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Abstract

Idiopathic Pulmonary Fibrosis (IPF) is an inexorably progressive fibrotic lung disease with
a variable and unpredictable rate of progression. CT scans of the lungs inform clinical
assessment of IPF patients and contain pertinent information related to disease progression.
In this work, we propose a multi-modal method that uses neural networks and memory
banks to predict the survival of IPF patients using clinical and imaging data. The majority
of clinical IPF patient records have missing data (e.g. missing lung function tests). To
this end, we propose a probabilistic model that captures the dependencies between the
observed clinical variables and imputes missing ones. This principled approach to missing
data imputation can be naturally combined with a deep survival analysis model. We
show that the proposed framework yields significantly better survival analysis results than
baselines in terms of concordance index and integrated Brier score. Our work also provides
insights into novel image-based biomarkers that are linked to mortality.
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1. Introduction

Idiopathic Pulmonary Fibrosis (IPF) is the most common and deadly fibrotic lung disease
with a median survival rate ranging from 2.5 to 3.5 years (Katzenstein and Myers, 1998;
Vancheri, 2013). IPF is characterized by stiffening and scarring (fibrosis) of the lung tissue
that leads to shortness of breath and progressive reductions in lung volume. Spirometric
evaluation including measurements of Forced Expiratory Volume in the first second (FEV1)
and Forced Vital Capacity (FVC) captures alterations in lung volume that occur in IPF. One
of the main challenges with IPF is the unpredictable and highly-variable disease progression
seen across individuals. IPF progression is described by worsening respiratory symptoms,
lung function decline, progressive fibrosis on Computed Tomography (CT) imaging, or
death. The majority of patients suffer from progressive lung function decline. While FVC
is used to track IPF progression (Jegal et al., 2005), mortality is considered the most
reliable objective endpoint (Raghu et al., 2012). It can be interpreted in any of the following
forms: all-cause mortality, respiratory-related mortality, or IPF-related mortality. The most
clinically relevant expression of mortality is all-cause mortality (King et al., 2014), which is
used in this paper to model disease progression in IPF patients.

. The source code is publicly available at: https://github.com/ahmedhshahin/IPFSurv
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Figure 1: Overview of the proposed framework. During survival analysis training, we sam-
ple from the posterior distribution of missing values conditioned on the observed
values (Section 2.1), while during testing we use the most probable value.

A related challenge is that clinical records associated with the CT scans contain missing
clinical data, with more than 65% of our dataset containing at least one missing value.
Consequently, training survival models on complete samples would drastically reduce the
amount of training data and negatively impact the survival analysis model performance.
We propose a fully-automated survival analysis framework to discriminate IPF patients
according to their mortality risk, while being robust to missing clinical data. Our framework
can be used to assess the mortality risk at any disease stage using clinical and imaging data.

2. Methods

Our work contains two main contributions. The first is a simple yet principled approach to
dealing with missing values in clinical records. This allows us to train a subsequent deep
network to predict patient survival time using both the patient’s CT image and clinical
record, with any missing clinical values sampled from the missing data model (see Figure 1).
The second is a deep survival model supported with a memory bank to enable more efficient
processing of 3D volumetric images.

2.1. Imputation of missing values

Missing data can be imputed in many ways, see for example (Barber, 2012; Stavseth et al.,
2019). However, incautious handling can bias the model adversely. For example, imputing
with zeros might lead to correlating a missing value with a poor prognosis due to the inability
of patients in late stages to perform the lung function tests (Yi et al., 2019). Similarly, im-
puting with mean values (Donders et al., 2006) assumes all data attributes are independent,
which is an invalid assumption in the case of IPF clinical features (see Appendix C). Taking
dependency between attributes into account, Multiple Imputation by Chained Equations
(MICE) (Azur et al., 2011) is an algorithm that iteratively performs supervised regression to
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Figure 2: Model for imputing missing clinical values. h represents the hidden state and x
is the patient clinical information. Black circles denote observed variables xo and
white circles denote missing variables xm (DLCO in this example).

model missing data conditioned on observed data. HI-VAE (Nazábal et al., 2020) proposed
learning a different likelihood function for each data type (e.g. continuous and discrete)
and combining them in a variational auto-encoder model (Kingma and Welling, 2014).

We therefore introduce a simple latent variable model that is computationally efficient.
To impute missing values, we assume the clinical features x are modelled by independent
categorical distributions, when conditioned on a hidden state h, see Figure 2. For patient
n ∈ {1, . . . , N}, the probability of clinical record xn under the model is therefore given by

p(xn) =
H∑

h=1

p(h)
K∏

k=1

p(xnk |h) (1)

where p(h) denotes1 a categorical distribution with state h ∈ {1, . . . ,H}; K is the number
of clinical features, and p(xnk |h) is a categorical distribution. Writing each record in terms
of observed and missing elements, x = (xo, xm), the likelihood of record xn is given by

p(xn) =
∑

h

p(xno |h)p(xnm|h)p(h) (2)

where p(xno |h) =
∏

i∈xn
o
p(xi|h) and p(xnm|h) =

∏
i∈xn

m
p(xi|h). To model continuous features,

we convert them into discrete variables by equal-frequency binning.
The model has two sets of parameters, the hidden distribution p(h) and the categorical

distributions p(xi|h). The Expectation–Maximization (EM) algorithm (Dempster et al.,
1977) is a convenient choice to learn these distributions. Note that the EM algorithm
can make use of all training data, even those records which contain missing data, see
Appendix B. After training the model parameters, the distribution of missing values is
computed from

p(xm|xo) ∝
∑

h

p(h)p(xm, xo|h) =
∑

h

p(h)p(xm|h)p(xo|h) (3)

It is then straightforward to calculate missing data statistics or draw samples as required.

1. Throughout we use the compact notation p(h) to denote an (unnamed) random variable (associated with
state h) being in state h and similarly for conditional distributions. This obviates writing for example
p(H̃ = h) for random variable H̃ in state h.
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2.2. Deep Survival Analysis

Taylor Gonzalez and Maher (2016) used Cox regression (Cox, 1972) to predict mortality
from the Gender Age Physiology index (GAP) and Composite Physiologic Index (CPI).
Collard et al. (2003) adopted a similar approach and concluded that six-month changes
in pulmonary function tests were predictive of mortality risk. However, CT scans of the
lungs constitute an important part of the clinical assessment of IPF patients and contain
pertinent information related to disease progression. It can also be shown that patients
with similar clinical information may have different prognoses (Appendix A). Therefore, we
investigate the performance of survival models that use both imaging and clinical data.

Other studies have used extracted features from CT to predict mortality. Jacob et al.
(2017) compared between mortality prediction using features extracted by an expert radiolo-
gist (visual scoring) and features automatically extracted by CALIPER software (Computer-
Aided Lung Informatics for Pathology Evaluation and Ratings) (Bartholmai et al., 2013).
CALIPER quantifies the extent of specified radiological patterns of lung damage2 seen on
the CT scan. However, both the visual scoring and CALIPER approaches are unsupervised
feature extraction methods in the sense that they are not designed to be maximally pre-
dictive of mortality. Visual scoring is also a time-consuming approach that requires clinical
expertise and is prone to inter-observer variability.

We are therefore interested in estimating the time to death of a patient, based on
their clinical and imaging data. We train an end-to-end neural network to extract imaging
features that are maximally predictive of mortality. In survival analysis (Kleinbaum and
Klein, 2010), one may not know whether some patients have died or just stopped visiting
the hospital; the only available information about these patients is that they were alive until
a specific date (date of censoring). Writing T ∗ for the time of death, the hazard function
h(t) models the chance that a patient will die in an infinitesimal time interval [t, t + ∆t]

h(t) = lim
∆t→0

p(t ≤ T ∗ < t + ∆t|T ∗ ≥ t)

∆t
(4)

The most widely used model to learn from censored survival data is the Cox proportional
hazards model (Cox, 1972). It models the hazard function h(t|x) conditioned on the feature
vector x, as follows

h(t|x) = h0(t) exp(g(x)) (5)

Here h0(t) depends only on t and g(x) is a deep network that depends on the patient
covariates x. The parameters of g(x) are learned by minimizing the negative partial log-
likelihood function (Cox, 1972). To do this, for each patient n we define the risk set Rn as
all those patients that have not died before patient n and define the relative death risk as

P (T ∗n = tn|Rn) =
h(tn|xn)∑

m∈Rn
h(tm|xm)

=
exp(g(xn))∑

m∈Rn
exp(g(xm))

(6)

The negative partial log-likelihood is then defined as the sum of logP (T ∗n = tn|Rn) for all
patients who died n ∈ D

L = − 1

|D|
∑

n∈D

[
g(xn)− log

( ∑

m∈Rn

exp(g(xm))

)]
(7)

2. Ground glass opacity, reticulation, honeycombing, emphysema, pulmonary vessels volume, and others.
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Algorithm 1: Pseudocode of survival analysis training in a PyTorch-like style

# delta: indicator function (1 if experienced the event and 0 if censored), shape Nx1
# times: event or censoring time, shape Nx1
# case_idx: an identifier of each sample in training set, shape Nx1
mbank[case_idx] = rand(N) # initialize memory bank as a dictionary with random values
for (batch_cases, img, clinical) in loader: # load a minibatch with n samples

clinical = impute_missing(clinical) # sample from p(x_m|x_o) to impute any missing
values

pred = model(img,clinical) # get prediction using imaging and clinical data
mbank[batch_cases] = pred.data # update values of the current batch in the memory

bank
loss = CoxLoss(mbank.values, delta, times) # calculate loss using the whole dataset

by accessing predictions in mbank from previous iterations
loss.backward() # calculate gradients
update(model.params) # update model parameters

Minimizing L with respect to the parameters of g(x) using standard stochastic gradient
descent based on selecting batches of patients (Kvamme et al., 2019) is problematic since:

• Eq(7) represents a ranking loss that compares between patients that died in the batch
according to their predicted mortality risk. This requires large batch sizes for ro-
bust training; however, for high-resolution inputs (3D scans) we are limited by GPU
memory to small batch sizes.

• For small batch sizes (usually less than 10) and a high censoring percentage, there
will often be batches containing only censored patients. The loss, in this case, cannot
be calculated and these batches will be ignored.

Inspired by the contrastive learning literature (He et al., 2020), we introduce a memory
bank to store neural network predictions. This allows the loss in Eq(7) to be approximately
calculated on the whole training set.

To calculate the hazard function, we use a Convolutional Neural Network (CNN) to
encode each CT into a vector representation and append it to the clinical data (with any
missing clinical data sampled from the posterior p(xnm|xno )) to get a joint representation
(Gadzicki et al., 2020). Given the limited number of clinical features in the dataset (six
features), using a more complicated multi-modal learning approach might lead to over-
fitting. The function g(x) is then obtained by a linear combination of the elements of
the joint representation. The overall training process, including how to deal with missing
clinical data, is explained in Algorithm 1.

For the CNN part, we use an adjusted 3D ResNet that has been shown to work well
with medical imaging scans in Pölsterl et al. (2021). It consists of four residual blocks,
each block includes two 3× 3× 3 convolutional layers, with ReLU non-linearity and batch
normalization. To optimize the parameters of the model, we minimize the loss in Eq(7)
using Adam optimizer with initial learning rates of 0.01 and 0.03 for imaging-only and
multi-modal models, respectively. We train the models for 100 epochs and shrink the initial
learning rate by 10 after 30 epochs. Learning rates were chosen via random search based on
the best predictive performance. We use the model provided by Hofmanninger et al. (2020)
for lung segmentation. In the imputation model, the latent variable has 90 discrete states.
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(a) Accuracy for categorical data (b) NRMSE for numerical data

Figure 3: Results of imputation. X-axis: number of missing features per clinical record.

3. Experiments

In our experiments, we use the Open Source Imaging Consortium (OSIC)3 dataset which
contains lung CT scans as well as contemporaneous clinical data. We use six clinical features:
age, sex, smoking history (never-smoked, ex-smoker, current smoker), antifibrotic treatment
(yes/no), FVC percent, and Diffusion capacity of carbon monoxide (DLCO). To ensure
correspondence between imaging and clinical data, we only use patients who had their lung
function tests within 3 months of the CT scan.

Imputation of missing values Our dataset comprises 761 patients with clinical data
and only 182 patients have complete records. To validate the effectiveness of the model in
Section 2.1, we use a test set of 72 patients with complete records and simulate missing
values by randomly dropping 1 to 4 features from each test sample and imputing them using
mean imputation, MICE (Azur et al., 2011), and our model. We assume that age and sex
features are always observed as this information is available for all patients in the dataset,
and is usually available in hospitals. To infer the missing values we take the expectation of
Eq(3). In Figure 3, we show the average accuracy for categorical variables and normalized
root mean square error (NRMSE) for numerical variables. For a vector of true values y and
a vector of imputed values by the model ŷ, NRMSE is defined as follows:

NRMSE =

√
1
|y|
∑

i(yi − ŷi)2

max(y)−min(y)
(8)

To account for randomness, we repeat experiments 5 times and report the average accuracy
and NRMSE. These results demonstrate the superior performance of the proposed model
compared to mean and MICE imputation. In Appendix C, we show the correlation between
different clinical features suggesting that the performance improvement of our model comes
from modelling the correlation between features.

Survival analysis results We use 446 IPF patients in this set of experiments. Each
patient has a volumetric CT scan with slice thickness ≤ 2.0 mm and contemporaneous
clinical data. We do five-fold cross-validation and use the standard Cox model using clinical

3. https://www.osicild.org
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Table 1: Results of five-fold cross-validation for survival analysis

Model Memory Bank IPCW C-Index IBS

Cox (clinical data) N/A 63±19.23 0.33±0.1

CNN (imaging data)
7 75.86±6.88 0.32±0.33
3 77.68±4.51 0.24±0.12

CNN (both)
7 69.73±23.04 0.4±0.3
3 71.28±16.95 0.18±0.09

data as our baseline. We compare the baseline to models that use imaging only as input
and models that use both clinical and imaging data. To evaluate the model discrimination,
i.e. the ability to discriminate between patients according to their risk of death, we use
a modified version of the concordance index (Harrell et al., 1996) based on the inverse
probability of censoring weights (IPCW C-Index) (Uno et al., 2011). To evaluate the model
calibration, i.e. the ability to precisely predict the time of death, we use the Integrated
Brier Score (IBS) (Graf et al., 1999). For a survival probability p̂t at time t, Brier score
is defined as BS(t) = 1

N∗
∑

i(1(T ∗>t) − p̂ti)
2 where N∗ is the set of uncensored patients or

patients who have censoring dates later than t. IBS is obtained by integrating BS over a
time interval, the interval that spans the test set in our experiments.

Table 1 shows that models using CT images as input have significantly outperformed
the clinical baseline, corroborating the hypothesis of CT images being critical for accurate
mortality prediction. Interestingly, the imaging-only model had the best discrimination
performance, while the multi-modal model was the best-calibrated model. The imaging
model had better discrimination performance compared to the model that used the two
sources of information. One reason for this is the noise in clinical data, especially the
FVC percent and DLCO features, that impaired the model performance. This supports our
hypothesis that depending solely on clinical data for mortality prediction is insufficient.
The results suggest that clinical data might not be critical for risk stratification in IPF
patients but becomes useful if estimating time to death is the end goal. Additionally, we
can see that incorporating a memory bank in the model design consistently improves the
predictive performance. Especially in the multi-modal model, the introduction of a memory
bank gives an improvement of 1.55% and 0.22 in terms of C-Index and IBS, respectively.

Further, to assess the generalization of our approach, we validate the models on an
independent cohort of 107 IPF patients, see Table 2. We use a trained model from our
cross-validation experiment and test its performance on this unseen cohort of patients. The

Table 2: Generalization experiments on an independent cohort of patients

Model IPCW C-Index IBS

Cox (clinical data) 65.14 0.11
CNN (imaging data with memory bank) 64.05 0.49
CNN (both with memory bank) 67.85 0.07
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Patient 1: 152 Weeks Patient 2: 54 Weeks Patient 3: 40 Weeks

Figure 4: Saliency maps of the survival analysis models with the reported time of death in
patients with IPF. The model highlights areas of fibrosis (blue arrows) but also
pulmonary vessels (red arrows). Larger samples are presented in Appendix D.

results show that the performance drop in the proposed multi-modal method is the lowest
and it has the best generalization in terms of calibration and discrimination performance.

Additionally, we present saliency maps using GradCAM method (Selvaraju et al., 2017)
to highlight prognostically important structures on CT images that caused certain pre-
dictions by the model (Figure 4). GradCAM computes saliency maps by multiplying the
activations of the last convolutional layer by the gradients of the final fully-connected layer,
resulting in a low-resolution saliency map which is then upsampled to the original input
size. We notice that the model highlights areas of fibrosis and vessels in these patients. This
shows that fibrosis extent is a prognostically important imaging biomarker in IPF. Interest-
ingly, the highlighting of vessels confirms the correlation between mortality and pulmonary
vessels that has been suggested in IPF, using CALIPER features (Jacob et al., 2017).

4. Conclusions and Future Work

We proposed a principled framework to predict survival in IPF from CT images and incom-
plete clinical data. Our results show that i) the integration between imaging and clinical
data gives the best prediction of time to death, while imaging only is sufficient for death risk
stratification; ii) using memory banks for approximating Cox loss improves the discrimina-
tion and calibration of survival models; iii) pulmonary vessels and fibrosis are prognostically
important in IPF. The presented methods could be extended to other modalities and dis-
eases with minor tweaks to adapt the CNN architecture to the modality of interest.

A limitation with GradCAM as an interpretability method is the generation of coarse
saliency maps due to the upsampling operation, which leads to highlighting irrelevant areas
in some cases. A natural future direction would be designing methods that directly generate
high-resolution maps, rather than upsampling low-resolution ones. Further, a comparison
between our approach and visual scoring in terms of predictive performance and processing
time will demonstrate the practical utility of fully-automated survival analysis methods.
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Appendix A. Limitations of IPF progression modelling from clinical data

Age 73 years
Sex Male
Smoking
History Ex-smoker

Treatment Antifibrotic
FVC Percent 86.0
DLCO 15.08

Died after 114 weeks

Age 69 years
Sex Male
Smoking
History Ex-smoker

Treatment Antifibrotic
FVC Percent 85.0
DLCO 19.14

Died after 385 weeks

Figure 5: An example from the OSIC dataset of two patients with very similar clinical
features and different survival outcomes. This illustrates the limitations that
exist when only using clinical data to predict disease progression in IPF. Our
study examined the additional value that might be gained by using imaging data
to predict disease progression. Time of death is reported relative to the time of
lung function tests.

Appendix B. EM algorithm

The EM algorithm maximises the energy term (see Barber (2012)), given a posterior q(h|x):

∑

n,h

Eq(h|xn)[log p(xn, h)] =
∑

n,h

∑

i∈xn

Eq(h|xn)[log p(xi|h)] +
∑

n,h

Eq(h|xn)[log p(h)] (9)

where q(h|xn) is given by the E-step:

q(h|xn) ∝ p(h)p(xn|h) (10)

An important property of an imputation model is to be able to train using samples with
missing values, which can be simply achieved in this model by introducing the set of missing
variables xm as an additional hidden variable and using xo for the observed variables, in
this case the energy will be as follows:

∑

n,h,xn
m

Eq(h,xn
m) log p(xnm, xno , h) =

∑

n,h,xn
m

Eq(h,xn
m)[log p(h) + log p(xnm|h) + log p(xno |h)] (11)

E-Step:

q(xnm, h|xn) ∝ p(h)
∏

i∈xn
o

p(xi|h)
∏

i∈xn
m

p(xi|h) (12)

In the M-Step, we will also need q(h|xn):

q(h|xn) ∝ p(h)
∏

i∈xn
o

p(xi|h) (13)
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M-Step: To get p(xk|h), Energy E can be re-written as

E =
∑

n,h,xn
m

q(xnm, h|xn)[
∑

i∈xn
o

log p(xi|h) +
∑

i∈xn
m

log p(xi|h) + log p(h)] (14)

Since we are interested in optimizing p(xi = C|hn):

E =
∑

n,i∈xn

[I(xi = C)q(h|xn) log p(xi = C|h)

+ I(i ∈ xm)q(xi = C, h|xn) log p(xi = C|h)]

(15)

where C is a category in the categorical distribution. The first term models the observed
values and the second term models the missing values.

p(xi = C|h) ∝
∑

n

[I(xni = C)q(h|xn) + I(i ∈ xm)q(xni = C, h|xn)] (16)

To compute p(h):

p(h) ∝
∑

n

q(xnm, h|xn)

=
∑

n

q(xnm|h,xn)q(h|xn)
(17)

If no missing values, i.e. xnm = ∅:

p(h) =
∑

n

q(h|xn) (18)

E and M steps are repeated until convergence.

13



Survival Analysis for IPF

Appendix C. Correlation between clinical variables

Figure 6: Pearson correlation coefficient between clinical variables. There is some correla-
tion between FVC percent and age while strong correlation between FVC percent
and DLCO. This illustrates the limitation of methods that assume independence
between features.
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Appendix D. Saliency Maps

We show larger samples of the saliency maps with the reported time of death in patients
with IPF. The model highlights areas of fibrosis (blue arrows) but also pulmonary vessels
(red arrows).

Figure 7: Patient 1. Time of death: 152 weeks.

15



Survival Analysis for IPF

Figure 8: Patient 2. Time of death: 54 weeks.
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Figure 9: Patient 3. Time of death: 40 weeks.
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