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Abstract

Recently, deep graph clustering achieves sig-001
nificant success by utilizing both the node at-002
tribute features and the graph structure infor-003
mation. However, the existing methods still004
have some limitations: (1) lack of a flexible005
mechanism to fuse multi-granularity informa-006
tion learned from different views. (2) introduce007
the noise positive-negative sample pairs lead008
to reduced the model performance. To tackle009
these problems, we propose a debiased con-010
trastive learning framework DCL-MGI, which011
integrates the multi-granularity information of012
graph data. Specifically, two contrastive learn-013
ing modules are constructed to capture multi-014
granularity feature information from node-level015
and graph-level, respectively. Meanwhile, an016
adaptive strategy of fusing stable graph struc-017
ture information and node representations is018
proposed to select unbiased contrastive sample019
pairs, which reduces the false-negative samples.020
Furthermore, we utilize the temporal entropy021
metric to evaluate the sample quality under022
each view and communicate the two indepen-023
dent contrastive learning modules in a collab-024
orative training manner. Experimental results025
on six real-world datasets demonstrate that our026
proposed framework enhances state-of-the-art027
methods on the graph clustering task.028

1 Introduction029

Graph clustering is a fundamental data analysis task030

dividing similar samples into the same cluster while031

separating dissimilar ones. Recently, numerous032

deep graph clustering methods have been proposed033

and applied in many scenarios, such as traffic flow034

forecast (Guo et al., 2021) and signal propagation035

(Huang et al., 2020; Jia et al., 2020). According to036

the learning objective, deep graph clustering can037

be divided into reconstruction-based methods and038

contrastive-based methods.039

For the reconstruction-based methods, most040

of them utilize Graph Convolutional Networks041

(GCNs) and Auto-Encoder (AE) to encode both042

the graph structure information and node attribute 043

features. For example, (Kipf and Welling, 2016) 044

propose the Graph Auto-Encoder (GAE) and its 045

variant. (Bo et al., 2020) propose Structural Deep 046

Clustering Network (SDCN) that jointly learns 047

GAE and AE in a uniform framework. In addi- 048

tion, (Wang et al., 2019) and (Peng et al., 2021) 049

introduce the attention mechanism for graph clus- 050

tering. Although reconstruction-based methods can 051

learn node representations without labeled data, the 052

above methods ignore the local and global informa- 053

tion of the graph. 054

Another group of methods is regarded as 055

contrastive-based methods. The key to contrastive 056

learning is to maximize the similarity of positive 057

pairs and minimize that of negative pairs. Specifi- 058

cally, (Hassani and Khasahmadi, 2020) randomly 059

sample nodes and edges from different views. Fur- 060

ther, (Zhao et al., 2021) construct the node clus- 061

tering labels to select negative samples and (Pan 062

and Kang, 2021) utilize k-nearest neighbors to se- 063

lect positive samples. The aforementioned meth- 064

ods have achieved preliminary success. However, 065

the above methods construct contrastive sample 066

pairs randomly or entirely rely on node represen- 067

tations, which will bring noise positive-negative 068

samples. This phenomenon is named as sampling 069

bias (Chuang et al., 2020). 070

To address these issues, we propose a novel 071

Debiased Contrastive Learning framework based 072

on Multi-Granularity feature Interaction (DCL- 073

MGI). First, to capture local node features and 074

global distribution of clusters, DCL-MGI learns 075

clustering-oriented node representations by two in- 076

dividual contrastive learning modules. Then, an 077

adaptive fusion strategy is developed for selecting 078

unbiased contrastive sample pairs that dynamically 079

integrates the node features and the graph struc- 080

ture information. Further, to interact with multi- 081

granularity feature information, a sample quality 082

evaluation metric based on training dynamics and 083
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information entropy is proposed and the two in-084

dividual contrastive learning modules are jointly085

optimized by exchanging hard sample sets. Finally,086

the suitability of the contrastive learning objective087

on the graph clustering task is formally analyzed.088

Our contributions can be summarized as follows:089

• DCL-MGI fuses multi-granularity graph in-090

formation in a unified framework, alleviating091

the objective mismatch and sampling bias.092

• A temporal entropy-based sample evaluation093

metric is developed. Using this metric, two094

independent contrastive learning models can095

interact with each other effectively.096

• Extensive experiments demonstrate the effec-097

tiveness of DCL-MGI against state-of-the-art098

methods on the graph clustering task.099

2 Related Work100

2.1 Contrastive Learning101

As an unsupervised representation learning man-102

ner, contrastive learning has achieved impressive103

performances in many downstream tasks. For each104

target sample (also name as anchor), contrastive105

learning aims to capture the similarity with posi-106

tive samples while expanding the dissimilarity with107

negative samples (Hadsell et al., 2006). Follow-108

ing this principle, several classical loss functions109

have been proposed. Specifically, (Chopra et al.,110

2005) design a triplet loss to capture the similar-111

ity between target space and input space. (Gut-112

mann and Hyvärinen, 2010) propose the noise con-113

trastive estimation (NCE) loss. Further, (Oord et al.,114

2018) propose the InfoNCE which is widely uti-115

lized. (Chen et al., 2020) adopt the normalized116

temperature-scaled cross-entropy loss (NT-Xent)117

to identify positive sample pairs. The above loss118

functions have been widely applied in many fields,119

including NLP (Sun et al., 2020; Kong et al., 2019),120

recommendation (Wu et al., 2021) and CV (Li et al.,121

2021).122

2.2 Graph Clustering123

In recent years, several GCN-based methods are124

designed for graph clustering. In general, exist-125

ing methods can be divided into reconstruction-126

based methods and contrastive-based methods. For127

reconstruction-based methods, most of them uti-128

lize the AE framework to learn reconstruction loss129

function. Specifically, (Kipf and Welling, 2016)130

propose the GAE and VGAE, which merge GCN 131

as the encoder into the AE framework. (Wang 132

et al., 2019) utilize attention mechanism to identify 133

the importance of neighboring nodes, and super- 134

vise the training process by KL-divergence. (Pan 135

et al., 2019) employ the adversarial training prin- 136

ciple to learn the node representations. (Bo et al., 137

2020) integrate the structure information into deep 138

clustering and utilize a dual self-supervised mech- 139

anism to unify AE and GCN. (Peng et al., 2021) 140

exploit attention mechanism to integrate node at- 141

tribute feature and graph topological information. 142

For contrastive-based methods, the learning objec- 143

tive function is designed by constructing positive 144

and negative pairs. For example, (Hassani and 145

Khasahmadi, 2020) design the multi-view graph 146

representation learning method (MVGRL) to inte- 147

grate graph information from multi-views. (Zhao 148

et al., 2021) propose the graph debiased contrastive 149

learning framework (GDCL) to jointly learn graph 150

representations and clustering results. Meanwhile, 151

GDCL develops a debiased sampling strategy to 152

decrease the false-negative samples. 153

To combine the above two categories of methods, 154

DCL-MGI selects reconstruction-based methods 155

as backbones and adopts a clustering-oriented con- 156

trastive learning loss. DCL-MGI can capture multi- 157

scale information from graph. Unlike the exiting 158

methods, our methods focus on the training sample 159

quality under different views and realizes multi- 160

granularity feature information interaction in an 161

collaborative training manner. More importantly, 162

graph structure information is utilized to intervene 163

the sampling process in contrastive learning, which 164

decrease the false positive-negative sample pairs. 165

3 Preliminaries 166

Given the graph as G = {V,E,X}. V = {vi}ni=1 167

is the set of n nodes. E indicates the adjacency re- 168

lationships (i.e., edges) between node pairs. In 169

general, E can be transformed to A ∈ Rn×n, 170

where eij ∈ E is equivalent to Aij = 1 that in- 171

dicates the relationship between node i and node 172

j, otherwise Aij = 0. X ∈ Rn×d is the node at- 173

tribute matrix, where each node vi is associated 174

with a d-dimensional vector xi. Graph cluster- 175

ing aims to partition the n nodes into k clusters 176

{C1, C2, · · · , Ck}. The goal of clustering is maxi- 177

mizing inter-class similarity and minimizing intra- 178

class similarity. 179

Next, our backbone (i.e., SDCN) is briefly de- 180
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scribed. Reconstruction-based models generally181

contain two modules, namely the AE module and182

the GCN module. We summarize the objective183

functions for these two modules as follows.184

The Reconstruction Loss. The reconstruction loss185

measures the mean square error of raw data and the186

reconstructed data which is formulated as Eq. (1).187

Lres =
1

2n

∥∥∥X − X̂
∥∥∥2
F

(1)188

where X̂ = H(L) is the reconstructed data.189

H(L) = fae(X) is the output of the AE module.190

The Alignment Loss. The alignment loss aims to191

utilize the KL-divergence to measure the difference192

between different data distributions. The alignment193

loss includes clustering loss Lclu and graph neural194

network loss Lgnn. Lclu and Lgnn are formulated195

as follows:196

Lclu = KL (P ||Q) , Lgnn = KL (P ||Z) (2)197

where Q = [qij ] is the clustering result distribu-198

tion, P = [pij ] is the auxiliary target distribution199

and Z = U (fae(X), fgcn(A,X)) is the probabil-200

ity distribution output by the backbone. fgcn(·) is201

output of the GCN module. U(·) is a fusion func-202

tion in the backbone, which is utilized to integrate203

the node representations obtained by GCN module204

and AE module. In addition, qij is the probability205

of sample i belongs to cluster j.206

qij =

(
1 + ∥hi − cj∥2/τ

)−(τ+1)/2

∑
j′

(
1 +

∥∥hi − cj′
∥∥2/τ)−(τ+1)/2

(3)207

where hi is the i-th of H(L) and cj is the cluster208

center that initialized by a pre-trained AE. τ is set209

to 1. pij is formulated as follows:210

pij =
q2ij/

∑
i qij∑

j′ q
2
ij′/

∑
i qij′

(4)211

where 0 < pij < 1. Combining Eq. (1) and Eq.212

(2), the learning objective function Lbackbone of the213

backbone can be obtained.214

Lbackbone = β1Lres + β2Lclu + β3Lgnn (5)215

where β1, β2 and β3 are trade-off parameters which216

determined by the corresponding papers.217

4 The Proposed Method 218

4.1 Multi-Granularity Contrastive Learning 219

In this subsection, we construct the multi- 220

granularity contrastive learning modules and de- 221

velop an adaptive feature fusion strategy to select 222

unbiased positive and negative sample pairs. 223

As mentioned in section 3, reconstruction-based 224

methods are selected as backbones. Meanwhile, 225

InfoNCE, a widely used contrastive learning loss 226

function, is adopted. The reason why we adopt 227

InfoNCE will be discussed in subsection 4.3. Next, 228

we will describe contrastive learning modules from 229

graph-level and node-level, respectively. 230

4.1.1 Node-Level Module 231

The node-level module is designed to distinguish 232

semantically similar (positive) and dissimilar (neg- 233

ative) node samples in the fine-grained node repre- 234

sentations. In the node-level module, an adaptive 235

feature fusion strategy is proposed to select posi- 236

tive and negative sample pairs, which contributes 237

to alleviating the sampling bias. 238

Adaptive Feature Fusion Sampling. In this strat- 239

egy, the graph structure information is regarded 240

as prior knowledge, which can be dynamically in- 241

tegrated with node attribute features. According 242

to graph structure information and node attribute 243

feature, we defined two matrices, which are Struc- 244

ture Similarity Matrix MSS ∈ Rn×n and Feature 245

Similarity Matrix MFS ∈ Rn×n. 246

Specifically, M ij
SS is defined as: 247

M ij
SS =

∥N (vi) ∩N (vj)∥
∥N (vi) ∪N (vj)∥

(6) 248

where M ij
SS ⊂ [0, 1], N (vi) is the neighbors of 249

node i. In practice, Eq. (6) follows a simple as- 250

sumption that node j is the 1-hop neighbor of node 251

i, node r is the 1-hop neighbor of node j and the 252

2-hop neighbor of node i. If node j and node i do 253

not belong to the same class, then node r and node 254

i may not belong to the same class. Based on the 255

above intuitive and strongly constrained assump- 256

tion, N (vi) only considers 1-hop neighbors. Then, 257

MFS is calculated as: 258

MFS = Z · ZT (7) 259

where M ij
FS measures the node feature similarity 260

of node i and node j. Finally, we normalize MSS , 261

MFS and weight them dynamically to obtain the 262

Similarity Discrimination Matrix MSD. 263

MSD = αMSS + (1− α)MFS (8) 264
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Figure 1: The framework of our proposed DCL-MGI.

where α is designed as an adaptive trade-off param-265
eter, which is calculated by Eq. (9).266

α =
1

2

[
KL

(
P ||P + Z

2

)
+KL

(
Z||P + Z

2

)]
(9)267

Note that α = JS (P ||Z) is the JS-divergence268

that measures the similarity between the P and Z269

distribution. In the early epoch, the poor model per-270

formance leads to the high dissimilarity between271

P and Z. Hence, MSD tends to utilize the explicit272

graph structure information in the early epoch and273

focuses on the node features in the later epoch. In274

addition, since MSS is fixed, even if the model275

suffers from over-fitting, MSD still considers reli-276

able graph structure information rather than relying277

entirely on incorrect node representations.278
Hence, for vi, the positive and negative sam-279

ples can be selected based on M i
SD. Specifically,280

one positive sample {vpi } and N − 1 negative sam-281

ples
{
vn1i , · · · vn(N−1)

i

}
are selected for each vi.282

Then, the contrastive learning function for node-283
level module is calculated by Eq. (10).284

Lnode =

n∑
i=1

− log
f (vi, v

p
i )

f (vi, v
p
i ) +

N−1∑
j=1

f
(
vi, v

nj
i

) (10)285

Note that f(vi, vj) = exp(cos(g(vi), g(vj))/τ).286

And g (vi) is the representation of node i generated287

by the backbone, which is equivalent to zi in Z. τ288

is a temperature hyper-parameter that set to 1 for289

all experiments.290

Based on the above discussion, we integrate the291

loss function of the backbone and the contrastive292

learning objective. Thus, the overall learning ob- 293

jective for the node-level module is formalized as: 294

L1 = Lbackbone + λ1Lnode (11) 295

where λ1 is a trade-off parameter. 296

4.1.2 Graph-Level Module 297

Unlike the node-level module, the graph-level mod- 298

ule focuses on the overall distribution of each class 299

and aims to expand the inter-class dissimilarity. 300

Specifically, we utilize the clustering center cti to 301

represent the distribution of i-th class at t-th epoch. 302

303

cti =
1

|Ct
i |

∑
j∈Ct

i

ztj (12) 304

where ztj is the representation of node j at t-th 305

epoch and Ct
i is the node set of i-th class at the t 306

epoch, respectively. 307

For cti, the other clustering centers are selected as 308

the negative samples
{
ctj |j ̸= i, j ∈ [1, k]

}
. Mean- 309

while, ct−1
i is selected as the positive sample for 310

cti. Hence, for each cti, we construct one positive 311

sample and k − 1 negative samples, where k is 312

determined by the specific downstream task. In 313

addition, c0i is initialized by performing K-means 314

on a pre-trained AE output. Similarly, the con- 315

trastive learning function for graph-level module is 316

calculated by Eq. (13).. 317

Lgraph =

k∑
i=1

− log
f
(
cti, c

t−1
i

)
f
(
cti, c

t−1
i

)
+

k−1∑
j=1

f
(
cti, c

t
j

) (13) 318
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Hence, the final learning objective for the graph-319

level module is formulated as:320

L2 = Lbackbone + λ2Lgraph (14)321

where λ2 is a trade-off parameter.322

4.2 Training Dynamics for Data Interaction323

In this section, we study the integration method for324

‘communicate’ the two peer contrastive learning325

modules as mentioned in subsection 4.1. Our moti-326

vation is that multi-granularity contrastive learning327

modules can learn the node representation from328

different views. In this way, the local and global in-329

formation of the graph can be fused by interacting330

with the above two modules.331

In general, samples that are frequently classi-332

fied in the same class are easy to identify than333

those that vacillate. Hence, we regard the indis-334

tinguishable samples as the hard samples. To335

identify the hard samples, we bring in a statisti-336

cal method arising from the behavior of the train-337

ing procedure, which is named “training dynamics”338

(Swayamdipta et al., 2020). Unlike the method pro-339

posed by Swayamdipta, our method is designed for340

unsupervised scenarios.341

Specifically, the temporal entropy information of342

node i is calculated, across T epochs. For node i,343

we first utilize the information entropy to measure344

the uncertainty at t-th epoch.345

uti = −
k∑

j=1

pθt (yj |vi) logpθt (yj |vi) (15)346

where pθt (yj |vi) indicates the probability distribu-347

tion of the model output with parameters θt at the348

t-th epoch. The node with low uncertainty is easily349

distinguished. Then, we collect the historical in-350

formation of uti up to the T -th epoch to obtain uTi ,351

where uTi =
∑T

j=1 u
j
i . Further, we set the thresh-352

old u
′

for uT and divide the whole training dataset353

into hard sample set
{
vi|∀i ∈ [1, n] , uTi > u′

}
and354

easy sample set
{
vi|∀i ∈ [1, n] , uTi ≤ u′

}
.355

Based on uTi and u
′
, our proposed framework356

summarizes the training process into two stages as357

follows:358

Independent learning stage. Two independent359

modules are trained separately. They share the360

same input data and train until the end of et epoch.361

Information interaction stage. The hard sample362

set obtained by each module is exchanged to an-363

other. Keep exchanging the hard sample set until364

the end of the complete training. This stage is in- 365

spired by the active learning and co-teaching that 366

realizes multi-granularity feature interaction. 367

Finally, the whole framework is illustrated in 368

Figure 1 and summarized in Algorithm 1, respec- 369

tively. 370

Algorithm 1 Training process of DCL-MGI
Input: Graph G, Maximum iterations MaxIter,
Negative sample number N , Threshold u

′
and et

Output: The clustering result
1: Initialize node-level and graph-level modules.
2: for t = 0, 1, . . . ,MaxIter do
3: if t <= et then
4: Select positive and negative samples by

Eq. (8).
5: Calculate L1 and L2, respectively.
6: Calculate uti by Eq. (15).
7: Update multi-granularity modules, sepa-

rately.
8: else
9: Gather the historical information of uti to

get uTi .
10: Divide the hard sample set based on uTi

and u
′
.

11: Update multi-granularity modules by in-
teracting hard sample sets.

12: end if
13: end for
14: Obtain the clustering results based on Z.

4.3 Why InfoNCE is Suitable for Clustering 371

In this section, we will briefly analyze the reason 372

that InfoNCE can handle objective mismatch for 373

clustering. 374
Given positive sample vpi and negative samples 375

set
{
vnji |j ⊂ [1, N − 1]

}
for node vi. InfoNCE 376

amis to minmize Lcl. The form of Lcl is shown as 377
Eq. (10). Considering that minimizing Lcl is equiv- 378
alent to maximizing −Lcl. Hence, we transform 379
the goal as shown in Eq. (16) 380

max−Lcl = max

n∑
i=1

log
f (vi, v

p
i )

f (vi, v
p
i ) +

N−1∑
j=1

f
(
vi, v

nj
i

) (16) 381

Note that max
n∑

i=1
log f (x) ⇔

n∑
i=1

max log f (x). 382

Hence, we can further simplify Eq. (16). Due to 383

max
n∑

i=1
log

f(vi,vpi )
f(vi,vpi )+

∑N−1
j=1 f(vi,vnj

i )
is equivalent 384

to
n∑

i=1
max log

f(vi,vpi )
f(vi,vpi )+

∑N−1
j=1 f(vi,vnj

i )
and it can 385
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Dataset # Type # Samples # Classes # Dimension

ACM Graph 3025 3 1870
Citeseer Graph 3327 6 3703
DBLP Graph 4057 4 334
USPS Image 9298 10 256
HHAR Record 10299 6 561
Reuters Text 10000 4 2000

Table 1: The statistics of the benchmark datasets.

further be simplified to
n∑

i=1
max log 1

1+φ , where386

φ =
∑N−1

j=1 f(vi,vnj
i )

f(vi,vpi )
.387

Since log (·) is a monotonically increasing func-388

tion, maximizing −Lcl approximates minimiz-389

ing φ. By further simplification, the following390

approximate equation can be obtained, that is,391

min
∑N−1

j=1 f(vi,vnj
i )

f(vi,vpi )
∝ min

∑N−1
j=1 f(vi,vnj

i )
max f(vi,vpi )

. Consid-392

ering that if positive samples are selected from the393

same class of vi, while negative samples are se-394

lected from the other k − 1 classes. In that case,395

minimizing the Lcl is equivalent to the ratio of396

minimizing intra-class similarity and maximizing397

inter-class similarity, which is consistent with the398

objective of clustering.399

Based on the above discussion, it is evident400

that introducing the InfoNCE loss function into401

the graph clustering task is suitable. Note that an402

important precondition is to construct the correct403

positive and negative sample pairs for each node.404

This precondition urges us to design the debiased405

contrastive sample selection strategy as mentioned406

in subsection 4.1.407

4.4 Complexity Analysis408

Time Complexity. In our proposed framework, the409

additional computational cost mainly comes from410

calculating MSD, Lnode and Lgraph. For MSD, the411

computational complexity is O
(
n2

)
, that used to412

count 1-hop neighbors and matrix multiplication.413

Some graph traversal method (i.e., breadth first414

search) are adopted to construct MSS . If multi-hop415

neighbors are considered, the time complexity will416

be further increased. Hence, we focus only on 1-417

hop neighbors. The computational complexity for418

Lnode and Lgraph are O (nN) and O (nk), where419

N and k are constants.420

Space Complexity. In our proposed framework,421

the main space overhead comes from storing MSD.422

If we store it naturally, then the space complexity423

is o
(
n2

)
.424

5 Experiments 425

5.1 Experiment Settings 426

Datasets. We evaluate the effectiveness of DCL- 427

MGI framework on six benchmark datasets. Specif- 428

ically, we adopt three classical graph datasets, in- 429

cluding ACM, Citeseer, and DBLP. In addition, we 430

also adopt three non-graph datasets, i.e, handwrit- 431

ten digit image dataset USPS (Hull, 1994), sensor 432

record dataset HHAR (Stisen et al., 2015) and text 433

news dataset Reuters (Lewis et al., 2004). For the 434

above datasets, we follow the settings in (Bo et al., 435

2020). The statistics of benchmark datasets are 436

shown in Table 1. 437

Baselines. We consider representative and state-of- 438

the-art methods, including RwSL (Li et al., 2022), 439

DFCN (Tu et al., 2021), AGCN (Peng et al., 2021), 440

SSGC (Zhu and Koniusz, 2020), SDCN (Bo et al., 441

2020), MVGRL (Hassani and Khasahmadi, 2020), 442

AGRA (Pan et al., 2019), DAECG (Wang et al., 443

2019), VGAE (Kipf and Welling, 2016). Note that 444

DFCN, AGCN and SDCN are used as backbones. 445

The combination of DCL-MGIand SDCN is de- 446

noted as DCL-MGISDCN and DCL-MGISD, where 447

DFCN and AGCN are similarly represented. 448

Evaluation Metrics. The evaluation metrics Ac- 449

curacy (ACC), Normalized Mutual Information 450

(NMI), Average Rand Index (ARI) and macro F1- 451

score (F1) are adopted. 452

Parameters Setting. For backbones, we follow 453

the same network structure and hyper-parameter 454

settings with the corresponding paper. The learning 455

rate is set to 0.001 for USPS, HHAR, ACM, and 456

DBLP and 0.0001 for Reuters, Citeseer. The val- 457

ues of the hyper-parameters λ1 and λ2 are recorded 458

in the appendix. For DCL-MGISDCN and DCL- 459

MGIAGCN, the number of negative samples N is 460

set to 5, the threshold of u′ is set to 0.4, and the 461

MaxIter is set to 200. For DCL-MGISDCN and 462

DCL-MGIDFCN, the number of negative samples 463

N is set to 9, the threshold of u′ is set to 0.2, and 464

the MaxIter is set to 300. The number of epochs 465

in the first stage et is set to 120 for all experiments. 466

For SDCN and AGCN, we report the highest eval- 467

uation scores among all variants. For AGCN, we 468

record experimental results by running the official 469

code. For other comparisons, we directly cite the 470

results from the original papers (Peng et al., 2021; 471

Bo et al., 2020; Liu et al., 2021). For each experi- 472

ment, we run 10 times and report the average values 473

to prevent extreme cases. 474
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Table 2: Clustering performance (%) on the benchmark datasets (mean±std). The best results are shown in bold. ↑
records the improvement over the backbones.

Dataset Metric VGAE DAEGC ARGA MVGRL SSGC RwSL SDCN DCL-MGISD ↑ AGCN DCL-MGIAG ↑ DFCN DCL-MGIDF ↑

DBLP

ACC 58.6±0.1 62.1±0.5 61.6±1.0 42.7±1.0 68.7±2.0 68.3±0.5 68.1±1.8 72.8±1.2 4.7 71.6±1.0 73.1±0.7 1.5 76.0±0.8 76.7±0.7 0.7
NMI 26.9±0.1 32.5±0.5 26.8±1.0 15.4±0.6 33.9±2.1 34.4±0.4 39.5±1.3 39.8±0.7 0.3 37.6±1.3 39.2±0.7 1.6 43.7±1.0 44.5±0.1 0.8
ARI 17.9±0.1 21.0±0.5 22.7±0.3 8.2±0.2 37.3±3.1 34.5±0.8 39.2±2.0 41.7±0.9 2.5 40.5±1.2 42.0±1.0 1.5 47.0±1.5 48.0±0.2 1.0
F1 58.7±0.1 61.8±0.7 61.8±0.9 40.5±1.5 65.9±2.2 68.2±0.5 67.7±1.5 71.9±1.4 4.2 71.2±1.0 72.8±0.6 1.6 75.7±0.8 76.5±0.1 0.8

CiteSeer

ACC 61.0±0.4 64.5±1.4 56.9±0.7 68.7±0.4 67.9±0.3 70.2±0.1 66.0±0.3 69.5±0.3 3.5 68.7±0.3 68.9±0.1 0.2 69.5±0.2 70.3±0.1 0.8
NMI 32.7±0.3 36.4±0.9 34.5±0.8 43.7±0.4 41.9 ±0.2 44.3 ±0.2 38.7±0.3 41.8±1.6 3.1 41.5±0.2 41.7±0.1 0.2 43.9±0.2 44.6±0.1 0.7
ARI 33.1±0.5 37.8±1.2 33.4±1.5 44.3±0.7 43.0±0.3 46.1±0.2 40.2±0.4 44.5±1.7 4.3 43.5±0.3 43.9±0.1 0.4 45.5±0.3 46.6±0.1 1.1
F1 57.7±0.5 62.2±1.3 54.8±0.8 63.7±0.4 63.6±0.2 66.1±0.1 63.6±0.2 63.8±0.9 0.2 62.4±0.2 62.5±0.2 0.1 64.3±0.2 65.0±0.2 0.7

ACM

ACC 84.1±0.2 86.9±2.8 86.1±1.2 86.7±0.8 84.4±0.3 90.7±0.1 90.5±0.2 90.8±0.2 0.3 90.0±0.5 90.3±0.2 0.3 90.9±0.2 91.3±0.2 0.4
NMI 53.2±0.5 56.2±4.2 55.7±1.4 60.9±1.4 56.2±0.5 69.1±0.1 68.3±0.3 68.7±0.6 0.4 66.8±1.2 68.1±0.3 1.3 69.4±0.4 71.0±0.2 1.6
ARI 57.7±0.7 59.4±3.9 62.9±2.1 65.1±1.8 60.2±0.6 74.5±0.1 73.9±0.4 74.6±0.6 0.7 72.5±1.2 73.6±0.4 1.1 74.9±0.4 76.2±0.2 1.3
F1 84.2±0.2 87.1±2.8 86.1±1.2 86.9±0.7 84.4±0.3 90.7±0.1 90.4±0.2 90.8±0.2 0.4 90.0±0.5 90.3±0.2 0.3 90.8±0.2 91.3±0.2 0.5

USPS

ACC 56.2±0.7 73.6±0.4 66.8±0.7 - - - 78.1±0.2 80.6±0.7 2.5 80.2±0.4 81.0±0.1 0.8 79.5±0.2 79.6±0.1 0.1
NMI 51.1±0.4 71.1±0.2 61.6±0.3 - - - 79.5±0.3 79.8±0.4 0.3 79.1±0.3 79.5±0.3 0.4 82.8±0.3 83.3±0.1 0.5
ARI 41.0±0.6 63.3±0.3 51.1±0.6 - - - 71.8±0.2 73.5± 0.5 1.7 72.6±0.5 73.7±0.2 1.1 75.3±0.2 75.7±0.2 0.4
F1 53.6±1.1 72.5±0.5 66.1±1.2 - - - 77.0±0.2 78.1±0.2 1.1 77.0±0.3 77.5±0.4 0.5 78.3±0.2 78.5±0.1 0.2

HHAR

ACC 71.3±0.4 76.5±2.2 63.3±0.8 - - - 84.3±0.2 87.5±0.9 3.2 88.0±0.1 88.4±0.4 0.4 87.1±0.1 87.2±0.1 0.1
NMI 63.0±0.4 69.1±2.3 57.1±1.4 - - - 79.9±0.1 81.2±0.4 1.3 82.6±0.7 82.1±0.3 -0.5 82.2±0.1 82.4±0.1 0.2
ARI 51.5±0.7 60.4±2.2 44.7±1.0 - - - 72.8±0.1 76.2±1.4 3.4 77.0±0.4 77.5±0.5 0.5 76.4±0.1 76.5±0.1 0.1
F1 71.6±0.3 76.9±2.2 61.1±0.9 - - - 82.6±0.1 86.5 ±1.2 3.9 87.9±0.5 88.2±0.5 0.3 87.3±0.1 87.5±0.1 0.2

Reuters

ACC 60.9±0.2 65.5±0.1 56.2±0.2 - - - 79.3±0.1 80.7±0.6 1.4 80.8±0.4 81.2±0.1 0.4 77.7±0.2 78.1±0.1 0.4
NMI 25.5±0.2 30.6±0.3 28.7±0.3 - - - 56.9±0.3 58.8±0.5 1.9 59.6±0.3 60.1±0.2 0.5 59.9±0.4 60.7±0.1 0.8
ARI 26.2±0.4 31.1±0.2 24.5±0.4 - - - 59.6±0.3 62.5±1.1 2.9 61.2±0.9 62.8±0.7 1.6 59.8±0.4 60.4±0.1 0.6
F1 57.1±0.2 61.8±0.1 51.1±0.2 - - - 66.2±0.2 66.8±0.4 0.6 65.6±0.2 66.7±0.7 1.1 69.6±0.1 69.8±0.0 0.2

(a) u′ (b) N

Figure 2: The parametric sensitivity analysis of DCL-
MGISDCN on DBLP.

5.2 Graph Clustering Results475

Table 2 reports the clustering results on six bench-476

mark datasets. From Table 2, we can see that DCL-477

MGI is easily combined with different backbones478

and further improves their original performance.479

For example, for the non-graph dataset HHAR,480

DCL-MGI improves upon the original SDCN by481

3.2%, 2.3%, 3.4%, 3.9% in terms of ACC, NMI,482

ARI, and F1, respectively. For graph dataset DBLP,483

DCL-MGI improves upon the original AGCN by484

1.5%, 1.6%, 1.5%, 1.6% on ACC, NMI, ARI, and485

F1, respectively. Meanwhile, DCL-MGISDCN also486

improves 4.7% on ACC and 4.2% on F1 for DBLP.487

These significant improvements can be attributed488

to two keys: (1). The objective of DCL-MGI is489

designed for clustering and the selected contrastive490

sample pairs are unbiased. (2). DCL-MGI inte-491

grates graph-level and node-level graph informa-492

tion by interacting with hard samples. In section493

5.5, the validity of the interaction hard sample is494

further demonstrated.495

5.3 Parameter Sensitivity Analysis 496

As depicted in Figure 2, we consider the thresh- 497

old of uncertainty u′ and the number of negative 498

samples N , where u
′
= {0.2, 0.4, 0.6, 0.8, 1.0} 499

and N = {1, 3, 5, 7, 9}. Meanwhile, we adopt 500

DCL-MGISDCN and conduct experiments on DBLP. 501

From Figure 2(a), we see that DCL-MGISDCN 502

reaches the best results when u
′

is 0.4. From Fig- 503

ure 2(b), it can be seen that ACC and NMI obtain 504

the best result when N is 7 and ARI obtain the best 505

result when N is 5. On the whole, DCL-MGISDCN 506

is insensitive to the above parameters. In addition, 507

we further explore the parameter sensitivity of λ1, 508

λ2 and et. The results are recorded in the appendix. 509

5.4 Ablation Study 510

We conduct ablation studies for DCL-MGISDCN 511

variants and evaluate on DBLP. The results are 512

recorded in Table 3. 513

Contrastive Sample Selection Strategy. DCL- 514

MGISDCN Random adopts the random sampling 515

which used in (Hassani and Khasahmadi, 2020) 516

and DCL-MGISDCN GDCL adopts the node cluster- 517

ing sampling which proposed in (Zhao et al., 2021). 518

For our proposed adaptive feature fusion strategy, 519

DCL-MGISDCN Topology utilizes only graph struc- 520

ture information MSS and DCL-MGISDCN Feature 521

utilizes only node attribute feature MFS . The 522

results show that our proposed contrastive sam- 523

ple selection strategy contributes to achieve opti- 524

mal model performance. DCL-MGISDCN Topology 525

achieves the lowest model performance beacuse it 526

only utilizes 1-hop neighbors information. How- 527

ever, DCL-MGISDCN Topology still achieves better 528
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Table 3: Clustering performance (%) for the different
DCL-MGISDCN variants (mean±std).

Variants ACC NMI AIR F1
DCL-MGISDCN Random 71.1±1.0 37.0±0.9 39.8±1.3 70.7±0.9
DCL-MGISDCN GDCL 71.7±0.9 37.7±1.4 40.4±1.7 70.9±0.5
DCL-MGISDCN Topology 69.9±1.7 35.3±2.1 37.8±2.6 68.8±1.8
DCL-MGISDCN Feature 72.3±1.1 38.3±1.5 41.5±1.7 71.1±1.5

DCL-MGISDCN Graph 70.1±0.8 35.7±1.2 38.9±2.4 69.2±1.8
DCL-MGISDCN Node 70.8±1.8 36.5±2.2 38.9±1.9 70.1±1.9

DCL-MGISDCN Triplet 72.5±1.4 38.5±1.7 41.9±1.9 71.5±1.4

DCL-MGISDCN 72.8±1.2 39.8±0.7 41.7±0.9 71.9±1.4

(a) Negative Samples (b) Positive Samples

Figure 3: Similarity distribution of contrastive learning
sample pairs on DBLP.

performance than backbone.529

Multi-Granularity Contrastive Modules. DCL-530

MGISDCN graph removes the node-level module and531

DCL-MGISDCN node removes the graph-level mod-532

ule, which limits them to learn node representa-533

tion from single view. The results indicate that534

all collaborative training methods except DCL-535

MGISDCN Topology achieve better performance than536

DCL-MGISDCN Graph and SDCNw/o Node. This phe-537

nomenon indicates that interacting hard samples for538

multi-granularity feature interaction is beneficial to539

learn more distinguished node representations.540

Contrastive Learning Objective Function. DCL-541

MGISDCN Triplet use the Triplet (Chopra et al., 2005)542

loss instead of InfoNCE. The results indicate that543

our framework does not rely on a specific objective544

function and is well suited for different learning545

objectives.546

5.5 Qualitative Study547

Similarity Distribution. To further explore the548

data distribution on contrastive sample pairs. We549

calculate the similarity of negative and positive550

samples to anchor by the inner product. The results551

are shown in Figure 3. Figure 3(a) depicts that the552

negative samples selected by adaptive feature fu-553

sion are furthest from the anchor. Similarly, Figure554

3(b) shows that the positive samples selected by555

(a) Easy Samples (b) Hard Samples

Figure 4: The F1 metric across the information interac-
tion stage on DBLP.

(a) SDCN (b) DCL-MGISDCN

Figure 5: The heat maps of feature similarity on DBLP.

our proposed strategy have the highest similarity to 556

the anchor. These results further demonstrate that 557

the adaptive feature fusion strategy can effectively 558

alleviate the sample bias. 559

Hard Sample Interaction Strategy. We study the 560

effectiveness of the hard sample interaction strat- 561

egy. We conduct experiments on DBLP and the 562

results are shown in Figure 4. From Figure 4(a), our 563

proposed model achieves the best performance on 564

the easy dataset, and the model performance is fur- 565

ther improved across the model training. Similarly, 566

DCL-MGISDCN still obtains the best performance 567

on the hard dataset. This further confirms the ef- 568

fectiveness of multi-granularity feature interaction. 569

Node Feature Similarity. We extract the node 570

features and visualize the similarity matrices calcu- 571

lated by the cosine similarity. Figure 5 shows our 572

proposed method further improves the discrimina- 573

tion of node features. The results demonstrate that 574

our proposed framework can alleviate over-fitting. 575

6 Conclusion 576

In this paper, we propose a novel and flexible self- 577

supervised deep graph clustering framework DCL- 578

MGIwith unbiased sampling and multi-granularity 579

feature interaction mechanisms. It consists of two 580

parallel contrastive learning modules and utilizes 581

an adaptive feature fusion strategy for selecting 582

unbiased contrastive sample pairs. Further, a tem- 583

poral entropy-based metric is proposed for effective 584

interaction between multi-granularity features. Ex- 585

tensive experiments prove the effectiveness of our 586

framework. 587
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7 Limitations588

In this paper, two individual contrastive learning589

modules require more computation time and mem-590

ory space. Tacking DFCN as an example, DCL-591

MGIDFCN runs 210.23 seconds on the Citeseer592

dataset, while DFCN runs 56.49 seconds. DCL-593

MGIDFCN runs 210.23 seconds on the Citeseer594

dataset, while DFCN runs 56.49 seconds. DFCN595

stores 1.91M model parameters and DCL-MGIDF596

stores 3.82M model parameters. In the future, we597

will utilize parameter sharing to reduce the number598

of training parameters.599
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A Appendix708

A.1 Experimental environment709

We carried out the experiment on the window plat-710

form with Inter(R) Core(TM) i7-10700 CPU, RTX711

3090 GPU, and 32G memory.712

A.2 License713

The backbones and the benchmark datasets can be714

used for academic research under the correspond-715

ing paper license.716

A.3 Parameter Settings717

We record the hyper-parameters λ1 and λ2 as718

shown in Table 4, Table 5 and Table 6.

Table 4: The parameter settings of DCL-MGISDCN.

Dataset λ1 λ2

USPS 10 0.01
HHAR 1 0.01
Reuters 10 1000
ACM 1 0.01
DBLP 1000 10

Citeseer 100 0.1
719

Table 5: The parameter settings of DCL-MGIAGCN.

Dataset λ1 λ2

USPS 0.001 100
HHAR 1000 10
Reuters 0.1 0.001
ACM 100 1
DBLP 0.01 10

Citeseer 1 0.001

Table 6: The parameter settings of DCL-MGIFDCN.

Dataset λ1 λ2

USPS 0.001 100
HHAR 1000 10
Reuters 1000 1000
ACM 0.01 0.1
DBLP 0.1 0.1

Citeseer 0.1 1000

As described in Section 5.1, the other parameters720

N , u
′

and et are fixed for all experiments.721

A.4 Parameter Sensitivity Analysis722

We show The parametric sensitivity analysis723

for et in Figure 6. Further, we record the724

Figure 6: The parametric sensitivity analysis for et on
DBLP.

value of metrics for λ1 and λ2 in the range of 725

{0.001, 0.01, 0.1, 1, 10, 100, 1000}. The results 726

are shown in Figure 7. Meanwhile, a numerical 727

statistical analysis of Figure 7 is carried out and the 728

results are recorded in Table 7. 729

(a) ACC (b) ARI

(c) NMI (d) F1

Figure 7: Parametric sensitivity analysis for λ1 and λ2

on DBLP.

Table 7: The numerical statistics of Figure 7

Metrics Mean Std Max Min
ACC 71.4 0.9 73.8 69.3
ARI 40.1 1.3 43.3 37.3
NMI 37.2 1.1 40.2 34.9
F1 71.4 1.1 73.2 68.9
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