
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LYCHEEDECODE: ACCELERATING LONG-CONTEXT
LLM INFERENCE VIA HYBRID-HEAD SPARSE DECOD-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

The proliferation of long-context large language models (LLMs) exposes a key
bottleneck: the rapidly expanding key-value cache during decoding, which im-
poses heavy memory and latency costs. While recent approaches attempt to allevi-
ate this by sharing a single set of crucial tokens across layers, such coarse-grained
sharing undermines model performance by neglecting the functional diversity of
attention heads. To address this, we propose LycheeDecode, an efficient decoding
method centered on a fine-grained hybrid-head attention mechanism that employs
a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-
based mechanism partitions attention heads into a small subset of retrieval heads
that dynamically identify crucial tokens and a majority of sparse heads that reuse
them for efficient computation. Through extensive experiments on leading models
like Llama3 and Qwen3 across diverse benchmarks for long-context understand-
ing (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, Olympiad-
Bench), we demonstrate that LycheeDecode achieves generative quality compara-
ble to, and at times surpassing even the full-attention baseline. Crucially, this is
accomplished with up to a 2.7× speedup at a 128K context length. By preserving
the functional diversity of attention heads, our fine-grained strategy overcomes
the performance bottlenecks of existing methods, providing a powerful and vali-
dated pathway to both efficient and high-quality long-context LLM inference. The
implementation code, kernels, and models will be publicly available.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) now possess remarkable long-context capa-
bilities. Leading models like GLM-4 (GLM et al., 2024), Qwen2.5-1M (Yang et al., 2025a) and
Gemini-2.5 (Comanici et al., 2025) support up to 1 million tokens, enabling superior performance in
various long-text tasks such as summarization (Huang et al., 2021), question answering (Wei et al.,
2022), multi-turn dialogue (Li et al., 2025), and complex reasoning (Wang et al., 2024).

However, long-context processing is challenging. Due to the autoregressive nature of the Trans-
former, for each new token generated, the model must perform attention calculations with the full
key-value (KV) cache of previous tokens, leading to frequent memory access and increased I/O
overhead. As the sequence grows, the KV cache expands linearly, leading to a surge in memory
usage and a significant increase in computational latency. This severely constrains the deployment
and scalability of long-context language models in practical applications. To address this chal-
lenge, recent work has proposed sparse attention methods, which reduce computational overhead
by computing attention on only a small subset of critical tokens, exploiting the inherent sparsity of
the attention mechanism. Typically, these methods are categorized into two types: eviction-based
methods (Xiao et al., 2024; Li et al., 2024; Zhang et al., 2023), which compress the KV cache by
permanently discarding tokens, and selection-based methods (Gao et al., 2025; Yang et al., 2025b;
Wu et al., 2025), which preserve the full KV cache while dynamically selecting a subset of tokens
for computation at each inference step. A key observation is that recent work has identified a high
degree of similarity in critical tokens across consecutive layers (Yang et al., 2025b; Hao et al., 2025).
Consequently, they adopt a layer-level sharing strategy, where the same set of selected critical tokens
is shared across all heads in subsequent layers. This hierarchical strategy forces all attention heads

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Head Index

L1 vs L0
L2 vs L1
L3 vs L2
L4 vs L3
L5 vs L4
L6 vs L5
L7 vs L6
L8 vs L7
L9 vs L8

L10 vs L9
L11 vs L10
L12 vs L11
L13 vs L12
L14 vs L13
L15 vs L14
L16 vs L15
L17 vs L16
L18 vs L17
L19 vs L18
L20 vs L19
L21 vs L20
L22 vs L21
L23 vs L22
L24 vs L23
L25 vs L24
L26 vs L25
L27 vs L26
L28 vs L27
L29 vs L28
L30 vs L29
L31 vs L30 0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K
Ov

er
la

p
Ra

te
 fo

r A
tte

nt
io

n
Sc

or
e

Figure 1: Overlap rate of top-k (k = 5) attention scores between corresponding heads in adjacent
layers. The heatmap illustrates the functional diversity among attention heads. We input prompt
Please directly output the final answer based on the given question. Question: In a world containing
only squares, circles, and triangles, one shape is defined by having no angles and being perfectly
symmetrical from every point on its perimeter. What is the single name of the only shape that fits
this description? Answer:, and Llama-3 outputs circle. More cases can be found in Appendix E.3.

in the same layer to perform the same function. However, attention heads on the same layer do not
exhibit highly similar patterns. As shown in Figure 1, the top-k overlap rate of different heads in
adjacent layers can vary significantly (e.g., the overlap rate of the 14th head of the last two layers
is 0%, while the 24th head is 100%). This suggests that a uniform, layer-wise sharing strategy
may be overly simplistic, and a more fine-grained, head-based strategy is necessary.

Inspired by this, we introduce LycheeDecode, a simple and effective hybrid-head sparse decoding
method that refines this sharing strategy to a more granular level. Specifically, we classify attention
heads into a few “retrieval heads” and a majority of “sparse heads”. The retrieval heads are responsi-
ble for performing full attention computation over the entire context to accurately identify the most
important tokens. This selected tokens are then shared with the sparse heads in subsequent layers
for efficient sparse attention computation. In this way, LycheeDecode can capture more diverse and
relevant attention patterns with minimal precision loss. On the other hand, identifying the types of
attention heads typically involves optimizing a set of discrete binary variables. Previous work (Xiao
et al., 2025) circumvents the challenge of discrete optimization by having each head learn a continu-
ous variable. Although this variable is amenable to gradient-based methods during training, it must
be rounded to a binary value for inference, which introduces a significant train-inference discrepancy
that can degrade performance. To bridge this gap, we further introduce the Hard Kumaraswamy dis-
tribution (Kumaraswamy, 1980; Bastings et al., 2019). The HardKuma distribution is specifically
designed to produce values that are naturally concentrated at 0 and 1, while remaining differen-
tiable. By optimizing the distributional parameters of HardKuma during training, our model learns a
near-binary selection mechanism directly, thus mitigating the train-inference discrepancy and lead-
ing to a more stable and robust head specialization. Evaluation with Llama3 and Qwen3 models
on the long-context understanding (e.g., LongBench (Bai et al., 2024), RULER (Hsieh et al., 2024))
and complex reasoning (e.g., AIME24, OlympiadBench) tasks demonstrate that LycheeDecode can
achieve the best performance among other methods with the same sparsity. It can also achieve 2.7×
the end-to-end decoding speedup compared to FlashAttention-2 implementation under 128k context
length. Our contributions are summarized as follows:

• We propose LycheeDecode, a novel hybrid head sparse decoding method that delegates
token selection to a small number of “retrieval heads”, allowing for a more fine-grained
and effective sparse attention mechanism.

• We introduce the Hard Kumaraswamy distribution to address the discrete optimization
problem in end-to-end head type identification, reducing the train-inference gap and im-
proving model robustness and performance.

• We implement the hybrid head block-sparse decoding kernel using TileLang (Wang et al.,
2025), achieving up to 2.7× end-to-end decoding speedup.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Sparse attention methods These methods reduce computational and memory overhead during
inference, falling into two main types: eviction-based and selection-based. Eviction-based sparse
attention aims to lower KV cache memory usage by removing tokens considered less relevant (Xiao
et al., 2024; Zhang et al., 2023; Li et al., 2024). In contrast, selection-based sparse attention preserves
the full KV cache and selects the most important tokens for the attention mechanism to process (Gao
et al., 2024; 2025; Bastings et al., 2019; Liu et al., 2024). Recent works explored trainable mecha-
nisms to further refine token selection. Methods such as Native Sparse Attention (Yuan et al., 2025)
and MiniCPM (Team et al., 2025) demonstrate that extensive post-training with sparse constraints
can yield efficient decoding while maintaining high performance. These methods effectively balance
performance with efficiency, mitigating the risk of information loss.

Attention head functional specialization A key insight in long-context inference is the functional
specialization of attention heads, with a small subset of “retrieval heads” being crucial for recalling
information (Wu et al., 2025). Building on this, RazorAttention (Tang et al., 2025) introduced a
training-free compression technique that exclusively maintains a full KV cache for these crucial
retrieval heads while discarding remote tokens in other heads. DuoAttention (Xiao et al., 2025) and
PruLong (Bhaskar et al., 2025) categorize heads as either “retrieval” or “streaming” by learning a
continuous gating variable. However, these methods determine the role of each head in isolation,
lacking a mechanism for direct collaboration. Unlike previous works, in our framework, retrieval
heads not only perform full attention but also dynamically identify and propagate a curated subset of
critical tokens for reuse by the majority of “sparse heads”. This creates a fine-grained, cooperative
mechanism. It differs from previous methods by enabling more direct and efficient sharing of
contextual information between functionally distinct heads.

Cross-layer attention similarity Recent studies have identified a high degree of similarity in
important tokens and attention patterns across consecutive Transformer layers. This insight has
inspired layer-level sharing strategies to improve inference efficiency. Approaches such as TidalDe-
code (Yang et al., 2025b) and OmniKV (Hao et al., 2025) designate a few selector layers to identify
critical tokens, which are then reused by subsequent layers for efficient sparse computation. Other
methods, like LiSA (Mu et al., 2024) and PoD (Ma et al., 2024), leverage this redundancy by directly
sharing attention weights or key states across layers to reduce redundant calculations. However,
their layer-level nature can overlook the functional diversity of individual attention heads. In con-
trast, our proposed LycheeDecode framework introduces a more fine-grained, head-level strategy,
which preserves the functional diversity of attention heads, allowing for a more precise and adaptive
mechanism by enabling more efficient sharing of contextual information.

3 METHODOLOGY

This section introduces LycheeDecode, a head-level sparse decoding framework that leverages the
functional specialization of Transformer attention heads, as illustrated in Figure 2. LycheeDecode
assigns heterogeneous roles to heads: Retrieval Heads that actively refresh critical tokens, and
Sparse Heads that efficiently reuse them. By propagating token selections across layers, LycheeDe-
code improves efficiency while maintaining model performance.

3.1 HEAD-LEVEL SPARSE DECODING

Retrieval Heads for Critical Token Identification. Certain attention heads are well-suited for
capturing long-range dependencies such as co-reference resolution or distant contextual links. We
designate these as Retrieval Heads (h ∈ HR). A Retrieval Head performs standard dense attention
over the full sequence:

A
(l)
h = softmax

(
q
(l)
h (K

(l)
h)T√
dk

)
. (1)

From the resulting attention map A
(l)
h , it selects the indices of the top-k attended tokens:

S(l+1)
h = argsTopK(A

(l)
h , k), (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

𝒒
× ×⊕𝑸 𝑲𝑻 𝑽

×𝑧ℎ
𝑙
∼ HardKuma 𝛼ℎ

𝑙
, 𝛽ℎ

𝑙

×(1−𝑧ℎ
𝑙
)

Layer 𝑙, Head ℎ
⊙

⊙
→

→

× ×⊕𝑸 𝑲𝑻 𝑽

×(1−𝑧ℎ
𝑙−1

)

Layer 𝑙 − 1,Head ℎ
⊙

⊙
→

→

Topk index

×

𝑲𝑻 𝑽

Layer 𝑙, Head ℎ

× ×𝑲𝑻 𝑽

Layer 𝑙 − 1,Head ℎ

𝒒

Retrieval Head

→

Sparse Head

→×

Topk index

Sparse Load Sparse Load

Propagate to
subsequent heads

×𝑧ℎ
𝑙−1
∼ HardKuma 𝛼ℎ

𝑙−1
, 𝛽ℎ

𝑙−1

Figure 2: Overall framework. Left: During the training phase, each head calculates full attention
and sparse attention, weighted by HardKuma sampling values. Right: During inference, the retrieval
head calculates the critical tokens set for efficient calculation by the subsequent sparse heads.

where argsTopK returns the k tokens with the highest attention weights. The updated set S(l+1)
h is

propagated to the head of the same index in the next layer, where it is then used by the subsequent
attention heads for sparse attention computation. To initialize the critical token set S(0)h , all heads in
the first layer are designated as Retrieval Heads.

Sparse Heads for Efficient Computation. The other heads perform sparse attention computation
on the critical token set, which we designate as Sparse Heads (h ∈ HS). A Sparse Head reuses the
token set S(l)h inherited from the previous layer and restricts attention computation accordingly:

O
(l)
h = softmax

(
q
(l)
h (K

(l)
h [S(l)h])T√
dk

)
V

(l)
h [S(l)h], (3)

where K
(l)
h [S(l)h] and V

(l)
h [S(l)h] denote the key and value matrices at head h restricted to the subset

of tokens indexed by S(l)h . Since no new tokens are selected, the set is propagated unchanged, i.e.,
S(l+1)
h = S(l)h . This mechanism reduces both the amount of computation and the KV-cache loading

cost, which constitutes the dominant efficiency gain during autoregressive decoding.

Retrieval–Sparse Synergy. The interaction between Retrieval and Sparse Heads forms a decod-
ing pipeline that is both adaptive and efficient. Retrieval Heads periodically refresh the salient token
set, ensuring responsiveness to new context, while Sparse Heads exploit these curated subsets for ef-
ficient computation across layers. This division of labor allows LycheeDecode to trade off adaptivity
and efficiency in a principled manner. The complete procedure is summarized in Appendix B.

3.2 HEAD SPECIALIZATION VIA HARDKUMA

The core challenge here lies in effectively classifying each attention head as either a Retrieval (HR)
or a Sparse (HS) head. This assignment is fundamentally a discrete optimization problem over a set
of binary variables. Prior work, such as DuoAttention (Xiao et al., 2025), addresses this by learning
a continuous variable for each head. Although this continuous variable is easily optimized, it must
be rounded to a binary value for inference, which introduces the train-inference discrepancy.

To bridge this gap, our approach leverages the Hard Kumaraswamy (HardKuma) distribution (Ku-
maraswamy, 1980; Bastings et al., 2019), a differentiable proxy for binary variables. The HardKuma
distribution is specifically designed to produce values that are naturally concentrated at 0 and 1, yet
remains reparameterizable. By optimizing the distributional parameters of HardKuma during train-
ing, our model learns a near-binary selection mechanism directly, thus mitigating the train-inference
discrepancy and leading to a more stable and robust head specialization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The HardKuma Distribution. The HardKuma distribution provides a reparameterizable way to
model near-binary choices. A sample z ∈ [0, 1] is generated through a three-step process:

1. Sample: First, a sample u is drawn from a uniform distribution, u ∼ U(0, 1). Then
using the inverse CDF of the Kumaraswamy distribution, u is transformed into a sample
s = (1− u1/β)1/α, where s ∼ Kuma(α, β).

2. Stretch: This sample s ∈ (0, 1) is then linearly stretched to a wider interval (p, q) where
p < 0 and q > 1: s′ = s · (q − p) + p.

3. Rectify: Finally, s′ is passed through a hard-sigmoid function (i.e., clipping) to produce
the final sample: z = min(1,max(0, s′)).

This process causes probability mass from the intervals (p, 0] and [1, q) to collapse at exactly 0
and 1, respectively, making the output near-binary while the entire transformation from u remains
differentiable almost everywhere.

Identifying Attention Head Types. To facilitate the learning of head roles, we introduce a differ-
entiable training framework. Formally, for each head h in layer l (for l > 0), we associate a latent
random variable z

(l)
h sampled from a HardKuma distribution, governed by learnable α

(l)
h and β

(l)
h :

z
(l)
h ∼ HardKuma(α(l)

h , β
(l)
h). (4)

During training, each head computes attention maps for both potential roles to create a fully differ-
entiable learning path. It generates a sparse attention map A

(l)
S,h using an inherited token set S(l)h , as

well as a full attention map A
(l)
R,h. The full attention map is also used to select the token set S(l+1)

h

for the next layer (Equation 2). These two attention maps are linearly combined to form a single
hybrid attention map Ã

(l)
h using the stochastic sample z

(l)
h as a weight:

Ã
(l)
h = z

(l)
h ·A

(l)
R,h + (1− z

(l)
h) ·A(l)

S,h. (5)

It creates a fully differentiable path, allowing gradients from the final loss to flow back and update the
distributional parameters α(l)

h and β
(l)
h , thus enabling end-to-end learning of the head roles. During

inference, this stochastic process is replaced by a deterministic assignment: a head is designated as
a Retrieval Head if its learned expectation E[z(l)h] > 0.5, and as a Sparse Head otherwise.

Loss Function and Sparsity Control. We optimize a distillation loss to align the logits of our
hybrid-head student model with those of the full-attention teacher. Given a sequence X partitioned
into a prompt Xprompt and a target Xtarget, the teacher encodes Xprompt to produce a shared KV cache.
Conditioned on this cache, both models compute logits over the target tokens. Let y(i)

T [j] and y
(i)
S [j]

denote the teacher and student logits, respectively, for the j-th target token in the i-th sequence of a
batch of size N . The distillation loss is:

Ldistill =
1

N

N∑
i=1

∑
j∈Xtarget

∥∥y(i)
S [j]− y

(i)
T [j]

∥∥2
2
. (6)

To enforce a strict sparsity budget on Retrieval Heads, we formulate training as a constrained opti-
mization problem using Lagrangian relaxation. The objective is a min-max problem over the distri-
butional parameters (α, β) of the HardKuma selectors and a learnable Lagrange multiplier λ ≥ 0:

min
α,β

max
λ≥0
L(α, β, λ) = Ldistill + λ · (E[∥z∥0]−Ntarget) , (7)

where the regularizer E[∥z∥0] is the expected L0 norm of the selection variables, which corresponds
to the expected number of active Retrieval Heads. The expectation can be expressed in closed form:

E [∥z∥0] =
∑
l>0,h

(
1− F

(
−p
q − p

;α
(l)
h , β

(l)
h

))
, (8)

where F is the CDF function of the Kumaraswam distribution. The detailed derivation of Equation 8
can be found in the Appendix A.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

During training process, (α, β) are optimized via gradient descent to minimize the objective, while
λ is updated by gradient ascent according to the constraint violation: if the expected number of
active heads exceeds Ntarget, λ increases to strengthen the penalty; otherwise, it decreases. This
adaptive scheme automatically tunes the effective penalty strength, ensuring the desired sparsity
without manual hyperparameter search.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Benchmarks, Models, and Baselines We conduct experiments on both efficiency and perfor-
mance of LycheeDecode. In Section 4.2, we analyze performance under two scenarios: long-context
understanding and complex reasoning. For long-context understanding, we benchmark the Llama3-
8B and Qwen3-8B models on the LongBench dataset, comparing LycheeDecode against advanced
sparse attention methods such as TidalDecode (Yang et al., 2025b), Quest (Tang et al., 2024), DuoAt-
tention (Xiao et al., 2025) and SeerAttention-R (Gao et al., 2025). For complex reasoning, we as-
sess the DeepSeek-R1-Distill-Qwen-7B/Llama-8B models on challenging mathematical reasoning
benchmarks, including AIME24 and OlympiadBench. In Section 4.3, we turn to efficiency analysis.
Leveraging our custom hybrid-head sparse attention kernels, we conduct a head-to-head compar-
ison with existing sparse attention methods, measuring both end-to-end speedup and kernel-level
acceleration.

Training Setup for LycheeDecode To categorize the attention heads, we follow prior work (Xiao
et al., 2025), inserting passkeys into the Booksum dataset and calculating a distillation loss through
passkey retrieval. In training phase, We trained for 3000 steps on a single NVIDIA A100 80G GPU
using a single batch size, which took only a few hours. The HardKuma distribution for each attention
head is initialized to a uniform distribution, i.e., parameters α and β are both initialized to 1. The
critical token budget is set to 30% of the sequence length. For a fair comparison with TidalDecode,
the retrieval head budget was set to 32, matching the number of heads that perform full attention in
TidalDecode (two full attention layer and two token selection layers, with 8 KV heads each).

4.2 PERFORMANCE EVALUATION

4.2.1 LONG CONTEXT UNDERSTANDING

We evaluate the model’s ability to understand long contexts on the LongBench (Bai et al., 2024),
a benchmark designed to evaluate LLMs on long-context tasks across diverse NLP domains. Fol-
lowing previous work (Yang et al., 2025b), we concentrate on eight tasks that span single/multi-
document question answering, summarization, and retrieval: MultiFieldQA (MFQA), NarrativeQA
(NrtQA), Qasper (Qasp), 2WikiMQA (2Wiki), HotpotQA (HotQA), QMSum (QMSm), TriviaQA
(TrQA), and Passage Retrieval (PRe).

The results, as detailed in Table 1, demonstrate that on the Llama-3-8B-Instruct-Gradient-1048k
model, LycheeDecode achieves an average score of 33.07 with 4096 token budget, not only outper-
forms other sparse attention methods like TidalDecode and Quest but also surpasses the full-attention
model in the average score. On the Qwen3-8B model, LycheeDecode outperforms TidalDecode
with both 1024 and 4096 token budget, which demonstrates the clear advantage of LycheeDecode’s
head-level token sharing strategy over the layer-level sharing approach used by TidalDecode. Fur-
thermore, compared to SeerAttention-R, which relies on a trainable gating network, LycheeDecode
achieves comparable or slightly superior performance. This demonstrates that our lightweight head
identification strategy can effectively capture critical information without the complexity of training
and deploying an auxiliary gating network.
4.2.2 COMPLEX REASONING TASK

To evaluate the reasoning capabilities of LycheeDecode, we conduct experiments on four challeng-
ing math reasoning benchmarks: Gaokao2023En (Liao et al., 2024), Minerva (Lewkowycz et al.,
2022), AIME24 (MAA, 2024), and OlympiadBench (He et al., 2024). We compare our method
against Full Attention and TidalDecode on two distilled models from the DeepSeek-R1. In our ex-
perimental configuration, the number of tokens for sparse attention calculation is set to half of the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison on LongBench benchmark. LycheeDecode achieves the best
average score in all settings, surpassing other sparse attention methods and full attention models.
”∗” indicates double the retrieval head budget. We bold the best-performing scores with the second-
best underlined.

Method (Budget) / Task MFQA NrtQA Qasp 2Wiki HotQA QMSm TrQA PRe Avg.

Llama-3-8B-Instruct-Gradient-1048k

Full Attention 30.76 5.52 14.56 13.32 11.50 19.43 86.56 77.00 32.33

Quest (1024) 26.21 4.08 12.19 12.61 10.75 19.56 83.47 63.84 29.09
DuoAttention (1024) 19.02 7.36 8.60 9.68 8.77 17.75 41.92 13.25 15.79
DuoAttention∗ (1024) 23.88 6.27 10.44 10.41 7.48 19.00 80.61 47.17 25.66
TidalDecode (1024) 28.57 7.63 11.11 13.56 9.82 20.37 79.78 75.17 30.75
LycheeDecode (1024) 28.28 6.12 14.89 14.42 12.81 19.05 82.69 69.92 31.02

Quest (4096) 28.92 3.74 13.63 12.83 12.15 19.36 85.91 72.50 31.13
DuoAttention (4096) 22.27 7.16 13.93 12.74 10.73 17.93 83.76 34.75 25.41
DuoAttention∗ (4096) 23.74 6.63 13.80 13.67 10.40 17.93 86.03 61.00 29.15
TidalDecode (4096) 30.94 6.19 13.85 14.40 13.71 19.48 86.30 78.00 32.86
LycheeDecode (4096) 30.11 5.85 14.39 12.86 12.66 19.30 86.78 82.58 33.07

Qwen3-8B

Full Attention 25.84 3.43 10.96 11.97 11.74 20.90 90.21 89.08 33.02

SeerAttention-R (1024) 23.91 2.97 10.28 11.88 11.28 19.04 87.50 86.79 31.71
TidalDecode (1024) 21.32 2.73 9.96 10.48 9.97 19.27 80.4 83.43 29.70
LycheeDecode (1024) 24.26 3.14 10.45 11.05 12.00 19.81 86.64 91.71 32.38

SeerAttention-R (4096) 24.85 3.30 11.15 12.42 11.35 20.61 90.19 93.17 33.38
TidalDecode (4096) 23.57 2.99 10.79 11.47 11.31 20.01 88.94 85.0 31.76
LycheeDecode (4096) 24.90 3.32 10.88 12.74 11.68 20.71 90.34 93.25 33.48

Table 2: Performance comparison on math reasoning tasks.
Method / Task Gaokao2023En Minerva AIME24 OlympiadBench Avg.

DeepSeek-R1-Distill-Llama-8B

Full Attention 68.8 39.1 23.3 10.2 35.4
TidalDecode 62.5 39.8 13.3 10.9 31.6
TidalDecode w/ Cache Correction 57.0 43.0 33.3 9.4 35.7
LycheeDecode 68.8 40.6 26.7 10.9 36.8
LycheeDecode w/ Cache Correction 68.8 41.4 40.0 10.9 40.3

DeepSeek-R1-Distill-Qwen-7B

Full Attention 74.2 47.7 40.0 10.2 43.0
TidalDecode 57.8 39.1 16.7 7.0 30.2
TidalDecode w/ Cache Correction 63.3 41.4 26.7 8.6 35.0
LycheeDecode 74.2 48.4 43.3 10.9 44.2
LycheeDecode w/ Cache Correction 72.7 47.7 46.7 12.5 44.9

sequence length, increasing linearly during decoding. Furthermore, to mitigate the potential accu-
mulation of errors from sparse attention mechanisms, we incorporate a Cache Correction strat-
egy (Yang et al., 2025b; Sun et al., 2025). Specifically, after every 32 decoded tokens, we perform
a prefill step over these “polluted” tokens using dense attention to reconstruct and update their key-
value (KV) representations within the cache.

As demonstrated in Table 2, LycheeDecode outperforms both the TidalDecode and full attention
baselines across both models. The introduction of the Cache Correction strategy further enhances
the performance of LycheeDecode, solidifying its superiority. We hypothesize that this advantage
over the full-attention model stems from our method’s ability to capture more diverse attention
patterns through head specialization, which allows LycheeDecode to more effectively focus on the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

16K 32K 64K 128K
0

20

40

60

80

100

La
te

nc
y

(m
s)

26.4 26.7 28.4 29.7
33.6 36.7

42.6

51.5

29.0
34.5

48.9

80.3

batch size = 1

16K 32K 64K 128K

26.2

35.0
27.4

49.2

28.1

80.8

31.2

O
O

M

batch size = 2

16K 32K 64K 128K

28.4

49.6

29.4

80.8

30.5

O
O

M

O
O

M

O
O

M

batch size = 4

Context Length

LycheeDecode TidalDecode Full Attention

Figure 3: End-to-End Decoding Latency (TPOT) across various context lengths. LycheeDecode and
TidalDecode use a fixed 4096 budget. Note that TidalDecode can only support single batch.

key information crucial for the reasoning process while filtering out irrelevant context that may act
as noise, leading to a more robust and efficient inference.

4.3 EFFICIENCY EVALUATION

4.3.1 END-TO-END SPEEDUP

We evaluate the end-to-end decoding latency of LycheeDecode and compare it against TidalDecode
and the full attention baseline across varying context lengths and batch sizes. We adopt TPOT
(Time Per Output Token) as the primary evaluation metric. LycheeDecode and TidalDecode use a
fixed 4096 token budget. LycheeDecode leverages our efficient hybrid-head block-sparse decoding
kernel, combined with auto-tuning to search for the optimal parameter settings in each layer, since
different layers contain varying numbers of sparse heads.

As shown in Figure 3, as the context length grows, the latency of the full-attention model increases
sharply. TidalDecode exhibits higher latency than full attention at shorter sequence lengths, but
surpasses it in longer contexts (>64K). By comparison, LycheeDecode consistently maintains low
latency as sequence length increases, achieving up to 2.7× speedup over full attention and 1.73×
faster than TidalDecode under a single batch size with 128K context. These results demonstrate that
LycheeDecode delivers robust end-to-end acceleration across different settings.

4.3.2 KERNEL-LEVEL SPEEDUP

16k 32k 64k 128k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

batch size = 1

16k 32k 64k 128k
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

batch size = 2

16k 32k 64k 128k
0.0

0.2

0.4

0.6

0.8

1.0

1.2
batch size = 4

16k 32k 64k 128k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

batch size = 8

La
te

nc
y

(m
s)

Context Length

Full Attention 4/8 sparse head 6/8 sparse head 7/8 sparse head 8/8 sparse head

Figure 4: Latency comparison of our hybrid head kernel and the FlashAttention-2 kernel across
different sparse head ratios, context lengths, and batch sizes.

This section evaluates our custom hybrid head block-sparse decoding kernel (detailed design is
shown in Appendix C). We implement the kernel using TileLang and select FlashAttention-2 (Dao,
2024) as our baseline. Experiments are conducted on single NVIDIA A800 GPU across different
context lengths (16K to 128K) and batch sizes (1 to 8). We evaluate several configurations of our
kernel, progressively increasing the ratio of sparse heads from 4/8 to 8/8 (out of 8 total key-value
heads), with a fixed 90% sparsity ratio applied to the sparse heads and the block size set to 64.

The experimental results clearly validate the efficiency of our custom hybrid-head kernel. As shown
in Figure 4, while the configuration with 4/8 sparse heads exhibits latency comparable to or slightly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

underperforming the dense FlashAttention-2 baseline, all other settings with a higher degree of spar-
sity consistently and significantly outperform it. This performance advantage becomes particularly
pronounced as the input sequence length and batch size increase, which is expected, as the decoding
kernel is primarily I/O-bound. When the KV cache size is sufficient to saturate memory bandwidth,
the gains are substantial; for instance, at a 128K context length with a batch size of 8, our kernel
achieves a peak speedup of up to 7x in the fully sparse (8/8) configuration. This evaluation confirms
that our specialized kernel effectively translates the algorithmic gains of the hybrid-head strategy
into significant kernel-level acceleration by minimizing redundant computation and memory access,
serving as the fundamental enabler for the end-to-end speedups observed in LycheeDecode.

4.4 ABLATION STUDY

4.4.1 DIFFERENT SPARSITY METHODS

50 60 70 80 90 100
Sparsity (%)

20

22

24

26

28

30

32

34

Pe
rfo

rm
an

ce

k = 1024
k = 2048

k = 4096

p = 0.99

p = 0.995

p = 0.999

= 10 4

= 10 5

= 10 6

= 70%
= 80%

= 90%

Top-k
Top-p
Threshold
Ratio

Figure 5: Results of LycheeDecode using dif-
ferent sparse method on the LongBench.

Table 3: Performance comparison of differ-
ent head identification methods on different
datasets. Scores are averaged across eight se-
lected tasks in LongBench.

Method / Dataset Passkey Retrival HotpotQA

Direct Optimize 32.06 31.02
Hard Concrete 32.13 30.25
HardKuma (Ours) 33.07 31.11

To evaluate the effectiveness of different sparsity strategies, we conduct a comparative analysis
of their performance-sparsity trade-offs. We benchmark four distinct families of token selection
methods, each with three different configurations: (1) Top-k, which retains a fixed-size set of
tokens with the highest attention scores; (2) Top-p, which adaptively selects the smallest set of
tokens whose cumulative attention probability exceeds a predefined threshold p; (3) Threshold,
which preserves all tokens with attention scores surpassing a specific value; and (4) Ratio, which
selects a set of top tokens using a budget proportional to the sequence length, designed to increase
gradually during the generation process.

For each configuration, we measure two key metrics: (1) Performance, quantified by the average F1
score on the LongBench benchmark, and (2) Sparsity, defined as the percentage of critical tokens
identified by sparse heads to the total sequence length during inference.

The experimental results are shown in Figure 5. More details can be found in Appendix E.2. Increas-
ing sparsity leads to a decline in model performance. This is expected, as higher sparsity reduces
the amount of contextual information available. Top-p and Ratio perform robustly under low
sparsity, sometimes even surpassing Top-k with comparable token budgets. However, their per-
formance drops sharply under extreme sparsity. Notably, at equivalent sparsity levels, the Ratio
method generally achieves the best performance. We hypothesize that training with a fixed-sparsity
objective endows the model with a general robustness to sparsity, which in turn allows it to effec-
tively handle the dynamic adjustments made by the Ratio method during inference.

4.4.2 IDENTIFICATION METHODS & DATASET

To evaluate the advantages of our HardKuma distribution for identifying attention heads, we com-
pare it with the direct optimization baseline from Xiao et al. (2025) and the HardConcrete distri-
bution used by Bhaskar et al. (2025). The head identification process is performed on two distinct
datasets: the previously mentioned Passkey Retrieval task and HotpotQA, which challenges the
model to perform multi-hop reasoning over long contexts. For HotpotQA, the distillation loss is
calculated based on the logits of the answer tokens. Crucially, we filter out questions that can be
answered without relying on the provided context, thereby ensuring that the identification process

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

specifically rewards heads capable of complex, long-range information integration. The specialized
models are then evaluated on the LongBench benchmark with a fixed 4096 token budget.

As shown in Table 3, the HardKuma distribution achieves the best overall performance, outper-
forming both the direct optimization baseline and HardConcrete distribution and demonstrating its
superior ability to identify head type. Its score is slightly lower on the HotpotQA dataset, which we
hypothesize this is because its answers are relatively short; calculating the loss over a small number
of tokens can lead to a higher variance in the gradient estimate, making it difficult to accurately
guide the specialization of attention heads. We leave the optimization of tasks where the supervision
signal is sparse for future work. Refer to Appendix A for more discussion of theoretical advantages.

5 CONCLUSION

We introduce LycheeDecode, a framework that speeds up long-context LLMs by specializing at-
tention heads for different roles, enhancing efficiency while maintaining performance. This head
specialization is enabled by the HardKuma distribution and a custom TileLang kernel, delivering
significant end-to-end speedups. Our work highlights that treating attention heads as functionally
specialized units, rather than a monolithic block, is a powerful and promising direction for LLMs.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pp. 3119–3137. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.172. URL https://doi.org/10.18653/v1/2024.acl-long.172.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable
binary variables. In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.), Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp. 2963–2977. Association for Computational
Linguistics, 2019. doi: 10.18653/V1/P19-1284. URL https://doi.org/10.18653/v1/
p19-1284.

Adithya Bhaskar, Alexander Wettig, Tianyu Gao, Yihe Dong, and Danqi Chen. Cache me if you can:
How many kvs do you need for effective long-context lms? arXiv preprint arXiv:2506.17121,
2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inder-
jit S. Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla,
Colin Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpek-
tor, Nan-Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav
Mishra, Eric Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kaw-
intiranon, Tania Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaı̈ Deu-
tel, Nam Nguyen, Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Wagh-
mare, Helen Miller, Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel
Janus, Tero Rissa, Dan Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond,
Klemen Kloboves, Cindy Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang,
Mantas Pajarskas, Joe Heyward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett,
Sushant Kafle, Sercan Arik, Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mah-
moudieh, Koray Kavukcuoglu, Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dim-
itris Paparas, Hadar Shemtov, Bo-Juen Chen, Robin Strudel, David Reitter, Aurko Roy, An-
drey Vlasov, Changwan Ryu, Chas Leichner, Haichuan Yang, Zelda Mariet, Denis Vnukov,
Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen, Praynaa Rawlani, Christy Koh, JD Co-
Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis, Jieru Mei, and Mu Cai. Gemini
2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next genera-
tion agentic capabilities. CoRR, abs/2507.06261, 2025. doi: 10.48550/ARXIV.2507.06261. URL
https://doi.org/10.48550/arXiv.2507.06261.

10

https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/p19-1284
https://doi.org/10.18653/v1/p19-1284
https://doi.org/10.48550/arXiv.2507.06261

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=mZn2Xyh9Ec.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache evic-
tion by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in
your llms. arXiv preprint arXiv:2410.13276, 2024.

Yizhao Gao, Shuming Guo, Shijie Cao, Yuqing Xia, Yu Cheng, Lei Wang, Lingxiao Ma, Yutao Sun,
Tianzhu Ye, Li Dong, et al. Seerattention-r: Sparse attention adaptation for long reasoning. arXiv
preprint arXiv:2506.08889, 2025.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo.
OmniKV: Dynamic context selection for efficient long-context LLMs. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=ulCAPXYXfa.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual
multimodal scientific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 3828–3850. Asso-
ciation for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.211. URL
https://doi.org/10.18653/v1/2024.acl-long.211.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1419–1436, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.112. URL
https://aclanthology.org/2021.naacl-main.112/.

Ponnambalam Kumaraswamy. A generalized probability density function for double-bounded ran-
dom processes. Journal of hydrology, 46(1-2):79–88, 1980.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh

11

https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=ulCAPXYXfa
https://openreview.net/forum?id=ulCAPXYXfa
https://doi.org/10.18653/v1/2024.acl-long.211
https://aclanthology.org/2021.naacl-main.112/
https://doi.org/10.1145/3600006.3613165

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural In-
formation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H.
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, and Lili Qiu. SCBench: A KV cache-centric
analysis of long-context methods. In The Thirteenth International Conference on Learning Rep-
resentations, 2025. URL https://openreview.net/forum?id=gkUyYcY1W9.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=poE54GOq2l.

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and Kai Fan. MARIO: math reasoning with code
interpreter output - A reproducible pipeline. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thai-
land and virtual meeting, August 11-16, 2024, pp. 905–924. Association for Computational Lin-
guistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.53. URL https://doi.org/10.
18653/v1/2024.findings-acl.53.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating long-context llm
inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.

Da Ma, Lu Chen, Situo Zhang, Yuxun Miao, Su Zhu, Zhi Chen, Hongshen Xu, Hanqi Li, Shuai Fan,
Lei Pan, et al. Compressing kv cache for long-context llm inference with inter-layer attention
similarity. arXiv preprint arXiv:2412.02252, 2024.

MAA. American invitational mathematics examination 2024, 2024.
URL https://artofproblemsolving.com/wiki/index.php/
American_Invitational_Mathematics_Examination?srsltid=
AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt.

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong Wang, Hengyu Li, Qiaozhi He, Murun Yang,
Tong Xiao, and Jingbo Zhu. Cross-layer attention sharing for large language models. arXiv
preprint arXiv:2408.01890, 2024.

Yutao Sun, Tianzhu Ye, Li Dong, Yuqing Xia, Jian Chen, Yizhao Gao, Shijie Cao, Jianyong Wang,
and Furu Wei. Rectified sparse attention. arXiv preprint arXiv:2506.04108, 2025.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Danning Ke, Shikuan Hong, Yiwu Yao, and Gongyi
Wang. Razorattention: Efficient KV cache compression through retrieval heads. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=tkiZQlL04w.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
Query-aware sparsity for efficient long-context LLM inference. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
KzACYw0MTV.

MiniCPM Team, Chaojun Xiao, Yuxuan Li, Xu Han, Yuzhuo Bai, Jie Cai, Haotian Chen, Wentong
Chen, Xin Cong, Ganqu Cui, et al. Minicpm4: Ultra-efficient llms on end devices. arXiv preprint
arXiv:2506.07900, 2025.

Lei Wang, Yu Cheng, Yining Shi, Zhengju Tang, Zhiwen Mo, Wenhao Xie, Lingxiao Ma, Yuqing
Xia, Jilong Xue, Fan Yang, et al. Tilelang: A composable tiled programming model for ai systems.
arXiv preprint arXiv:2504.17577, 2025.

Minzheng Wang, Longze Chen, Fu Cheng, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and Yongbin Li. Leave no

12

http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://openreview.net/forum?id=gkUyYcY1W9
https://openreview.net/forum?id=poE54GOq2l
https://doi.org/10.18653/v1/2024.findings-acl.53
https://doi.org/10.18653/v1/2024.findings-acl.53
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://artofproblemsolving.com/wiki/index.php/American_Invitational_Mathematics_Examination?srsltid=AfmBOoqiDCiaGTLQrsRTKsZui8RFnjOZqM4qIqY3yGB3sBaqOaxwf_Xt
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=tkiZQlL04w
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

document behind: Benchmarking long-context LLMs with extended multi-doc QA. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp. 5627–5646, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.322.
URL https://aclanthology.org/2024.emnlp-main.322/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanis-
tically explains long-context factuality. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=EytBpUGB1Z.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, junxian guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context LLM inference with retrieval and streaming
heads. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=cFu7ze7xUm.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, et al. Qwen2. 5-1m technical report. arXiv preprint
arXiv:2501.15383, 2025a.

Lijie Yang, Zhihao Zhang, Zhuofu Chen, Zikun Li, and Zhihao Jia. Tidaldecode: Fast and accurate
LLM decoding with position persistent sparse attention. In The Thirteenth International Confer-
ence on Learning Representations, 2025b. URL https://openreview.net/forum?id=
EkfLaCJ7bk.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Yuxing Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng
Liang, and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable
sparse attention. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 23078–23097, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1126.
URL https://aclanthology.org/2025.acl-long.1126/.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

13

https://aclanthology.org/2024.emnlp-main.322/
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=EytBpUGB1Z
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cFu7ze7xUm
https://openreview.net/forum?id=EkfLaCJ7bk
https://openreview.net/forum?id=EkfLaCJ7bk
https://aclanthology.org/2025.acl-long.1126/
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A HARDKUMA DISTRIBUTION

A.1 KUMARASWAMY DISTRIBUTION

The Kumaraswamy (Kuma) distribution is a continuous probability distribution defined on the in-
terval (0,1). It is similar to the Beta distribution, but its probability density function (PDF) and
cumulative distribution function (CDF) are simpler and have closed form expressions.

The PDF of the Kumaraswamy distribution is given by:

f(x;α, β) = αβxα−1(1− xα)β−1, (9)

where x ∈ (0, 1), α and β are positive shape parameters that control the distribution’s shape.

The shape of the distribution can be unimodal, uniantimodal, increasing, decreasing, or constant,
depending on the values of α and β.

The CDP of Kumaraswamy distribution can be defined as:

F (x;α, β) =

∫ x

0

f(ξ;α, β)dξ

=

∫ x

0

αβξα−1(1− ξα)β−1dξ

(10)

Let u = 1 − ξα, then the differential is du = −αξα−1dξ. We also need to change the limits of
integration: when ξ = 0, u = 1, and when ξ = x, u = 1 − xα. Substituting these into the integral
gives:

F (x;α, β) = −β
∫ 1−xα

1

uβ−1du

= −β
[
uβ

β

]1−xα

1

= 1− (1− xα)β

(11)

The PDF and CDF of the Kuma distribution with different parameters are shown in Figure 6.

A.2 HARDKUMA DISTRIBUTION

The HardKuma distribution is a modification of the Kumaraswamy distribution, engineered to create
a random variable on the closed interval that exhibits both continuous and discrete behavior. It
achieves this by having non-zero probability masses at the endpoints 0 and 1, while maintaining a
continuous density over the open interval (0, 1). This makes it particularly useful for applications
like generating differentiable binary masks in machine learning.

The distribution is constructed as follows. Let X be a random variable following the Kumaraswamy
distribution, i.e., X ∼ Kuma(α, β). We define an intermediate stretched variable T by linearly
transforming X to a wider interval (p, q), where p < 0 and q > 1 are fixed hyperparameters:

T = p+ (q − p)X (12)

The HardKuma random variable, which we denote as Z, is then obtained by applying a hard-sigmoid
rectifier function to T :

Z = min(1,max(0, T)) (13)

A variable Z constructed this way is said to follow the HardKuma distribution, i.e., Z ∼
HardKuma(α, β) .

The key feature of this construction is that the discrete probabilities for Z = 0 and Z = 1 can be
computed in closed form, thanks to the tractable CDF of the underlying Kumaraswamy distribution.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

ab
ilit

y
De

ns
ity

Kumaraswamy Probability Density Function (PDF)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Kumaraswamy Cumulative Distribution Function (CDF)

= 0.5, = 0.5 = 5.0, = 1.0 = 1.0, = 3.0 = 2.0, = 2.0 = 2.0, = 5.0 = 1.0, = 4.0 = 1.0, = 1.0

Figure 6: PDF and CDF of Kuma distribution with different parameters.

The probability of sampling exactly 0 is the probability that the stretched variable T is less than or
equal to 0:

P (Z = 0) = P (T ≤ 0)

= P (p+ (q − p)X ≤ 0)

= P

(
X ≤ −p

q − p

)
= F

(
−p
q − p

;α, β

) (14)

Similarly, the probability of sampling exactly 1 is the probability that T is greater than or equal to 1:

P (Z = 1) = P (T ≥ 1)

= 1− P (T < 1)

= 1− P

(
X <

1− p

q − p

)
= 1− F

(
1− p

q − p
;α, β

) (15)

The remaining probability mass, 1 − P (Z = 0) − P (Z = 1), is distributed continuously over the
interval (0, 1). This mixed discrete-continuous nature allows the HardKuma distribution to model
binary selections in a way that is amenable to gradient-based optimization.

A.3 EXPECTED L0 NORM OF HARDKUMA

A primary application of the HardKuma distribution is to create sparse, differentiable masks. This
involves generating a vector of random variables Z = (Z1, . . . , Zn), where each Zi is drawn inde-
pendently from a HardKuma distribution, Zi ∼ HardKuma(αi, βi). The sparsity of such a vector is
measured by its L0 norm ∥Z∥0, which counts the number of non-zero elements.

A key result, which makes this distribution practical for optimization, is that the expected value of
the L0 norm has a tractable, closed-form expression. We can derive it as follows.

First, we express the L0 norm using the indicator function I[·]:

∥Z∥0 =

n∑
i=1

I[Zi ̸= 0] (16)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

By the linearity of expectation, the expectation of the sum is the sum of the expectations:

E[∥Z∥0] = E

[
n∑

i=1

I[Zi ̸= 0]

]
=

n∑
i=1

E[I[Zi ̸= 0]] (17)

The expectation of an indicator function is simply the probability of the event it indicates:

E[I[Zi ̸= 0]] = P (Zi ̸= 0) (18)

Using the complement rule, the probability of being non-zero is one minus the probability of being
zero:

P (Zi ̸= 0) = 1− P (Zi = 0) (19)

Combining these steps and Equation 14 , we arrive at the final expression for the expected L0 norm:

E[∥Z∥0] =
n∑

i=1

(1− P (Zi = 0))

=

n∑
i=1

(
1− F

(
−p
q − p

;αi, βi

)) (20)

B ALGORITHM PSEUDOCODE

The complete procedure of LycheeDecode is shown in Algorithm 1. In each layer, the Key-Value
(KV) cache is first updated with the key and value vectors of the current token. The algorithm
then processes each attention head according to its designated type: Retrieval Heads perform a
full attention operation over the entire KV cache to identify and select a new set of critical tokens.
Conversely, Sparse Heads perform a more efficient computation, calculating attention only on the
sparse subset of tokens provided by the preceding layer. Following the attention step, the outputs
from all heads are concatenated and passed through a feed-forward network to produce the hidden
state for the subsequent layer. This entire procedure is repeated until the final logits are produced by
the model’s output layer.

Algorithm 1 LycheeDecode

1: Input: Initial hidden state x(0), KV cache C, selected token set {Sh}H−1
h=0 , token budget k

2: Output: Logits
3: for layer l = 0, 1, . . . , L− 1 do
4: q, k, v ← x(l)WQ, x

(l)WK , x(l)WV

5: C(l).append(k, v)
6: K,V ← C(l).key, C(l).value
7: for head h = 0, 1, . . . ,H − 1 do
8: if l == 0 or h ∈ H(l)

R then ▷ Retrieval Head

9: Ah ← softmax
(
qhK

T
h /
√
d
)

10: Sh ← argTopK(Ah, k) ▷ Select k critical tokens
11: oh ← AhVh

12: else ▷ Sparse Head
13: oh ← softmax

(
qh(Kh[Sh])T /

√
d
)
Vh[Sh]

14: end if
15: end for
16: o← Concat(o0, o1, . . . , oH−1)WO

17: x(l+1) ← FFN(o)
18: end for
19: logits← lm head(x(L−1))
20: return logits

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C KERNEL DESIGN

Algorithm 2 Hybrid-head Block-Sparse Decoding
1: Input: Query q, Key K, Value V , block indices I
2: Output: Attention output O
3: for Grid indexed (b, s) by (batch size,num split) in parallel do
4: Calculate head id h and head-wise split id sh base on the sparse head index and split id s
5: Load corresponding query block qb,h in a GQA group into shared memory
6: opartial ← 0, mpartial ← −∞, lpartial ← 0 ▷ Initialize accumulators
7: for each block index i ∈ I within the current split do
8: Load corresponding key block Ki and value block Vi into shared memory
9: Si = qb,h ·KT

i ▷ Compute score matrix via GEMM operation
10: Update opartial,mpartial, lpartial with Si, Vi using online softmax algorithm
11: end for
12: Opartial[b, h, sh]← opartial/lpartial ▷ Store partial output
13: Lpartial[b, h, sh]← log(lpartial) +mpartial ▷ Store partial log-sum-exp
14: end for
15: Combine(Lpartial, Opartial, O) ▷ Combine different splits
16: return O

A critical challenge in designing an efficient hybrid-head attention kernel is the inherent workload
imbalance between the different head types. Retrieval heads, which must process the entire Key-
Value cache, represent a substantial computational load. In contrast, sparse heads operate on only a
small, pre-selected subset of blocks, demanding significantly fewer resources. A naive scheduling
approach that allocates an equal number of computational resources, such as GPU thread blocks, to
each head would result in a severe performance bottleneck. Threads assigned to sparse heads would
complete their tasks rapidly and remain idle, while the threads dedicated to full-attention heads
would dictate the critical path, leading to gross underutilization of the GPU’s parallel architecture.

To overcome this, we implement a workload-pooling strategy in our hybrid-head sparse decoding
kernel that decouples resource allocation from individual heads. Instead of assigning work on a per-
head basis, we first aggregate the complete set of block computations required by all heads (both
full and sparse) into a single, unified pool of work for each batch item. This aggregated workload is
then partitioned into numerous smaller, uniform work units, which we term splits. These splits are
subsequently distributed homogeneously among the available GPU thread blocks for execution. By
aggregating the heterogeneous computations before partitioning, this approach ensures that every
thread block receives a workload of roughly equivalent size, maximizing hardware utilization and
minimizing overall execution latency. See Algorithm 2 for detailed pseudo code.

D VISUALIZATION OF TRAINING PROCESS

To demonstrate the effectiveness of our proposed head identification strategy in bridging the train-
inference gap, we visualize the training dynamics of LycheeDecode alongside the baseline DuoAt-
tention (Xiao et al., 2025). We conducted the comparison on the Llama-3-8B-Instruct-1048k model,
training both for 1000 steps with an identical learning rate of 0.01. Figure 7 presents the evolution
of the probability that a specific attention head is identified as a ”Retrieval Head” during training.

For DuoAttention, the heatmap values represent the continuous gating variables. As observed,
DuoAttention exhibits noticeable ”grey” areas (values hovering between 0.4 and 0.6) at step 1000.
This indicates that a simple continuous relaxation often fails to push parameters to the binary ex-
tremes. Consequently, rounding these ambiguous values to 0 or 1 during inference introduces a
substantial train-inference discrepancy, potentially degrading performance.

For LycheeDecode, the heatmap values represent the expected value E[z
(l)
h] of the HardKuma distri-

bution. In contrast to the DuoAttention, LycheeDecode demonstrates a more decisive polarization.
The values quickly converge to either 0 (Sparse Head) or 1 (Retrieval Head), resulting in a clear
”blue-and-red” pattern. This confirms that the HardKuma distribution effectively forces the model

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 5

0

5

10

15

20

25

30

 DuoAttention

Step 0

0 5

0

5

10

15

20

25

30

 LycheeDecode

Step 0

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Kuma PDF (Layer 8, Head 0)

Kuma PDF (= 1.00, = 1.00)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Kuma PDF (Layer 10, Head 0)

Kuma PDF (= 1.00, = 1.00)

0 5

0

5

10

15

20

25

30

Step 100

0 5

0

5

10

15

20

25

30

Step 100

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 1.08, = 0.92)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 0.97, = 0.98)

0 5

0

5

10

15

20

25

30

Step 200

0 5

0

5

10

15

20

25

30

Step 200

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 1.20, = 0.77)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 0.89, = 0.99)

0 5

0

5

10

15

20

25

30

Step 500

0 5

0

5

10

15

20

25

30

Step 500

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 1.52, = 0.08)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 0.34, = 1.05)

0 5

0

5

10

15

20

25

30

Step 1000

0 5

0

5

10

15

20

25

30

Step 1000

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 1.53, = 0.01)

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Kuma PDF (= 0.01, = 1.20)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Visualization of head specialization dynamics on Llama-3-8B-Instruct-1048k. Left &
Middle (Heatmaps): The probability of each head being identified as a Retrieval Head across
training steps for DuoAttention (left) and LycheeDecode (middle). Right (PDFs): Evolution of
the LycheeDecode Kuma distribution PDFs for specific heads at steps 0, 100, 200, 500, and 1000,
showing how probability mass effectively concentrates at the boundaries.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

to make discrete decisions during the training phase itself, thereby minimizing the consistency gap
between training and inference.

The two rightmost columns of Figure 7 provide a microscopic view of this process by plotting
the Probability Density Functions (PDFs) of the Kuma distribution for two representative heads
(Layer 8 Head 0 and Layer 10 Head 0) at specific training steps. Initially uniform at Step 0, the
distributions undergo a dramatic transformation. For the head specializing as a Retrieval Head, the
probability mass shifts almost entirely to the right, while for the Sparse Head, it collapses to the left.
This visualization corroborates that our optimization objective successfully shapes the underlying
distribution to be near-binary.

E MORE EXPERIMENT RESULTS

E.1 RULER BENCHMARK

To assess the ability to comprehend longer contexts, we employ the RULER benchmark (Hsieh
et al., 2024), a synthetic benchmark designed for a more thorough evaluation of long-context lan-
guage models beyond simple retrieval tasks. RULER expands on the needle-in-a-haystack (NIAH)
test by including more complex tasks like multihop tracing and aggregation, offering configurable
sequence lengths and task difficulties. For our evaluation, we selected tasks including niah single1,
niah multikey1, niah multivalue, niah multiquery, vt, fwe, qa1, and qa2 to test a wide range of long-
context understanding capabilities. We configure LycheeDecode with a fixed budget of 4096 tokens
and compare it to the full-attention Llama3-8B-Instruct-Gradient-1048k model.

The experimental results are shown in Table 4. As indicated, in shorter context scenarios, the per-
formance of our method is highly competitive with the full attention model. For instance, at 8k con-
text length, our approach achieves an average score of 62.79, closely approaching the full-attention
model’s score of 63.30. As the context length increases, the performance of LycheeDecode de-
creases slightly. This performance degradation is an acceptable trade-off, given that our method
operates on a fixed and significantly smaller 4096 token budget.

Table 4: Performance comparison of LycheeDecode and full attention model on RULER benchmark.
LycheeDecode uses a fixed budget of 4096.

Context / Task single multikey multivalue multiquery vt fwe qa1 qa2 Avg.

Full Attention

4k 100.0 89.6 87.8 79.2 17.4 0.1 79.8 56.4 63.7
8k 100.0 95.0 90.3 70.0 19.4 0.4 75.0 56.4 63.3
16k 100.0 93.0 95.7 81.0 19.8 0.0 74.2 53.4 64.6
32k 99.2 97.4 96.5 81.9 19.8 0.0 70.6 51.6 65.9
64k 99.4 98.4 96.8 93.7 19.8 0.0 70.4 47.6 65.8

LycheeDecode

4k 100.0 89.4 88.4 78.9 17.3 0.1 80.0 56.2 63.7
8k 100.0 94.4 90.6 65.9 19.4 0.4 75.4 56.2 62.8
16k 100.0 81.8 96.3 68.7 19.6 0.0 71.0 53.4 61.4
32k 97.8 82.0 94.9 65.1 19.8 0.0 66.2 49.6 59.4
64k 99.6 73.2 90.3 81.7 19.9 0.0 63.4 44.4 59.0

E.2 DETAILED RESULTS OF DIFFERENT SPARSE METHODS

This section provides a detailed breakdown of the results from the ablation study on different sparsity
methods, as discussed in Section 4.4.1 and visualized in Figure 5. Table 5 presents the performance
results of LycheeDecode on the LongBench benchmark when configured with different token selec-
tion methods, including Top-k, Top-p, Threshold, and Ratio, each with varying parameters.
Complementing this, Table 6 quantifies the sparsity level (as a percentage of critical tokens selected)
for each corresponding strategy and setting.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of LycheeDecode using different sparse strategies on LongBench.
Method / Task MFQA NrtQA Qasp 2Wiki HotQA QMSm TrQA PRe Avg.

Top-kk=1024 28.28 6.12 14.89 14.42 12.81 19.05 82.69 69.92 31.02
Top-kk=2048 28.13 5.78 14.72 12.76 11.82 19.14 84.98 78.42 31.97
Top-kk=4096 30.11 5.85 14.39 12.86 12.66 19.30 86.78 82.58 33.07

Top-pp=0.99 30.01 11.05 12.65 13.48 12.91 21.05 74.27 42.67 27.26
Top-pp=0.995 33.42 9.47 13.84 15.55 13.70 20.12 80.93 65.25 31.54
Top-pp=0.999 31.02 6.30 13.77 14.00 12.25 19.99 85.77 74.67 32.22

Thresholdτ=10−4 25.22 8.17 11.63 13.78 10.86 19.75 60.08 19.93 21.18
Thresholdτ=10−5 28.64 6.41 14.91 15.02 13.48 19.31 78.16 53.36 28.66
Thresholdτ=10−6 29.73 6.74 14.00 13.75 11.49 19.71 83.48 77.08 31.99

Ratioθ=70% 26.68 6.54 15.58 14.10 12.95 18.91 83.82 80.67 32.41
Ratioθ=80% 26.65 6.88 13.59 15.70 11.97 19.19 81.94 77.17 31.63
Ratioθ=90% 27.96 6.61 11.91 15.01 13.33 18.95 80.41 65.33 29.94

Table 6: Sparsity (%) of LycheeDecode under different settings on LongBench benchmark.
Method / Task MFQA NrtQA Qasp 2Wiki HotQA QMSm TrQA PRe Avg.

Top-kk=1024 87.94 92.24 67.70 71.46 82.16 88.66 86.88 74.46 81.4
Top-kk=2048 79.17 86.60 44.54 54.16 69.96 80.41 77.57 58.26 68.8
Top-kk=4096 61.91 75.32 14.21 30.80 51.62 63.92 60.12 30.17 48.5

Top-pp=0.99 81.81 84.59 76.34 79.85 82.12 85.78 79.71 79.17 81.1
Top-pp=0.995 76.22 78.50 70.42 75.06 76.67 81.50 74.99 73.80 75.9
Top-pp=0.999 59.67 61.02 53.66 58.40 58.32 60.76 57.29 56.37 58.2

Thresholdτ=10−4 96.95 98.25 91.69 93.33 95.97 97.77 96.44 93.92 95.5
Thresholdτ=10−5 86.20 90.38 73.22 78.60 85.05 88.44 85.12 78.87 83.2
Thresholdτ=10−6 65.36 72.07 48.04 55.11 62.89 68.05 62.92 54.21 61.1

Ratioθ=90% 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.0
Ratioθ=80% 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.0
Ratioθ=70% 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.00 70.0

E.3 MORE CASES

In this section, we provide additional examples to illustrate the behavioral differences among various
attention heads. We use prompts that require simple logical reasoning. For each attention head, we
calculate the attention scores of the final answer token with respect to all previous tokens and identify
the top-k crucial tokens with the highest scores. Subsequently, we compute the overlap rate of these
crucial tokens for each attention head with those of the corresponding head in the adjacent layer.
The results are presented in Figures 10, Figure 11, Figure 12 and Figure 13.

E.4 ABLATION STUDY

To investigate the trade-offs between model performance and inference efficiency, we conducted an
ablation study using the Llama3-8B-Instruct-Gradient-1048k model. We evaluated the generative
quality based on the average score across the LongBench benchmark, while efficiency was quantified
by the end-to-end decoding speedup (measured via Time Per Output Token, TPOT) relative to the
Full Attention baseline. In this experiment, we explored a range of sparsity configurations by varying
two key hyperparameters: the critical token budget, which was set to 1024, 2048, and 4096 tokens,
and the ratio of retrieval heads, which was tested at 12.5%, 25.0%, and 50.0% of the total attention
heads.

As illustrated in Figure 8, the results demonstrate a clear trade-off between performance and effi-
ciency. We observe that increasing the token budget from 1024 to 4096 consistently enhances the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0
Performance

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Ef
fic

ie
nc

y

1024

2048

4096

1024

2048

4096

1024

2048

4096

Retrieval Head
12.5%
25.0%
50.0%

Figure 8: Performance and efficiency trade-offs under different token budgets and retrieval head
budgets.

LongBench average score across settings by retaining more context, though this naturally leads to a
decrease in decoding speedup. Regarding the proportion of retrieval heads, a smaller ratio yields the
highest speedup by minimizing computational overhead. However, in terms of performance, simply
maximizing the number of retrieval heads does not always lead to the best results. Notably, with
larger token budgets (2048 and 4096), the 25.0% configuration outperforms the 50.0% setting. We
hypothesize that this is due to the noise-filtering property of LycheeDecode. An excessive propor-
tion of retrieval heads may introduce irrelevant context, whereas a balanced configuration allows
sparse heads to effectively focus on the most critical information.

E.5 ATTENTION VISUALIZATION

To analyze the behavior of Sparse Heads and investigate how they handle noisy context compared to
full-attention, we conducted a case study using a logical reasoning prompt with irrelevant distractor
text (Figure 9). We computed the attention weights of the final answer token with respect to the
entire preceding context. We calculated the average attention scores across all Retrieval Heads
(which execute full attention) and compared them against the average scores across all Sparse Heads
(which execute sparse attention). This comparison allows us to directly observe the impact of the
sparsity mechanism on the attention distribution.

The comparative visualization is presented in Figure 9. As shown in Figure 9(a), the Retrieval Heads
display a diffused attention pattern characteristic of full attention, where significant attention mass is
allocated to irrelevant distractor tokens (e.g., ”West”, ”the”). In contrast, Figure 9(b) demonstrates
that the Sparse Heads effectively eliminate this noise. Since Sparse Heads constitute the major-
ity of the model’s computation, this ”denoising” effect explains the counter-intuitive finding that
LycheeDecode can outperform the full-attention baseline, as it filters out interference that would
otherwise distract the model.

F IMPLEMENTATION DETAILS

We provide additional experimental details to ensure the reproducibility of our results. For the
training phase, we set the learning rate to 0.01. The stretching interval (p, q) for the HardKuma
distribution was set to (−0.1, 1.1). For the Passkey Retrieval dataset, we follow the setup of Xiao
et al. (2025) by inserting ten 32-word passkeys into the BookSum dataset, with the prompt length
sampled from a range of 1k to 10k tokens. For the HotpotQA dataset, we filter out questions that
could be answered without requiring the provided context. The prompt length for HotpotQA was

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Question: John's father has four children: North, South, and East. What is the name of the fourth child? <think>

 These are the cardinal directions. We have North, South, and East. To complete the compass rose, the remaining

 direction is West. It logically follows the set of four points. So the final answer is West. Wait, I am overlooking the

 introduction. The man is identified as "John's father". Therefore, John is one of the children. The direction pattern is

 a distraction. </think> So the final answer is John

(a) Full Attention

Question: John's father has four children: North, South, and East. What is the name of the fourth child? <think>

 These are the cardinal directions. We have North, South, and East. To complete the compass rose, the remaining

 direction is West. It logically follows the set of four points. So the final answer is West. Wait, I am overlooking the

 introduction. The man is identified as "John's father". Therefore, John is one of the children. The direction pattern is

 a distraction. </think> So the final answer is John

(b) Sparse Attention

Figure 9: Visualization of attention scores for the final answer token in a noisy reasoning context.
(a) Full Attention (Retrieval Heads) assigns significant attention weight to the irrelevant distraction
text (e.g. ”West”, ”the”), indicating susceptibility to noise. (b) Sparse Heads successfully filter out
these distractions. By computing attention only on the propagated critical tokens, the Sparse Heads
concentrate their focus solely on the relevant reasoning path, effectively denoising the context.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Head Index

L1 vs L0
L2 vs L1
L3 vs L2
L4 vs L3
L5 vs L4
L6 vs L5
L7 vs L6
L8 vs L7
L9 vs L8

L10 vs L9
L11 vs L10
L12 vs L11
L13 vs L12
L14 vs L13
L15 vs L14
L16 vs L15
L17 vs L16
L18 vs L17
L19 vs L18
L20 vs L19
L21 vs L20
L22 vs L21
L23 vs L22
L24 vs L23
L25 vs L24
L26 vs L25
L27 vs L26
L28 vs L27
L29 vs L28
L30 vs L29
L31 vs L30

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K
Ov

er
la

p
Ra

te
 fo

r A
tte

nt
io

n
Sc

or
e

Figure 10: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: There are only two kinds of fruit in a box: apples and bananas. All apples are sour, and all
bananas are sweet. I took a fruit from the box and tasted it. It was sweet. What is this fruit? An-
swer:, and Llama-3 outputs banana.

sampled from a range of 1k to 20k tokens. During inference, we preprocess the model by reordering
the output channels of the Query, Key, and Value projection weights according to the attention head
assignments, so as to ensure that the retrieval head and the sparse head are grouped into two different
continuous clusters. For Grouped Query Attention (GQA) models, we reduce the dimension of the Q
heads to match that of the KV heads by applying average pooling, which allows for the calculation of
the highest-scoring token set for each kv head. For all experiments, we employ the greedy decoding
strategy.

G LIMITATION

Although LycheeDecode demonstrates a significant step towards efficient long-context LLM infer-
ence, we acknowledge several limitations that present valuable avenues for future research. Cur-
rently, we allocate a fixed budget for each sparse head. However, recent work (Feng et al., 2024)
suggests that dynamically allocating the budget among attention heads can lead to better perfor-
mance. Additionally, while we have achieved considerable speedup, our method is not yet integrated
with highly optimized inference serving frameworks like vLLM (Kwon et al., 2023), which is left
for future work.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Head Index

L1 vs L0
L2 vs L1
L3 vs L2
L4 vs L3
L5 vs L4
L6 vs L5
L7 vs L6
L8 vs L7
L9 vs L8

L10 vs L9
L11 vs L10
L12 vs L11
L13 vs L12
L14 vs L13
L15 vs L14
L16 vs L15
L17 vs L16
L18 vs L17
L19 vs L18
L20 vs L19
L21 vs L20
L22 vs L21
L23 vs L22
L24 vs L23
L25 vs L24
L26 vs L25
L27 vs L26
L28 vs L27
L29 vs L28
L30 vs L29
L31 vs L30

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K
Ov

er
la

p
Ra

te
 fo

r A
tte

nt
io

n
Sc

or
e

Figure 11: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: If you walk 10 meters north from a starting point, then 10 meters east, and finally 10 meters
west, what direction are you from the original position? Answer:, and Llama-3 outputs north.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Head Index

L1 vs L0
L2 vs L1
L3 vs L2
L4 vs L3
L5 vs L4
L6 vs L5
L7 vs L6
L8 vs L7
L9 vs L8

L10 vs L9
L11 vs L10
L12 vs L11
L13 vs L12
L14 vs L13
L15 vs L14
L16 vs L15
L17 vs L16
L18 vs L17
L19 vs L18
L20 vs L19
L21 vs L20
L22 vs L21
L23 vs L22
L24 vs L23
L25 vs L24
L26 vs L25
L27 vs L26
L28 vs L27
L29 vs L28
L30 vs L29
L31 vs L30

0.0

0.2

0.4

0.6

0.8

1.0
To

p-
K

Ov
er

la
p

Ra
te

 fo
r A

tte
nt

io
n

Sc
or

e

Figure 12: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: You start facing east. You turn left 90 degrees, then turn right 180 degrees, and finally turn left
90 degrees. What direction are you facing now? Answer:, and Llama-3 outputs east.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Head Index

L1 vs L0
L2 vs L1
L3 vs L2
L4 vs L3
L5 vs L4
L6 vs L5
L7 vs L6
L8 vs L7
L9 vs L8

L10 vs L9
L11 vs L10
L12 vs L11
L13 vs L12
L14 vs L13
L15 vs L14
L16 vs L15
L17 vs L16
L18 vs L17
L19 vs L18
L20 vs L19
L21 vs L20
L22 vs L21
L23 vs L22
L24 vs L23
L25 vs L24
L26 vs L25
L27 vs L26
L28 vs L27
L29 vs L28
L30 vs L29
L31 vs L30

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K
Ov

er
la

p
Ra

te
 fo

r A
tte

nt
io

n
Sc

or
e

Figure 13: Overlap rate of top-k attention scores between corresponding heads in adjacent layers.
The heatmap illustrates the functional diversity among attention heads. We show the overlap rate
(k = 5) for the prompt: Please directly output the final answer based on the given question. Ques-
tion: If two days ago was Monday, what day is tomorrow? Answer:, and Llama-3 outputs Thursday.

25

	Introduction
	Related Work
	Methodology
	Head-level Sparse Decoding
	Head Specialization via HardKuma

	Experiments
	Experiment Setting
	Performance Evaluation
	Long Context Understanding
	Complex Reasoning Task

	Efficiency Evaluation
	End-to-end speedup
	Kernel-level speedup

	Ablation Study
	Different sparsity methods
	Identification methods & dataset

	Conclusion
	HardKuma distribution
	Kumaraswamy distribution
	HardKuma distribution
	Expected L0 Norm of HardKuma

	Algorithm pseudocode
	Kernel design
	Visualization of training process
	More experiment results
	RULER benchmark
	Detailed results of different sparse methods
	More cases
	Ablation Study
	Attention Visualization

	Implementation details
	limitation

