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Abstract

Recently, deep graph clustering achieves sig-
nificant success by utilizing both the node at-
tribute features and the graph structure infor-
mation. However, the existing methods still
have some limitations: (1) lack of a flexible
mechanism to fuse multi-granularity informa-
tion learned from different views. (2) introduce
the noise positive-negative sample pairs lead
to reduced the model performance. To tackle
these problems, we propose a debiased con-
trastive learning framework DCL-MGI, which
integrates the multi-granularity information of
graph data. Specifically, two contrastive learn-
ing modules are constructed to capture multi-
granularity feature information from node-level
and graph-level, respectively. Meanwhile, an
adaptive strategy of fusing stable graph struc-
ture information and node representations is
proposed to select unbiased contrastive sample
pairs, which reduces the false-negative samples.
Furthermore, we utilize the temporal entropy
metric to evaluate the sample quality under
each view and communicate the two indepen-
dent contrastive learning modules in a collab-
orative training manner. Experimental results
on six real-world datasets demonstrate that our
proposed framework enhances state-of-the-art
methods on the graph clustering task.

1 Introduction

Graph clustering is a fundamental data analysis task
dividing similar samples into the same cluster while
separating dissimilar ones. Recently, numerous
deep graph clustering methods have been proposed
and applied in many scenarios, such as traffic flow
forecast (Guo et al., 2021) and signal propagation
(Huang et al., 2020; Jia et al., 2020). According to
the learning objective, deep graph clustering can
be divided into reconstruction-based methods and
contrastive-based methods.

For the reconstruction-based methods, most
of them utilize Graph Convolutional Networks
(GCNs) and Auto-Encoder (AE) to encode both

the graph structure information and node attribute
features. For example, (Kipf and Welling, 2016)
propose the Graph Auto-Encoder (GAE) and its
variant. (Bo et al., 2020) propose Structural Deep
Clustering Network (SDCN) that jointly learns
GAE and AE in a uniform framework. In addi-
tion, (Wang et al., 2019) and (Peng et al., 2021)
introduce the attention mechanism for graph clus-
tering. Although reconstruction-based methods can
learn node representations without labeled data, the
above methods ignore the local and global informa-
tion of the graph.

Another group of methods is regarded as
contrastive-based methods. The key to contrastive
learning is to maximize the similarity of positive
pairs and minimize that of negative pairs. Specifi-
cally, (Hassani and Khasahmadi, 2020) randomly
sample nodes and edges from different views. Fur-
ther, (Zhao et al., 2021) construct the node clus-
tering labels to select negative samples and (Pan
and Kang, 2021) utilize k-nearest neighbors to se-
lect positive samples. The aforementioned meth-
ods have achieved preliminary success. However,
the above methods construct contrastive sample
pairs randomly or entirely rely on node represen-
tations, which will bring noise positive-negative
samples. This phenomenon is named as sampling
bias (Chuang et al., 2020).

To address these issues, we propose a novel
Debiased Contrastive Learning framework based
on Multi-Granularity feature Interaction (DCL-
MG]I). First, to capture local node features and
global distribution of clusters, DCL-MGI learns
clustering-oriented node representations by two in-
dividual contrastive learning modules. Then, an
adaptive fusion strategy is developed for selecting
unbiased contrastive sample pairs that dynamically
integrates the node features and the graph struc-
ture information. Further, to interact with multi-
granularity feature information, a sample quality
evaluation metric based on training dynamics and



information entropy is proposed and the two in-
dividual contrastive learning modules are jointly
optimized by exchanging hard sample sets. Finally,
the suitability of the contrastive learning objective
on the graph clustering task is formally analyzed.
Our contributions can be summarized as follows:

* DCL-MGI fuses multi-granularity graph in-
formation in a unified framework, alleviating
the objective mismatch and sampling bias.

* A temporal entropy-based sample evaluation
metric is developed. Using this metric, two
independent contrastive learning models can
interact with each other effectively.

» Extensive experiments demonstrate the effec-
tiveness of DCL-MGI against state-of-the-art
methods on the graph clustering task.

2 Related Work

2.1 Contrastive Learning

As an unsupervised representation learning man-
ner, contrastive learning has achieved impressive
performances in many downstream tasks. For each
target sample (also name as anchor), contrastive
learning aims to capture the similarity with posi-
tive samples while expanding the dissimilarity with
negative samples (Hadsell et al., 2006). Follow-
ing this principle, several classical loss functions
have been proposed. Specifically, (Chopra et al.,
2005) design a triplet loss to capture the similar-
ity between target space and input space. (Gut-
mann and Hyvirinen, 2010) propose the noise con-
trastive estimation (NCE) loss. Further, (Oord et al.,
2018) propose the InfoNCE which is widely uti-
lized. (Chen et al., 2020) adopt the normalized
temperature-scaled cross-entropy loss (NT-Xent)
to identify positive sample pairs. The above loss
functions have been widely applied in many fields,
including NLP (Sun et al., 2020; Kong et al., 2019),
recommendation (Wu et al., 2021) and CV (Liet al.,
2021).

2.2 Graph Clustering

In recent years, several GCN-based methods are
designed for graph clustering. In general, exist-
ing methods can be divided into reconstruction-
based methods and contrastive-based methods. For
reconstruction-based methods, most of them uti-
lize the AE framework to learn reconstruction loss
function. Specifically, (Kipf and Welling, 2016)

propose the GAE and VGAE, which merge GCN
as the encoder into the AE framework. (Wang
et al., 2019) utilize attention mechanism to identify
the importance of neighboring nodes, and super-
vise the training process by KL-divergence. (Pan
et al., 2019) employ the adversarial training prin-
ciple to learn the node representations. (Bo et al.,
2020) integrate the structure information into deep
clustering and utilize a dual self-supervised mech-
anism to unify AE and GCN. (Peng et al., 2021)
exploit attention mechanism to integrate node at-
tribute feature and graph topological information.
For contrastive-based methods, the learning objec-
tive function is designed by constructing positive
and negative pairs. For example, (Hassani and
Khasahmadi, 2020) design the multi-view graph
representation learning method (MVGRL) to inte-
grate graph information from multi-views. (Zhao
et al., 2021) propose the graph debiased contrastive
learning framework (GDCL) to jointly learn graph
representations and clustering results. Meanwhile,
GDCL develops a debiased sampling strategy to
decrease the false-negative samples.

To combine the above two categories of methods,
DCL-MGI selects reconstruction-based methods
as backbones and adopts a clustering-oriented con-
trastive learning loss. DCL-MGI can capture multi-
scale information from graph. Unlike the exiting
methods, our methods focus on the training sample
quality under different views and realizes multi-
granularity feature information interaction in an
collaborative training manner. More importantly,
graph structure information is utilized to intervene
the sampling process in contrastive learning, which
decrease the false positive-negative sample pairs.

3 Preliminaries

Given the graphas G = {V. E, X }. V = {v; };_,
is the set of » nodes. E indicates the adjacency re-
lationships (i.e., edges) between node pairs. In
general, F can be transformed to A € R"*",
where ¢;; € F is equivalent to A;; = 1 that in-
dicates the relationship between node ¢ and node
j, otherwise A;; = 0. X € R™ 4 is the node at-
tribute matrix, where each node v; is associated
with a d-dimensional vector x;. Graph cluster-
ing aims to partition the n nodes into k clusters
{C1,C4,--- ,Cy}. The goal of clustering is maxi-
mizing inter-class similarity and minimizing intra-
class similarity.

Next, our backbone (i.e., SDCN) is briefly de-



scribed. Reconstruction-based models generally
contain two modules, namely the AE module and
the GCN module. We summarize the objective
functions for these two modules as follows.

The Reconstruction Loss. The reconstruction loss
measures the mean square error of raw data and the
reconstructed data which is formulated as Eq. (1).
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where X = H@ is the reconstructed data.
H®) = f,.(X) is the output of the AE module.
The Alignment Loss. The alignment loss aims to
utilize the KL-divergence to measure the difference
between different data distributions. The alignment
loss includes clustering loss L., and graph neural
network 1oss L gy, Ly, and Ly, are formulated
as follows:

Litw = KL(P||Q)  Lywn = KL(P||Z) ()

where (Q = [g;;] is the clustering result distribu-
tion, P = [p;;] is the auxiliary target distribution
and Z = U (fae(X), fgen(A, X)) is the probabil-
ity distribution output by the backbone. fy¢y,(-) is
output of the GCN module. U (-) is a fusion func-
tion in the backbone, which is utilized to integrate
the node representations obtained by GCN module
and AE module. In addition, g;; is the probability
of sample 7 belongs to cluster j.

—(T+1)/2
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where h; is the i-th of H (L) and cj is the cluster
center that initialized by a pre-trained AE. 7 is set
to 1. p;; is formulated as follows:

P = %2]/ > 0ij
i =
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where 0 < p;; < 1. Combining Eq. (1) and Eq.
(2), the learning objective function Lpgckpone Of the
backbone can be obtained.

Lbackbone = BlLres + ﬂ2Lclu + ﬁ3Lgnn (5)

where 31, B2 and [33 are trade-off parameters which
determined by the corresponding papers.

4 The Proposed Method

4.1 Multi-Granularity Contrastive Learning

In this subsection, we construct the multi-
granularity contrastive learning modules and de-
velop an adaptive feature fusion strategy to select
unbiased positive and negative sample pairs.

As mentioned in section 3, reconstruction-based
methods are selected as backbones. Meanwhile,
InfoNCE, a widely used contrastive learning loss
function, is adopted. The reason why we adopt
InfoNCE will be discussed in subsection 4.3. Next,
we will describe contrastive learning modules from
graph-level and node-level, respectively.

4.1.1 Node-Level Module

The node-level module is designed to distinguish
semantically similar (positive) and dissimilar (neg-
ative) node samples in the fine-grained node repre-
sentations. In the node-level module, an adaptive
feature fusion strategy is proposed to select posi-
tive and negative sample pairs, which contributes
to alleviating the sampling bias.

Adaptive Feature Fusion Sampling. In this strat-
egy, the graph structure information is regarded
as prior knowledge, which can be dynamically in-
tegrated with node attribute features. According
to graph structure information and node attribute
feature, we defined two matrices, which are Struc-
ture Similarity Matrix Mgg € R™*"™ and Feature
Similarity Matrix Mg € R™*".

Specifically, Mgs is defined as:

i N (v)) NN (v;)]|
Mss = N (o)) U N ()]

(6)

where ngs C [0,1], N (v;) is the neighbors of
node ¢. In practice, Eq. (6) follows a simple as-
sumption that node j is the 1-hop neighbor of node
1, node r is the 1-hop neighbor of node j and the
2-hop neighbor of node ¢. If node j and node ¢ do
not belong to the same class, then node 7 and node
7 may not belong to the same class. Based on the
above intuitive and strongly constrained assump-
tion, IV (v;) only considers 1-hop neighbors. Then,
Mg is calculated as:

Mps=2-2" (7)

where Mgs measures the node feature similarity
of node ¢ and node j. Finally, we normalize Mgg,
Mpg and weight them dynamically to obtain the
Similarity Discrimination Matrix Mgp.

Mgsp = aMgs + (1 —a) Mpg (8)
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Figure 1: The framework of our proposed DCL-MGI.

where « is designed as an adaptive trade-off param-
eter, which is calculated by Eq. (9).

a=1 [KL (P||¥) + KL (znp;rzﬂ ©

Note that « = JS (P||Z) is the JS-divergence
that measures the similarity between the P and Z
distribution. In the early epoch, the poor model per-
formance leads to the high dissimilarity between
P and Z. Hence, Mgp tends to utilize the explicit
graph structure information in the early epoch and
focuses on the node features in the later epoch. In
addition, since Mgg is fixed, even if the model
suffers from over-fitting, Mgp still considers reli-
able graph structure information rather than relying

entirely on incorrect node representations.

Hence, for v;, the positive and negative sam-
ples can be selected based on Mg ,. Specifically,
one positive sample {v?} and N — 1 negative sam-

nl n(N-1)

ples {vi RRE } are selected for each v;.

Then, the contrastive learning function for node-
level module is calculated by Eq. (10).

n . P
Lnode = Z - log f (’lj\lrgliz ) - (]O)
i=1 f (vi, o) + 21 f (vi,vf?)
=

Note that f(v;,vj) = exp(cos(g(vi), g(v;))/T).
And g (v;) is the representation of node ¢ generated
by the backbone, which is equivalent to z; in Z. 7
is a temperature hyper-parameter that set to 1 for
all experiments.

Based on the above discussion, we integrate the
loss function of the backbone and the contrastive

learning objective. Thus, the overall learning ob-
jective for the node-level module is formalized as:

Ll = Lbackbone + )\1Ln0de

where A1 is a trade-off parameter.

4.1.2 Graph-Level Module

Unlike the node-level module, the graph-level mod-
ule focuses on the overall distribution of each class
and aims to expand the inter-class dissimilarity.
Specifically, we utilize the clustering center ¢} to
represent the distribution of ¢-th class at ¢-th epoch.
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where z}f is the representation of node j at ¢-th

epoch and C! is the node set of i-th class at the ¢
epoch, respectively.
For ¢!, the other clustering centers are selected as

the negative samples {c§|j #1i,7 € [1, k| } Mean-

while, cﬁfl is selected as the positive sample for
ct. Hence, for each c!, we construct one positive
sample and k£ — 1 negative samples, where k is
determined by the specific downstream task. In
addition, cg is initialized by performing K-means
on a pre-trained AE output. Similarly, the con-
trastive learning function for graph-level module is

calculated by Eq. (13)..

k t -1
f Ci7ci
Lgrapn = Z —log ( k—l) a3
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Hence, the final learning objective for the graph-
level module is formulated as:

Ly = Lbackbone + )\2Lgraph (14)

where As is a trade-off parameter.

4.2 Training Dynamics for Data Interaction

In this section, we study the integration method for
‘communicate’ the two peer contrastive learning
modules as mentioned in subsection 4.1. Our moti-
vation is that multi-granularity contrastive learning
modules can learn the node representation from
different views. In this way, the local and global in-
formation of the graph can be fused by interacting
with the above two modules.

In general, samples that are frequently classi-
fied in the same class are easy to identify than
those that vacillate. Hence, we regard the indis-
tinguishable samples as the hard samples. To
identify the hard samples, we bring in a statisti-
cal method arising from the behavior of the train-
ing procedure, which is named “training dynamics”
(Swayamdipta et al., 2020). Unlike the method pro-
posed by Swayamdipta, our method is designed for
unsupervised scenarios.

Specifically, the temporal entropy information of
node i is calculated, across 7" epochs. For node 7,
we first utilize the information entropy to measure
the uncertainty at ¢-th epoch.

k

uf = = por (yjlvi) logpar (y;]vi)
j=1

(15)

where py: (y;|v;) indicates the probability distribu-
tion of the model output with parameters ¢ at the
t-th epoch. The node with low uncertainty is easily
distinguished. Then, we collect the historical in-
formation of u! up to the T-th epoch to obtain u;fp,
where ul = Z]'T:1 uz . Further, we set the thresh-
old ' for uT and divide the whole training dataset
into hard sample set {v;|Vi € [1,n],u! > u'} and
easy sample set {v;|Vi € [1,n],ul <u'}.

Based on u;f and «, our proposed framework
summarizes the training process into two stages as
follows:

Independent learning stage. Two independent
modules are trained separately. They share the
same input data and train until the end of et epoch.
Information interaction stage. The hard sample
set obtained by each module is exchanged to an-
other. Keep exchanging the hard sample set until

the end of the complete training. This stage is in-
spired by the active learning and co-teaching that
realizes multi-granularity feature interaction.

Finally, the whole framework is illustrated in
Figure 1 and summarized in Algorithm 1, respec-
tively.

Algorithm 1 Training process of DCL-MGI
Input: Graph GG, Maximum iterations M axIter,
Negative sample number N, Threshold u and et
Output: The clustering result

1: Initialize node-level and graph-level modules.
2: fort =0,1,..., MazIter do
3:  ift <= et then

4: Select positive and negative samples by
Eq. (8).
5: Calculate L; and Lo, respectively.
Calculate u! by Eq. (15).
7 Update multi-granularity modules, sepa-
rately.
8:  else
9 Gather the historical information of u} to
get uZT
10: Divide the hard sample set based on u}’
and .
11: Update multi-granularity modules by in-
teracting hard sample sets.
12:  endif
13: end for

14: Obtain the clustering results based on Z.

4.3 Why InfoNCE is Suitable for Clustering

In this section, we will briefly analyze the reason
that InfoNCE can handle objective mismatch for
clustering.

Given positive sample v} and negative samples

set {v;“' 1 C LN — 1]} for node v;. InfoNCE
amis to minmize L.;. The form of L.; is shown as
Eq. (10). Considering that minimizing L; is equiv-
alent to maximizing —L.;. Hence, we transform
the goal as shown in Eq. (16)

n P
max —Lo = maxz log f(vi, Qil )

N— )
=1 f('Ui,Uf)"’ Z: f(Ui,U,?])

1

(16)

n n
Note that max ) log f (z) < > maxlog f ().
i=1 i=1
Hence, we can further simplify Eq. (16). Due to
f(vin?)
f(vi,vf)-fzév:*ll f(vi,v;‘]')

- f(vio?)
to > maxlo i —
=1 & F o)+ Fonp?)

n
max » log is equivalent
i=1

and it can




Dataset # Type # Samples # Classes # Dimension
ACM  Graph 3025 3 1870
Citeseer Graph 3327 6 3703
DBLP  Graph 4057 4 334
USPS  Image 9298 10 256
HHAR Record 10299 6 561
Reuters  Text 10000 4 2000

Table 1: The statistics of the benchmark datasets.

n
further be simplified to ) maxlog ﬁ, where

=1
_ S5 (ee)
P el

Since log (+) is a monotonically increasing func-
tion, maximizing —L. approximates minimiz-
ing . By further simplification, the following
approximate equation can be obtained, that is,
Ejm S min T S(e0”) oo,

f(vi,vf) max f(vi,vf)
ering that if positive samples are selected from the
same class of v;, while negative samples are se-
lected from the other £ — 1 classes. In that case,
minimizing the L.; is equivalent to the ratio of
minimizing intra-class similarity and maximizing
inter-class similarity, which is consistent with the
objective of clustering.

Based on the above discussion, it is evident
that introducing the InfoNCE loss function into
the graph clustering task is suitable. Note that an
important precondition is to construct the correct
positive and negative sample pairs for each node.
This precondition urges us to design the debiased
contrastive sample selection strategy as mentioned
in subsection 4.1.

min

4.4 Complexity Analysis

Time Complexity. In our proposed framework, the
additional computational cost mainly comes from
calculating Msp, Lyode and L grqpp. For Msp, the
computational complexity is O (n?), that used to
count 1-hop neighbors and matrix multiplication.
Some graph traversal method (i.e., breadth first
search) are adopted to construct Mgg. If multi-hop
neighbors are considered, the time complexity will
be further increased. Hence, we focus only on 1-
hop neighbors. The computational complexity for
Lyoge and Lgyqpy are O (nN) and O (nk), where
N and k are constants.

Space Complexity. In our proposed framework,
the main space overhead comes from storing Mgp.

If we store it naturally, then the space complexity
iso (n2)

S Experiments

5.1 Experiment Settings

Datasets. We evaluate the effectiveness of DCL-
MGTI framework on six benchmark datasets. Specif-
ically, we adopt three classical graph datasets, in-
cluding ACM, Citeseer, and DBLP. In addition, we
also adopt three non-graph datasets, i.e, handwrit-
ten digit image dataset USPS (Hull, 1994), sensor
record dataset HHAR (Stisen et al., 2015) and text
news dataset Reuters (Lewis et al., 2004). For the
above datasets, we follow the settings in (Bo et al.,
2020). The statistics of benchmark datasets are
shown in Table 1.

Baselines. We consider representative and state-of-
the-art methods, including RwSL (Li et al., 2022),
DFCN (Tu et al., 2021), AGCN (Peng et al., 2021),
SSGC (Zhu and Koniusz, 2020), SDCN (Bo et al.,
2020), MVGRL (Hassani and Khasahmadi, 2020),
AGRA (Pan et al., 2019), DAECG (Wang et al.,
2019), VGAE (Kipf and Welling, 2016). Note that
DFCN, AGCN and SDCN are used as backbones.
The combination of DCL-MGIand SDCN is de-
noted as DCL-MGIspcen and DCL-MGIgp, where
DFCN and AGCN are similarly represented.

Evaluation Metrics. The evaluation metrics Ac-
curacy (ACC), Normalized Mutual Information
(NMI), Average Rand Index (ARI) and macro F1-
score (F1) are adopted.

Parameters Setting. For backbones, we follow
the same network structure and hyper-parameter
settings with the corresponding paper. The learning
rate is set to 0.001 for USPS, HHAR, ACM, and
DBLP and 0.0001 for Reuters, Citeseer. The val-
ues of the hyper-parameters A1 and )\ are recorded
in the appendix. For DCL-MGIspcn and DCL-
MGIagcen, the number of negative samples N is
set to 5, the threshold of «’ is set to 0.4, and the
MazIter is set to 200. For DCL-MGlIspen and
DCL-MGIpgcn, the number of negative samples
N is set to 9, the threshold of «’ is set to 0.2, and
the MaxIter is set to 300. The number of epochs
in the first stage et is set to 120 for all experiments.
For SDCN and AGCN, we report the highest eval-
uation scores among all variants. For AGCN, we
record experimental results by running the official
code. For other comparisons, we directly cite the
results from the original papers (Peng et al., 2021;
Bo et al., 2020; Liu et al., 2021). For each experi-
ment, we run 10 times and report the average values
to prevent extreme cases.



Table 2: Clustering performance (%) on the benchmark datasets (mean4std). The best results are shown in bold. 1

records the improvement over the backbones.

Dataset | Metric| VGAE DAEGC ARGA MVGRL  SSGC RwSL SDCN  DCL-MGIgp 1T | AGCN DCL-MGIpyg 7T DFCN  DCL-MGIpr 1T
ACC [58.6+0.1 62.1+0.5 61.6E£1.0 427£1.0 68.7+£20 683+05[68.1+1.8 72.8+1.2 4.7|71.6£1.0 73.1+£07 1.5[76.0+08 76.7+£0.7 0.7

DBLP NMI |26940.1 325£0.5 26.8+1.0 15440.6 33.942.1 344404 [395+£13 39.840.7 0.3|37.6+1.3 392407 1.6 [437£1.0 445401 038
ARI [17.9£0.1 21.0£0.5 227403 82402 37.343.1 34.540.8 (392420 41.7+09 25|405+1.2 420%+1.0 15 |47.0£15 48.0+02 1.0

Fl |58740.1 61.8+0.7 61.8+09 40.5+1.5 65.942.2 682405 |67.7£15 719414 42[71.24+1.0 728406 1.6 |757+£08 76.54+0.1 0.8

ACC |61.0+£04 64.5+14 56.9+0.7 68.7£0.4 67.9+£03 702+0.1 |66.0+0.3 69.5+03 3.5[68.7£03 689+0.1 0.2 [69.5+02 703+01 0.8

CiteSeer NMI |32.740.3 36.4£09 345+08 43.7404 419 +0.2 443 1+0.2(387+£03 41.8+1.6 3.1|41.5+02 41.7+0.1 02 [439+02 44.61+01 0.7
ARI [33.1£0.5 37812 334415 443407 43.040.3 46.1+02 (402404 445417 43|43.54+03 43.940.1 04455403 46.6+0.1 1.1

Fl [57.7405 622413 548408 63.7404 63.64+0.2 66.140.1 | 63.6+02 63.840.9 0.2]6244+02 625402 0.1 |643£02 650402 0.7

ACC | 84.1+0.2 86.94+2.8 86.1+12 86.7+0.8 84.4+03 90.7+0.1 {90.5+0.2 90.8+0.2 0.3[90.0£0.5 90.3+02 0.3 [90.94+02 91.3+0.2 04

ACM NMI |53240.5 562442 557+14 609+14 562405 69.14+0.1 [683+£03 68.7+0.6 04]66.8+1.2 68.14+0.3 13 [69.4+£04 71.0+02 16
ARI [57.74£0.7 59.4+£39 629+2.1 65.1+1.8 60.240.6 74.540.1 [73.9+£04 746406 0.7]|72.5+12 73.61+04 1.1 749404 762402 13

F1 [84.2402 87.1+£28 86.1+1.2 86.940.7 844403 90.740.1 |90.4+£02 90.840.2 0.4]90.0+0.5 903402 0.3 |90.8+02 91.3+0.2 05

ACC |56.240.7 73.6+04 66.8+0.7 - - - 78.1£0.2 80.6+0.7 2.5(802+04 81.0+0.1 0.8 [79.5+02 79.6+0.1 0.1

USPS NMI |51.14+04 71.1£0.2 61.6+0.3 - - 79.5£03  79.8+04 03|79.1+£03 79.5+03 04 |82.8403 83.3+0.1 05
ARI [41.0£0.6 633£0.3 51.1+0.6 - - - 71.8£02 7354+05 1.7|72.6+£05 737402 1.1 753402 757+02 04

Fl [53.6%1.1 725405 66.1+1.2 - - - 77.0£02 78.1+£0.2 1.1|77.04£03 775404 0.5 | 783402 78.5+0.1 0.2

ACC | 71.3+£0.4 76.54+2.2 63.3£0.8 - - 843+02 87.5+09 32(88.0+0.1 884404 04 [87.1£0.1 872401 0.1

HHAR NMI | 63.04+04 69.1£23 57.1+1.4 - - - 79.9+0.1 81.24+04 1.3|82.6+0.7 82.1+03 -0.5|82.240.1 824401 02
ARI |51.540.7 60.4£22 44.7+1.0 - - 728+0.1 762+14 3.4|77.0+£04 77505 0.5 |764+0.1 76.5+0.1 0.1

Fl |71.6%03 76.9+22 61.1+09 - 82.6+0.1 865412 39[879405 882405 03 |87.3+0.1 875401 02
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Figure 2: The parametric sensitivity analysis of DCL-
MGISDCN on DBLP.

5.2 Graph Clustering Results

Table 2 reports the clustering results on six bench-
mark datasets. From Table 2, we can see that DCL-
MGI is easily combined with different backbones
and further improves their original performance.
For example, for the non-graph dataset HHAR,
DCL-MGI improves upon the original SDCN by
3.2%, 2.3%, 3.4%, 3.9% in terms of ACC, NMI,
ARI, and F1, respectively. For graph dataset DBLP,
DCL-MGI improves upon the original AGCN by
1.5%, 1.6%, 1.5%, 1.6% on ACC, NMI, ARI, and
F1, respectively. Meanwhile, DCL-MGIgpcn also
improves 4.7% on ACC and 4.2% on F1 for DBLP.
These significant improvements can be attributed
to two keys: (1). The objective of DCL-MGI is
designed for clustering and the selected contrastive
sample pairs are unbiased. (2). DCL-MGI inte-
grates graph-level and node-level graph informa-
tion by interacting with hard samples. In section
5.5, the validity of the interaction hard sample is
further demonstrated.

5.3 Parameter Sensitivity Analysis

As depicted in Figure 2, we consider the thresh-
old of uncertainty «’ and the number of negative
samples N, where u = {0.2,0.4,0.6,0.8,1.0}
and N = {1,3,5,7,9}. Meanwhile, we adopt
DCL-MGlIgpcn and conduct experiments on DBLP.
From Figure 2(a), we see that DCL-MGIspcn
reaches the best results when v is 0.4. From Fig-
ure 2(b), it can be seen that ACC and NMI obtain
the best result when NN is 7 and ARI obtain the best
result when NV is 5. On the whole, DCL-MGIspcn
is insensitive to the above parameters. In addition,
we further explore the parameter sensitivity of A,
A2 and et. The results are recorded in the appendix.

5.4 Ablation Study

We conduct ablation studies for DCL-MGIspen
variants and evaluate on DBLP. The results are
recorded in Table 3.

Contrastive Sample Selection Strategy. DCL-
MGIspceN Random  adopts the random sampling
which used in (Hassani and Khasahmadi, 2020)
and DCL-MGIspcen gper adopts the node cluster-
ing sampling which proposed in (Zhao et al., 2021).
For our proposed adaptive feature fusion strategy,
DCL-MGIspceN Topology Utilizes only graph struc-
ture information Mgg and DCL-MGIspeN Feature
utilizes only node attribute feature Mpg. The
results show that our proposed contrastive sam-
ple selection strategy contributes to achieve opti-
mal model performance. DCL-MGIspcN Topology
achieves the lowest model performance beacuse it
only utilizes 1-hop neighbors information. How-
ever, DCL-MGIspcN Topology Still achieves better



Table 3: Clustering performance (%) for the different
DCL-MGIgpcy variants (mean=std).

Variants ACC NMI AIR F1

DCL-MGIspen Random  71.1£1.0 37.0+0.9 39.8+1.3 70.7+0.9
DCL-MGIspengper. 71.7+0.9 37.7£1.4 40.4+1.7 70.9£0.5
DCL-MGIspenN Topology 609.9%1.7 35.3+2.1 37.8+2.6 68.8+1.8
DCL-MGIspeN Featwre  72.3%1.1 38.3£1.5 41.5+1.7 71.1£1.5

DCL-MGIspeN Graph 70.1£0.8 35.7+1.2 38.9+2.4 69.2+1.8
DCL-MGIspeNNoge  70.8£1.8 36.5+2.2 38.9+1.9 70.1+1.9

DCL-MGIspeN Triplee 72.5%1.4 38.5+1.7 41.9+1.9 71.5+1.4

DCL-MGIspen 72.8+1.2 39.8+0.7 41.7+0.9 71.9+1.4
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Figure 3: Similarity distribution of contrastive learning
sample pairs on DBLP.

performance than backbone.

Multi-Granularity Contrastive Modules. DCL-
MGIspceN graph removes the node-level module and
DCL-MGIspceN node removes the graph-level mod-
ule, which limits them to learn node representa-
tion from single view. The results indicate that
all collaborative training methods except DCL-
MGIspeN Topology achieve better performance than
DCL—MGISDCN Graph and SDCNW/O Node- This phe—
nomenon indicates that interacting hard samples for
multi-granularity feature interaction is beneficial to
learn more distinguished node representations.
Contrastive Learning Objective Function. DCL-
MGIspeN Triplet use the Triplet (Chopra et al., 2005)
loss instead of InfoNCE. The results indicate that
our framework does not rely on a specific objective
function and is well suited for different learning
objectives.

5.5 Qualitative Study

Similarity Distribution. To further explore the
data distribution on contrastive sample pairs. We
calculate the similarity of negative and positive
samples to anchor by the inner product. The results
are shown in Figure 3. Figure 3(a) depicts that the
negative samples selected by adaptive feature fu-
sion are furthest from the anchor. Similarly, Figure
3(b) shows that the positive samples selected by

76 66 DCL-MGlspcy
DCL-MGlspcn Graph

74 64 DCL-MGlspcnnode
3 S Nmann, | B SDCN
S72 62
- : DCL-MGlspen Ay
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Figure 4: The F1 metric across the information interac-
tion stage on DBLP.

(a) SDCN

(b) DCL-MGIspe

Figure 5: The heat maps of feature similarity on DBLP.

our proposed strategy have the highest similarity to
the anchor. These results further demonstrate that
the adaptive feature fusion strategy can effectively
alleviate the sample bias.

Hard Sample Interaction Strategy. We study the
effectiveness of the hard sample interaction strat-
egy. We conduct experiments on DBLP and the
results are shown in Figure 4. From Figure 4(a), our
proposed model achieves the best performance on
the easy dataset, and the model performance is fur-
ther improved across the model training. Similarly,
DCL-MGIgpcn still obtains the best performance
on the hard dataset. This further confirms the ef-
fectiveness of multi-granularity feature interaction.
Node Feature Similarity. We extract the node
features and visualize the similarity matrices calcu-
lated by the cosine similarity. Figure 5 shows our
proposed method further improves the discrimina-
tion of node features. The results demonstrate that
our proposed framework can alleviate over-fitting.

6 Conclusion

In this paper, we propose a novel and flexible self-
supervised deep graph clustering framework DCL-
MGIwith unbiased sampling and multi-granularity
feature interaction mechanisms. It consists of two
parallel contrastive learning modules and utilizes
an adaptive feature fusion strategy for selecting
unbiased contrastive sample pairs. Further, a tem-
poral entropy-based metric is proposed for effective
interaction between multi-granularity features. Ex-
tensive experiments prove the effectiveness of our
framework.



7 Limitations

In this paper, two individual contrastive learning
modules require more computation time and mem-
ory space. Tacking DFCN as an example, DCL-
MGIpgen runs 210.23 seconds on the Citeseer
dataset, while DFCN runs 56.49 seconds. DCL-
MGIpgcn runs 210.23 seconds on the Citeseer
dataset, while DFCN runs 56.49 seconds. DFCN
stores 1.91M model parameters and DCL-MGIpg
stores 3.82M model parameters. In the future, we
will utilize parameter sharing to reduce the number
of training parameters.
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A Appendix

A.1 Experimental environment

We carried out the experiment on the window plat-
form with Inter(R) Core(TM) 17-10700 CPU, RTX
3090 GPU, and 32G memory.

A.2 License

The backbones and the benchmark datasets can be
used for academic research under the correspond-
ing paper license.

DBLP.
A.3 Parameter Settings

value of metrics for A; and A9 in the range of
We record the hyper-parameters Ay and A2 as 14 401 (.01,0.1,1,10,100,1000}. The results

shown in Table 4, Table 5 and Table 6.

Dataset )\ A9
USPS 10  0.01
HHAR 1 0.01
Reuters 10 1000
ACM 1 0.01
DBLP 1000 10
Citeseer 100 0.1

Table 5: The parameter settings of DCL-MGIagen-

Dataset A1 Ao
USPS  0.001 100
HHAR 1000 10
Reuters 0.1 0.001
ACM 100 1
DBLP 0.01 10
Citeseer 1 0.001

(c) NMI

Table 6: The parameter settings of DCL-MGIgpcn. Figure 7: Parametric sensitivity analysis for A\; and A,

on DBLP.

Dataset A1 A9
USPS 0.001 100
HHAR 1000 10

ACC NMI

ARI

F1

Figure 6: The parametric sensitivity analysis for et on

are shown in Figure 7. Meanwhile, a numerical

Table 4: The parameter settings of DCL-MGlspcn. statistical analysis of Figure 7 is carried out and the
results are recorded in Table 7.

(d) F1

Table 7: The numerical statistics of Figure 7

Reuters 1000 1000 Metrics Mean Std Max Min
ACM 0.01 0.1 ACC 714 09 73.8 693
DBLP 0.1 0.1 ARI 40.1 13 433 373
Citeseer 0.1 1000 NMI 372 1.1 402 349
F1 714 1.1 732 689

As described in Section 5.1, the other parameters
N, u' and et are fixed for all experiments.

A.4 Parameter Sensitivity Analysis

We show The parametric sensitivity analysis
for et in Figure 6. Further, we record the
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