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ABSTRACT

The proliferation of long-context large language models (LLMs) exposes a key
bottleneck: the rapidly expanding key-value cache during decoding, which im-
poses heavy memory and latency costs. While recent approaches attempt to allevi-
ate this by sharing a single set of crucial tokens across layers, such coarse-grained
sharing undermines model performance by neglecting the functional diversity of
attention heads. To address this, we propose LycheeDecode, an efficient decoding
method centered on a fine-grained hybrid-head attention mechanism that employs
a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-
based mechanism partitions attention heads into a small subset of retrieval heads
that dynamically identify crucial tokens and a majority of sparse heads that reuse
them for efficient computation. Through extensive experiments on leading models
like Llama3 and Qwen3 across diverse benchmarks for long-context understand-
ing (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, Olympiad-
Bench), we demonstrate that LycheeDecode achieves generative quality compara-
ble to, and at times surpassing even the full-attention baseline. Crucially, this is
accomplished with up to a 2.7× speedup at a 128K context length. By preserving
the functional diversity of attention heads, our fine-grained strategy overcomes
the performance bottlenecks of existing methods, providing a powerful and vali-
dated pathway to both efficient and high-quality long-context LLM inference. The
implementation code, kernels, and models will be publicly available.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) now possess remarkable long-context capa-
bilities. Leading models like GLM-4 (GLM et al., 2024), Qwen2.5-1M (Yang et al., 2025a) and
Gemini-2.5 (Comanici et al., 2025) support up to 1 million tokens, enabling superior performance in
various long-text tasks such as summarization (Huang et al., 2021), question answering (Wei et al.,
2022), multi-turn dialogue (Li et al., 2025), and complex reasoning (Wang et al., 2024).

However, long-context processing is challenging. Due to the autoregressive nature of the Trans-
former, for each new token generated, the model must perform attention calculations with the full
key-value (KV) cache of previous tokens, leading to frequent memory access and increased I/O
overhead. As the sequence grows, the KV cache expands linearly, leading to a surge in memory
usage and a significant increase in computational latency. This severely constrains the deployment
and scalability of long-context language models in practical applications. To address this chal-
lenge, recent work has proposed sparse attention methods, which reduce computational overhead
by computing attention on only a small subset of critical tokens, exploiting the inherent sparsity of
the attention mechanism. Typically, these methods are categorized into two types: eviction-based
methods (Xiao et al., 2024; Li et al., 2024; Zhang et al., 2023), which compress the KV cache by
permanently discarding tokens, and selection-based methods (Gao et al., 2025; Yang et al., 2025b;
Wu et al., 2025), which preserve the full KV cache while dynamically selecting a subset of tokens
for computation at each inference step. A key observation is that recent work has identified a high
degree of similarity in critical tokens across consecutive layers (Yang et al., 2025b; Hao et al., 2025).
Consequently, they adopt a layer-level sharing strategy, where the same set of selected critical tokens
is shared across all heads in subsequent layers. This hierarchical strategy forces all attention heads
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Figure 1: Overlap rate of top-k (k = 5) attention scores between corresponding heads in adjacent
layers. The heatmap illustrates the functional diversity among attention heads. We input prompt
Please directly output the final answer based on the given question. Question: In a world containing
only squares, circles, and triangles, one shape is defined by having no angles and being perfectly
symmetrical from every point on its perimeter. What is the single name of the only shape that fits
this description? Answer:, and Llama-3 outputs circle. More cases can be found in Appendix E.3.

in the same layer to perform the same function. However, attention heads on the same layer do not
exhibit highly similar patterns. As shown in Figure 1, the top-k overlap rate of different heads in
adjacent layers can vary significantly (e.g., the overlap rate of the 14th head of the last two layers
is 0%, while the 24th head is 100%). This suggests that a uniform, layer-wise sharing strategy
may be overly simplistic, and a more fine-grained, head-based strategy is necessary.

Inspired by this, we introduce LycheeDecode, a simple and effective hybrid-head sparse decoding
method that refines this sharing strategy to a more granular level. Specifically, we classify attention
heads into a few “retrieval heads” and a majority of “sparse heads”. The retrieval heads are responsi-
ble for performing full attention computation over the entire context to accurately identify the most
important tokens. This selected tokens are then shared with the sparse heads in subsequent layers
for efficient sparse attention computation. In this way, LycheeDecode can capture more diverse and
relevant attention patterns with minimal precision loss. On the other hand, identifying the types of
attention heads typically involves optimizing a set of discrete binary variables. Previous work (Xiao
et al., 2025) circumvents the challenge of discrete optimization by having each head learn a continu-
ous variable. Although this variable is amenable to gradient-based methods during training, it must
be rounded to a binary value for inference, which introduces a significant train-inference discrepancy
that can degrade performance. To bridge this gap, we further introduce the Hard Kumaraswamy dis-
tribution (Kumaraswamy, 1980; Bastings et al., 2019). The HardKuma distribution is specifically
designed to produce values that are naturally concentrated at 0 and 1, while remaining differen-
tiable. By optimizing the distributional parameters of HardKuma during training, our model learns a
near-binary selection mechanism directly, thus mitigating the train-inference discrepancy and lead-
ing to a more stable and robust head specialization. Evaluation with Llama3 and Qwen3 models
on the long-context understanding (e.g., LongBench (Bai et al., 2024), RULER (Hsieh et al., 2024))
and complex reasoning (e.g., AIME24, OlympiadBench) tasks demonstrate that LycheeDecode can
achieve the best performance among other methods with the same sparsity. It can also achieve 2.7×
the end-to-end decoding speedup compared to FlashAttention-2 implementation under 128k context
length. Our contributions are summarized as follows:

• We propose LycheeDecode, a novel hybrid head sparse decoding method that delegates
token selection to a small number of “retrieval heads”, allowing for a more fine-grained
and effective sparse attention mechanism.

• We introduce the Hard Kumaraswamy distribution to address the discrete optimization
problem in end-to-end head type identification, reducing the train-inference gap and im-
proving model robustness and performance.

• We implement the hybrid head block-sparse decoding kernel using TileLang (Wang et al.,
2025), achieving up to 2.7× end-to-end decoding speedup.
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2 RELATED WORK

Sparse attention methods These methods reduce computational and memory overhead during
inference, falling into two main types: eviction-based and selection-based. Eviction-based sparse
attention aims to lower KV cache memory usage by removing tokens considered less relevant (Xiao
et al., 2024; Zhang et al., 2023; Li et al., 2024). In contrast, selection-based sparse attention preserves
the full KV cache and selects the most important tokens for the attention mechanism to process (Gao
et al., 2024; 2025; Bastings et al., 2019; Liu et al., 2024). Recent works explored trainable mecha-
nisms to further refine token selection. Methods such as Native Sparse Attention (Yuan et al., 2025)
and MiniCPM (Team et al., 2025) demonstrate that extensive post-training with sparse constraints
can yield efficient decoding while maintaining high performance. These methods effectively balance
performance with efficiency, mitigating the risk of information loss.

Attention head functional specialization A key insight in long-context inference is the functional
specialization of attention heads, with a small subset of “retrieval heads” being crucial for recalling
information (Wu et al., 2025). Building on this, RazorAttention (Tang et al., 2025) introduced a
training-free compression technique that exclusively maintains a full KV cache for these crucial
retrieval heads while discarding remote tokens in other heads. DuoAttention (Xiao et al., 2025) and
PruLong (Bhaskar et al., 2025) categorize heads as either “retrieval” or “streaming” by learning a
continuous gating variable. However, these methods determine the role of each head in isolation,
lacking a mechanism for direct collaboration. Unlike previous works, in our framework, retrieval
heads not only perform full attention but also dynamically identify and propagate a curated subset of
critical tokens for reuse by the majority of “sparse heads”. This creates a fine-grained, cooperative
mechanism. It differs from previous methods by enabling more direct and efficient sharing of
contextual information between functionally distinct heads.

Cross-layer attention similarity Recent studies have identified a high degree of similarity in
important tokens and attention patterns across consecutive Transformer layers. This insight has
inspired layer-level sharing strategies to improve inference efficiency. Approaches such as TidalDe-
code (Yang et al., 2025b) and OmniKV (Hao et al., 2025) designate a few selector layers to identify
critical tokens, which are then reused by subsequent layers for efficient sparse computation. Other
methods, like LiSA (Mu et al., 2024) and PoD (Ma et al., 2024), leverage this redundancy by directly
sharing attention weights or key states across layers to reduce redundant calculations. However,
their layer-level nature can overlook the functional diversity of individual attention heads. In con-
trast, our proposed LycheeDecode framework introduces a more fine-grained, head-level strategy,
which preserves the functional diversity of attention heads, allowing for a more precise and adaptive
mechanism by enabling more efficient sharing of contextual information.

3 METHODOLOGY

This section introduces LycheeDecode, a head-level sparse decoding framework that leverages the
functional specialization of Transformer attention heads, as illustrated in Figure 2. LycheeDecode
assigns heterogeneous roles to heads: Retrieval Heads that actively refresh critical tokens, and
Sparse Heads that efficiently reuse them. By propagating token selections across layers, LycheeDe-
code improves efficiency while maintaining model performance.

3.1 HEAD-LEVEL SPARSE DECODING

Retrieval Heads for Critical Token Identification. Certain attention heads are well-suited for
capturing long-range dependencies such as co-reference resolution or distant contextual links. We
designate these as Retrieval Heads (h ∈ HR). A Retrieval Head performs standard dense attention
over the full sequence:

A
(l)
h = softmax

(
q
(l)
h (K

(l)
h )T√
dk

)
. (1)

From the resulting attention map A
(l)
h , it selects the indices of the top-k attended tokens:

S(l+1)
h = argsTopK(A

(l)
h , k), (2)
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Figure 2: Overall framework. Left: During the training phase, each head calculates full attention
and sparse attention, weighted by HardKuma sampling values. Right: During inference, the retrieval
head calculates the critical tokens set for efficient calculation by the subsequent sparse heads.

where argsTopK returns the k tokens with the highest attention weights. The updated set S(l+1)
h is

propagated to the head of the same index in the next layer, where it is then used by the subsequent
attention heads for sparse attention computation. To initialize the critical token set S(0)h , all heads in
the first layer are designated as Retrieval Heads.

Sparse Heads for Efficient Computation. The other heads perform sparse attention computation
on the critical token set, which we designate as Sparse Heads (h ∈ HS). A Sparse Head reuses the
token set S(l)h inherited from the previous layer and restricts attention computation accordingly:

O
(l)
h = softmax

(
q
(l)
h (K

(l)
h [S(l)h ])T√
dk

)
V

(l)
h [S(l)h ], (3)

where K
(l)
h [S(l)h ] and V

(l)
h [S(l)h ] denote the key and value matrices at head h restricted to the subset

of tokens indexed by S(l)h . Since no new tokens are selected, the set is propagated unchanged, i.e.,
S(l+1)
h = S(l)h . This mechanism reduces both the amount of computation and the KV-cache loading

cost, which constitutes the dominant efficiency gain during autoregressive decoding.

Retrieval–Sparse Synergy. The interaction between Retrieval and Sparse Heads forms a decod-
ing pipeline that is both adaptive and efficient. Retrieval Heads periodically refresh the salient token
set, ensuring responsiveness to new context, while Sparse Heads exploit these curated subsets for ef-
ficient computation across layers. This division of labor allows LycheeDecode to trade off adaptivity
and efficiency in a principled manner. The complete procedure is summarized in Appendix B.

3.2 HEAD SPECIALIZATION VIA HARDKUMA

The core challenge here lies in effectively classifying each attention head as either a Retrieval (HR)
or a Sparse (HS) head. This assignment is fundamentally a discrete optimization problem over a set
of binary variables. Prior work, such as DuoAttention (Xiao et al., 2025), addresses this by learning
a continuous variable for each head. Although this continuous variable is easily optimized, it must
be rounded to a binary value for inference, which introduces the train-inference discrepancy.

To bridge this gap, our approach leverages the Hard Kumaraswamy (HardKuma) distribution (Ku-
maraswamy, 1980; Bastings et al., 2019), a differentiable proxy for binary variables. The HardKuma
distribution is specifically designed to produce values that are naturally concentrated at 0 and 1, yet
remains reparameterizable. By optimizing the distributional parameters of HardKuma during train-
ing, our model learns a near-binary selection mechanism directly, thus mitigating the train-inference
discrepancy and leading to a more stable and robust head specialization.
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The HardKuma Distribution. The HardKuma distribution provides a reparameterizable way to
model near-binary choices. A sample z ∈ [0, 1] is generated through a three-step process:

1. Sample: First, a sample u is drawn from a uniform distribution, u ∼ U(0, 1). Then
using the inverse CDF of the Kumaraswamy distribution, u is transformed into a sample
s = (1− u1/β)1/α, where s ∼ Kuma(α, β).

2. Stretch: This sample s ∈ (0, 1) is then linearly stretched to a wider interval (p, q) where
p < 0 and q > 1: s′ = s · (q − p) + p.

3. Rectify: Finally, s′ is passed through a hard-sigmoid function (i.e., clipping) to produce
the final sample: z = min(1,max(0, s′)).

This process causes probability mass from the intervals (p, 0] and [1, q) to collapse at exactly 0
and 1, respectively, making the output near-binary while the entire transformation from u remains
differentiable almost everywhere.

Identifying Attention Head Types. To facilitate the learning of head roles, we introduce a differ-
entiable training framework. Formally, for each head h in layer l (for l > 0), we associate a latent
random variable z

(l)
h sampled from a HardKuma distribution, governed by learnable α

(l)
h and β

(l)
h :

z
(l)
h ∼ HardKuma(α(l)

h , β
(l)
h ). (4)

During training, each head computes attention maps for both potential roles to create a fully differ-
entiable learning path. It generates a sparse attention map A

(l)
S,h using an inherited token set S(l)h , as

well as a full attention map A
(l)
R,h. The full attention map is also used to select the token set S(l+1)

h

for the next layer (Equation 2). These two attention maps are linearly combined to form a single
hybrid attention map Ã

(l)
h using the stochastic sample z

(l)
h as a weight:

Ã
(l)
h = z

(l)
h ·A

(l)
R,h + (1− z

(l)
h ) ·A(l)

S,h. (5)

It creates a fully differentiable path, allowing gradients from the final loss to flow back and update the
distributional parameters α(l)

h and β
(l)
h , thus enabling end-to-end learning of the head roles. During

inference, this stochastic process is replaced by a deterministic assignment: a head is designated as
a Retrieval Head if its learned expectation E[z(l)h ] > 0.5, and as a Sparse Head otherwise.

Loss Function and Sparsity Control. We optimize a distillation loss to align the logits of our
hybrid-head student model with those of the full-attention teacher. Given a sequence X partitioned
into a prompt Xprompt and a target Xtarget, the teacher encodes Xprompt to produce a shared KV cache.
Conditioned on this cache, both models compute logits over the target tokens. Let y(i)

T [j] and y
(i)
S [j]

denote the teacher and student logits, respectively, for the j-th target token in the i-th sequence of a
batch of size N . The distillation loss is:

Ldistill =
1

N

N∑
i=1

∑
j∈Xtarget

∥∥y(i)
S [j]− y

(i)
T [j]

∥∥2
2
. (6)

To enforce a strict sparsity budget on Retrieval Heads, we formulate training as a constrained opti-
mization problem using Lagrangian relaxation. The objective is a min-max problem over the distri-
butional parameters (α, β) of the HardKuma selectors and a learnable Lagrange multiplier λ ≥ 0:

min
α,β

max
λ≥0
L(α, β, λ) = Ldistill + λ · (E[∥z∥0]−Ntarget) , (7)

where the regularizer E[∥z∥0] is the expected L0 norm of the selection variables, which corresponds
to the expected number of active Retrieval Heads. The expectation can be expressed in closed form:

E [∥z∥0] =
∑
l>0,h

(
1− F

(
−p
q − p

;α
(l)
h , β

(l)
h

))
, (8)

where F is the CDF function of the Kumaraswam distribution. The detailed derivation of Equation 8
can be found in the Appendix A.3.
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During training process, (α, β) are optimized via gradient descent to minimize the objective, while
λ is updated by gradient ascent according to the constraint violation: if the expected number of
active heads exceeds Ntarget, λ increases to strengthen the penalty; otherwise, it decreases. This
adaptive scheme automatically tunes the effective penalty strength, ensuring the desired sparsity
without manual hyperparameter search.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Benchmarks, Models, and Baselines We conduct experiments on both efficiency and perfor-
mance of LycheeDecode. In Section 4.2, we analyze performance under two scenarios: long-context
understanding and complex reasoning. For long-context understanding, we benchmark the Llama3-
8B and Qwen3-8B models on the LongBench dataset, comparing LycheeDecode against advanced
sparse attention methods such as TidalDecode (Yang et al., 2025b), Quest (Tang et al., 2024), DuoAt-
tention (Xiao et al., 2025) and SeerAttention-R (Gao et al., 2025). For complex reasoning, we as-
sess the DeepSeek-R1-Distill-Qwen-7B/Llama-8B models on challenging mathematical reasoning
benchmarks, including AIME24 and OlympiadBench. In Section 4.3, we turn to efficiency analysis.
Leveraging our custom hybrid-head sparse attention kernels, we conduct a head-to-head compar-
ison with existing sparse attention methods, measuring both end-to-end speedup and kernel-level
acceleration.

Training Setup for LycheeDecode To categorize the attention heads, we follow prior work (Xiao
et al., 2025), inserting passkeys into the Booksum dataset and calculating a distillation loss through
passkey retrieval. In training phase, We trained for 3000 steps on a single NVIDIA A100 80G GPU
using a single batch size, which took only a few hours. The HardKuma distribution for each attention
head is initialized to a uniform distribution, i.e., parameters α and β are both initialized to 1. The
critical token budget is set to 30% of the sequence length. For a fair comparison with TidalDecode,
the retrieval head budget was set to 32, matching the number of heads that perform full attention in
TidalDecode (two full attention layer and two token selection layers, with 8 KV heads each).

4.2 PERFORMANCE EVALUATION

4.2.1 LONG CONTEXT UNDERSTANDING

We evaluate the model’s ability to understand long contexts on the LongBench (Bai et al., 2024),
a benchmark designed to evaluate LLMs on long-context tasks across diverse NLP domains. Fol-
lowing previous work (Yang et al., 2025b), we concentrate on eight tasks that span single/multi-
document question answering, summarization, and retrieval: MultiFieldQA (MFQA), NarrativeQA
(NrtQA), Qasper (Qasp), 2WikiMQA (2Wiki), HotpotQA (HotQA), QMSum (QMSm), TriviaQA
(TrQA), and Passage Retrieval (PRe).

The results, as detailed in Table 1, demonstrate that on the Llama-3-8B-Instruct-Gradient-1048k
model, LycheeDecode achieves an average score of 33.07 with 4096 token budget, not only outper-
forms other sparse attention methods like TidalDecode and Quest but also surpasses the full-attention
model in the average score. On the Qwen3-8B model, LycheeDecode outperforms TidalDecode
with both 1024 and 4096 token budget, which demonstrates the clear advantage of LycheeDecode’s
head-level token sharing strategy over the layer-level sharing approach used by TidalDecode. Fur-
thermore, compared to SeerAttention-R, which relies on a trainable gating network, LycheeDecode
achieves comparable or slightly superior performance. This demonstrates that our lightweight head
identification strategy can effectively capture critical information without the complexity of training
and deploying an auxiliary gating network.
4.2.2 COMPLEX REASONING TASK

To evaluate the reasoning capabilities of LycheeDecode, we conduct experiments on four challeng-
ing math reasoning benchmarks: Gaokao2023En (Liao et al., 2024), Minerva (Lewkowycz et al.,
2022), AIME24 (MAA, 2024), and OlympiadBench (He et al., 2024). We compare our method
against Full Attention and TidalDecode on two distilled models from the DeepSeek-R1. In our ex-
perimental configuration, the number of tokens for sparse attention calculation is set to half of the

6
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Table 1: Performance comparison on LongBench benchmark. LycheeDecode achieves the best
average score in all settings, surpassing other sparse attention methods and full attention models.
”∗” indicates double the retrieval head budget. We bold the best-performing scores with the second-
best underlined.

Method (Budget) / Task MFQA NrtQA Qasp 2Wiki HotQA QMSm TrQA PRe Avg.

Llama-3-8B-Instruct-Gradient-1048k

Full Attention 30.76 5.52 14.56 13.32 11.50 19.43 86.56 77.00 32.33

Quest (1024) 26.21 4.08 12.19 12.61 10.75 19.56 83.47 63.84 29.09
DuoAttention (1024) 19.02 7.36 8.60 9.68 8.77 17.75 41.92 13.25 15.79
DuoAttention∗ (1024) 23.88 6.27 10.44 10.41 7.48 19.00 80.61 47.17 25.66
TidalDecode (1024) 28.57 7.63 11.11 13.56 9.82 20.37 79.78 75.17 30.75
LycheeDecode (1024) 28.28 6.12 14.89 14.42 12.81 19.05 82.69 69.92 31.02

Quest (4096) 28.92 3.74 13.63 12.83 12.15 19.36 85.91 72.50 31.13
DuoAttention (4096) 22.27 7.16 13.93 12.74 10.73 17.93 83.76 34.75 25.41
DuoAttention∗ (4096) 23.74 6.63 13.80 13.67 10.40 17.93 86.03 61.00 29.15
TidalDecode (4096) 30.94 6.19 13.85 14.40 13.71 19.48 86.30 78.00 32.86
LycheeDecode (4096) 30.11 5.85 14.39 12.86 12.66 19.30 86.78 82.58 33.07

Qwen3-8B

Full Attention 25.84 3.43 10.96 11.97 11.74 20.90 90.21 89.08 33.02

SeerAttention-R (1024) 23.91 2.97 10.28 11.88 11.28 19.04 87.50 86.79 31.71
TidalDecode (1024) 21.32 2.73 9.96 10.48 9.97 19.27 80.4 83.43 29.70
LycheeDecode (1024) 24.26 3.14 10.45 11.05 12.00 19.81 86.64 91.71 32.38

SeerAttention-R (4096) 24.85 3.30 11.15 12.42 11.35 20.61 90.19 93.17 33.38
TidalDecode (4096) 23.57 2.99 10.79 11.47 11.31 20.01 88.94 85.0 31.76
LycheeDecode (4096) 24.90 3.32 10.88 12.74 11.68 20.71 90.34 93.25 33.48

Table 2: Performance comparison on math reasoning tasks.
Method / Task Gaokao2023En Minerva AIME24 OlympiadBench Avg.

DeepSeek-R1-Distill-Llama-8B

Full Attention 68.8 39.1 23.3 10.2 35.4
TidalDecode 62.5 39.8 13.3 10.9 31.6
TidalDecode w/ Cache Correction 57.0 43.0 33.3 9.4 35.7
LycheeDecode 68.8 40.6 26.7 10.9 36.8
LycheeDecode w/ Cache Correction 68.8 41.4 40.0 10.9 40.3

DeepSeek-R1-Distill-Qwen-7B

Full Attention 74.2 47.7 40.0 10.2 43.0
TidalDecode 57.8 39.1 16.7 7.0 30.2
TidalDecode w/ Cache Correction 63.3 41.4 26.7 8.6 35.0
LycheeDecode 74.2 48.4 43.3 10.9 44.2
LycheeDecode w/ Cache Correction 72.7 47.7 46.7 12.5 44.9

sequence length, increasing linearly during decoding. Furthermore, to mitigate the potential accu-
mulation of errors from sparse attention mechanisms, we incorporate a Cache Correction strat-
egy (Yang et al., 2025b; Sun et al., 2025). Specifically, after every 32 decoded tokens, we perform
a prefill step over these “polluted” tokens using dense attention to reconstruct and update their key-
value (KV) representations within the cache.

As demonstrated in Table 2, LycheeDecode outperforms both the TidalDecode and full attention
baselines across both models. The introduction of the Cache Correction strategy further enhances
the performance of LycheeDecode, solidifying its superiority. We hypothesize that this advantage
over the full-attention model stems from our method’s ability to capture more diverse attention
patterns through head specialization, which allows LycheeDecode to more effectively focus on the
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Figure 3: End-to-End Decoding Latency (TPOT) across various context lengths. LycheeDecode and
TidalDecode use a fixed 4096 budget. Note that TidalDecode can only support single batch.

key information crucial for the reasoning process while filtering out irrelevant context that may act
as noise, leading to a more robust and efficient inference.

4.3 EFFICIENCY EVALUATION

4.3.1 END-TO-END SPEEDUP

We evaluate the end-to-end decoding latency of LycheeDecode and compare it against TidalDecode
and the full attention baseline across varying context lengths and batch sizes. We adopt TPOT
(Time Per Output Token) as the primary evaluation metric. LycheeDecode and TidalDecode use a
fixed 4096 token budget. LycheeDecode leverages our efficient hybrid-head block-sparse decoding
kernel, combined with auto-tuning to search for the optimal parameter settings in each layer, since
different layers contain varying numbers of sparse heads.

As shown in Figure 3, as the context length grows, the latency of the full-attention model increases
sharply. TidalDecode exhibits higher latency than full attention at shorter sequence lengths, but
surpasses it in longer contexts (>64K). By comparison, LycheeDecode consistently maintains low
latency as sequence length increases, achieving up to 2.7× speedup over full attention and 1.73×
faster than TidalDecode under a single batch size with 128K context. These results demonstrate that
LycheeDecode delivers robust end-to-end acceleration across different settings.

4.3.2 KERNEL-LEVEL SPEEDUP
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Figure 4: Latency comparison of our hybrid head kernel and the FlashAttention-2 kernel across
different sparse head ratios, context lengths, and batch sizes.

This section evaluates our custom hybrid head block-sparse decoding kernel (detailed design is
shown in Appendix C). We implement the kernel using TileLang and select FlashAttention-2 (Dao,
2024) as our baseline. Experiments are conducted on single NVIDIA A800 GPU across different
context lengths (16K to 128K) and batch sizes (1 to 8). We evaluate several configurations of our
kernel, progressively increasing the ratio of sparse heads from 4/8 to 8/8 (out of 8 total key-value
heads), with a fixed 90% sparsity ratio applied to the sparse heads and the block size set to 64.

The experimental results clearly validate the efficiency of our custom hybrid-head kernel. As shown
in Figure 4, while the configuration with 4/8 sparse heads exhibits latency comparable to or slightly
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underperforming the dense FlashAttention-2 baseline, all other settings with a higher degree of spar-
sity consistently and significantly outperform it. This performance advantage becomes particularly
pronounced as the input sequence length and batch size increase, which is expected, as the decoding
kernel is primarily I/O-bound. When the KV cache size is sufficient to saturate memory bandwidth,
the gains are substantial; for instance, at a 128K context length with a batch size of 8, our kernel
achieves a peak speedup of up to 7x in the fully sparse (8/8) configuration. This evaluation confirms
that our specialized kernel effectively translates the algorithmic gains of the hybrid-head strategy
into significant kernel-level acceleration by minimizing redundant computation and memory access,
serving as the fundamental enabler for the end-to-end speedups observed in LycheeDecode.

4.4 ABLATION STUDY

4.4.1 DIFFERENT SPARSITY METHODS
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Figure 5: Results of LycheeDecode using dif-
ferent sparse method on the LongBench.

Table 3: Performance comparison of differ-
ent head identification methods on different
datasets. Scores are averaged across eight se-
lected tasks in LongBench.

Method / Dataset Passkey Retrival HotpotQA

Direct Optimize 32.06 31.02
Hard Concrete 32.13 30.25
HardKuma (Ours) 33.07 31.11

To evaluate the effectiveness of different sparsity strategies, we conduct a comparative analysis
of their performance-sparsity trade-offs. We benchmark four distinct families of token selection
methods, each with three different configurations: (1) Top-k, which retains a fixed-size set of
tokens with the highest attention scores; (2) Top-p, which adaptively selects the smallest set of
tokens whose cumulative attention probability exceeds a predefined threshold p; (3) Threshold,
which preserves all tokens with attention scores surpassing a specific value; and (4) Ratio, which
selects a set of top tokens using a budget proportional to the sequence length, designed to increase
gradually during the generation process.

For each configuration, we measure two key metrics: (1) Performance, quantified by the average F1
score on the LongBench benchmark, and (2) Sparsity, defined as the percentage of critical tokens
identified by sparse heads to the total sequence length during inference.

The experimental results are shown in Figure 5. More details can be found in Appendix E.2. Increas-
ing sparsity leads to a decline in model performance. This is expected, as higher sparsity reduces
the amount of contextual information available. Top-p and Ratio perform robustly under low
sparsity, sometimes even surpassing Top-k with comparable token budgets. However, their per-
formance drops sharply under extreme sparsity. Notably, at equivalent sparsity levels, the Ratio
method generally achieves the best performance. We hypothesize that training with a fixed-sparsity
objective endows the model with a general robustness to sparsity, which in turn allows it to effec-
tively handle the dynamic adjustments made by the Ratio method during inference.

4.4.2 IDENTIFICATION METHODS & DATASET

To evaluate the advantages of our HardKuma distribution for identifying attention heads, we com-
pare it with the direct optimization baseline from Xiao et al. (2025) and the HardConcrete distri-
bution used by Bhaskar et al. (2025). The head identification process is performed on two distinct
datasets: the previously mentioned Passkey Retrieval task and HotpotQA, which challenges the
model to perform multi-hop reasoning over long contexts. For HotpotQA, the distillation loss is
calculated based on the logits of the answer tokens. Crucially, we filter out questions that can be
answered without relying on the provided context, thereby ensuring that the identification process

9
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specifically rewards heads capable of complex, long-range information integration. The specialized
models are then evaluated on the LongBench benchmark with a fixed 4096 token budget.

As shown in Table 3, the HardKuma distribution achieves the best overall performance, outper-
forming both the direct optimization baseline and HardConcrete distribution and demonstrating its
superior ability to identify head type. Its score is slightly lower on the HotpotQA dataset, which we
hypothesize this is because its answers are relatively short; calculating the loss over a small number
of tokens can lead to a higher variance in the gradient estimate, making it difficult to accurately
guide the specialization of attention heads. We leave the optimization of tasks where the supervision
signal is sparse for future work. Refer to Appendix A for more discussion of theoretical advantages.

5 CONCLUSION

We introduce LycheeDecode, a framework that speeds up long-context LLMs by specializing at-
tention heads for different roles, enhancing efficiency while maintaining performance. This head
specialization is enabled by the HardKuma distribution and a custom TileLang kernel, delivering
significant end-to-end speedups. Our work highlights that treating attention heads as functionally
specialized units, rather than a monolithic block, is a powerful and promising direction for LLMs.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pp. 3119–3137. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.172. URL https://doi.org/10.18653/v1/2024.acl-long.172.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable
binary variables. In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.), Proceedings of
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A HARDKUMA DISTRIBUTION

A.1 KUMARASWAMY DISTRIBUTION

The Kumaraswamy (Kuma) distribution is a continuous probability distribution defined on the in-
terval (0,1). It is similar to the Beta distribution, but its probability density function (PDF) and
cumulative distribution function (CDF) are simpler and have closed form expressions.

The PDF of the Kumaraswamy distribution is given by:

f(x;α, β) = αβxα−1(1− xα)β−1, (9)

where x ∈ (0, 1), α and β are positive shape parameters that control the distribution’s shape.

The shape of the distribution can be unimodal, uniantimodal, increasing, decreasing, or constant,
depending on the values of α and β.

The CDP of Kumaraswamy distribution can be defined as:

F (x;α, β) =

∫ x

0

f(ξ;α, β)dξ

=

∫ x

0

αβξα−1(1− ξα)β−1dξ

(10)

Let u = 1 − ξα, then the differential is du = −αξα−1dξ. We also need to change the limits of
integration: when ξ = 0, u = 1, and when ξ = x, u = 1 − xα. Substituting these into the integral
gives:

F (x;α, β) = −β
∫ 1−xα

1

uβ−1du

= −β
[
uβ

β

]1−xα

1

= 1− (1− xα)β

(11)

The PDF and CDF of the Kuma distribution with different parameters are shown in Figure 6.

A.2 HARDKUMA DISTRIBUTION

The HardKuma distribution is a modification of the Kumaraswamy distribution, engineered to create
a random variable on the closed interval that exhibits both continuous and discrete behavior. It
achieves this by having non-zero probability masses at the endpoints 0 and 1, while maintaining a
continuous density over the open interval (0, 1). This makes it particularly useful for applications
like generating differentiable binary masks in machine learning.

The distribution is constructed as follows. Let X be a random variable following the Kumaraswamy
distribution, i.e., X ∼ Kuma(α, β). We define an intermediate stretched variable T by linearly
transforming X to a wider interval (p, q), where p < 0 and q > 1 are fixed hyperparameters:

T = p+ (q − p)X (12)

The HardKuma random variable, which we denote as Z, is then obtained by applying a hard-sigmoid
rectifier function to T :

Z = min(1,max(0, T )) (13)

A variable Z constructed this way is said to follow the HardKuma distribution, i.e., Z ∼
HardKuma(α, β) .

The key feature of this construction is that the discrete probabilities for Z = 0 and Z = 1 can be
computed in closed form, thanks to the tractable CDF of the underlying Kumaraswamy distribution.
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Figure 6: PDF and CDF of Kuma distribution with different parameters.

The probability of sampling exactly 0 is the probability that the stretched variable T is less than or
equal to 0:

P (Z = 0) = P (T ≤ 0)

= P (p+ (q − p)X ≤ 0)

= P

(
X ≤ −p

q − p

)
= F

(
−p
q − p

;α, β

) (14)

Similarly, the probability of sampling exactly 1 is the probability that T is greater than or equal to 1:

P (Z = 1) = P (T ≥ 1)

= 1− P (T < 1)

= 1− P

(
X <

1− p

q − p

)
= 1− F

(
1− p

q − p
;α, β

) (15)

The remaining probability mass, 1 − P (Z = 0) − P (Z = 1), is distributed continuously over the
interval (0, 1). This mixed discrete-continuous nature allows the HardKuma distribution to model
binary selections in a way that is amenable to gradient-based optimization.

A.3 EXPECTED L0 NORM OF HARDKUMA

A primary application of the HardKuma distribution is to create sparse, differentiable masks. This
involves generating a vector of random variables Z = (Z1, . . . , Zn), where each Zi is drawn inde-
pendently from a HardKuma distribution, Zi ∼ HardKuma(αi, βi). The sparsity of such a vector is
measured by its L0 norm ∥Z∥0, which counts the number of non-zero elements.

A key result, which makes this distribution practical for optimization, is that the expected value of
the L0 norm has a tractable, closed-form expression. We can derive it as follows.

First, we express the L0 norm using the indicator function I[·]:

∥Z∥0 =

n∑
i=1

I[Zi ̸= 0] (16)
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By the linearity of expectation, the expectation of the sum is the sum of the expectations:

E[∥Z∥0] = E

[
n∑

i=1

I[Zi ̸= 0]

]
=

n∑
i=1

E[I[Zi ̸= 0]] (17)

The expectation of an indicator function is simply the probability of the event it indicates:

E[I[Zi ̸= 0]] = P (Zi ̸= 0) (18)

Using the complement rule, the probability of being non-zero is one minus the probability of being
zero:

P (Zi ̸= 0) = 1− P (Zi = 0) (19)

Combining these steps and Equation 14 , we arrive at the final expression for the expected L0 norm:

E[∥Z∥0] =
n∑

i=1

(1− P (Zi = 0))

=

n∑
i=1

(
1− F

(
−p
q − p

;αi, βi

)) (20)

B ALGORITHM PSEUDOCODE

The complete procedure of LycheeDecode is shown in Algorithm 1. In each layer, the Key-Value
(KV) cache is first updated with the key and value vectors of the current token. The algorithm
then processes each attention head according to its designated type: Retrieval Heads perform a
full attention operation over the entire KV cache to identify and select a new set of critical tokens.
Conversely, Sparse Heads perform a more efficient computation, calculating attention only on the
sparse subset of tokens provided by the preceding layer. Following the attention step, the outputs
from all heads are concatenated and passed through a feed-forward network to produce the hidden
state for the subsequent layer. This entire procedure is repeated until the final logits are produced by
the model’s output layer.

Algorithm 1 LycheeDecode

1: Input: Initial hidden state x(0), KV cache C, selected token set {Sh}H−1
h=0 , token budget k

2: Output: Logits
3: for layer l = 0, 1, . . . , L− 1 do
4: q, k, v ← x(l)WQ, x

(l)WK , x(l)WV

5: C(l).append(k, v)
6: K,V ← C(l).key, C(l).value
7: for head h = 0, 1, . . . ,H − 1 do
8: if l == 0 or h ∈ H(l)

R then ▷ Retrieval Head

9: Ah ← softmax
(
qhK

T
h /
√
d
)

10: Sh ← argTopK(Ah, k) ▷ Select k critical tokens
11: oh ← AhVh

12: else ▷ Sparse Head
13: oh ← softmax

(
qh(Kh[Sh])T /

√
d
)
Vh[Sh]

14: end if
15: end for
16: o← Concat(o0, o1, . . . , oH−1)WO

17: x(l+1) ← FFN(o)
18: end for
19: logits← lm head(x(L−1))
20: return logits
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C KERNEL DESIGN

Algorithm 2 Hybrid-head Block-Sparse Decoding
1: Input: Query q, Key K, Value V , block indices I
2: Output: Attention output O
3: for Grid indexed (b, s) by (batch size,num split) in parallel do
4: Calculate head id h and head-wise split id sh base on the sparse head index and split id s
5: Load corresponding query block qb,h in a GQA group into shared memory
6: opartial ← 0, mpartial ← −∞, lpartial ← 0 ▷ Initialize accumulators
7: for each block index i ∈ I within the current split do
8: Load corresponding key block Ki and value block Vi into shared memory
9: Si = qb,h ·KT

i ▷ Compute score matrix via GEMM operation
10: Update opartial,mpartial, lpartial with Si, Vi using online softmax algorithm
11: end for
12: Opartial[b, h, sh]← opartial/lpartial ▷ Store partial output
13: Lpartial[b, h, sh]← log(lpartial) +mpartial ▷ Store partial log-sum-exp
14: end for
15: Combine(Lpartial, Opartial, O) ▷ Combine different splits
16: return O

A critical challenge in designing an efficient hybrid-head attention kernel is the inherent workload
imbalance between the different head types. Retrieval heads, which must process the entire Key-
Value cache, represent a substantial computational load. In contrast, sparse heads operate on only a
small, pre-selected subset of blocks, demanding significantly fewer resources. A naive scheduling
approach that allocates an equal number of computational resources, such as GPU thread blocks, to
each head would result in a severe performance bottleneck. Threads assigned to sparse heads would
complete their tasks rapidly and remain idle, while the threads dedicated to full-attention heads
would dictate the critical path, leading to gross underutilization of the GPU’s parallel architecture.

To overcome this, we implement a workload-pooling strategy in our hybrid-head sparse decoding
kernel that decouples resource allocation from individual heads. Instead of assigning work on a per-
head basis, we first aggregate the complete set of block computations required by all heads (both
full and sparse) into a single, unified pool of work for each batch item. This aggregated workload is
then partitioned into numerous smaller, uniform work units, which we term splits. These splits are
subsequently distributed homogeneously among the available GPU thread blocks for execution. By
aggregating the heterogeneous computations before partitioning, this approach ensures that every
thread block receives a workload of roughly equivalent size, maximizing hardware utilization and
minimizing overall execution latency. See Algorithm 2 for detailed pseudo code.

D VISUALIZATION OF TRAINING PROCESS

To demonstrate the effectiveness of our proposed head identification strategy in bridging the train-
inference gap, we visualize the training dynamics of LycheeDecode alongside the baseline DuoAt-
tention (Xiao et al., 2025). We conducted the comparison on the Llama-3-8B-Instruct-1048k model,
training both for 1000 steps with an identical learning rate of 0.01. Figure 7 presents the evolution
of the probability that a specific attention head is identified as a ”Retrieval Head” during training.

For DuoAttention, the heatmap values represent the continuous gating variables. As observed,
DuoAttention exhibits noticeable ”grey” areas (values hovering between 0.4 and 0.6) at step 1000.
This indicates that a simple continuous relaxation often fails to push parameters to the binary ex-
tremes. Consequently, rounding these ambiguous values to 0 or 1 during inference introduces a
substantial train-inference discrepancy, potentially degrading performance.

For LycheeDecode, the heatmap values represent the expected value E[z
(l)
h ] of the HardKuma distri-

bution. In contrast to the DuoAttention, LycheeDecode demonstrates a more decisive polarization.
The values quickly converge to either 0 (Sparse Head) or 1 (Retrieval Head), resulting in a clear
”blue-and-red” pattern. This confirms that the HardKuma distribution effectively forces the model

17
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Figure 7: Visualization of head specialization dynamics on Llama-3-8B-Instruct-1048k. Left &
Middle (Heatmaps): The probability of each head being identified as a Retrieval Head across
training steps for DuoAttention (left) and LycheeDecode (middle). Right (PDFs): Evolution of
the LycheeDecode Kuma distribution PDFs for specific heads at steps 0, 100, 200, 500, and 1000,
showing how probability mass effectively concentrates at the boundaries.
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to make discrete decisions during the training phase itself, thereby minimizing the consistency gap
between training and inference.

The two rightmost columns of Figure 7 provide a microscopic view of this process by plotting
the Probability Density Functions (PDFs) of the Kuma distribution for two representative heads
(Layer 8 Head 0 and Layer 10 Head 0) at specific training steps. Initially uniform at Step 0, the
distributions undergo a dramatic transformation. For the head specializing as a Retrieval Head, the
probability mass shifts almost entirely to the right, while for the Sparse Head, it collapses to the left.
This visualization corroborates that our optimization objective successfully shapes the underlying
distribution to be near-binary.

E MORE EXPERIMENT RESULTS

E.1 RULER BENCHMARK

To assess the ability to comprehend longer contexts, we employ the RULER benchmark (Hsieh
et al., 2024), a synthetic benchmark designed for a more thorough evaluation of long-context lan-
guage models beyond simple retrieval tasks. RULER expands on the needle-in-a-haystack (NIAH)
test by including more complex tasks like multihop tracing and aggregation, offering configurable
sequence lengths and task difficulties. For our evaluation, we selected tasks including niah single1,
niah multikey1, niah multivalue, niah multiquery, vt, fwe, qa1, and qa2 to test a wide range of long-
context understanding capabilities. We configure LycheeDecode with a fixed budget of 4096 tokens
and compare it to the full-attention Llama3-8B-Instruct-Gradient-1048k model.

The experimental results are shown in Table 4. As indicated, in shorter context scenarios, the per-
formance of our method is highly competitive with the full attention model. For instance, at 8k con-
text length, our approach achieves an average score of 62.79, closely approaching the full-attention
model’s score of 63.30. As the context length increases, the performance of LycheeDecode de-
creases slightly. This performance degradation is an acceptable trade-off, given that our method
operates on a fixed and significantly smaller 4096 token budget.

Table 4: Performance comparison of LycheeDecode and full attention model on RULER benchmark.
LycheeDecode uses a fixed budget of 4096.

Context / Task single multikey multivalue multiquery vt fwe qa1 qa2 Avg.

Full Attention

4k 100.0 89.6 87.8 79.2 17.4 0.1 79.8 56.4 63.7
8k 100.0 95.0 90.3 70.0 19.4 0.4 75.0 56.4 63.3
16k 100.0 93.0 95.7 81.0 19.8 0.0 74.2 53.4 64.6
32k 99.2 97.4 96.5 81.9 19.8 0.0 70.6 51.6 65.9
64k 99.4 98.4 96.8 93.7 19.8 0.0 70.4 47.6 65.8

LycheeDecode

4k 100.0 89.4 88.4 78.9 17.3 0.1 80.0 56.2 63.7
8k 100.0 94.4 90.6 65.9 19.4 0.4 75.4 56.2 62.8
16k 100.0 81.8 96.3 68.7 19.6 0.0 71.0 53.4 61.4
32k 97.8 82.0 94.9 65.1 19.8 0.0 66.2 49.6 59.4
64k 99.6 73.2 90.3 81.7 19.9 0.0 63.4 44.4 59.0

E.2 DETAILED RESULTS OF DIFFERENT SPARSE METHODS

This section provides a detailed breakdown of the results from the ablation study on different sparsity
methods, as discussed in Section 4.4.1 and visualized in Figure 5. Table 5 presents the performance
results of LycheeDecode on the LongBench benchmark when configured with different token selec-
tion methods, including Top-k, Top-p, Threshold, and Ratio, each with varying parameters.
Complementing this, Table 6 quantifies the sparsity level (as a percentage of critical tokens selected)
for each corresponding strategy and setting.
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Table 5: Performance comparison of LycheeDecode using different sparse strategies on LongBench.
Method / Task MFQA NrtQA Qasp 2Wiki HotQA QMSm TrQA PRe Avg.

Top-kk=1024 28.28 6.12 14.89 14.42 12.81 19.05 82.69 69.92 31.02
Top-kk=2048 28.13 5.78 14.72 12.76 11.82 19.14 84.98 78.42 31.97
Top-kk=4096 30.11 5.85 14.39 12.86 12.66 19.30 86.78 82.58 33.07

Top-pp=0.99 30.01 11.05 12.65 13.48 12.91 21.05 74.27 42.67 27.26
Top-pp=0.995 33.42 9.47 13.84 15.55 13.70 20.12 80.93 65.25 31.54
Top-pp=0.999 31.02 6.30 13.77 14.00 12.25 19.99 85.77 74.67 32.22

Thresholdτ=10−4 25.22 8.17 11.63 13.78 10.86 19.75 60.08 19.93 21.18
Thresholdτ=10−5 28.64 6.41 14.91 15.02 13.48 19.31 78.16 53.36 28.66
Thresholdτ=10−6 29.73 6.74 14.00 13.75 11.49 19.71 83.48 77.08 31.99

Ratioθ=70% 26.68 6.54 15.58 14.10 12.95 18.91 83.82 80.67 32.41
Ratioθ=80% 26.65 6.88 13.59 15.70 11.97 19.19 81.94 77.17 31.63
Ratioθ=90% 27.96 6.61 11.91 15.01 13.33 18.95 80.41 65.33 29.94

Table 6: Sparsity (%) of LycheeDecode under different settings on LongBench benchmark.
Method / Task MFQA NrtQA Qasp 2Wiki HotQA QMSm TrQA PRe Avg.

Top-kk=1024 87.94 92.24 67.70 71.46 82.16 88.66 86.88 74.46 81.4
Top-kk=2048 79.17 86.60 44.54 54.16 69.96 80.41 77.57 58.26 68.8
Top-kk=4096 61.91 75.32 14.21 30.80 51.62 63.92 60.12 30.17 48.5

Top-pp=0.99 81.81 84.59 76.34 79.85 82.12 85.78 79.71 79.17 81.1
Top-pp=0.995 76.22 78.50 70.42 75.06 76.67 81.50 74.99 73.80 75.9
Top-pp=0.999 59.67 61.02 53.66 58.40 58.32 60.76 57.29 56.37 58.2

Thresholdτ=10−4 96.95 98.25 91.69 93.33 95.97 97.77 96.44 93.92 95.5
Thresholdτ=10−5 86.20 90.38 73.22 78.60 85.05 88.44 85.12 78.87 83.2
Thresholdτ=10−6 65.36 72.07 48.04 55.11 62.89 68.05 62.92 54.21 61.1

Ratioθ=90% 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.0
Ratioθ=80% 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.0
Ratioθ=70% 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.0

E.3 MORE CASES

In this section, we provide additional examples to illustrate the behavioral differences among various
attention heads. We use prompts that require simple logical reasoning. For each attention head, we
calculate the attention scores of the final answer token with respect to all previous tokens and identify
the top-k crucial tokens with the highest scores. Subsequently, we compute the overlap rate of these
crucial tokens for each attention head with those of the corresponding head in the adjacent layer.
The results are presented in Figures 10, Figure 11, Figure 12 and Figure 13.

E.4 ABLATION STUDY

To investigate the trade-offs between model performance and inference efficiency, we conducted an
ablation study using the Llama3-8B-Instruct-Gradient-1048k model. We evaluated the generative
quality based on the average score across the LongBench benchmark, while efficiency was quantified
by the end-to-end decoding speedup (measured via Time Per Output Token, TPOT) relative to the
Full Attention baseline. In this experiment, we explored a range of sparsity configurations by varying
two key hyperparameters: the critical token budget, which was set to 1024, 2048, and 4096 tokens,
and the ratio of retrieval heads, which was tested at 12.5%, 25.0%, and 50.0% of the total attention
heads.

As illustrated in Figure 8, the results demonstrate a clear trade-off between performance and effi-
ciency. We observe that increasing the token budget from 1024 to 4096 consistently enhances the
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Figure 8: Performance and efficiency trade-offs under different token budgets and retrieval head
budgets.

LongBench average score across settings by retaining more context, though this naturally leads to a
decrease in decoding speedup. Regarding the proportion of retrieval heads, a smaller ratio yields the
highest speedup by minimizing computational overhead. However, in terms of performance, simply
maximizing the number of retrieval heads does not always lead to the best results. Notably, with
larger token budgets (2048 and 4096), the 25.0% configuration outperforms the 50.0% setting. We
hypothesize that this is due to the noise-filtering property of LycheeDecode. An excessive propor-
tion of retrieval heads may introduce irrelevant context, whereas a balanced configuration allows
sparse heads to effectively focus on the most critical information.

E.5 ATTENTION VISUALIZATION

To analyze the behavior of Sparse Heads and investigate how they handle noisy context compared to
full-attention, we conducted a case study using a logical reasoning prompt with irrelevant distractor
text (Figure 9). We computed the attention weights of the final answer token with respect to the
entire preceding context. We calculated the average attention scores across all Retrieval Heads
(which execute full attention) and compared them against the average scores across all Sparse Heads
(which execute sparse attention). This comparison allows us to directly observe the impact of the
sparsity mechanism on the attention distribution.

The comparative visualization is presented in Figure 9. As shown in Figure 9(a), the Retrieval Heads
display a diffused attention pattern characteristic of full attention, where significant attention mass is
allocated to irrelevant distractor tokens (e.g., ”West”, ”the”). In contrast, Figure 9(b) demonstrates
that the Sparse Heads effectively eliminate this noise. Since Sparse Heads constitute the major-
ity of the model’s computation, this ”denoising” effect explains the counter-intuitive finding that
LycheeDecode can outperform the full-attention baseline, as it filters out interference that would
otherwise distract the model.

F IMPLEMENTATION DETAILS

We provide additional experimental details to ensure the reproducibility of our results. For the
training phase, we set the learning rate to 0.01. The stretching interval (p, q) for the HardKuma
distribution was set to (−0.1, 1.1). For the Passkey Retrieval dataset, we follow the setup of Xiao
et al. (2025) by inserting ten 32-word passkeys into the BookSum dataset, with the prompt length
sampled from a range of 1k to 10k tokens. For the HotpotQA dataset, we filter out questions that
could be answered without requiring the provided context. The prompt length for HotpotQA was
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Question: John's father has four children: North, South, and East. What is the name of the fourth child? <think>

 These are the cardinal directions. We have North, South, and East. To complete the compass rose, the remaining

 direction is West. It logically follows the set of four points. So the final answer is West. Wait, I am overlooking the

 introduction. The man is identified as "John's father". Therefore, John is one of the children. The direction pattern is

 a distraction. </think> So the final answer is  John

(a) Full Attention

Question: John's father has four children: North, South, and East. What is the name of the fourth child? <think>

 These are the cardinal directions. We have North, South, and East. To complete the compass rose, the remaining

 direction is West. It logically follows the set of four points. So the final answer is West. Wait, I am overlooking the

 introduction. The man is identified as "John's father". Therefore, John is one of the children. The direction pattern is

 a distraction. </think> So the final answer is  John

(b) Sparse Attention

Figure 9: Visualization of attention scores for the final answer token in a noisy reasoning context.
(a) Full Attention (Retrieval Heads) assigns significant attention weight to the irrelevant distraction
text (e.g. ”West”, ”the”), indicating susceptibility to noise. (b) Sparse Heads successfully filter out
these distractions. By computing attention only on the propagated critical tokens, the Sparse Heads
concentrate their focus solely on the relevant reasoning path, effectively denoising the context.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Head Index

L1 vs L0
L2 vs L1
L3 vs L2
L4 vs L3
L5 vs L4
L6 vs L5
L7 vs L6
L8 vs L7
L9 vs L8

L10 vs L9
L11 vs L10
L12 vs L11
L13 vs L12
L14 vs L13
L15 vs L14
L16 vs L15
L17 vs L16
L18 vs L17
L19 vs L18
L20 vs L19
L21 vs L20
L22 vs L21
L23 vs L22
L24 vs L23
L25 vs L24
L26 vs L25
L27 vs L26
L28 vs L27
L29 vs L28
L30 vs L29
L31 vs L30

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K 
Ov

er
la

p 
Ra

te
 fo

r A
tte

nt
io

n 
Sc

or
e

Figure 10: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: There are only two kinds of fruit in a box: apples and bananas. All apples are sour, and all
bananas are sweet. I took a fruit from the box and tasted it. It was sweet. What is this fruit? An-
swer:, and Llama-3 outputs banana.

sampled from a range of 1k to 20k tokens. During inference, we preprocess the model by reordering
the output channels of the Query, Key, and Value projection weights according to the attention head
assignments, so as to ensure that the retrieval head and the sparse head are grouped into two different
continuous clusters. For Grouped Query Attention (GQA) models, we reduce the dimension of the Q
heads to match that of the KV heads by applying average pooling, which allows for the calculation of
the highest-scoring token set for each kv head. For all experiments, we employ the greedy decoding
strategy.

G LIMITATION

Although LycheeDecode demonstrates a significant step towards efficient long-context LLM infer-
ence, we acknowledge several limitations that present valuable avenues for future research. Cur-
rently, we allocate a fixed budget for each sparse head. However, recent work (Feng et al., 2024)
suggests that dynamically allocating the budget among attention heads can lead to better perfor-
mance. Additionally, while we have achieved considerable speedup, our method is not yet integrated
with highly optimized inference serving frameworks like vLLM (Kwon et al., 2023), which is left
for future work.
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Figure 11: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: If you walk 10 meters north from a starting point, then 10 meters east, and finally 10 meters
west, what direction are you from the original position? Answer:, and Llama-3 outputs north.
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Figure 12: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: You start facing east. You turn left 90 degrees, then turn right 180 degrees, and finally turn left
90 degrees. What direction are you facing now? Answer:, and Llama-3 outputs east.
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Figure 13: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: If two days ago was Monday, what day is tomorrow? Answer:, and Llama-3 outputs Thursday.
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