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ABSTRACT

Large Language Models (LLMs) can learn new tasks through in-context super-
vised learning (i.e., ICL). This work studies if this ability extends to in-context
reinforcement learning (ICRL), where models are not given gold labels in context,
but only their past predictions and rewards. We show that a naive application of
ICRL fails miserably, and identify the root cause as a fundamental deficiency at
exploration, which leads to quick model degeneration. We propose an algorithm
to address this deficiency by increasing test-time compute, as well as a compute-
bound approximation. We use several challenging classification tasks to empirically
show that our ICRL algorithms lead to effective learning from rewards alone, and
analyze the characteristics of this ability and our methods. Overall, our results
reveal remarkable ICRL abilities in LLMs.

1 INTRODUCTION

Large language models (LLMs) have been shown to exhibit in-context learning (ICL), a form of
supervised learning that does not require parameter updates (Brown et al., 2020). ICL relies on includ-
ing supervised input-output pairs in the LLM context (i.e., prompt),1 and has been shown as effective
with either few (Brown et al., 2020) or many (Bertsch et al., 2024; Agarwal et al., 2024) examples. In
this paper, we ask whether the ability to learn in-context extends to the reinforcement learning (RL)
paradigm, i.e., whether language models can effectively perform in-context reinforcement learning
(ICRL).

ICRL is a natural combination of ICL and reinforcement learning (RL). Instead of constructing
the LLM context from supervised input-output pairs, the LLM context is constructed using triplets

Query: It declined my transfer.
Intent: declined transfer

’declined transfer’ is the correct answer! Good job!

Query: If I’m getting my identity verified, what all do I need?
Intent: verify top up

The answer ’verify top up’ is wrong! You can do better!

Query: Am I allowed to change my PIN anywhere?
Intent: change pin

’change pin’ is the correct answer! Good job!

Query: How do I contact customer support about my declined transfer?
Intent: contactless not working

Figure 1: Illustration of in-context reinforcement learning. The context is queries, with predicted
model outputs ( ), and verbalized rewards. The prompt ends with a new example, and the model
has to complete its output (red). The model has to learn in-context from the past interactions on the
prompt.

1We use the terms prompt and context interchangeably.
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consisting of input, model output prediction, and the corresponding rewards. As the number of input
examples increases, the model observes more triplets, leading to an online learning scenario. These
triplets are followed by a new input, for which the model predicts an output. Figure 1 illustrates ICRL
prompting. A naive implementation of this formulation is similar to ICL, except that the context
grows over time, and instead of relying on annotated labels and a static dataset, the model is exposed
to a stream of inputs and rewards.

We study the ICRL capabilities of Llama 3.1 (Llama Team, 2024) and Phi-3.5-mini (Abdin et al.,
2024), using several standard classification benchmarks, focusing on single-step RL (i.e., contextual
bandits). Unfortunately, as we show, the naive formulation quickly leads LLMs to degenerate, often
by always predicting the same output. We identify two causes for this failure. First, LLMs, even
when sampled from, exhibit an inability to explore. Second, they struggle to learn from complex
in-context signals, such as when rewards are negative.

We address the exploration deficiency by taking advantage of how LLMs are sensitive to their prompt
composition in unexpected ways (Chen et al., 2023; Sclar et al., 2024), and add stochasticity to
the prompt construction. Given the difficulty of LLMs to benefit from negative examples, we filter
these out from the context, making the prompt more stylistically similar to ICL prompts, and easier
to reason about. The stochastic prompt effectively neutralizes degeneration in our experiments.
Simplifying the prompt further increases performance, even though it removes informative negative
learning signals Overall, these mechanisms expose effective ICRL in LLMs.

Our method shows a strong relationship between performance and test-time compute – as compute
costs increase, the model also performs better (Snell et al., 2024). Much of the computational cost
arises from the stochastic construction of prompts, which occurs for each example and increases in
cost as the model observes more examples. To reduce these costs, we show that this process can
be approximated, and that the level of approximation is in direct relation to how much compute is
allocated to the model.

Overall, we show that our approach is able to overcome the exploration degeneration of both Llama
and Phi, leading to impressive and consistent gains through ICRL. For example, in the Banking-
77 (Casanueva et al., 2020) classification task, Llama improves from 17.2% zero-shot accuracy to
66.0% through ICRL. We also show that our approximation of ICRL is effective with both models,
although the stronger Llama can absorb a much higher approximation level. Our code, data, and
experimental logs will be released upon publication.

2 IN-CONTEXT REINFORCEMENT LEARNING

ICL operates by providing a model with correct demonstrations of a task. A demonstration includes
an input (e.g., What is the best football club in Europe?) and its corresponding correct output (e.g.,
AC Milan). In its reliance on gold-standard labels, ICL follows the common supervised learning
paradigm, although without any change in the model parameters.

However, in-context learning could also be performed differently. Instead of providing models with
correct demonstrations, the model could first try to guess answers, then observe the outcomes (i.e.,
rewards) of its predictions, and eventually learn from these signals, in an online learning setting, all
within the context. This alternative way of learning in context follows the reinforcement learning
paradigm (RL; Sutton & Barto, 2018), where models learn by reinforcing good behaviors and
suppressing bad choices.

Formally, we are concerned with an RL scenario where the model π observes an input x(t) ∼ D
sampled from the data distribution D at time t, generates a prediction ŷ(t), and then observes a reward
r(t) ∼ R(x(t), ŷ(t)). We denote the tuple (x(t), ŷ(t), r(t)) as an episode.

In common RL terminology, the model π is the policy, the input x(t) is the state, and the prediction
y(t) is the action. Throughout our formulation, the policy is also conditioned on previous episodes
in the form of an LLM context, similar to how supervised examples are provided in ICL. These
past episodes are not part of the state. Instead, the context is used to perform in-context policy
improvement, similar to how past episodes are used to perform policy improvement in conventional
RL (e.g., via parameter updates).
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We design several methods to elicit in-context reinforcement learning (ICRL) from LLMs. The
naive approach is a straightforward implementation of ICRL following the common ICL recipe
(Section 2.1). The explorative approach (Section 2.2) is motivated by the empirical weaknesses we
observe in the naive approach (Section 4). Finally, the approximate method comes to reduce some of
the computational demands of explorative ICRL.

2.1 NAIVE ICRL

Algorithm 1 Naive ICRL
Require:
D: Data distribution
π: Language model policy
R: Reward function

1: Init buffer E ← ∅
2: for t = 1, 2, 3, . . . do
3: C ← create context from E
4: Observe input x(t) ∼ D
5: Sample prediction ŷ(t) ∼ π(·|C, x(t))

6: Observe reward r(t) ∼ R(x(t), ŷ(t))
7: Add episode to buffer

E ← E ∪ {(x(t), ˆy(t), r(t))}

Algorithm 1 outlines the most straightforward
way to implement ICRL. The model repeatedly
observes a new example, predicts its output, and
observes its reward. Each such model interac-
tion creates an episode, which is added to an
episode buffer. For each interaction, we con-
struct a context C from existing episodes (line 3).
As long as the LLM context window allows it,
at each time step, all past episodes E are in-
cluded in the context in the order they were
observed. This allows re-using past computa-
tions (i.e., through the KV cache), leading to
relatively efficient computation.2 If the context
window length is reached, we only consider re-
cent episodes that fit into the context window,
essentially running ICRL with a sliding window
as big as the LLM allows.

Unfortunately, naive ICRL fails miserably in practice, as we empirically show in Section 4 and
Figure 2. Its poor performance is due to its incapacity to explore the output space properly. Figure 3
visualizes how naive ICRL degenerates to predicting just a few labels, far from the real distribution in
the data.

2.2 EXPLORATIVE ICRL

Explorative ICRL addresses the exploration deficiency observed with naive ICRL by leveraging the
sensitivity of LLMs to their prompt. It has been widely observed that changes in prompt composition
lead to variance in LLM behavior, including changes in the exact set of examples selected for
ICL (Zhang et al., 2022; Liu et al., 2022; Chen et al., 2023; Levy et al., 2023) or even seemingly
meaningless stylistic changes (Sclar et al., 2024; Lu et al., 2022).. Generally, this property of LLMs
is not considered positively. However, in the case of ICRL, it provides an opportunity to introduce
stochasticity into the process, and thereby introducing a level of exploration. We achieve this by
randomly choosing the subset of past episodes to include in the prompt each time the model observes
a new input.

In addition, we empirically observe that LLMs have a harder time benefiting from negative learning
signals (i.e., episodes with negative reward). This has been observed in past feedback-driven
continual learning work (Kojima et al., 2021; Suhr & Artzi, 2023). Negative episodes are also not
very informative for learning – indicating that one output is bad, essentially encourages an almost
uniform distribution over outputs. This leads to the second design decision in explorative ICRL: only
include examples with a positive reward in the constructed contexts.

Algorithm 2 describes explorative ICRL. For each input, we construct a new context (lines 3–7).
We decide what past episodes to include in this context by sampling from a Bernoulli variable
parameterized by pkeep (lines 4–7. We sample independently for each past episode. This results in
different reasoning for each input, because each is done with a different context. When storing past
episodes, we only include episodes with positive reward (lines 13–14).

2We assume unbounded memory through our analysis. This makes it possible to compare the computational
costs of the different algorithms, because it allows the assumption that it is possible to store the computation for
all previous episodes stored in the context.
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Algorithm 2 Explorative ICRL
Require:
D: Data distribution
π: Language model policy
R: Reward function
pkeep: Prob. to keep examples in context

1: Init episode buffer E ← ∅
2: for t = 1, 2, 3, . . . do
3: Init empty context C(t) ← [ ]
4: for e ∈ E do
5: b ∼ Bernoulli(pkeep)
6: if b = 1 then
7: Add episode to context C(t) += e

8: if |C(t)| > LLM context window then
9: C(t) ← downsample C(t)

10: Observe input x(t) ∼ D
11: Sample prediction ŷ(t) ∼ π(·|C(t), x(t))

12: Observe reward r(t) ∼ R(x(t), ŷ(t))

13: if r(t) > 0 then
14: Add episode to buffer

E ← E ∪ {(x(t), ˆy(t), r(t))}

Algorithm 3 Approximate ICRL
Require:

Everything from Algorithm 2
K: Number of contexts to maintain

1: Init empty contexts C ← {[ ](1), . . . , [ ](K)}
2: for t = 1, 2, 3, . . . do
3: Sample context uniformally C ∼ U (C)
4: Observe input x(t) ∼ D
5: Sample prediction ŷ(t) ∼ π(·|C, x(t))

6: Observe reward r(t) ∼ R(x(t), ŷ(t))
7: if r > 0 then
8: for k = 1 to K do
9: b ∼ Bernoulli(pkeep)

10: if b = 1 then
11: Add episode to cached context

C[k] += (x(t), ŷ(t), r(t))

Depending on pkeep, explorative ICRL will encounter the issue of the LLM context window saturating
much later than naive. However, deploy ICRL for enough interactions, and the context window will
saturate, even for the models with the largest context windows. Similar to naive, we downsample the
context if it overflows the LLM context window (line 9). We design three strategies to downsample
the context if we reach the limit of the LLM context window: (a) unbiased: randomly remove
episodes from C(t) until it fits the context window; (b) start-biased: use the longest possible prefix of
episodes from C(t) such that it fits the LLM context size; and (c) end-biased: use the longest possible
suffix.

A downside of explorative ICRL is the computational cost. While naive ICRL benefits from caching,
caching is not useful for explorative, because the construction of a fresh context C(t) for each episode
eliminates this option for explorative ICRL. The probability of encountering the same context twice,
or even the same prefix, is exceptionally low even after a few episodes. This means that the context
has to be computed from scratch for each input. If pkeep is relatively small, contexts are likely to
be much shorter than in naive. Although this can reduce the cost, explorative remains much more
computationally demanding than naive.

2.3 APPROXIMATE ICRL

Explorative ICRL addresses the exploration deficiencies of naive ICRL, but incurs high computational
costs (Section 2.2). We propose an approximation of explorative ICRL that strikes a balance between
computational cost and learning effectiveness. Similar to explorative ICRL, the approximate version
also excludes episodes with negative reward and focuses on exploration by stochasticity in the context.

Algorithm 3 describes approximate ICRL. The core idea behind the approximation is to limit the
number of contexts, so we can simply gradually expand them with new episodes, rather than always
create and compute new contexts. We maintain K contexts C, which all start empty (line 1). At each
time step t, we sample a context C from the K contexts (line 3), and use it for episode t (lines 4–6. If
the reward r(t) > 0, we use the episode to expand all contexts stochastically. For each context in C,
we expand it with the t-th episode with a probability of pkeep (lines 8–11).

Approximate ICRL introduces stochasticity in two places: sampling the context to use for each
episode and the expansion of the stored contexts. In Algorithm 3, we use uniform sampling to choose
the context (line 3). This is a uniform approximation of the probability of a context, which can also
be easily computed exactly using the probabilities of the episodes it contains and pkeep. In practice,
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we find the exact computation to work poorly, because contexts that are assigned more episodes or
have low probability episodes quickly receive very low probability, and are not used. Figure 5b shows
this experimental analysis. We use uniform sampling throughout our experiments.

The level of approximation the algorithm provides depends on the resources available. For example,
one can allocate each context to a compute unit, so a machine with eight compute units (e.g., GPUs)
will support K = 8. Approximate ICRL is a strict approximation of explorative ICRL in the sense
that coupling the exact context sampling strategy and K → ∞ gives explorative ICRL. However,
the approximation is limited in handling contexts that extend beyond the LLM window length.
Overcoming this while maintaining the efficiency of the approximation is an important direction for
future work.

3 EXPERIMENTAL SETUP

Models We use the instruction-tuned versions of Llama 3.1 8B (Llama Team, 2024) and Phi-3.5-
mini 3.8B (Abdin et al., 2024). We chose these model families because, at the time of this work, they
are the only popular open-source large language models that support more than 100k tokens in the
context, while still having less than 10B parameters. We use both in a chat-like format, with multiple
turns. We compute the maximum number of episodes the context window can take for each model
and task combination. Appendix A.2 reports the exact numbers. Both models are used for the main
experiments, but only Llama for a few secondary experiments, due to the computational costs. We
use constrained decoding when generating model predictions, similar to recent work on ICL (Bertsch
et al., 2024).

Tasks We follow Bertsch et al.’s (2024) study of many-shot ICL in focusing on five classification
problems: Banking-77 (77 labels; Casanueva et al., 2020), Clinic-150 (150 labels; Larson et al.,
2019), NLU (68 labels; Liu et al., 2021), TREC (6 labels: Li & Roth, 2002; Hovy et al., 2001), and
TREC-fine (50 labels; Li & Roth, 2002; Hovy et al., 2001). Because of the large output spaces (up
to 150 labels in Clinic-150), these tasks are challenging for large language models, as empirically
shown by Bertsch et al. (2024) and replicated in our ICL experiments.

The datasets are of different sizes. The size of the datasets dictates the number of time steps in our
experiments. We randomly sub-sample Banking-77, Clinic-150, and NLU to 10k examples. TREC
and TREC-fine are smaller, so we only use 5k training examples for each. This allows the experiments
to be of relatively standard length. The training data corresponds to the data distribution D in our
algorithms. We also sub-sample all test sets to 500 examples each, to reduce the computational cost
of experiments. NLU does not provide a standard test set, so we create our own train and test splits.
In all experiments, the datasets contain the same examples in the same order.

Rewards and Prompt Design We use a deterministic binary reward function. Rewards are
computed from the gold-standard labels in the dataset. We automatically transform the numerical
rewards into a natural language format indicating if the model prediction is correct or not, which
is more suitable for LLM reasoning. Appendix A.1 provides more details about our prompting
decisions.

Evaluation We report running test accuracy. For test accuracy, we use the held-out test set of each
dataset. We compute it every 500 steps for each test example separately, using the context used to
process that step’s training example. In some cases, we also report train accuracy as the running mean
accuracy over the most recent 256 episodes.

We also report regret, the forgone utility from an actual model prediction in comparison to the oracle
choice. Intuitively, regret measures how many interactions the model handled poorly throughout the
experiment. In our experiments, regret is the accumulated number of incorrect examples throughout
learning. Regret gives a single number that considers both the final performance and how fast the
model reached it. A good system would reach high performance as fast as possible, making fewer
mistakes overall (i.e., would have a low regret).

Comparisons We compare our ICRL algorithms against the zero-shot setting, which corresponds
to the performance on the test set at step zero (i.e., without any in-context examples). We also report
supervised ICL performance for all tasks to contextualize the results. We generally expect supervised

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1K 5K 9K
Step

0.2

0.4

0.6

0.8
Te

st
A

cc
ur

ac
y

Banking77

1K 5K 9K
Step

CLINIC150

1K 5K 9K
Step

NLU

1K 2.5K 4K
Step

TREC

1K 2.5K 4K
Step

TREC Fine

R
eg

re
t

4597

4613

8755

2760

2790

7126

4716

3545

6868

1561

1183

3692

3168

2183

4390

1K 5K 9K
Step

0.2

0.4

0.6

0.8

Te
st

A
cc

ur
ac

y

Banking77

1K 5K 9K
Step

CLINIC150

1K 5K 9K
Step

NLU

1K 2.5K 4K
Step

TREC

1K 2.5K 4K
Step

TREC Fine

R
eg

re
t

9421

5261

9820

9298

3548

9261

9360

4735

9388

3588

1539

3980

4461

2654

4663

L
la

m
a-

3.
1

8B
In

st
ru

ct
Ph

i-3
.5

-M
in

iI
ns

tr
uc

t
L

la
m

a-
3.

1
8B

In
st

ru
ct

Ph
i-3

.5
-M

in
iI

ns
tr

uc
t

Supervised ICL Naive ICRL Explorative ICRL Approximate ICRL

Figure 2: Performance of ICRL. Naive, Explorative, and Approximate held-out test results and
regret for both models and all tasks. We also report Supervised ICL performance. Explorative
consistently outperforms zero-shot (i.e., first step) and Naive, while also showing consistent trends of
continual improvement as more data is observed.

ICL to outperform ICRL, because it has access to gold-standard labels. In particular, at each time
step where we report supervised ICL performance, we provide the model with all examples observed
so far by the ICRL methods, but with gold-standard labels. We stop the supervised ICL experiments
when the number of examples becomes bigger than the maximum number supported by the context
window.

4 RESULTS AND ANALYSIS

We show the test accuracies and training regrets Figure 2.3 We also show the performance of
supervised ICL for comparison, although it relies on a much higher degree of supervision.

LLMs Can Learn In-Context From Rewards Alone Explorative effectively learns in all tasks
and for both models, showing significant improvements over zero-shot. Explorative improves over
the performance of zero-shot Llama by +48.8% in Banking-77, +56.8% in Clinic-150, +36.8% in
NLU, +36.0% in TREC, and +50.2% in TREC-fine; and the same with Phi by +46.2% in Banking-77,
+55.2% in Clinic-150, +33.4% in NLU, +9% in TREC, and +22.4% in TREC-fine. In general, its
accuracy approaches the supervised ICL upper bound in some settings, and it always outperforms
zero-shot. For both models, Explorative also demonstrates a continual growth in performance over
time, suggesting that with more data its performance would improve. This is especially evident for
the most challenging datasets, i.e., the ones with the most labels (i.e., Banking-77, Clinic-150, NLU),
as they require a much stronger exploration effort. Thus, our empirical findings show that LLMs can
learn in-context from rewards alone.

Naive Fails to Explore The Naive does not learn and in most cases even deteriorates below zero-
shot (Figure 2). One key issue is exploration. Figure 3 shows prediction confusion matrices, output
distributions, and data distributions for the Banking-77 task with Llama, comparing zero-short, Naive,

3Unless specified otherwise, we use: pkeep = 0.1; uniform context sampling and K = 8 for Approximate;
unbiased downsampling when the context fills for Explorative.
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Figure 3: Confusion matrices for zero-shot, Naive and Explorative. Each position (x, y) represents
the number of times Llama predicts label x while the true label is y in Banking-77 on the test data.
For Naive and Explorative, we report results at the final time step. On the right of each matrix, we
report the distribution of true labels. On top of each matrix, we report the distribution of predicted
labels. The distributions are not on the same scale for visibility. Only Explorative does not present a
skewed distribution and is concentrated along the diagonal, meaning most times the predicted label is
the correct label.
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(a)

Llama

Accuracy ↑
Task Expl. Naive (pos. only)

Banking-77 0.66 0.43
Clinic-150 0.81 0.83
NLU 0.71 0.57
TREC 0.84 0.65
TREC-fine 0.74 0.48

(b)

Figure 4: Explorative ICRL ablations. (a) Test accuracy of Explorative ICRL with different reward
signals. Positive reward only is the best choice. (b) Comparison of Explorative with Naive when
only positive rewards are used (ablating on the stochastic context from Explorative). Test accuracy is
reported at the final step. Explorative consistently outperforms Naive with positive rewards only by
large margins, except for one case where they are tied.

and Explorative. A perfect classifier would have non-zero counts only on the diagonal, and the
output distribution would be identical to the data distribution. Both Naive and Explorative start from
zero-shot. After learning, Explorative shows a clear focus on the diagonal and higher similarity
between the prediction and data distributions. Naive fails to learn to effectively classify. The output
distribution explains why: its focus on just a few labels indicates it failed to explore.

Both Modifications of Explorative are Important Explorative modifies Naive in two ways:
stochasticity for exploration and episodes with positive rewards to simplify the context. Explorative
with both positive and negative rewards learns, but much less effectively than if we omit episodes
with negative rewards (Figure 4a). On the other hand, Figure 4b shows that even though omitting
negative examples from Naive helps, there remains a large gap to Explorative. Figure 4a also shows
the impact of reward. We see some level of learning without rewards or with inverted rewards. This
aligns with past observations of a domain effect in ICL (Min et al., 2022; Pan et al., 2023a; Lyu
et al., 2023; Kossen et al., 2024). However, this learning is relatively minimal, and including both
positive and negative episodes improves performance significantly, albeit it remains much lower than
with positive episodes only. Including only negative episodes, on the other hand, is catastrophic.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We also observe that when providing noisy rewards (i.e., with a probability of 10% the reward is
inverted) performance does not degrade significantly, suggesting that ICRL has some robustness to
environments with noisy learning signals. Of course, this is an initial experiment of robustness to
noise, and we leave a more detailed analysis for future work.

Uniform Context Sampling in Approximate is Better We observe empirically that exact context
sampling in Approximate performs worse than uniform sampling. This happens because exact
computation likely leads to always using the same context at later steps, as small changes in the
probability of sampling can compound once the model is biased towards one context. Table 5b
reports regret and final accuracy for exact and uniform strategies, on Llama and both Banking-77 and
Clinic-150 tasks. Appendix B provides more details on this comparison, including visualization of
context selection.
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Clinic-150 0.73 0.81 3301 2760

(b)

Figure 5: Comparison of Approximate parame-
ters. (a) Effect of the number of contexts K. We
report test accuracy for Phi only, as it proves more
sensitive to this approximation. Generation degen-
erates for low K, while the model can learn for
K ≥ 32. (b) Comparison of exact and uniform
sampling. We report test accuracy at the final step
and regret for Llama. Uniform sampling strategy
is consistently better.

Approximate is an Effective Alternative to
Explorative In the Figure 2, Approximate per-
forms almost as well as Explorative ICRL when
trained with Llama, across all tasks. The results
are very different with Phi: despite early learn-
ing, Approximate deteriorates quickly. This
stems from one of the contexts being biased
toward one label and therefore predicting only
this label. Eventually, episodes with this label
spread to other contexts, leading to the collapse
in performance we observe. It is empirically pos-
sible to recover, as we see in Banking-77 later
in the experiment, but the chance of it happen-
ing seems very low. The success of Llama and
failure of Phi with K = 8 show that different
LLMs have different sensitivity to the approxi-
mation. Figure 5a shows that that with a higher
number of contexts K > 32 Phi is able to ef-
fectively learn, indicating Phi needs a higher
computational budget. Figure 13 in Appendix B
shows this sensitivity analysis for Llama. Over-
all, Llama is robust to the approximation, with
most values performing similarly to Explorative,
except with the lowest values of K.

Approximate Reduces Compute Needs We
measure the reduction of tokens processed in Ap-
proximate compared to Explorative throughout
full ICRL runs. We approximate this measure
by computing at each step the number of to-
kens required for a forward call and subtracting
the number of tokens of the sequence with the
longest common prefix processed in a previous
step, as it would be possible to use the KV cache for all the tokens in the common prefix (assuming
infinite memory). We find that Explorative processes two orders of magnitude more tokens than
Approximate. Table 2 in Appendix B provides numerical results for this analysis.

ICRL is Sensitive to Stochasticity Level Stochasticity in context generation is one of the important
components that contribute to both Explorative and Approximate performance. It is modulated by
setting pkeep. Figure 6 shows the sensitivity of Explorative to the value of pkeep. Without stochasticity
(pkeep = 1.0), ICRL struggles on both models, but especially on Phi. However, if pkeep is too high, we
retain too few examples on the context, and it can hurt performance.

Comparison of Context Subsampling Strategies In practice, we never saturate the LLM context
window when using Llama or Phi because our context window is more than 100k and pkeep = 0.1.
We conduct experiments to evaluate the strategies we presented in Section 2.2 to handle the case
of overflowing the context window by limiting the context window of Llama to 4k or 8k tokens.
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Figure 6: Sensitivity to pkeep in Explorative ICRL. We compare performance with different values
of pkeep. Intermediate values learn better for both models.
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Figure 7: Performance with limited context and effect of subsampling strategies. We report
test accuracy and regret of Llama with Banking-77. As expected, a longer context leads to better
performance. The difference between the sampling strategies is negligible, with start-biased slightly
better.

Generally, we observe that start-biased strategy outperforms unbiased, which in turn performs better
than end-biased, in all cases, although by only small margins. Figure 7 shows the results of this
analysis for Banking-77, and Figure 12 in Appendix B for Clinic-150.

5 RELATED WORK

In-Context (Supervised) Learning ICL was first demonstrated by Brown et al. (2020), and since
then its causes (Chan et al., 2022; Xie et al., 2022; Olsson et al., 2022; Garg et al., 2022; Von Oswald
et al., 2023; Hendel et al., 2023; Wang et al., 2023) and the level of learning it displays (Min et al.,
2022; Lyu et al., 2023) have been studied extensively. By now, it is well established that LLMs can
learn new tasks in context (Garg et al., 2022; Wei et al., 2023; Pan et al., 2023b; Kossen et al., 2024;
Li et al., 2024). Our work builds on this line of work, and provides the first evidence that LLMs can
perform RL in context, and not only supervised learning (i.e., the standard way it is done).

Our study would not be possible without recent increases in the context window length of
LLMs (Llama Team, 2024; Abdin et al., 2024; Gemini Team, 2024). Recent work showed that
model performance can continue to increase when including hundreds or thousands of demonstra-
tions (Bertsch et al., 2024; Agarwal et al., 2024). We find similar results, as LLMs can continually
improve when learning through ICRL until their context does not saturate. Interestingly, while some
work (Zhang et al., 2024; Mo et al., 2024; Shinn et al., 2024) find that models can learn from mistakes,
our results do not support this. It is possible that models can learn from mistakes only when explicitly
reasoning (Kojima et al., 2022; Wei et al., 2022) about them (Zhang et al., 2024; Shinn et al., 2024)
and cannot implicitly leverage negative signals.
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In-Context Reinforcement Learning Likely the closest work to ours is Krishnamurthy et al.
(2024). They investigate whether LLMs can solve multi-armed bandit problems, a state-less simpler
RL setting than the one we are focused on. Our experimental setup revolves around contextual bandit
problems, where the best action depends on the specific input. We observe similar issues to their
findings with the Naive approach. They present a set of negative results, and finally are able to elicit
effective learning, but through a prompting strategy that cannot generalize beyond their very simple
scenario. They conclude LLMs cannot explore, similar to our conclusions from Naive. However, we
address this problem by developing Explorative, which includes stochasticity and focuses on positive
episodes. Wu et al. (2024) propose a set of benchmarks that includes a simplified multi-armed bandit
problem. The provide baseline performance with a method similar to Naive, showing mixed results
even given the extreme simplicity of their setting, compared to that of Krishnamurthy et al. (2024).

Another related line of research is that of Transformers trained to solve sequential decision-making
problems (Janner et al., 2021; Chen et al., 2021; Xu et al., 2022; Laskin et al., 2022; Zheng et al., 2022;
Lee et al., 2023; Grigsby et al., 2023; Raparthy et al., 2023). In all these cases, Transformers (Vaswani,
2017) are trained from scratch. Our focus is different: we study ICRL that emerges from the process
of training LLMs, without fine-tuning the LLM for this purpose.

6 DISCUSSION AND LIMITATIONS

We study the potential of LLMs to demonstrate ICRL, and propose several algorithms to elicit this
kind of behavior: Naive, Explorative, and Approximate. Naive fails miserably, but this allows us to
identify exploration as the key missing ingredient. Explorative introduces stochasticity to the prompt
construction, and combined with focusing on positive examples, shows consistent ICRL. However,
this comes at a high computational cost. The third algorithm we proposes, Approximate, comes to
address this cost, by a strict approximation of Explorative. We provide a detailed analysis of the
various methods, and show the importance of each of our choices, and the sensitivity of the process
to various settings.

Our work carries several limitations, all outline important directions for future work. The first is
due to our choice of problems to study. We intentionally selected classification benchmarks to
simplify the experiments and evaluation in this early stage of studying ICRL. However, this leaves
open the question of applicability to more complex problems, where rewards are more nuanced.
For example, summarization and question answering provide much more formidable challenges,
albeit with complex evaluation challenges. We believe our work enables future work to study these
challenges, and that this is an important direction.

Another limitation, is our use of a binary reward function. This choice directly falls off our choice
of classification problems. It is another important aspect in making our benchmark environment
straightforward to experiment with. However, it leaves a very important question open: can ICRL
handle more nuanced reward signals? For example, a reward function that can give all possible real
number in a specific range. Such a reward function leads to an interesting challenge in decoding it
into language. It is a particularly important question given our findings with regard to the ability of
LLMs to learn in-context from negative rewards. The problem we identified with reasoning about
episodes with negative rewards pose another limitation, and lays out an important research question
for future work.

Our work also lays out open questions as far as the use of computational resources. Our methods
are relatively compute intensive, especially after the learner observes many episodes. We propose
Approximate to address this, and show how it allows to trade-off compute for robustness. However,
Approximate left open the problem of working with limited context window, a critical problem for
deploying these methods for extended periods with many interactions. This, again, is a very important
direction for future work.

Finally, not a limitation per se, but we kept prompt optimization to a minimum. This was an intentional
choice, because our goal is to find robust behaviors, and not prompt engineer the problem. However,
this does leave significant room for development, likely improving on the results we observe.

We hope our work helps to shed light on the capabilities of contemporary LLMs, and that it lays our
the ground for extensive future work, both research and practice.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2019.

Yue Wu, Xuan Tang, Tom M. Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents, 2024. URL https://arxiv.org/abs/2310.01557.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference, 2022. URL https://arxiv.org/abs/2111.02080.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 24631–24645. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/xu22g.html.

Tianjun Zhang, Aman Madaan, Luyu Gao, Steven Zheng, Swaroop Mishra, Yiming Yang, Niket
Tandon, and Uri Alon. In-context principle learning from mistakes, 2024. URL https://arxiv.
org/abs/2402.05403.

14

https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://proceedings.neurips.cc/paper_files/paper/2023/file/666cccc6376058e251315b4de7e085b9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/666cccc6376058e251315b4de7e085b9-Paper-Conference.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://arxiv.org/abs/2305.14160
https://arxiv.org/abs/2303.03846
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2111.02080
https://proceedings.mlr.press/v162/xu22g.html
https://proceedings.mlr.press/v162/xu22g.html
https://arxiv.org/abs/2402.05403
https://arxiv.org/abs/2402.05403


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
9134–9148, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. URL https://aclanthology.org/2022.emnlp-main.622.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 27042–27059. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/zheng22c.html.

15

https://aclanthology.org/2022.emnlp-main.622
https://proceedings.mlr.press/v162/zheng22c.html
https://proceedings.mlr.press/v162/zheng22c.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL SETUP

Each experiment is conducted on a node equipped with four NVIDIA A100 GPUs, each with 40GB
of memory. For efficient inference, we employ the vllm library (Kwon et al., 2023).

A.1 PROMPT DESIGN

We report prompt examples from ICL and ICRL experiments. We show the prompts for both
Llama and Phi, because transformers library (Wolf et al., 2019), which we use for the tokenizers,
automatically injects the cut-off and current dates in Llama’s system prompt, making it slightly
different from that of Phi. In all cases, we show the prompts with two in-context examples.

Prompt example for ICL in Llama

<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nC ⌋
utting Knowledge Date: December 2023\nToday Date: 26 Jul
2024\n\nYou are an useful assistant. Answer the following
questions.<|eot_id|><|start_header_id|>user<|end_header_id|> ⌋
\n\nQuery: Tell me about the card
PIN?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\ ⌋
n\nIntent: get physical
card<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nQu ⌋
ery: Is there a daily auto top-up
limit?<|eot_id|><|start_header_id|>assistant<|end_header_id| ⌋
>\n\nIntent: automatic top
up<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nQuer ⌋
y: I got a message saying I made a withdrawal from the bank
machine, but I did not.<|eot_id|><|start_header_id|>assistan ⌋
t<|end_header_id|>\n\nIntent:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Figure 8: An example of prompt of ICL for Llama.

Prompt example for ICRL in Llama

<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nC ⌋
utting Knowledge Date: December 2023\nToday Date: 26 Jul
2024\n\nYou are an useful assistant. Answer the following
questions. Feedback will indicate if you answered correctly.
You must answer correctly, using previous feedback to make
better predictions.<|eot_id|><|start_header_id|>user<|end_he ⌋
ader_id|>\n\nQuery: what's the traffic at
lexington<|eot_id|><|start_header_id|>assistant<|end_header_ ⌋
id|>\n\nIntent:
traffic<|eot_id|><|start_header_id|>user<|end_header_id|>\n\ ⌋
n'traffic' is the correct answer! Good job!\n\nQuery: my
credit card is set to expire in what month<|eot_id|><|start_ ⌋
header_id|>assistant<|end_header_id|>\n\nIntent: expiration
date<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n'e ⌋
xpiration date' is the correct answer! Good job!\n\nQuery:
could you translate atm machine into english<|eot_id|><|star ⌋
t_header_id|>assistant<|end_header_id|>\n\nIntent:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Figure 9: An example of prompt of ICRL for Llama.
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Prompt example for ICL in Phi

<|system|>\nYou are an useful assistant. Answer the following
questions.\n<|end|>\n<|user|>\nQuery: what's the traffic at
lexington<|end|>\n<|assistant|>\nIntent:
traffic<|end|>\n<|user|>\nQuery: what is 8
factorial<|end|>\n<|assistant|>\nIntent:
calculator<|end|>\n<|user|>\nQuery: correct, that's
true<|end|>\n<|assistant|>\nIntent:

↪→

↪→

↪→

↪→

↪→

↪→

Figure 10: An example of prompt of ICL for Phi.

Prompt example for ICRL in Phi

<|system|>\nYou are an useful assistant. Answer the following
questions. Feedback will indicate if you answered correctly.
You must answer correctly, using previous feedback to make
better predictions.\n<|end|>\n<|user|>\nUtterance: meeting
next week monday<|end|>\n<|assistant|>\nIntent: calendar
query<|end|>\n<|user|>\nThe answer 'calendar query' is wrong!
You can do better!\n\nUtterance: how warm today
is<|end|>\n<|assistant|>\nIntent: weather
query<|end|>\n<|user|>\n'weather query' is the correct
answer! Good job!\n\nUtterance: hey make sure i go to sarahs
birthday party on the twelveth<|end|>\n<|assistant|>\nIntent:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Figure 11: An example of prompt of ICRL for Phi.

A.2 CONTEXT WINDOWS

For each task and model combination, we conservatively estimate the maximum number of examples
that could fit within the context window. This is done by including all observed examples in
descending order of token count in the prompt, assuming the model consistently responds with the
longest label and that the formatted reward message is at its maximum length. We perform this
calculation using the maximum context window for both Llama and Phi. Additionally, for Llama, we
repeat the process with context windows of 4096 and 8192 tokens specifically for the Banking-77
and Clinic-150 tasks. All results are reported in Table 1.

Phi Llama

Task 128k tokens 4k tokens 8k tokens 128k tokens

Banking-77 1538 34 74 1673
Clinic-150 2241 60 126 2384
NLU 2397 - - 2425
TREC 2848 - - 2919
TREC-fine 2584 - - 2776

Table 1: Number of maximum examples supported by model and task, given a specific context
window. We compute the numbers of maximum examples supported by a context window of 128k
tokens for both Llama and Phi and all tasks, but also of 4k and 8k tokens for Llama, with Banking-77
and Clinic-150 only.

B ADDITIONAL RESULTS
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Phi Llama

Task Expl. Approx. Ratio Expl. Approx. Ratio

Banking-77 87,369,607 510,786 171 102,282,989 539,367 190
Clinic-150 105,545,002 398,677 265 122,455,599 440,019 278
NLU 89,894,548 409,680 219 114,517,653 433,254 264
TREC 29,306,971 212,855 138 34,509,170 229,046 151
TREC-fine 20,658,980 222,955 93 25,522,358 234,884 109

Table 2: Reduction of tokens processed in Approximate compared to Explorative throughout
full ICRL runs. Explorative processes two orders of magnitude more tokens than Approximate.
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Figure 12: Performance on Limited Context and Effect of Subsampling Strategies. We report
test accuracy and regret of Llama with Clinic-150. As expected, longer context leads to better results,
while early examples seem more important.
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Figure 13: Effect of the number of contexts K in Approximate on Llama. The model can learn
with all K, although higher values perform better.

Llama Phi

Accuracy ↑ Regret ↓ Accuracy ↑ Regret ↓

Task Expl. Naive (pos. only) Expl. Naive (pos. only) Expl. Naive (pos. only) Expl. Naive (pos. only)

Banking-77 0.66 0.43 4613 5800 0.59 0.01 5261 9796
Clinic-150 0.81 0.83 2790 2364 0.73 0.00 3548 9824
NLU 0.71 0.57 3545 4608 0.57 0.02 4735 9738
TREC 0.84 0.65 1183 2508 0.77 0.28 1539 4045
TREC-fine 0.74 0.48 2183 3470 0.61 0.01 2654 4798

Table 3: Comparison of Explorative with Naive when only positive rewards are used (ablating
on the stochastic context from Explorative). Test accuracy is reported at the final step. Explorative
consistently outperforms Naive with positive rewards only by large margins, except for one case
where they are tied.
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Figure 14: Detailed visualization of Approximate for Llama, Banking-77 with exact context
sampling. We report test accuracy (top left), a 256-step running average of the training accuracy
(bottom left), the training accuracy of each context (top right), and the hit rate of each context (bottom
right).

Figure 15: Detailed visualization of Approximate for Llama, Banking-77 with uniform context
sampling. We report test accuracy (top left), a 256-step running average of the training accuracy
(bottom left), the training accuracy of each context (top right), and the hit rate of each context (bottom
right).
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Figure 16: Detailed visualization of Approximate for Llama, Clinic-150 with exact context
sampling. We report test accuracy (top left), a 256-step running average of the training accuracy
(bottom left), the training accuracy of each context (top right), and the hit rate of each context (bottom
right).

Figure 17: Detailed visualization of Approximate for Llama, Clinic-150 with uniform context
sampling. We report test accuracy (top left), a 256-step running average of the training accuracy
(bottom left), the training accuracy of each context (top right), and the hit rate of each context (bottom
right).
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Figure 18: Detailed visualization of Approximate for Phi, Banking-77 with uniform context
sampling. We report test accuracy (top left), a 256-step running average of the training accuracy
(bottom left), the training accuracy of each context (top right), and the hit rate of each context (bottom
right).

Figure 19: Detailed visualization of Approximate for Phi, Clinic-150 with uniform context
sampling. We report test accuracy (top left), a 256-step running average of the training accuracy
(bottom left), the training accuracy of each context (top right), and the hit rate of each context (bottom
right).
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