
−λa∗

=

 σ∗
0√∑

a∈[K]\{a∗
0}

−λa∗
+

σa
0√

−λa∗

σ∗
0

√ ∑
c∈[K]\{a∗

0}

−λc∗ +
∑

c∈[K]\{a∗
0}

√
−λc∗σc

0


=

σ∗
0 +

σa
0√

−λa∗

√ ∑
c∈[K]\{a∗

0}

−λc∗

σ∗
0 +

∑
c∈[K]\{a∗

0}
√
−λc∗σc

0∑
c∈[K]\{a∗

0}
−λc∗

√ ∑
c∈[K]\{a∗

0}

−λc∗

 .

Then, the following solutions satisfy the above KKT conditions:

R∗

σ∗
0 +

√ ∑
b∈[K]\{a∗

0}

(
σb
0

)22

= 1

w∗(a∗0) =
σ∗
0

√∑
b∈[K]\{a∗

0}
(
σb
0

)2
σ∗
0

√∑
b∈[K]\{a∗

0}
(
σb
0

)2
+
∑

b∈[K]\{a∗
0}
(
σb
0

)2
w∗(a) =

(σa
0 )

2

σ∗
0

√∑
b∈[K]\{a∗

0}
(
σb
0

)2
+
∑

b∈[K]\{a∗
0}
(
σb
0

)2
λa∗ = − (σa

0 )
2

γ∗ = 2 (σa
0 )

2
.

Note that a target allocation ratiow in the maximum corresponds to a limit of an expectation of sampling rule 1
T

∑T
t=1 1[At =

a] from the definition of asymptotically invariant strategies.

K. Asymptotic Optimality for BAI
K.1. Proof of Theorem 4.9

We can prove Corollary 4.9 by using a proof procedure similar to Theorem 4.7.

Proof. We consider solving

max
a∈[K],w∈W

min
b∈[K],b ̸=a

1

2

(
(σa

0 )
2

w(a) +
(σb

0)
2

w(b)

) .
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We solved maxw∈W mina̸=a∗
0

1

2

(
(σ∗

0 )
2

w(a∗
0)

+
(σa

0 )
2

w(a)

) in the proof of Theorem 4.7. Similarly, we solve this

maxw∈W mina̸=b
1

2

(
(σa

0 )
2

w(a)
+
(σb

0)
2

w(b)

) .

Therefore, we consider the following non-linear programming: To solve this problem, we consider maximising R > 0 by
solving

max
R>0,w={w(a)}∈(0,1)K

R

s.t. R

(
(σa

0 )
2

w(a)
+

(
σb
0

)2
w(b)

)
− 1 ≤ 0 ∀a ̸= b ∈ [K],∑

a∈[K]

w(a)− 1 = 0,

w(a) > 0 ∀a ∈ [K].

Then, for KC2 Lagrangian multiplies λ = {λba}a∈[K],b∈[K]:b>a, and γ such that λab ≤ 0 and γ ∈ R, we define the following
Lagrangian function:

L(λ, γ;R,w) = R+
∑

a∈[K]

∑
b∈[K]:b>a

λba

{
R

(
(σa

0 )
2

w(a)
+

(
σb
0

)2
w(b)

)
− 1

}
− γ

 ∑
a∈[K]

w(a)− 1

 .

Note that the objective (R) and constraints are differentiable convex functions for R and w. Therefore, the global optimizer
R∗ and w∗ = {w∗(a)} ∈ (0, 1)K satisfies the KKT condition; that is, there are Lagrangian multipliers λb∗a , γ∗, and R∗

such that

1 +
∑

a∈[K]

∑
b∈[K]:b>a

λb∗a

(
(σa

0 )
2

w∗(a)
+

(
σb
0

)2
w∗(b)

)
= 0

− 2
∑

b∈[K]\{c}

λb∗c R
∗ (σc

0)
2

(w∗(c))2
− 2

∑
a∈[K]\{c}

λc∗a R
∗ (σc

0)
2

(w∗(c))2
= γ∗ ∀c ∈ [K]

λb∗a

{
R∗

(
(σa

0 )
2

w∗(a)
+

(
σb
0

)2
w∗(b)

)
− 1

}
= 0 ∀a ∈ [K], ∀b ∈ [K] : b > a,

γ∗

 ∑
a∈[K]

w∗(a)− 1

 = 0

λa∗b ≤ 0 ∀a ∈ [K], ∀b ∈ [K] : b > a.

The solution differs according to the number of the treatment arms K. When K = 2, w∗(a) =
σa
0

σ1
0+σ2

0
. When K ≥ 3, we

could not obtain a closed-form solution except for the following specific case.

Lower bounds for multi-armed equal-variance statistical models. Here, we show the second statement of Corollary M.2,
where

(
σ1
0

)2
= · · · =

(
σK
)2

= (σ)
2. In this case, solutions that satisfy the KKT conditions are given as

w∗(a) =
1

K
∀a ∈ [K],

R∗ =
1

2K (σ)
2 ,

λb∗a = − R∗

K − 1
∀a ̸= b ∈ [K],

γ∗ = 2K2(R∗)2 (σ)
2
.
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L. Proof of Theorem D.1
The proof follows those in van der Laan (2008), Hahn et al. (2011), and Kato et al. (2020). We specifically follow the proof
procedure of Proposition 1 of Kato et al. (2020).

Proof. Let w ∈ (0, 1). From Lemma 4.6,

min
a∈[K]\{a∗

0}
inf

Q∈P∗
s.t. µ∗(Q)−µa(Q)<0

lim sup
T→∞

1

2Ωa
0(κ

π
T,Q)

= min
a∈[K]\{a∗

0}
inf

Q∈P∗
s.t. µ∗(Q)−µa(Q)<0

sup
w∈(0,1)

1

2

(
(σ1

0)
2

w +
(σ2

0)
2

1−w

)
= sup

w∈(0,1)

1

2

(
(σ1

0)
2

w +
(σ2

0)
2

1−w

) ,
If there exists maxw∈(0,1)

1

2

(
(σ1

0)
2

w +
(σ2

0)
2

1−w

) , we have

sup
w∈(0,1)

1

2

(
(σ1

0)
2

w +
(σ2

0)
2

1−w

) = max
w∈(0,1)

1

2

(
(σ1

0)
2

w +
(σ2

0)
2

1−w

) .
Here, let w∗ be an point of maximum. Then, it holds that

max
w∈(0,1)

1

2

(
(σ1

0)
2

w +
(σ2

0)
2

1−w

) =
1

2

(
(σ1

0)
2

w∗ +
(σ2

0)
2

1−w∗

) .

Let us consider finding minimum of 2
(
(σ1

0)
2

w +
(σ2

0)
2

1−w

)
. Obviously, as 1/z is strictly decreasing for z > 0, then minimum

will be at the point of maximum of z. Therefore,

argmax
w∈W

1

2

(
(σ1

0)
2

w +
(σ2

0)
2

1−w

) = argmin
w∈W

2

((
σ1
0

)2
w

+

(
σ2
0

)2
1− w

)
.

Then, instead of the maximization problem, we consider

min
w∈W

2

((
σ1
0

)2
w

+

(
σ2
0

)2
1− w

)

Therefore, let us define the following function b : W → R:

b(w) =

((
σ1
0

)2
w

+

(
σ2
0

)2
1− w

)
.

We consider minimizing b(w) by minimizing b̃(q) = (σ1
0)

2

q +
(σ2

0)
2

1−q for q ∈ (0, 1). The first derivative of b̃(q) with respect
to q is given as follows:

b̃′(q) = −
(
σ1
0

)2
q2

+

(
σ2
0

)2
(1− q)2

.
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The second derivative of b̃(q) is given as

b̃′′(q) = 2

(
σ1
0

)2
q3

+ 2

(
σ2
0

)2
(1− q)3

.

For q ∈ (0, 1), because b̃′′(q) > 0, the minimizer q∗ of b̃ satisfies the following equation:

−
(
σ1
0

)2
(q∗)2

+

(
σ2
0

)2
(1− q∗)2

= 0.

This equation is equivalent to

− (q∗)2e(0) + (1− q∗)2e(1) = 0

⇔ q∗
√

(σ2
0)

2
= (1− q∗)

√
(σ1

0)
2

⇔ q∗ =

√
(σ1

0)
2√

(σ1
0)

2
+

√
(σ2

0)
2
.

Therefore,

q∗ =
σ1
0

σ1
0 + σ2

0

.

M. Lower Bounds for Multi-Armed Equal-Variance Statistical Models
As a generalization of statistical models with potential outcomes adhering to one-parameter distributions, such as Bernoulli,
Binomial, and Gamma distributions, we define the equal-variance statistical models.

Definition M.1 (Equal-variance statistical models). statistical models PE are equal-variance statistical models if for local
location-shift statistical model P∗, σ1 = σ2 = · · · = σK = σ for any x ∈ X , where σ is a constant.

When outcomes follow Bernoulli distributions, the statistical model belongs to the equal-variance statistical models because
the variances are the same when the expected outcomes are the same. For this class, the lower bound are given as follows.
We omit the proof because we just substitute σ = σ1

0 = · · · = σK for Theorems D.1–4.9.

Corollary M.2 (Lower bounds for multi-armed equal-variance statistical models). Let ∆0 > 0 be a constant independent
from T such that µ∗

0 − µa
0 ≤ ∆0.

• Let Π be a class of consistent strategies (Definition 4.1). For K = 2, any P ∈ P∗ and π ∈ Π„

lim sup
T→∞

− 1

T
logPP0

(âπT ̸= a∗0) ≤
1

8EP

[
(σ)

2
] + o(1),

where the target allocation ratio is given as

w∗(1) = w∗(2) = 1/2 ∀x ∈ X .

• Let Π be a class of consistent (Definition 4.1) and asymptotically invariant (Definition 4.3) strategies. For K ≥ 3, any
P ∈ P∗ and π ∈ Π,

lim sup
T→∞

− 1

T
logPP0

(âπT ̸= a∗0)

≤ 1

2
(
1 +

√
K − 1

)2 EP

[
(σ)

2
] + o(1),



Submission and Formatting Instructions for ICML 2022

where the target allocation ratio is given as

w∗(a∗0) =
1

1 +
√
K − 1

,

w∗(a) =
1

(1 +
√
K − 1)

√
K − 1

, ∀a ∈ [K].

• For K ≥ 3, any P ∈ P∗, any consistent (Definition 4.1) experiment π satisfies

lim sup
T→∞

− 1

T
logPP0

(âπT ̸= a∗0) ≤
1

2KEP

[
(σ)

2
] + o(1),

where the target allocation ratio is given as

w∗(a) = 1/K ∀a ∈ [K], ∀x ∈ X .

Because the variances are equal across treatment arms, the target allocation ratio is also equal across treatment arms. This
lower bound and the target allocation ratio implies that the uniform-EBA experiment is optimal, where we choose each
treatment arm with the same probability (the uniform sampling rule) and recommend a treatment arm with the highest
sample average of observed outcomes (the empirical best arm (EBA) recommendation rule). The fact that the uniform-EBA
experiment is approximately optimal for two-armed Bernoulli bandits is also reported by Kaufmann et al. (2016).

N. TS-EBA experiment
The proof of the upper bound is detailed in Section N.1. A modified version of the TS-EBA experiment is discussed in
Section N.2.

N.1. Proof of the Upper Bound (Theorem 6.1)

Let us define ∆̂HIR,a,b
T = µ̂

EBA,a∗
0

T − µ̂EBA,a
T for all a ∈]K] The proof of the upper bound is based on that of the TS-HIR

strategy discussed in Kato et al. (2023a). For the sake of completeness, we provide the proof herein. To prove the upper
bound, we employ the following result from Hahn et al. (2011).

Proposition N.1 (Asymptotic normality of the SA estimator. From Theorem 1 of Hahn et al. (2011)). Assume that w∗

smoothly depends on (σa
0 )a∈[K]. Then,

√
T
(
∆̂HIR,a

T −∆a
0

)
d−→ N (0,Ωa

0(w
∗)) ,

where

Ωa
0(w

∗) =
(σ∗

0)
2

w∗(a∗0)
+

(σa
0 )

2

w∗(a)
.

We also use the following result from Hayashi (2000).

Proposition N.2 (Convergence in distribution and in moments. Lemma 2.1 of Hayashi (2000)). Let αs,n be the s-th moment
of zn, and limn→∞ αs,n = αs, where αs is finite. Suppose that for some δ > 0, E

[
|zn|s+δ

]
< M < ∞ for all n and a

constant M > 0 independent of n. If zn
d−→ z, then αs is the s-th moment of z.

Then, we show Theorem 6.1 as follows.

Proof. Let us define

ξaT =

√
T
(
∆̂HIR,a

T −∆a
0

)
Ωa

0(w
∗)

.

By applying the Chernoff bound, for any v ≥ 0 and any λ < 0,

PP

(
∆̂HIR,a

T −∆a
0 ≤ v

)
≤ EP

[
exp

(
λ
√
TξaT (P )

)]
exp (−λTv) .
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Algorithm 2 TS-EBA experiment with round-robin.

Parameter:Hypothetical best treatment arm ã ∈ [K]. The sample splitting ratio r ∈ (0, 1).
Initialization: for t = 1 do Draw At = t. For each a ∈ [K], set ŵt(a) = 1/K. end for
Stage 1:
for t = K + 1 to ⌈rT ⌉ do

Draw a treatment arm a with probability w(1).
end for
Construct ŵ as (6) by estimating the variances.
Stage 2:
for t = ⌈rT ⌉+ 1 to T do
At ∈ argmina∈[K]

{
1

t−1

∑t−1
s=1 1[As = a]− ŵ(a)

}
.

end for
Construct µ̂SA,a

T for each a ∈ [K].
Recommend âSAT = argmaxa∈[K] µ̂

SA,a
T .

By applying the Taylor series expansion for logEP

[
exp

(
λ
√
TξaT

)]
around λ√

T
= 0,

logEP

[
exp

(
λ
√
TξaT

)]
=

√
TλEP [ξaT ] +

Tλ2

2
EP

[
(ξaT )

2
]
+

∞∑
n=3

(
√
Tλ)n

n!
cn,T ,

where cn,T is the n-th cumulant of ξaT . From Lemma 2.1 of Hayashi (2000) (Proposition N.2 in Appendix), Proposition N.1,

we have limT→∞ E [ξaT ] = 0, limT→∞ E
[
(ξaT )

2
]
= 1, and limT→∞ E [(ξaT )

n
] = mn for all n ≥ 3, where mn is the n-th

moments. Then, we have limT→∞ cn,T = 0 because cumulants of centered normal distributions are zero except for the

second-order cumulant. Here, note that limT→∞
∑∞

n=3
(
√
Tλ)n−2

n! = − 1
2 . Therefore, for any v, ε > 0, there exist T0 > 0

such that for all T > T0,

PP

(
T∑

t=1

ξat ≤ v

)
≤ exp

(
Tλ2

2
− Tλv −

{√
Tλ+ Tλ2/2

}
ε

)
.

By substituting λ = v = − ∆a
0√

Ωa
0 (w

∗)
< 0, the claim follows.

N.2. TS-EBA experiments with Round-Robin

We introduce the TS-EBA experiment that utilizes a round-robin-based sampling rule; in other words, we draw treatment
arms that have been selected the least number of times, represented by At ∈ argmina∈[K]

{
1

t−1

∑t−1
s=1 1[As = a]− ŵ(a)

}
.

This approach is often used in existing studies, such as the α-Elimination strategy found in Kaufman et al. (2016). The
pseudo-code for this method is depicted in Algorithm 2.


