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Abstract

Dataset condensation aims to synthesize compact yet informative datasets that1

retain the training efficacy of full-scale data, offering substantial gains in efficiency.2

Recent studies reveal that the condensation process can be vulnerable to backdoor3

attacks, where malicious triggers are injected into the condensation dataset, manipu-4

lating model behavior during inference. While prior approaches have made progress5

in balancing attack success rate and clean test accuracy, they often fall short in6

preserving stealthiness, especially in concealing the visual artifacts of condensed7

data or the perturbations introduced during inference. To address this challenge,8

we introduce SNEAKDOOR, which enhances stealthiness without compromising9

attack effectiveness. SNEAKDOOR exploits the inherent vulnerability of class deci-10

sion boundaries and incorporates a generative module that constructs input-aware11

triggers aligned with local feature geometry, thereby minimizing detectability. This12

joint design enables the attack to remain imperceptible to both human inspection13

and statistical detection. Extensive experiments across multiple datasets demon-14

strate that SNEAKDOOR achieves a compelling balance among attack success rate,15

clean test accuracy, and stealthiness, substantially improving the invisibility of both16

the synthetic data and triggered samples while maintaining high attack efficacy.17

The code is available at https://github.com/XJTU-AI-Lab/SneakDoor.18

1 Introduction19

Dataset Condensation (DC) [1, 2, 3, 4, 5, 6] has recently emerged as a powerful paradigm for20

synthesizing compact training datasets that retain the learning efficacy of their full-sized counterparts,21

offering substantial benefits in terms of computation, memory, and deployment efficiency. However,22

DC introduces inherent vulnerabilities to backdoor attacks [7, 8, 9, 10], where malicious triggers23

can be injected into the distilled samples during the condensation process. Once compromised, the24

distilled dataset can disseminate malicious behaviors across downstream models, undermining model25

integrity and posing serious security threats.26

A growing body of work demonstrates that malicious triggers, once implanted into the distilled27

set, can persist across downstream training and inference, leading to consistent and targeted mis-28

classification [11, 12, 13]. One of the earliest approaches is the Naive Attack [11], which directly29

adds a fixed visual pattern (typically a static patch) to instances from clean training samples before30

condensation. While conceptually simple, this method suffers from limited attack success rates, as the31

uniform trigger tends to degrade through the condensation process. To enhance attack effectiveness,32

Doorping [11] introduces a bilevel optimization framework that iteratively updates both the distilled33

data and the backdoor trigger during training. Doorping better preserves the trigger semantics and34

achieves stronger attack success rate. However, it incurs significant computational cost due to its35

bilevel nature and lacks a theoretical foundation. A more recent work [12] adopts a kernel-theoretic36
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Figure 1: Stealthiness Illustration

lens to reinterpret backdoor vulnerability in condensation. They propose two variants, simple-trigger37

and relax-trigger. The former attack focuses exclusively on minimizing the generalization gap, aiming38

to ensure that the backdoor learned during condensation reliably transfers to test-time behavior. The39

relax-trigger introduces a joint optimization objective that simultaneously reduces projection loss40

(mismatch between synthetic and clean distributions), conflict loss (interference between clean and41

poisoned instances), and the generalization gap. Notably, relax-trigger maintains high attack success42

rate while avoiding the computational overhead of bilevel optimization.43

However, existing approaches fall short of achieving a well-calibrated trade-off among attack success44

rate (ASR), clean test accuracy (CTA), and stealthiness (STE). While some methods attain high45

ASR or maintain acceptable CTA, they frequently neglect STE, a critical dimension that reflects46

the visual and statistical imperceptibility of both the distilled data and the triggered inputs (See47

Figure 1). This oversight is particularly damaging, without sufficient stealthiness, even highly48

effective attacks become vulnerable to detection, significantly limiting their practical viability. This49

persistent imbalance motivates our proposed method, SNEAKDOOR, which leverages input-aware50

trigger generation and decision boundary sensitivity, achieving a more favorable balance among ASR,51

CTA, and STE.52

Specifically, SNEAKDOOR consists of two stages, (1) Trigger Generation and (2) Backdoor Injection.53

In the first stage, a generative network is trained to produce input-aware triggers tailored to individual54

samples. By aligning each trigger with the local semantic content of its host image, the perturbations55

remain visually coherent and difficult to isolate. In the second stage, the backdoor injection is56

formulated as an optimization problem. The generated triggers are embedded into a subset of clean57

samples to form a poisoned subset. These triggered samples are then incorporated into the training58

set prior to condensation, allowing the distilled dataset to encode backdoor behavior alongside clean59

task representations. As a result, downstream models trained on the synthesized data exhibit the60

intended malicious behavior without sacrificing generalization to clean inputs.61

Our contributions are summarized below:62

• We present the first investigation of backdoor attacks against distribution matching-based63

dataset condensation, with a focus on jointly optimizing ASR, CTA, and STE.64

• We provide a theoretical analysis of stealthiness concerning SNEAKDOOR, offering formal65

guarantees and insights into the conditions under which backdoor signals remain unde-66

tectable throughout the condensation and training process.67

• Extensive experiments across six datasets demonstrate that SNEAKDOOR consistently out-68

performs existing methods in achieving a superior balance across ASR, CTA, and STE.69

2 Related Work70

Distribution Matching-based Dataset Condensation: Dataset condensation (DC) aims to syn-71

thesize a compact set of synthetic samples that can replace large-scale datasets while preserving72
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comparable model performance. Among various condensation paradigms, distribution matching73

(DM)-based methods have emerged as a leading approach due to their scalability, generality, and74

empirical effectiveness. Unlike earlier techniques based on gradient matching or training trajectory75

alignment, DM-based methods directly align statistical or feature-level distributions between real76

and synthetic data. A seminal example is DM [3], which matches the second-order moments (co-77

variance) of feature embeddings extracted by random encoders. A core formulation in distribution78

matching-based dataset condensation leverages the maximum mean discrepancy (MMD) to quantify79

the distance between the feature distributions of real and synthetic samples in a high-dimensional80

embedding space. The objective is to minimize this discrepancy over the synthetic set S, ensuring81

statistical alignment with the original dataset T . Specifically, the optimization problem is defined82

as: minS Eθ∼Pθ
∥ 1
|T |

∑|T |
i=1 ψϑ(A(xi, ω)) − 1

|S|
∑|S|

j=1 ψϑ(A(sj , ω))∥2, where ψϑ is a randomly83

initialized and fixed embedding function, and A(·, ω) denotes a differentiable Siamese augmenta-84

tion operator applied to both real and synthetic samples, parameterized by ω. This formulation85

encourages the synthetic set to preserve the statistical structure of the real dataset under randomized86

transformations, thereby promoting generalization across model initializations drawn from Pθ.87

Subsequent extensions, such as IDM and DAM, enhance class-conditional alignment through kernel-88

based moment matching, adaptive feature regularization, and encoder updates, yielding improved89

performance. IDM introduces practical enhancements to the original distribution matching framework,90

incorporating progressive feature extractor updates, stronger data augmentations, and dynamic class91

balancing to improve generalization. In parallel, DataDAM leverages attention map alignment to92

better preserve spatial semantics, guiding synthetic samples to activate similar regions as real data93

while maintaining computational efficiency. These methods advance the state of dataset condensation94

by demonstrating that richer supervision and adaptive training dynamics are critical for generating95

high-fidelity synthetic datasets.96

Backdoor Attacks against Dataset Condensation: Backdoor attacks aim to manipulate model97

behavior at inference time by injecting carefully crafted triggers into a subset of training data. When98

effective, the model performs normally on clean inputs but consistently misclassifies inputs containing99

the trigger. While extensively studied in standard supervised learning, backdoor attacks in the context100

of dataset condensation have only recently received attention. A pioneering study by Liu et al. [11]101

introduces backdoors by poisoning real data before dataset condensation. Their Naive Attack appends102

a fixed trigger to target-class samples before condensation, but suffers from trigger degradation and103

reduced attack efficacy due to the synthesis process. To address this, Doorping employs a bilevel104

optimization scheme that jointly refines the trigger and the synthetic data. Although more effective, it105

incurs substantial computational overhead. More recently, Chung et al. [12] provide a kernel-theoretic106

perspective on backdoor persistence in condensation. They propose simple-trigger, which minimizes107

the generalization gap of the backdoor effect, and relax-trigger, which further reduces projection and108

conflict losses for improved robustness.109

Importantly, existing approaches focus predominantly on maximizing ASR or preserving CTA, often110

overlooking STE, which is a critical factor for realistic attacks. In contrast, we propose SNEAKDOOR,111

a novel framework that explicitly addresses the ASR–CTA–STE trade-off through input-aware trigger112

generation and stealth-aware integration into distribution matching-based condensation.113

3 Methodology114

3.1 Threat Model115

Attack Scenario. We consider a collaborative setting where one entity possesses a high-quality116

dataset and shares a compact version with another party via dataset condensation, due to privacy117

or bandwidth constraints. The condensed dataset is typically regarded as a trustworthy proxy for118

training. However, this trust can be exploited. A malicious provider, with full access to the original119

data and sole control over the condensation process, can embed backdoor triggers into the synthetic120

data. These triggers, while preserving high utility for clean tasks, can cause targeted misclassification121

in downstream models.122

Moreover, our threat model does not assume that the attacker knows the downstream (victim) model123

architecture. This upstream threat underscores a critical vulnerability: even limited data sharing can124

serve as a potent attack vector when the condensation process is adversarially controlled.125
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Attacker’s Goal. The attacker’s objective in backdooring condensed datasets is inherently multi-126

faceted, requiring a delicate balance among three goals: stealthiness (STE), attack success rate (ASR),127

and clean test accuracy (CTA). Due to space constraints, detailed definitions of these metrics are128

provided in Appendix A.129

3.2 Stealthy Backdoor Attack against Dataset Condensation130

(1) Trigger Generation131

Trigger generation starts by identifying the source–target class pair (i, j) with the highest inter-class132

misclassification rate:133

Oi→j =
1

N

N∑
k=1

I
(
gθc(fθf (xk)) = j

)
, xk ∈ Ti, (1)

where Ti represents the subset of the original dataset T with ground-truth label i, fθf and gθc denote134

the feature extractor and classifier, respectively, I(·) is the indicator function that equals 1 if the135

classifier assigns the sample xk to class j, and 0 otherwise. In practice, we estimate Oi→j by136

sampling N examples from class i, mapping them to the latent space with fθf , and computing the137

fraction that gθc assigns to class j.138

We evaluate Oi→j for all ordered class pairs and select the pair with the maximal value. The chosen139

pair indicates the most error-prone direction for label confusion; a trigger is then designed to exploit140

this specific weakness. By targeting the pair with highest misclassification rate, the attack achieves141

consistent source→target misclassification while limiting collateral impact on overall model accuracy.142

The computation of Oi→j depends on the model parameters θ = {θf , θc}, which correspond to the143

feature extractor fθf and the classifier fθc , respectively. To obtain these parameters, we first construct144

a condensed dataset S = {(x′i, y′i)}Ni=1 from the original dataset T = {(xi, yi)}Mi=1, where N ≪M .145

The synthetic dataset S is generated by minimizing a distribution-matching objective over randomly146

initialized models, ensuring that training on S approximates the behavior of models trained on the147

full dataset T :148

S∗ = argmin
S

Ex∼pT , x′∼pS , θ∼pθ
D(PT (x; θ), PS(x

′; θ)) + λR(S), (2)

where PT (x; θ) and PS(x
′; θ) denote the feature distributions induced by the original and condensed149

datasets, respectively. The distance measure D(·, ·), such as Maximum Mean Discrepancy (MMD),150

quantifies the discrepancy between these distributions. R(S) is a regularization term, and λ balances151

the trade-off between distribution alignment and regularization.152

After generating the condensed dataset S , we train a surrogate model parameterized by θ = {θf , θc}153

using only S . This surrogate serves as an efficient approximation of the downstream model’s decision154

behavior. Once trained, it is evaluated on the original dataset T , and a normalized confusion matrix155

is computed to analyze inter-class prediction tendencies.156

C =
Cij∑oc−1

j=0 Cij

Cij =
∑

(x,y)∈T

I[y = i]I[gθc(fθf )(x) = j]
(3)

where oc is the total number of classes in the original dataset T . Cij represents the empirical proba-157

bility that a sample from class i is misclassified as class j. The maximum inter-class misclassification158

rate Oys−→yτ
is then calculated as follows:159

Oys−→yτ
= argmaxCij

i,j

, i ̸= j (4)

This measure identifies the class pair (i, j) with the highest misclassification probability, revealing160

the most vulnerable decision boundary in the model.161

We then proceed to the trigger generation phase, where the objective is to create a trigger that, when162

added to an input sample, causes the model to misclassify the input from the source class ys to the163
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target class yτ . Speicifically, we utilize a generator model Gϕ, which generates perturbations, or164

triggers, which are added to the original input data. The perturbation is designed to be imperceptible,165

ensuring the trigger remains stealthy while causing misclassification. The trigger generation process166

can be represented as follows:167

x̃ = x+ αGϕ(x), ∀x ∈ Tys

s.t. ∥Gϕ(x)∥∞ < ε, ∀x (5)

where Gϕ(x) represents the generated adversarial noise, while ε is a constraint that controls the168

maximum permissible perturbation, ensuring that the perturbation remains subtle and undetectable.169

The perturbed input is denoted as x̃. The subset Tys refers to the portion of the original dataset for170

which the label is ys. α is a small constant, further controlling the size of the perturbation.171

In practice, the maximum permissible perturbation constraint in Eq.(5) is enforced by applying a172

clamping operation to the generator output Gϕ(x) before adding it to the original input. Specifically,173

the adversarial noise is clamped such that its ℓ∞-norm lies within the range [−ε, ε], ensuring the174

perturbation remains imperceptible. This clamped noise is then added to the clean image, followed175

by another clamping step to maintain the pixel values within the valid image range. The loss in Eq.(6)176

is computed on these clamped, perturbed images, allowing the generator to be implicitly optimized177

under the perturbation constraint without the need for an explicit penalty term in the objective.178

The generator model Gϕ is trained alongside θ = {θf , θc}, with the objective of minimizing the179

classification loss associated with the target class yτ . Specifically, the generator is updated based on180

the following objective function:181

ϕ = ϕ− ηϕ
∑

x∈Tys

L
(
gθc(fθf (x+Gϕ(x))), yτ

)
(6)

where L is the loss function, which measures the error in predicting the target class yτ after applying182

the trigger to the input x, and ηϕ is the learning rate for the generator.183

By iteratively updating the generator, the generator Gϕ is refined to produce more effective backdoor184

triggers. The process continues until the trigger causes consistent misclassifications of the source185

class ys as the target class yτ , while keeping the perturbation within the imperceptibility threshold186

ε. This approach enables the adversary to design highly effective backdoor triggers, leveraging the187

generator to produce stealthy perturbations that successfully compromise the performance of the188

downstream model.189

(2) Backdoor Injection190

Once the generator Gϕ has been trained to generate perturbations that cause misclassifications of191

the source class ys to the target class yτ , we proceed with the backdoor injection process. This192

step involves adding the learned perturbations to the source class samples in the original dataset T .193

Specifically, we add the perturbations generated by Gϕ to each sample x ∈ Tys :194

x̃ = x+ αGϕ(x) ∀x ∈ Tys (7)

where x̃ represents the perturbed sample, and Gϕ(x) is the perturbation generated by the adversarial195

generator. These perturbed samples are then relabeled to the target class yτ .196

This process ensures that adversarial perturbations are applied to the samples from the source class,197

resulting in a set of triggered samples, Ttriggered = (x̃, yτ )
Ntriggered
i=1 , where the perturbed inputs are198

labeled as the target class yτ . In the subsequent step, the triggered samples are incorporated with the199

clean samples from the target class yτ . The primary objective of this combination is to introduce a200

fraction of the triggered samples into the target class, thereby facilitating the model to misclassify201

source class samples as the target class when subjected to the adversarial trigger. This process ensures202

that the model’s decision boundary is subtly manipulated to favor misclassification under specific203

conditions. Let Ntriggered be the total number of triggered samples generated in the previous step, each204

labeled with the target class yτ . The number of clean samples in the target class yτ in the original205

dataset T yτ is denoted by NT yτ
. Based on the poison ratio ρ, we will add ρ ·NTyτ

triggered samples206

into Tyτ
. Specifically, we first randomly select ρ ·NTyτ

samples from Ttriggered and add them into Tyτ
.207

The resulting poisoned dataset Tmixed consists of both the clean target class samples and the triggered208

samples:209

Tmixed = Tyτ
∪ {(x̃, yτ )}

ρ·NTyτ
i=1 (8)
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The next step is to recondense the target class Tyτ . The objective of recondensation is to generate210

a new subset Syτ within the synthetic dataset, which preserves the key characteristics of the target211

class while amplifying the influence of the triggered samples. This process seeks to strike a balance212

between maintaining the intrinsic features of the target class and maximizing the impact of the213

adversarial samples. Specifically, the objective is to generate a synthetic dataset Syτ that closely214

approximates the target class distribution in the poisoned data T yτ . The optimization objective is215

defined as:216

S∗
yτ

= argmin
Syτ

Ex∼pTmixed ,x
′∼pSyτ

,θ∼pθ
D

(
PTmixed(x; θ), PSyτ

(x′; θ)
)
+ λR(Syτ ) (9)

where PTmixed(x; θ) is the probability distribution of the target class incorporating triggered samples.217

PSyτ
(x′; θ) is the probability distribution of the recondensed target class.218

4 Stealthiness Analysis219

A critical challenge in designing effective backdoor attacks on dataset condensation is achieving220

stealthiness, ensuring that poisoned samples and the resulting synthetic data are indistinguishable from221

their clean counterparts. Our goal is to formalize stealthiness through a geometric and distributional222

lens, grounded in the feature space induced by deep neural architectures.223

To this end, our analysis is guided by the following question: How does input-aware backdoor224

injection perturb the structure of data manifolds in feature space, and can this deviation be rigorously225

bounded to guarantee stealth? Since distribution matching-based condensation aligns global feature226

statistics (e.g., moments of embedded data), it is essential to understand whether triggers introduce227

detectable geometric or statistical anomalies in the condensed representation. We conduct our228

analysis in a Reproducing Kernel Hilbert Space (RKHS), where class-specific data, both clean and229

triggered, are assumed to lie on smooth, locally compact manifolds. By modeling the trigger as a230

bounded, input-aware perturbation and invoking assumptions on manifold regularity and inter-class231

proximity, we show that triggered samples remain tightly coupled to the clean data manifold under232

mild conditions. This theoretical framework enables us to quantify the effect of poisoning both at233

the feature level (Theorem 3) and at the level of the condensed dataset (Theorem 2). These results234

provide principled justification for SNEAKDOOR’s empirical stealth: the perturbations introduced235

by the trigger remain latent-space-aligned and distributionally consistent, limiting their detectability236

after condensation.237

Formal statements of assumptions, intermediate lemmas, and proofs supporting our theoretical238

analysis are deferred to Appendix B for clarity and completeness.239

Definition 1 (Kernel). k : X × X 7→ R on a non-empty set X is a kernel if it satisfies the following240

two conditions: (1) symmetry: k(x, x′) = k(x′, x), ∀x, x′ ∈ X . (2) Positive Semi-Definiteness:241

for any finite subset {x1, x2, · · · , xn} ⊂ X , the Gram matrix K = [k(xi, xj)]
n
i,j=1 is positive242

semi-definite.243

Definition 2 (Reproducing Kernel Hilbert Space, RKHS). Given a kernel k : X × X 7→ R, the244

Reproducing Kernel Hilbert Space Hk is a Hilbert space of functions f : X 7→ R satisfying: (1) For245

every x ∈ X , the function k(x, ·) ∈ Hk. (2) ∀x ∈ X and f ∈ Hk, f(x) = ⟨f, k(x, ·)⟩Hk
.246

Theorem 1 (Upper Bound on Feature-Manifold Deviation under Poisoning). Let Tyτ
denote the clean247

target-class dataset and Ttriggered the triggered (poisoned) dataset, with corresponding feature-space248

distributions PMclean
and PMtriggered

, respectively. Define the mixed distribution as: PMmixed
=249

(1− ρ)PMclean
+ ρPMtriggered

, where ρ ∈ [0, 1] denotes the poisoning ratio. Under Assumptions 1250

(Lipschitz Continuity), 2 (Local Compactness of Feature Manifold), and 3 (Inter-Class Hausdorff251

Distance), the expected deviation of samples from the mixed distribution to the target feature manifold252

satisfies:253

Ez∼PMmixed

[
inf

zτ∈Mclean

∥z − zτ∥H
]
≤ ρ(γε+ δ), (10)

where H is the RKHS associated with the feature encoder.254

Theorem 2 (Upper Bound on the Discrepancy Between Poisoned and Clean Condensation Datasets).255

Let Tyτ
denote the clean target-class dataset and Tmixed = Tyτ

∪Ttriggered, where Ttriggered consists256

of source-class samples x ∈ Tys
perturbed by a trigger generatorGϕ and relabeled as the target class.257

6



Let Sclean and Spoison denote the condensation datasets distilled from Tyτ and Tmixed, respectively,258

by minimizing: S∗ = argminS MMD(T ,S) + λR(S), where T ∈ {Tyτ , Tmixed}, λ > 0, and R is259

a µR strongly convex regularizer. Under Assumptions 1 (Lipschitz Continuity), 2 (Local Compactness260

of Feature Manifold), and 3 (Inter-Class Hausdorff Distance), the MMD between Sclean and Spoison261

satisfies:262

MMD(Sclean,Spoison) ≤
L2
fρ(γε+ δ)

λµR

where γ = Lfα, δ = supzs∈Msource
infzτ∈Mclean

∥zs − zτ∥H, ρ is the poisoning rate, and ε bounds263

the input perturbation.264

5 Experiments265

Datasets and Networks. We evaluate SNEAKDOOR across five standard datasets: FMNIST [14],266

CIFAR-10 [15], SVHN [16], Tiny-ImageNet [17], STL-10 [18], and ImageNette [19]. These datasets267

span a diverse range of visual complexity, semantic granularity, and image resolution, enabling a com-268

prehensive evaluation of attack generality. Each dataset is processed according to the standard dataset269

condensation protocol, with 50 images per class used for condensation. Specifically, we adopt two270

common synthetic data backbones: ConvNet and AlexNetBN [20], which represent lightweight and271

moderately expressive condensation encoders. For downstream training and evaluation, we consider272

four architectures: ConvNet, AlexNetBN, VGG11 [21], and ResNet18 [22]. Moreover, we evaluate273

SNEAKDOOR in comparison with four state-of-the-art attacks: NAIVE [11], DOORPING [11],274

SIMPLE [12], and RELAX [12].275

Evaluation Metrics. We evaluate attack performance across three key dimensions: ASR, CTA, and276

STE. Following prior work [23], STE is quantified using three complementary metrics: (1) PSNR277

(Peak Signal-to-Noise Ratio), measuring pixel-level similarity between triggered and clean samples,278

where higher values indicate lower perceptual distortion. (2) SSIM (Structural Similarity Index),279

which measures structural similarity, with values closer to 1 indicating stronger visual alignment;280

and (3) IS (Inception Score) quantifies the KL divergence between the predicted label distribution281

of a sample and the marginal distribution over all samples. Lower IS values suggest reduced282

recognizability, indicating higher stealth and improved resistance to detection. For convenience, we283

define an inverted score IS† = (10−3 − IS)e−4, where larger values correspond to improved stealth.284

Overall Attack Effectiveness. We first evaluate the overall effectiveness of each backdoor attack285

in balancing three key objectives: ASR, CTA, and STE. To illustrate this trade-off, we visualize the286

normalized performance of each method using radar plots (Figure 2, Figure 3) that jointly capture all287

three dimensions. SNEAKDOOR consistently achieves a superior balance across the three criteria. In288

contrast, while Doorping and Relax achieve high ASR, they suffer from significant degradation in289

either CTA or STE. Conversely, Naive and Simple maintain better CTA but fail to deliver competitive290

ASR or STE. These results validate our central hypothesis: input-aware trigger design combined with291

distribution-aligned injection enables the attack that is both effective and stealthy.292
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Figure 2: Attack Performance on STL10. Larger area indicates better balance.

Effectiveness on Different Datasets To rigorously assess the effectiveness of SNEAKDOOR, we293

evaluate CTA and ASR across five datasets and four dataset condensation baselines: DM [3], DC [24],294

IDM [25], and DAM [26]. Results are summarized in Table 1, with each entry reporting the mean295

and standard deviation over five random seeds. SNEAKDOOR consistently achieves high ASR across296

all datasets and condensation methods, while maintaining competitive CTA. These results highlight297
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Figure 3: Attack Performance on Tiny-ImageNet. Larger area indicates better balance.

the robustness and generalizability of SNEAKDOOR, with improvements most evident in scenarios298

where baseline methods overfit to specific condensation schemes.299

Table 1: Effectiveness on Different Datasets

Dataset Method SNEAKDOOR DOORPING SIMPLE RELAX
CTA ASR CTA ASR CTA ASR CTA ASR

CIFAR10

DM 0.626± 0.001 0.989± 0.000 0.621± 0.001 0.988± 0.005 0.584± 0.000 0.590± 0.012 0.574± 0.000 1.000± 0.000
DC 0.537± 0.000 0.996± 0.000 0.566± 0.001 1.000± 0.000 0.497± 0.001 0.657± 0.021 0.511± 0.001 1.000± 0.000

IDM 0.643± 0.002 0.975± 0.001 0.654± 0.002 0.165± 0.007 0.652± 0.001 0.142± 0.008 0.653± 0.002 0.522± 0.021
DAM 0.591± 0.001 0.979± 0.001 0.531± 0.001 1.000± 0.000 0.537± 0.001 0.674± 0.032 0.559± 0.001 1.000± 0.001

STL10

DM 0.598± 0.001 0.973± 0.000 0.577± 0.001 0.149± 0.007 0.597± 0.001 0.096± 0.009 0.596± 0.001 1.000± 0.001
DC 0.565± 0.001 0.998± 0.001 0.598± 0.001 0.227± 0.011 0.550± 0.001 0.112± 0.011 0.563± 0.000 0.998± 0.001

IDM 0.658± 0.001 0.979± 0.001 0.661± 0.001 0.314± 0.015 0.658± 0.001 0.100± 0.007 0.658± 0.001 0.954± 0.011
DAM 0.532± 0.001 0.992± 0.001 0.533± 0.001 1.000± 0.000 0.535± 0.001 0.103± 0.004 0.535± 0.001 1.000± 0.000

FMNIST

DM 0.876± 0.001 0.998± 0.000 0.876± 0.000 0.093± 0.006 0.868± 0.000 0.178± 0.005 0.828± 0.000 1.000± 0.000
DC 0.851± 0.001 0.998± 0.000 0.872± 0.001 1.000± 0.000 0.837± 0.001 0.277± 0.014 0.824± 0.001 1.000± 0.000

IDM 0.877± 0.001 1.000± 0.000 0.884± 0.000 0.998± 0.002 0.879± 0.000 0.159± 0.007 0.875± 0.001 1.000± 0.000
DAM 0.877± 0.000 0.996± 0.000 0.813± 0.001 1.000± 0.000 0.880± 0.000 0.151± 0.012 0.874± 0.000 1.000± 0.000

SVHN

DM 0.800± 0.000 1.000± 0.000 0.780± 0.001 1.000± 0.001 0.748± 0.000 0.110± 0.007 0.747± 0.000 1.000± 0.000
DC 0.687± 0.000 1.000± 0.000 0.583± 0.001 0.703± 0.017 0.636± 0.001 0.100± 0.009 0.689± 0.001 1.000± 0.000

IDM 0.831± 0.001 0.986± 0.001 0.839± 0.001 0.061± 0.006 0.842± 0.001 0.114± 0.008 0.834± 0.002 0.992± 0.003
DAM 0.782± 0.001 1.000± 0.000 0.721± 0.000 1.000± 0.000 0.759± 0.001 0.114± 0.005 0.745± 0.001 1.000± 0.000

TINY
IMAGENET

DM 0.503± 0.001 1.000± 0.000 0.496± 0.002 1.000± 0.000 0.493± 0.003 0.100± 0.004 0.494± 0.003 0.996± 0.000
DC 0.432± 0.002 1.000± 0.000 0.492± 0.001 0.398± 0.005 0.391± 0.002 0.192± 0.006 0.418± 0.003 0.952± 0.001

IDM 0.517± 0.004 1.000± 0.000 0.512± 0.005 0.089± 0.013 0.509± 0.003 0.046± 0.002 0.484± 0.006 0.941± 0.002
DAM 0.482± 0.003 1.000± 0.000 0.449± 0.003 1.000± 0.000 0.458± 0.003 0.082± 0.002 0.465± 0.002 0.973± 0.001

Effectiveness on Cross Architectures To evaluate SNEAKDOOR in cross-architecture settings,300

where the condensation model differs from the downstream model, we follow prior work [11] and301

consider four architectures: ConvNet, AlexNetBN, VGG11, and ResNet18. Specifically, we use302

ConvNet or AlexNetBN for data condensation and the remaining models for downstream training.303

As shown in Table 2, we evaluate SNEAKDOOR. across 36 cross-architecture scenarios spanning304

various datasets, condensation methods, and downstream models. SNEAKDOOR demonstrates305

consistent performance across most architecture pairs, indicating strong transferability. However,306

when using the DC algorithm, performance systematically degrades on specific architectures. Prior307

studies, as well as our own findings, suggest that DC often produces lower-quality distilled datasets,308

as reflected in its relatively low CTA. This implies that the reduced ASR in these cases is more likely309

due to DC’s limited ability to retain both task-relevant and backdoor-relevant information, rather310

than a shortcoming of the attack mechanism itself . When excluding DC-based cases, 27 scenarios311

remain, of which only 6 exhibit ASR below 90%. This demonstrates that SNEAKDOOR consistently312

achieves high ASR in most settings, provided the underlying condensed data is of sufficient quality.313

Table 2: Cross-architecture CTA and ASR

Dataset Network DM DC IDM DAM
CTA ASR CTA ASR CTA ASR CTA ASR

CIFAR10
VGG11 0.568± 0.000 0.971± 0.000 0.472± 0.000 0.865± 0.000 0.645± 0.000 0.719± 0.008 0.539± 0.000 0.929± 0.001

AlexNetBN 0.616± 0.001 0.942± 0.002 0.426± 0.004 0.000± 0.000 0.689± 0.002 0.539± 0.003 0.623± 0.001 0.902± 0.004
ResNet18 0.548± 0.001 0.959± 0.000 0.435± 0.001 0.534± 0.003 0.656± 0.001 0.766± 0.003 0.510± 0.001 0.857± 0.002

STL10
VGG11 0.587± 0.001 0.999± 0.001 0.564± 0.000 0.790± 0.003 0.676± 0.001 0.900± 0.001 0.582± 0.000 0.924± 0.001

AlexNetBN 0.589± 0.002 0.905± 0.005 0.542± 0.001 0.796± 0.002 0.670± 0.003 0.798± 0.005 0.636± 0.001 0.981± 0.001
ResNet18 0.463± 0.001 0.989± 0.000 0.396± 0.001 0.783± 0.003 0.647± 0.001 0.949± 0.001 0.436± 0.001 0.941± 0.002

TINY
IMAGENET

VGG11 0.488± 0.001 1.000± 0.000 0.384± 0.001 1.000± 0.000 0.541± 0.002 1.000± 0.000 0.449± 0.002 1.000± 0.000
AlexNetBN 0.517± 0.003 0.796± 0.015 0.292± 0.007 0.704± 0.008 0.572± 0.004 1.000± 0.000 0.541± 0.003 1.000± 0.000
ResNet18 0.456± 0.002 1.000± 0.000 0.358± 0.001 0.524± 0.008 0.483± 0.005 0.988± 0.010 0.438± 0.002 1.000± 0.000

Evaluation of Stealthiness As shown in Figure 4, SNEAKDOOR consistently achieves the highest314

PSNR and SSIM across all condensation methods, highlighting its ability to produce visually and315
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structurally imperceptible triggers. In contrast, the other methods exhibit notable declines in both316

metrics, suggesting visible artifacts or structural distortions in the perturbed samples. Moreover,317

while Simple and Naive achieve slightly lower IS values, they fail to maintain competitive ASR or318

CTA, limiting their overall effectiveness. SNEAKDOOR achieves a similarly low IS while preserving319

high ASR, indicating enhanced stealth without sacrificing attack strength.320

DM DC IDM DAM0
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DM DC IDM DAM0
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4e-4
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Figure 4: Stealthiness Performance on STL10

Robust to Defense To evaluate the resilience of SNEAKDOOR against existing defense mechanisms,321

we conduct comprehensive experiments spanning model-level, input-level, and dataset-level defenses.322

Results in Table 3 show that SNEAKDOOR consistently evades state-of-the-art model-level defenses323

such as NC [27] and PIXEL [28], with all anomaly scores remaining below detection thresholds.324

Input-level defenses also fail to recover effective triggers, as indicated by uniformly low REASR325

values across all settings [29]. While dataset-level methods such as RNP [30] and PDB [31] succeed326

in suppressing ASR, they face significant drops in CTA, reflecting a sharp trade-off. These findings327

highlight SNEAKDOOR as a robust attack that remains effective under diverse defense conditions.328

Table 3: NC, ABS, and PIXEL across different datasets and condensation methods.

Dataset NC Anomaly Index ABS REASR PIXEL
DM DC IDM DAM DM DC IDM DAM DM DC IDM DAM

STL10 1.3180 1.0872 1.3648 0.9843 0.19 0.19 0.25 0.17 1.5525 1.0515 0.7688 1.5425
CIFAR10 1.8762 0.9518 1.7640 1.3787 0.24 0.35 0.29 0.57 1.7705 1.2625 1.7750 0.9472

TINY-IMAGENET 1.4706 1.6199 1.2201 1.9065 0.17 0.14 0.15 0.16 1.7813 1.4252 1.9528 1.3447

Table 4: Effects of (1) Class Pair Selection and (2) Input-Aware Trigger Generation
(1) (2) CTA ASR PSNR SSIM IS

% ! 0.5912± 0.0004 0.9946± 0.0005 65.8677 0.12915 1.3058× 10−5

! % 0.6211± 0.0005 0.9876± 0.0050 59.8469 0.08217 2.2987× 10−4

! ! 0.6262± 0.0005 0.9890± 0.0000 73.2285 0.66151 4.8441× 10−5

Table 5: CTA/ASR Before and After Defense

Dataset Method DM DC DAM IDM

CIFAR10
W/O Defense 0.6262/0.9890 0.5372/0.9960 0.5906/0.9794 0.6431/0.9754

RNP 0.2334/0.5490 0.3874/0.1340 0.5748/0.9850 0.4424/0.2870
PDB 0.1388/0.1380 0.1000/0.0000 0.0664/0.0300 0.3191/0.4190

STL10
W/O Defense 0.5979/0.9725 0.5653/0.9975 0.5324/0.9918 0.6582/0.9790

RNP 0.2791/0.0625 0.3955/0.8962 0.4961/0.8488 0.4889/0.5887
PDB 0.4719/0.0425 0.1150/0.0100 0.1293/0.0313 0.2646/0.0038

TINY-IMAGENET
W/O Defense 0.5026/1.0000 0.4318/1.0000 0.4822/1.0000 0.5174/1.0000

RNP 0.2700/0.0600 0.2450/0.0200 0.3320/0.7600 0.3450/0.9200
PDB 0.1030/0.0000 0.0570/0.0000 0.0540/0.0000 0.0800/0.1600

Ablation study To assess the contribution of key components in SNEAKDOOR, we perform ablation329

studies on (1) inter-class boundary-based class pair selection and (2) input-aware trigger generation.330

Removing (1) and using arbitrary class pairs slightly reduces ASR but significantly degrades CTA331

and stealth metrics (PSNR, SSIM). Replacing (2) with fixed patterns, as in Doorping, maintains ASR332

and CTA but severely compromises stealthiness, as shown by reduced similarity and elevated IS.333

These results underscore the necessity of both components.334
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Due to space limitations, we report supplementary results in Appendix C, including comparisons335

with additional attack baselines, analysis of varying the number of condensed samples per class, and336

evaluations using AlexNet as the condensation model.337

6 Limitations338

While SNEAKDOOR achieves a good balance across ASR, CTA, and STE, it does not consistently339

surpass all existing methods on any single metric. In certain cases, baseline approaches such340

as DOORPING attain higher ASR or CTA when considered in isolation. This trade-off reflects341

the inherent challenge of jointly optimizing multiple, often competing objectives. Future work342

could investigate methods that enhance a specific metric without sacrificing other metrics. Further343

refinement may lead to more adaptable backdoor attacks tailored to specific deployment or threat344

scenarios. Another limitation lies in the dependence on a relatively high poisoning ratio to reach345

optimal attack effectiveness. Reducing this requirement would make the approach more practical in346

real-world scenarios where the attacker’s control over data is limited. Finally, SNEAKDOOR does not347

fully capture more complex threat models that involve targeted source-to-target manipulations, such348

as altering “Stop Sign” to “Speed Limit: 60 mph”, which poses serious safety risks. In such cases,349

the attack’s effectiveness may decrease. Extending SNEAKDOOR to handle diverse and task-specific350

attack objectives remains an important direction for future research.351

7 Conclusion352

This work introduces SNEAKDOOR, a novel attack paradigm that exposes critical vulnerabilities353

in distribution-matching–based dataset condensation methods. By integrating input-aware trigger354

generation with inter-class misclassification analysis, SNEAKDOOR injects imperceptible yet highly355

effective backdoors into synthetic datasets. The theoretical analysis in reproducing kernel Hilbert356

space (RKHS) formalizes the stealth properties of the attack, showing that the induced perturbations357

remain bounded in both geometric and distributional space. Extensive experiments across multiple358

datasets, condensation baselines, and defense strategies confirm that SNEAKDOOR achieves strong359

ASR–CTA–STE trade-offs and maintains high transferability under cross-architecture evaluation.360

Together, these results reveal that even condensed data, often regarded as a privacy-preserving361

substitute for raw data, can serve as a potent vector for model compromise when the condensation362

process is adversarially controlled. This study lays the foundation for understanding the vulnerabilities363

and defense limitations of current condensation frameworks, emphasizing the need for proactive364

safeguards in synthetic data pipelines.365

Broader Impact366

Backdoor attacks against dataset condensation pose significant risks given the growing use of367

condensed datasets in privacy-sensitive or resource-constrained settings such as outsourced data368

compression, federated learning, machine unlearning, and continual learning. For instance, in369

continual learning systems deployed in edge AI applications, such as autonomous vehicles or medical370

diagnosis assistants, lightweight condensed datasets enable efficient model updates without full371

retraining. If an adversary injects imperceptible backdoor triggers into this data, the resulting models372

may misclassify critical inputs (e.g., road signs or tumor types), leading to serious safety and ethical373

consequences. Given these risks, the responsible disclosure of such attacks is essential. The goal of374

our work is to expose vulnerabilities in distribution-matching-based condensation methods to inform375

the design of more effective defenses. To mitigate misuse, we recommend: (1) incorporating robust376

anomaly detection and certified defenses during condensation; (2) encouraging transparency and377

reproducibility in condensation pipelines; and (3) enforcing rigorous provenance tracking to dataset378

generation processes. Our findings serve both as a cautionary signal and a foundation for developing379

secure and resilient dataset condensation techniques.380
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NeurIPS Paper Checklist468

The checklist is designed to encourage best practices for responsible machine learning research,469

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove470

the checklist: The papers not including the checklist will be desk rejected. The checklist should471

follow the references and follow the (optional) supplemental material. The checklist does NOT count472

towards the page limit.473

Please read the checklist guidelines carefully for information on how to answer these questions. For474

each question in the checklist:475

• You should answer [Yes] , [No] , or [NA] .476

• [NA] means either that the question is Not Applicable for that particular paper or the477

relevant information is Not Available.478

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).479

The checklist answers are an integral part of your paper submission. They are visible to the480

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it481

(after eventual revisions) with the final version of your paper, and its final version will be published482

with the paper.483

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.484

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a485

proper justification is given (e.g., "error bars are not reported because it would be too computationally486

expensive" or "we were unable to find the license for the dataset we used"). In general, answering487

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we488

acknowledge that the true answer is often more nuanced, so please just use your best judgment and489

write a justification to elaborate. All supporting evidence can appear either in the main paper or the490

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification491

please point to the section(s) where related material for the question can be found.492

IMPORTANT, please:493

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",494

• Keep the checklist subsection headings, questions/answers and guidelines below.495

• Do not modify the questions and only use the provided macros for your answers.496

1. Claims497

Question: Do the main claims made in the abstract and introduction accurately reflect the498

paper’s contributions and scope?499

Answer: [Yes]500

Justification: The abstract and introduction outline the motivation and detail the technical501

contributions of the proposed approach.502

Guidelines:503

• The answer NA means that the abstract and introduction do not include the claims504

made in the paper.505

• The abstract and/or introduction should clearly state the claims made, including the506

contributions made in the paper and important assumptions and limitations. A No or507

NA answer to this question will not be perceived well by the reviewers.508

• The claims made should match theoretical and experimental results, and reflect how509

much the results can be expected to generalize to other settings.510

• It is fine to include aspirational goals as motivation as long as it is clear that these goals511

are not attained by the paper.512

2. Limitations513

Question: Does the paper discuss the limitations of the work performed by the authors?514

Answer: [Yes]515
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Justification: While SNEAKDOOR achieves the best overall balance across Attack Success516

Rate (ASR), Clean Test Accuracy (CTA), and Stealthiness (STE), it does not consistently517

outperform existing methods on any single metric.518

Guidelines:519

• The answer NA means that the paper has no limitation while the answer No means that520

the paper has limitations, but those are not discussed in the paper.521

• The authors are encouraged to create a separate "Limitations" section in their paper.522

• The paper should point out any strong assumptions and how robust the results are to523

violations of these assumptions (e.g., independence assumptions, noiseless settings,524

model well-specification, asymptotic approximations only holding locally). The authors525

should reflect on how these assumptions might be violated in practice and what the526

implications would be.527

• The authors should reflect on the scope of the claims made, e.g., if the approach was528

only tested on a few datasets or with a few runs. In general, empirical results often529

depend on implicit assumptions, which should be articulated.530

• The authors should reflect on the factors that influence the performance of the approach.531

For example, a facial recognition algorithm may perform poorly when image resolution532

is low or images are taken in low lighting. Or a speech-to-text system might not be533

used reliably to provide closed captions for online lectures because it fails to handle534

technical jargon.535

• The authors should discuss the computational efficiency of the proposed algorithms536

and how they scale with dataset size.537

• If applicable, the authors should discuss possible limitations of their approach to538

address problems of privacy and fairness.539

• While the authors might fear that complete honesty about limitations might be used by540

reviewers as grounds for rejection, a worse outcome might be that reviewers discover541

limitations that aren’t acknowledged in the paper. The authors should use their best542

judgment and recognize that individual actions in favor of transparency play an impor-543

tant role in developing norms that preserve the integrity of the community. Reviewers544

will be specifically instructed to not penalize honesty concerning limitations.545

3. Theory assumptions and proofs546

Question: For each theoretical result, does the paper provide the full set of assumptions and547

a complete (and correct) proof?548

Answer: [Yes]549

Justification: Each theoretical result is provided the full set of assumptions and a complete550

(and correct) proof.551

Guidelines:552

• The answer NA means that the paper does not include theoretical results.553

• All the theorems, formulas, and proofs in the paper should be numbered and cross-554

referenced.555

• All assumptions should be clearly stated or referenced in the statement of any theorems.556

• The proofs can either appear in the main paper or the supplemental material, but if557

they appear in the supplemental material, the authors are encouraged to provide a short558

proof sketch to provide intuition.559

• Inversely, any informal proof provided in the core of the paper should be complemented560

by formal proofs provided in appendix or supplemental material.561

• Theorems and Lemmas that the proof relies upon should be properly referenced.562

4. Experimental result reproducibility563

Question: Does the paper fully disclose all the information needed to reproduce the main ex-564

perimental results of the paper to the extent that it affects the main claims and/or conclusions565

of the paper (regardless of whether the code and data are provided or not)?566

Answer: [Yes]567
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Justification: The disclosed information is enough to reproduce the main experiments. We568

will also release the source code late.569

Guidelines:570

• The answer NA means that the paper does not include experiments.571

• If the paper includes experiments, a No answer to this question will not be perceived572

well by the reviewers: Making the paper reproducible is important, regardless of573

whether the code and data are provided or not.574

• If the contribution is a dataset and/or model, the authors should describe the steps taken575

to make their results reproducible or verifiable.576

• Depending on the contribution, reproducibility can be accomplished in various ways.577

For example, if the contribution is a novel architecture, describing the architecture fully578

might suffice, or if the contribution is a specific model and empirical evaluation, it may579

be necessary to either make it possible for others to replicate the model with the same580

dataset, or provide access to the model. In general. releasing code and data is often581

one good way to accomplish this, but reproducibility can also be provided via detailed582

instructions for how to replicate the results, access to a hosted model (e.g., in the case583

of a large language model), releasing of a model checkpoint, or other means that are584

appropriate to the research performed.585

• While NeurIPS does not require releasing code, the conference does require all submis-586

sions to provide some reasonable avenue for reproducibility, which may depend on the587

nature of the contribution. For example588

(a) If the contribution is primarily a new algorithm, the paper should make it clear how589

to reproduce that algorithm.590

(b) If the contribution is primarily a new model architecture, the paper should describe591

the architecture clearly and fully.592

(c) If the contribution is a new model (e.g., a large language model), then there should593

either be a way to access this model for reproducing the results or a way to reproduce594

the model (e.g., with an open-source dataset or instructions for how to construct595

the dataset).596

(d) We recognize that reproducibility may be tricky in some cases, in which case597

authors are welcome to describe the particular way they provide for reproducibility.598

In the case of closed-source models, it may be that access to the model is limited in599

some way (e.g., to registered users), but it should be possible for other researchers600

to have some path to reproducing or verifying the results.601

5. Open access to data and code602

Question: Does the paper provide open access to the data and code, with sufficient instruc-603

tions to faithfully reproduce the main experimental results, as described in supplemental604

material?605

Answer: [Yes]606

Justification: We provide essential parts for the code and details in supplemental material.607

Guidelines:608

• The answer NA means that paper does not include experiments requiring code.609

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/610

public/guides/CodeSubmissionPolicy) for more details.611

• While we encourage the release of code and data, we understand that this might not be612

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not613

including code, unless this is central to the contribution (e.g., for a new open-source614

benchmark).615

• The instructions should contain the exact command and environment needed to run to616

reproduce the results. See the NeurIPS code and data submission guidelines (https:617

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.618

• The authors should provide instructions on data access and preparation, including how619

to access the raw data, preprocessed data, intermediate data, and generated data, etc.620
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• The authors should provide scripts to reproduce all experimental results for the new621

proposed method and baselines. If only a subset of experiments are reproducible, they622

should state which ones are omitted from the script and why.623

• At submission time, to preserve anonymity, the authors should release anonymized624

versions (if applicable).625

• Providing as much information as possible in supplemental material (appended to the626

paper) is recommended, but including URLs to data and code is permitted.627

6. Experimental setting/details628

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-629

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the630

results?631

Answer: [Yes]632

Justification: We provide all details about the experiments.633

Guidelines:634

• The answer NA means that the paper does not include experiments.635

• The experimental setting should be presented in the core of the paper to a level of detail636

that is necessary to appreciate the results and make sense of them.637

• The full details can be provided either with the code, in appendix, or as supplemental638

material.639

7. Experiment statistical significance640

Question: Does the paper report error bars suitably and correctly defined or other appropriate641

information about the statistical significance of the experiments?642

Answer: [Yes]643

Justification: The error is shown in our experiments.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646

• The authors should answer "Yes" if the results are accompanied by error bars, confi-647

dence intervals, or statistical significance tests, at least for the experiments that support648

the main claims of the paper.649

• The factors of variability that the error bars are capturing should be clearly stated (for650

example, train/test split, initialization, random drawing of some parameter, or overall651

run with given experimental conditions).652

• The method for calculating the error bars should be explained (closed form formula,653

call to a library function, bootstrap, etc.)654

• The assumptions made should be given (e.g., Normally distributed errors).655

• It should be clear whether the error bar is the standard deviation or the standard error656

of the mean.657

• It is OK to report 1-sigma error bars, but one should state it. The authors should658

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis659

of Normality of errors is not verified.660

• For asymmetric distributions, the authors should be careful not to show in tables or661

figures symmetric error bars that would yield results that are out of range (e.g. negative662

error rates).663

• If error bars are reported in tables or plots, The authors should explain in the text how664

they were calculated and reference the corresponding figures or tables in the text.665

8. Experiments compute resources666

Question: For each experiment, does the paper provide sufficient information on the com-667

puter resources (type of compute workers, memory, time of execution) needed to reproduce668

the experiments?669

Answer: [Yes]670

Justification: All experiments were conducted utilizing the NVIDIA GeForce RTX 4090671

GPU.672
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Guidelines:673

• The answer NA means that the paper does not include experiments.674

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,675

or cloud provider, including relevant memory and storage.676

• The paper should provide the amount of compute required for each of the individual677

experimental runs as well as estimate the total compute.678

• The paper should disclose whether the full research project required more compute679

than the experiments reported in the paper (e.g., preliminary or failed experiments that680

didn’t make it into the paper).681

9. Code of ethics682

Question: Does the research conducted in the paper conform, in every respect, with the683

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?684

Answer: [Yes]685

Justification: We follow the policy.686

Guidelines:687

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.688

• If the authors answer No, they should explain the special circumstances that require a689

deviation from the Code of Ethics.690

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-691

eration due to laws or regulations in their jurisdiction).692

10. Broader impacts693

Question: Does the paper discuss both potential positive societal impacts and negative694

societal impacts of the work performed?695

Answer: [Yes]696

Justification: Backdoor attacks against dataset condensation pose significant risks given697

the growing use of condensed datasets in privacy-sensitive or resource-constrained settings698

such as outsourced data compression, federated learning, machine unlearning, and continual699

learning. To mitigate misuse, we recommend: (1) incorporating robust anomaly detection700

and certified defenses during condensation; (2) encouraging transparency and reproducibil-701

ity in condensation pipelines; and (3) enforcing rigorous provenance tracking to dataset702

generation processes.703

Guidelines:704

• The answer NA means that there is no societal impact of the work performed.705

• If the authors answer NA or No, they should explain why their work has no societal706

impact or why the paper does not address societal impact.707

• Examples of negative societal impacts include potential malicious or unintended uses708

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations709

(e.g., deployment of technologies that could make decisions that unfairly impact specific710

groups), privacy considerations, and security considerations.711

• The conference expects that many papers will be foundational research and not tied712

to particular applications, let alone deployments. However, if there is a direct path to713

any negative applications, the authors should point it out. For example, it is legitimate714

to point out that an improvement in the quality of generative models could be used to715

generate deepfakes for disinformation. On the other hand, it is not needed to point out716

that a generic algorithm for optimizing neural networks could enable people to train717

models that generate Deepfakes faster.718

• The authors should consider possible harms that could arise when the technology is719

being used as intended and functioning correctly, harms that could arise when the720

technology is being used as intended but gives incorrect results, and harms following721

from (intentional or unintentional) misuse of the technology.722

• If there are negative societal impacts, the authors could also discuss possible mitigation723

strategies (e.g., gated release of models, providing defenses in addition to attacks,724

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from725

feedback over time, improving the efficiency and accessibility of ML).726
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11. Safeguards727

Question: Does the paper describe safeguards that have been put in place for responsible728

release of data or models that have a high risk for misuse (e.g., pretrained language models,729

image generators, or scraped datasets)?730

Answer: [No]731

Justification: The primary contribution of our proposed SNEAKDOOR is to expose vulnerabil-732

ities in distribution-matching-based condensation methods. Our work lays the groundwork733

for understanding the attack surface and limitations of current defenses, enabling the com-734

munity to proactively build secure and trustworthy dataset condensation frameworks.735

Guidelines:736

• The answer NA means that the paper poses no such risks.737

• Released models that have a high risk for misuse or dual-use should be released with738

necessary safeguards to allow for controlled use of the model, for example by requiring739

that users adhere to usage guidelines or restrictions to access the model or implementing740

safety filters.741

• Datasets that have been scraped from the Internet could pose safety risks. The authors742

should describe how they avoided releasing unsafe images.743

• We recognize that providing effective safeguards is challenging, and many papers744

do not require this, but we encourage authors to take this into account and make a745

best-faith effort.746

12. Licenses for existing assets747

Question: Are the creators or original owners of assets (e.g., code, data, models), used in748

the paper, properly credited and are the license and terms of use explicitly mentioned and749

properly respected?750

Answer: [Yes]751

Justification: We cite the original paper that produced the code package or dataset.752

Guidelines:753

• The answer NA means that the paper does not use existing assets.754

• The authors should cite the original paper that produced the code package or dataset.755

• The authors should state which version of the asset is used and, if possible, include a756

URL.757

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.758

• For scraped data from a particular source (e.g., website), the copyright and terms of759

service of that source should be provided.760

• If assets are released, the license, copyright information, and terms of use in the761

package should be provided. For popular datasets, paperswithcode.com/datasets762

has curated licenses for some datasets. Their licensing guide can help determine the763

license of a dataset.764

• For existing datasets that are re-packaged, both the original license and the license of765

the derived asset (if it has changed) should be provided.766

• If this information is not available online, the authors are encouraged to reach out to767

the asset’s creators.768

13. New assets769

Question: Are new assets introduced in the paper well documented and is the documentation770

provided alongside the assets?771

Answer: [NA]772

Justification: [NA]773

Guidelines:774

• The answer NA means that the paper does not release new assets.775

• Researchers should communicate the details of the dataset/code/model as part of their776

submissions via structured templates. This includes details about training, license,777

limitations, etc.778
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• The paper should discuss whether and how consent was obtained from people whose779

asset is used.780

• At submission time, remember to anonymize your assets (if applicable). You can either781

create an anonymized URL or include an anonymized zip file.782

14. Crowdsourcing and research with human subjects783

Question: For crowdsourcing experiments and research with human subjects, does the paper784

include the full text of instructions given to participants and screenshots, if applicable, as785

well as details about compensation (if any)?786

Answer: [NA]787

Justification: [NA]788

Guidelines:789

• The answer NA means that the paper does not involve crowdsourcing nor research with790

human subjects.791

• Including this information in the supplemental material is fine, but if the main contribu-792

tion of the paper involves human subjects, then as much detail as possible should be793

included in the main paper.794

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,795

or other labor should be paid at least the minimum wage in the country of the data796

collector.797

15. Institutional review board (IRB) approvals or equivalent for research with human798

subjects799

Question: Does the paper describe potential risks incurred by study participants, whether800

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)801

approvals (or an equivalent approval/review based on the requirements of your country or802

institution) were obtained?803

Answer: [NA]804

Justification: [NA]805

Guidelines:806

• The answer NA means that the paper does not involve crowdsourcing nor research with807

human subjects.808

• Depending on the country in which research is conducted, IRB approval (or equivalent)809

may be required for any human subjects research. If you obtained IRB approval, you810

should clearly state this in the paper.811

• We recognize that the procedures for this may vary significantly between institutions812

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the813

guidelines for their institution.814

• For initial submissions, do not include any information that would break anonymity (if815

applicable), such as the institution conducting the review.816

16. Declaration of LLM usage817

Question: Does the paper describe the usage of LLMs if it is an important, original, or818

non-standard component of the core methods in this research? Note that if the LLM is used819

only for writing, editing, or formatting purposes and does not impact the core methodology,820

scientific rigorousness, or originality of the research, declaration is not required.821

Answer: [NA]822

Justification: The LLM was used solely for language editing and clarity improvement. It did823

not contribute to the design, implementation, or validation of the proposed methods.824

Guidelines:825

• The answer NA means that the core method development in this research does not826

involve LLMs as any important, original, or non-standard components.827

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)828

for what should or should not be described.829
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A Attacker’s Goal830

Attacker’s Goal. The attacker aims to achieve a multi-faceted objective when injecting backdoors831

into condensed datasets. This objective consists of three key goals: maintaining stealthiness, ensuring832

backdoor effectiveness, and preserving model utility on clean data.833

Stealthiness (STE). The attacker’s goal is to ensure that malicious modifications remain imperceptible.834

This involves two requirements. Firstly, the poisoned condensed dataset D̃ must be visually and835

statistically indistinguishable from the clean version D. This is critical, as condensed datasets are836

small (|D̃| ≪ |D|) and likely to be examined manually. Secondly, the triggered test samples remain837

imperceptibly different from unmodified test data. This requirement ensures that the backdoor remains838

undetectable during evaluation or deployment, whether through human inspection or automated839

analysis.840

Attack Success Rate (ASR). In parallel, the attacker aims to embed a functional backdoor that remains841

inactive during standard operation but activates reliably in the presence of a specific trigger. Let f842

denote the downstream model trained on D̃ and ∆ the backdoor trigger. For a triggered test sample843

xi +∆, the ASR defined as:844

ASR =
1

Nt

Nt∑
i=1

I(f(xi +∆) = t) (11)

where t is the target label, Nt is the number of triggered test samples, and I is the indicator function.845

The attacker aims to maximize ASR.846

Clean Test Accuracy (CTA). Simultaneously, the attacker must preserve model accuracy on clean,847

non-triggered data. In other words, the condensed dataset must retain sufficient utility to support848

standard training objectives. This ensures that models trained on the poisoned data still generalize849

well to benign test sets. Let the clean test accuracy be defined as:850

CTA =
1

Nc

Nc∑
i=1

I(f(xi) = yi) (12)

where yi is the ground truth label of the test sample xi, Nc is the number of clean test samples. The851

attacker seeks to maintain a high CTA so that the backdoor remains covert.852

B Stealthiness Analysis853

A critical challenge in designing effective backdoor attacks on dataset condensation is achieving854

stealthiness, ensuring that poisoned samples and the resulting synthetic data are indistinguishable from855

their clean counterparts. Our goal is to formalize stealthiness through a geometric and distributional856

lens, grounded in the feature space induced by deep neural architectures.857

To this end, our analysis is guided by the following question: How does input-aware backdoor858

injection perturb the structure of data manifolds in feature space, and can this deviation be rigorously859

bounded to guarantee stealth? Since distribution matching-based condensation aligns global feature860

statistics (e.g., moments of embedded data), it is essential to understand whether triggers introduce861

detectable geometric or statistical anomalies in the condensed representation. We conduct our analysis862

in a Reproducing Kernel Hilbert Space (RKHS) [32, 33, 34], where class-specific data, both clean863

and triggered, are assumed to lie on smooth, locally compact manifolds. By modeling the trigger as a864

bounded, input-aware perturbation and invoking assumptions on manifold regularity and inter-class865

proximity, we show that triggered samples remain tightly coupled to the clean data manifold under866

mild conditions. This theoretical framework enables us to quantify the effect of poisoning both at867

the feature level (Theorem 3) and at the level of the condensed dataset (Theorem 2). These results868

provide principled justification for SNEAKDOOR’s empirical stealth: the perturbations introduced869

by the trigger remain latent-space-aligned and distributionally consistent, limiting their detectability870

after condensation.871

Assumption 1 (Lipschitz Continuity). The feature mapping fθf : X → H is assumed to be Lipschitz872

continuous. That is, for all x, x′ ∈ X ,873

∥fθf (x)− fθf (x
′)∥H ≤ Lf∥x− x′∥∞, (13)
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where Lf ∈ R+ denotes the Lipschitz constant, and ∥ · ∥∞ is the L∞-norm in the input space.874

Assumption 2 (Local Compactness of Feature Manifolds). Let the clean target class dataset Tyτ
and875

the triggered dataset Ttriggered lie on smooth manifolds Mclean and Mtriggered, respectively, embedded876

in a Reproducing Kernel Hilbert Space (RKHS) H. The following condition holds: For any point877

z ∈ Mclean, there exists a neighborhood N (z) ⊂ H and a diffeomorphism φz : N (z) ∩Mclean →878

U ⊂ Rd, where U is an open subset and d is the intrinsic dimension of the manifold.879

Assumption 3 (Inter-Class Hausdorff Distance). Let Msource and Mclean denote the RKHS-embedded880

manifolds of the source and target (clean) classes, respectively. Their Hausdorff distance is defined881

as:882

δ ≜ sup
zs∈Msource

inf
zτ∈Mclean

∥zs − zτ∥H (14)

This condition implies that the decision boundary between source and target classes is locally883

reachable in feature space, enabling feasible cross-class perturbations by the trigger generator.884

Lemma 1 (Boundedness of Latent Space Perturbation). Under Assumption 1 (Lipschitz Continuity),885

the perturbation in the latent space of the triggered sample x̃ = x+ αGϕ(x) is bounded as follows:886

∥fθf (x̃)− fθf (x)∥H ≤ Lfαε, (15)

where Lf is the Lipschitz constant of the feature mapping fθf , and ε is the upper bound on the input887

perturbation, satisfying ∥Gϕ(x)∥∞ ≤ ε.888

Proof. According to Eq (5), the perturbation generated by the trigger generator Gϕ satisfies the input889

space constraint ∥Gϕ(x)∥∞ ≤ ε. Therefore, the following conclusion can be obtained:890

∥fθf (x̃)− fθf (x)∥H = ∥fθf (x+ αGϕ(x))− fθf (x)∥H
≤ Lf∥αGϕ(x)∥∞
≤ Lfαε

(16)

This lemma shows that the perturbation’s effect in the feature space is controlled by both the input891

perturbation bound α, ε and the Lipschitz constant Lf .892

Lemma 2. Let Mclean and Mtriggered be smooth manifolds in the Reproducing Kernel Hilbert Space893

(RKHS) H, induced by the feature map fθf : X 7→ H. Under Assumption 1, 2, and 3, there894

exists a diffeomorphism Ψ : Msource → Mtriggered such that: (1) supzs∈Msource
∥Ψ(zs) − zs∥H ≤895

γε, where γ = Lfα. (2) Mtriggered ⊂ Nδ′(Mclean), δ′ = Lfαε+δ, where Nδ′(Mclean) denotes896

the δ′-neighborhood of Mclean in H.897

Proof. By Assumption 2, for each zs ∈ Msource, there exists a local chart φs : N (zs) ∩Msource →898

Us ⊂ Rd, where N (zs) ⊂ H is a neighborhood and Us is an open subset.899

Define the local mapping ψs : Us 7→ Mtriggered by:900

ψs(u) = fθf

(
f−1
θf

(φ−1
s (u)) + αGϕ(f

−1
θf

(φ−1
s (u)))

)
(17)

The smoothness of ψs follows from the differentiability of Gϕ and fθf . Then, by Lemma 1, we can901

obtain: ∥ψs(u)− φ−1
s (u)∥H ≤ Lfαε = γε.902

To construct a global diffeomorphism, take a finite open cover {N (zsi)}ki=1 of Msource, with corre-903

sponding charts φsi and a smooth partition of unity {ρi}:904

Ψ(zs) =

k∑
i=1

ρi(zs) · ψsi(φsi(zs)). (18)
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We now bound the total perturbation:905

∥Ψ(zs)− zs∥H ≤
k∑

i=1

ρi(zs)∥ψsi(φsi(zs))− zs∥H

≤
k∑

i=1

ρi(zs)Lfαε

= Lfαε

= γε

(19)

For any zt ∈ Mtriggered, there exists zs ∈ Msource such that zt = Ψ(zs). By Assumption 3, there906

exists zτ ∈ Mclean with ∥zs − zτ∥H ≤ δ. Then by the triangle inequality:907

∥zt − zτ∥H ≤ ∥zt − zs∥H + ∥zs − zτ∥H
≤ Lfαε+ δ = δ′

(20)

Hence, Mtriggered ⊂ Nδ′(Mclean).908

To verify Ψ is a diffeomorphism:909

• Injectivity: Follows from local injectivity of each ψsi and the partition of unity.910

• Surjectivity: For any zt ∈ Mtriggered, there exists x ∈ Tys
such that zt = fθf (x+αGϕ(x)) =911

Ψ(fθf (x)).912

• Smooth Inverse: Local inverses ψ−1
si exist by the inverse function theorem and can be913

smoothly blended via {ρi}.914

915

Theorem 3 (Upper Bound on Feature-Manifold Deviation under Poisoning). Let Tyτ
denote the clean916

target-class dataset and Ttriggered the triggered (poisoned) dataset, with corresponding feature-space917

distributions PMclean
and PMtriggered

, respectively. Define the mixed distribution as:918

PMmixed
= (1− ρ)PMclean

+ ρPMtriggered
,

where ρ ∈ [0, 1] denotes the poisoning ratio. Under Assumptions 1, 2, and 3, the expected deviation919

of samples from the mixed distribution to the target feature manifold satisfies:920

Ez∼PMmixed

[
inf

zτ∈Mclean

∥z − zτ∥H
]
≤ ρ(γε+ δ), (21)

where H is the RKHS associated with the feature encoder.921

Proof. By the linearity of expectation and the definition of PMmixed
, we have:922

Ez∼PMmixed

[
inf
zτ

∥z − zτ∥H
]

= (1− ρ)Ez∼PMclean

[
inf
zτ

∥z − zτ∥H
]

︸ ︷︷ ︸
=0

+ ρEz∼PMtriggered

[
inf
zτ

∥z − zτ∥H
]
.

(22)

Since clean samples z ∼ PMclean lie on the target manifold, their distance minimum distance to the923

target manifold is zero. Therefore:924

Ez∼PMmixed

[
inf
zτ

∥z − zτ∥H
]

= ρEz∼PMtriggered

[
inf
zτ

∥z − zτ∥H
]
.

(23)
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By Lemma 2, for any zt ∈ Mtriggered, there exists zτ ∈ Mclean such that:925

∥zt − zτ∥H ≤ δ′ = γε+ δ. (24)

Hence,926

inf
zτ∈Mclean

∥zt − zτ∥H ≤ δ′. (25)

Taking the expectation over PMtriggered
, we obtain:927

Ez∼PMtriggered

[
inf
zτ

∥z − zτ∥H
]
≤ δ′. (26)

Substituting into Eq.(22) yields:928

Ez∼PMmixed

[
inf
zτ

∥z − zτ∥H
]
≤ ρ(γε+ δ). (27)

929

Theorem 4 (Upper Bound on the Discrepancy Between Poisoned and Clean Condensation Datasets).930

Let Tyτ denote the clean target-class dataset and Tmixed = Tyτ ∪Ttriggered, where Ttriggered consists931

of source-class samples x ∈ Tys
perturbed by a trigger generator Gϕ and relabeled as the target932

class.933

Let Sclean and Spoison denote the condensation datasets distilled from Tyτ
and Tmixed, respectively,934

by minimizing:935

S∗ = argmin
S

MMD(T ,S) + λR(S), (28)

where T ∈ {Tyτ
, Tmixed}, λ > 0, and R is a strongly convex regularizer.936

Under Assumptions 1, 2, and 3, the MMD between Sclean and Spoison satisfies:937

MMD(Sclean,Spoison) ≤
L2
fρ(γε+ δ)

λµR

where γ = Lfα, δ = supzs∈Msource
infzτ∈Mclean

∥zs − zτ∥H, ρ is the poisoning rate, and ε bounds938

the input perturbation.939

Proof. By Theorem 3:940

Ez∼PMmixed

[
inf

zτ∈Mclean

∥z − zτ∥H
]
≤ ρ(γε+ δ). (29)

This inequality constrains the average deviation of the mixed distribution from the clean target941

manifold by ρ(γε+ δ).942

In RKHS, MMD can be expressed via the norm of mean embeddings:943

MMD(Tyτ
, Tmixed) = ∥µclean − µmixed∥H. (30)

where944

µclean = Ex∼PTyτ
[fθf (x)]

945
µmixed = Ex∼PTymixed

[fθf (x)]

Using the decomposition, the mean embedding of the mixed distribution can be written as::946

µmixed = (1− ρ)µclean + ρµtriggered (31)

we get:947

µclean − µmixed = ρ(µclean − µtriggered) (32)
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Hence:948
MMD(Tyτ , Tmixed) = ρ∥µclean − µtriggered∥H

≤ ρ(γε+ δ)
(33)

Let the clean and poisoned synthetic datasets, Sclean and Spoison, be obtained by solving the following949

optimization problems:950

Sclean = argmin
S

MMD(Tyτ ,S) + λR(S),

Spoison = argmin
S

MMD(Tmixed,S) + λR(S)
(34)

According to the first-order optimality condition, the solutions Sclean and Spoison satisfy:951

∇MMDS(Tyτ ,Sclean) + λ∇R(Sclean) = 0

∇MMDS(Tymixed ,Spoison) + λ∇R(Spoison) = 0
(35)

Subtracting the optimality conditions:952

λ(∇R(Sclean)−∇R(Spoison)) = ∇MMDS(Tmixed,Spoison)

−∇MMDS(Tyτ
,Sclean)

(36)

Since R is µR-strongly convex, we obtain:953

⟨∇R(Sclean)−∇R(Spoison),Sclean − Spoison⟩
≥ µR∥Sclean − Spoison∥2

(37)

Then, we can obtain:954

∥Sclean − Spoison∥

≤
∥∇SMMD(Tyτ ,Sclean)−∇SMMD(Tmixed,Spoison)∥

λµR

≤ LfMMD(Tyτ
, Tmixed)

λµR

≤ Lfρ(γε+ δ)

λµR

(38)

According to Assumption 1:955

MMD(Sclean,Spoison) ≤ Lf∥Sclean − Spoison∥

≤
L2
fρ(γε+ δ)

λµR
.

(39)

956

C Additional Experiments957

In dataset condensation, simple architectures such as ConvNet or AlexNetBN are typically employed958

as condensation networks, rather than more complex models. This design choice is motivated by959

several factors. First, computational efficiency and stability: simpler networks are faster and less960

resource-intensive to train, which is essential given the iterative optimization cycles required in961

dataset condensation. In contrast, deeper architectures substantially increase computational cost and962

introduce greater instability during optimization. Second, optimization tractability: simple models963

possess smoother and more navigable loss landscapes, facilitating the extraction of effective gradients964

from synthetic data. Complex architectures, with highly non-convex objectives, complicate this965

process and hinder optimization. Third, fairness and generality: the distilled data is intended to966

generalize across a range of architectures. Relying on a highly specialized, deep network risks967

overfitting the synthetic data to its unique characteristics. Employing a lightweight, generic model968

encourages the generation of broadly transferable synthetic datasets.969
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To further substantiate the choice of AlexNetBN as the condensation network, we report additional970

experimental results in the appendix. While ConvNet is widely adopted in dataset condensation for its971

simplicity, AlexNetBN introduces greater depth and batch normalization, offering a complementary972

evaluation of the distilled data’s robustness and generalizability. These experiments assess whether the973

performance patterns observed with ConvNet persist under a moderately more complex architecture,974

thereby strengthening the evidence for the reliability of the distilled datasets.975

C.1 Effectiveness on Different Datasets and Settings976

Firstly, for completeness, we report the results of the Naive attack in Table 6.977

Table 6: Effectiveness on Different Datasets

Dataset Method SNEAKDOOR NAIVE
CTA ASR CTA ASR

CIFAR10

DM 0.626±0.001 0.989±0.000 0.632±0.001 0.113±0.012
DC 0.537±0.000 0.996±0.000 0.552±0.001 0.102±0.007

IDM 0.643±0.002 0.975±0.001 0.652±0.001 0.103±0.006
DAM 0.591±0.001 0.979±0.001 0.582±0.001 0.086±0.003

STL10

DM 0.598±0.001 0.973±0.000 0.621±0.001 0.103±0.006
DC 0.565±0.001 0.998±0.001 0.583±0.001 0.090±0.007

IDM 0.658±0.001 0.979±0.001 0.667±0.001 0.102±0.007
DAM 0.532±0.001 0.992±0.001 0.549±0.001 0.088±0.009

FMNIST

DM 0.876±0.001 0.998±0.000 0.887±0.001 0.090±0.008
DC 0.851±0.001 0.998±0.000 0.857±0.001 0.086±0.002

IDM 0.877±0.001 1.000±0.000 0.887±0.001 0.093±0.007
DAM 0.877±0.000 0.996±0.000 0.881±0.001 0.098±0.005

SVHN

DM 0.800±0.000 1.000±0.000 0.799±0.000 0.111±0.006
DC 0.687±0.000 1.000±0.000 0.699±0.001 0.115±0.011

IDM 0.831±0.001 0.986±0.001 0.840±0.000 0.122±0.010
DAM 0.782±0.001 1.000±0.000 0.770±0.000 0.112±0.006

TINY
IMAGENET

DM 0.503±0.001 1.000±0.000 0.497±0.002 0.070±0.002
DC 0.432±0.002 1.000±0.000 0.421±0.002 0.019±0.001

IDM 0.517±0.004 1.000±0.000 0.501±0.008 0.042±0.004
DAM 0.482±0.003 1.000±0.000 0.462±0.003 0.042±0.002

Table 7 and 8 reports the ASR and CTA of different dataset condensation methods using AlexNetBN978

as the condensation network across multiple datasets. The results reveal how distilled data behaves979

under both clean and backdoor settings when applied to AlexNetBN. This provides a comprehensive980

view of each attack’s robustness and generalization in adversarial contexts.981

Table 7: Effectiveness on Different Datasets condensed with AlexNetBN

Dataset Method SNEAKDOOR NAIVE DOORPING
CTA ASR CTA ASR CTA ASR

CIFAR10

DM 0.595±0.001 0.947±0.004 0.608±0.002 0.093±0.011 0.505±0.001 1.000±0.000
DC 0.222±0.001 0.003±0.001 0.140±0.001 0.000±0.000 0.319±0.007 0.000±0.000

IDM 0.700±0.002 0.946±0.003 0.739±0.002 0.104±0.009 0.639±0.003 1.000±0.000
DAM 0.606±0.001 0.721±0.013 0.609±0.001 0.096±0.010 0.565±0.001 1.000±0.000

STL10

DM 0.562±0.001 0.993±0.000 0.573±0.004 0.104±0.010 0.557±0.004 1.000±0.000
DC 0.155±0.006 0.003±0.002 0.178±0.001 0.000±0.000 0.278±0.003 1.000±0.000

IDM 0.723±0.002 0.986±0.002 0.729±0.003 0.100±0.007 0.646±0.003 1.000±0.000
DAM 0.584±0.001 0.962±0.003 0.603±0.004 0.101±0.010 0.565±0.000 1.000±0.000

FMNIST

DM 0.822±0.000 1.000±0.000 0.844±0.001 0.090±0.010 0.636±0.005 1.000±0.000
DC 0.287±0.000 0.000±0.000 0.172±0.003 0.320±0.018 0.516±0.010 1.000±0.000

IDM 0.844±0.001 0.978±0.002 0.858±0.001 0.113±0.003 0.736±0.001 1.000±0.000
DAM 0.831±0.003 1.000±0.000 0.821±0.002 0.100±0.003 0.758±0.003 1.000±0.000

SVHN

DM 0.622±0.020 1.000±0.000 0.697±0.007 0.124±0.006 0.774±0.001 1.000±0.000
DC 0.108±0.001 0.984±0.001 0.095±0.001 0.069±0.010 0.379±0.006 1.000±0.000

IDM 0.880±0.001 0.966±0.001 0.886±0.001 0.116±0.010 0.781±0.002 1.000±0.000
DAM 0.672±0.006 0.999±0.000 0.701±0.002 0.112±0.008 0.593±0.003 1.000±0.000

TINY
IMAGENET

DM 0.463±0.002 0.920±0.013 0.457±0.003 0.011±0.002 0.485±0.002 1.000±0.000
DC 0.247±0.003 1.000±0.000 0.269±0.005 0.013±0.003 0.260±0.004 0.000±0.000

IDM 0.260±0.005 0.860±0.013 0.284±0.007 0.000±0.000 0.293±0.006 1.000±0.000
DAM 0.442±0.006 0.972±0.010 0.430±0.013 0.010±0.001 0.419±0.010 1.000±0.000
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Table 8: Effectiveness on Different Datasets condensed with AlexNetBN

Dataset Method SNEAKDOOR SIMPLE RELAX
CTA ASR CTA ASR CTA ASR

CIFAR10

DM 0.595±0.001 0.947±0.004 0.581±0.001 0.183±0.013 0.603±0.001 0.704±0.022
DC 0.222±0.001 0.003±0.001 0.169±0.002 0.000±0.000 0.152±0.001 0.047±0.018

IDM 0.700±0.002 0.946±0.003 0.727±0.001 0.146±0.009 0.252±0.002 0.636±0.024
DAM 0.606±0.001 0.721±0.013 0.584±0.001 0.204±0.024 0.591±0.002 0.978±0.004

STL10

DM 0.562±0.001 0.993±0.000 0.544±0.002 0.092±0.007 0.550±0.003 0.706±0.010
DC 0.155±0.006 0.003±0.002 0.121±0.008 0.117±0.013 0.144±0.003 0.574±0.036

IDM 0.723±0.002 0.986±0.002 0.724±0.003 0.102±0.013 0.719±0.002 0.668±0.029
DAM 0.584±0.001 0.962±0.003 0.568±0.003 0.098±0.010 0.566±0.005 0.872±0.022

FMNIST

DM 0.822±0.000 1.000±0.000 0.812±0.006 0.952±0.009 0.816±0.003 1.000±0.000
DC 0.287±0.000 0.000±0.000 0.161±0.001 0.895±0.018 0.171±0.001 0.646±0.033

IDM 0.844±0.001 0.978±0.002 0.849±0.001 0.231±0.028 0.856±0.001 0.719±0.015
DAM 0.831±0.003 1.000±0.000 0.806±0.002 0.482±0.128 0.811±0.002 1.000±0.000

SVHN

DM 0.622±0.020 1.000±0.000 0.484±0.010 0.071±0.005 0.672±0.009 0.978±0.007
DC 0.108±0.001 0.984±0.001 0.157±0.006 0.060±0.006 0.137±0.004 0.119±0.027

IDM 0.880±0.001 0.966±0.001 0.880±0.001 0.118±0.008 0.874±0.001 1.000±0.001
DAM 0.672±0.006 0.999±0.000 0.693±0.006 0.092±0.007 0.692±0.003 0.996±0.003

TINY
IMAGENET

DM 0.463±0.002 0.920±0.013 0.457±0.003 0.011±0.002 0.449±0.003 0.835±0.017
DC 0.247±0.003 1.000±0.000 0.200±0.008 0.000±0.000 0.259±0.002 0.471±0.023

IDM 0.260±0.005 0.860±0.013 0.337±0.006 0.053±0.008 0.313±0.007 0.759±0.058
DAM 0.442±0.006 0.972±0.010 0.443±0.007 0.013±0.002 0.441±0.004 0.787±0.027

Moreover, we have expanded our evaluation in two key directions: (1) incorporating a larger, higher-982

resolution dataset, ImageNette (resolution 3× 224× 224), as shown in Table 9, and (2) evaluating983

key parameters on STL10 (resolution 3× 96× 96), including ipc (the number of synthetic samples984

per clas), perturbation bound ε, and poisoning ratio, as shown in Table 10, 11, and 12.985

Table 9 reports SNEAKDOOR’s attack performance under DM and DAM on the ImageNette dataset,986

demonstrating that SNEAKDOOR remains effective on higher-resolution, larger-scale data. Due to987

computational resources constraints, we could not include results for DC and IDM, as a single run988

with DC or IDM takes about three to four days, making full tuning impractical. We plan to include989

these results in a future version to provide a more complete picture of performance across algorithms990

and settings.991

Table 9: Attack Performance of SNEAKDOOR on the ImageNette Dataset.
Method ASR CTA PNSR SSIM IS

DM 0.9809±0.0000 0.5625±0.0007 68.62 0.6673 2.25e-4
DAM 0.9429±0.0008 0.4598±0.0003 72.16 0.6814 2.08e-4

Table 10: Impact of IPC on Attack Performance
Method ipc ASR CTA PSNR SSIM IS

DM 10 0.8735±0.0009 0.4347±0.0003 73.0381 0.8211 9.05e-5
DM 20 0.9872±0.0005 0.4882±0.0008 73.5021 0.7950 1.32e-4
DM 50 0.9725±0.0000 0.5979±0.0006 70.1216 0.8066 1.41e-4
IDM 10 0.9778±0.0015 0.5965±0.0004 74.1393 0.8199 1.05e-4
IDM 20 0.9573±0.0009 0.6217±0.0006 73.9608 0.8049 2.39e-4
IDM 50 0.9790±0.0009 0.6582±0.0005 70.1548 0.7554 1.40e-4
DAM 10 0.8910±0.0015 0.3678±0.0006 73.6366 0.8106 9.21e-5
DAM 20 0.8902±0.0025 0.4522±0.0004 73.8535 0.8146 9.22e-5
DAM 50 0.9918±0.0006 0.5324±0.0007 73.7877 0.8245 9.14e-5
DC 10 0.9258±0.0035 0.4675±0.0006 73.1598 0.8072 9.54e-5
DC 20 0.9243±0.0035 0.5282±0.0002 73.0987 0.8018 9.05e-5
DC 50 0.9975±0.0008 0.5653±0.0011 71.2365 0.7550 7.26e-5

As shown in Table 10, varying ipc notably affects CTA, while ASR and STE metrics (PSNR, SSIM,992

IS) remain relatively stable. This is expected, as fewer samples per class reduce the fidelity of993

clean distribution modeling, impacting generalization. In contrast, ASR stays high across ipc values,994

indicating that once embedded, the backdoor remains effective even with limited data. STE metrics995

also show minimal change, suggesting the perturbations remain visually subtle and robust.996

As shown in Table 11, increasing the perturbation bound ε improves ASR but reduces STE, as997

reflected in lower PSNR, SSIM, and IS. This is expected, since a larger ε allows stronger and more998
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noticeable triggers, enhancing attack success at the expense of stealth. Notably, CTA remains stable999

across ε values, indicating that stronger triggers do not significantly harm generalization on clean1000

data. These results highlight a trade-off between ASR and STE controlled by ε.1001

Table 11: Impact of Perturbation Bound ε on Attack Performance
Method ε ASR CTA PSNR SSIM IS

DM 0.1 0.7755±0.0049 0.6045±0.0009 82.1241 0.9548 2.97e-5
DM 0.2 0.9332±0.0006 0.5824±0.0008 76.9565 0.8769 5.46e-5
DM 0.3 0.9732±0.000 0.5981±0.0010 74.0076 0.7963 6.32e-5
IDM 0.1 0.5400±0.0076 0.6627±0.0010 78.7475 0.7914 1.14e-4
IDM 0.2 0.7905±0.0073 0.6624±0.0013 76.4274 0.7931 1.30e-4
IDM 0.3 0.9790±0.0009 0.6582±0.0005 70.1548 0.8054 1.40e-4
DAM 0.1 0.6785±0.0022 0.5278±0.0012 82.0221 0.9594 3.06e-5
DAM 0.2 0.8715±0.0015 0.5389±0.0007 76.8882 0.8916 5.51e-5
DAM 0.3 0.9918±0.0006 0.5324±0.0007 73.7877 0.8245 9.14e-5
DC 0.1 0.6128±0.004 0.5743±0.0002 78.8841 0.7633 7.54e-5
DC 0.2 0.7828±0.0056 0.58±0.0011 73.3082 0.5337 1.06e-4
DC 0.3 0.9980 ± 0.0010 0.5650±0.0010 71.2365 0.5551 7.25e-5

Table 12: Impact of Poisoning Ratio on Attack Performance
Method poison ratio ASR CTA PSNR SSIM IS

DM 0.10 0.8810±0.0020 0.5986±0.001 74.0086 0.8285 8.82e-5
DM 0.25 0.8970±0.0019 0.6009±0.0009 73.7735 0.7942 9.55e-5
DM 0.5 0.9725±0.0000 0.5979±0.0006 73.0076 0.7963 1.14e-4
IDM 0.10 0.8205±0.0026 0.6645±0.0015 74.0362 0.7803 2.61e-4
IDM 0.25 0.8615±0.0044 0.6592±0.0007 70.2375 0.7788 1.33e-4
IDM 0.5 0.9790±0.0009 0.6582±0.0005 70.1548 0.7554 1.40e-4
DAM 0.10 0.5073±0.0035 0.5526±0.0003 74.2949 0.8200 8.10e-5
DAM 0.25 0.7820±0.0017 0.5488±0.0006 73.5737 0.8429 1.11e-4
DAM 0.5 0.9918±0.0006 0.5324±0.0007 73.7877 0.8245 9.14e-5
DC 0.10 0.7912±0.0041 0.5745±0.0007 69.7258 0.5573 1.32e-4
DC 0.25 0.8627±0.0031 0.5851±0.0005 70.4030 0.5113 1.49e-4
DC 0.5 0.9980±0.0010 0.5650±0.0010 71.2365 0.5551 7.25e-5

As shown in Table 12, increasing the poisoning ratio improves the ASR, which aligns with the intuition1002

that more poisoned samples enhance the trigger’s influence in the condensed dataset. However, this1003

improvement comes with a slight degradation in CTA. Interestingly, the decline in CTA is relatively1004

limited even at higher poisoning ratios (e.g., 0.5), suggesting that the trigger’s interference with the1005

clean distribution remains modest. Nevertheless, the reliance on a relatively high poisoning ratio to1006

achieve optimal attack effectiveness highlights a limitation of the current approach.1007

C.2 Stealthiness on CIFAR10, SVHN, and FMNIST1008

We have included stealthiness for the remaining datasets, i.e., CIFAR10, SVHN, and FMNIST. These1009

additional results offer a comprehensive assessment of SNEAKDOOR’s visual imperceptibility across1010

diverse datasets. Notably, we omit the Inception Score (IS) evaluation for FMNIST because it is a1011

single-channel (grayscale) dataset, which is incompatible with the standard IS computation that relies1012

on a pre-trained Inception network trained on RGB images. Applying IS directly to grayscale data1013

would yield unreliable and uninformative results.1014

C.3 Effectiveness on Cross Architectures1015

We further include cross-architecture evaluations with AlexNetBN. This setting tests the transferability1016

of the backdoor attack to a moderately different network from the condensation model. The results1017

offer additional evidence of the generalization and robustness of SNEAKDOOR across architectures.1018

This property is critical for practical deployment in real-world scenarios.1019

C.4 Visual Analysis of Trigger Stealthiness1020

We provide visualizations of original images after injecting the trigger during inference. Figure 51021

illustrates the effect following trigger injection. The images demonstrate the trigger’s subtlety and1022
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Table 13: PSNR, SSIM, and IS on CIFAR10, SVHN, and FMNIST
Method Backdoor CIFAR-10 SVHN FMNIST

PSNR SSIM IS PSNR SSIM IS PSNR SSIM IS

DM

SNEAKDOOR 73.94 0.61 5.80e-05 74.68 0.77 3.90e-05 58.41 0.39 –
Doorping 59.85 0.08 2.30e-04 60.27 0.08 2.08e-04 55.68 0.12 –
Relax 60.97 -0.01 2.48e-04 61.47 -0.14 2.45e-04 51.88 -0.07 –
naive 63.67 0.15 3.56e-04 62.27 0.10 4.60e-04 54.15 0.10 –
Simple 60.98 0.69 8.10e-05 61.59 0.74 7.95e-05 54.01 0.00 –

DC

SNEAKDOOR 70.48 0.46 7.10e-05 73.15 0.42 8.10e-05 57.39 0.24 –
Doorping 59.22 0.05 2.43e-04 61.25 0.06 2.00e-04 60.11 0.52 –
Relax 61.37 0.04 2.38e-04 62.17 -0.04 2.43e-04 52.15 -0.11 –
naive 64.46 0.18 3.62e-04 60.45 0.04 4.92e-04 54.21 0.06 –
Simple 60.74 0.66 8.70e-05 61.44 0.72 8.08e-05 53.99 0.00 –

IDM

SNEAKDOOR 74.88 0.77 4.40e-05 72.19 0.68 6.30e-05 57.16 0.10 –
Doorping 59.23 0.10 2.23e-04 59.66 0.06 2.17e-04 57.26 0.06 –
Relax 61.18 0.02 2.46e-04 61.17 -0.20 2.70e-04 52.04 -0.08 –
naive 64.23 0.14 3.44e-04 62.05 0.07 5.02e-04 54.15 0.05 –
Simple 61.05 0.69 8.60e-05 61.21 0.70 8.00e-05 54.23 0.00 –

DAM

SNEAKDOOR 74.40 0.74 4.50e-05 78.91 0.74 4.30e-05 57.39 0.24 –
Doorping 59.52 0.08 1.62e-04 59.67 0.08 1.05e-04 57.16 0.10 –
Relax 61.19 0.02 2.31e-04 62.36 -0.24 2.04e-04 51.83 -0.10 –
naive 62.99 0.13 4.53e-04 60.43 0.04 5.39e-04 55.07 0.12 –
Simple 60.85 0.64 8.70e-05 61.78 0.75 7.95e-05 54.07 0.00 –

Table 14: Cross-architecture CTA and ASR condensed with AlexNetBN

Dataset Network DM DC IDM DAM
CTA ASR CTA ASR CTA ASR CTA ASR

CIFAR10
VGG11 0.544±0.000 0.961±0.000 0.209±0.000 0.009±0.000 0.673±0.000 0.945±0.001 0.542±0.000 0.733±0.001
ResNet 0.495±0.001 0.915±0.002 0.186±0.000 0.009±0.000 0.671±0.001 0.926±0.001 0.500±0.001 0.491±0.001

ConvNet 0.585±0.001 0.807±0.002 0.216±0.001 0.004±0.001 0.638±0.001 0.951±0.002 0.582±0.001 0.457±0.005

STL10
VGG11 0.527±0.001 0.921±0.000 0.195±0.001 0.012±0.001 0.694±0.000 0.947±0.002 0.547±0.001 0.924±0.002
ResNet 0.413±0.001 0.999±0.000 0.160±0.001 0.011±0.001 0.644±0.001 0.991±0.001 0.445±0.002 0.995±0.000

ConvNet 0.532±0.000 0.841±0.002 0.180±0.000 0.152±0.005 0.693±0.001 0.828±0.011 0.555±0.001 0.997±0.001

TINY
IMAGENET

VGG11 0.427±0.001 0.920±0.000 0.174±0.002 0.860±0.000 0.435±0.003 0.588±0.024 0.437±0.002 0.960±0.000
ResNet 0.361±0.002 0.800±0.000 0.227±0.002 0.716±0.008 0.228±0.004 0.360±0.036 0.391±0.002 1.000±0.000

ConvNet 0.443±0.003 0.604±0.008 0.217±0.003 0.932±0.010 0.335±0.009 0.604±0.015 0.430±0.004 0.884±0.015

stealthiness. Changes to the original images are minimal and barely perceptible. Despite this, the1023

trigger effectively activates the backdoor in the model. These visual results emphasize the challenge1024

of detecting such backdoors through simple inspection. They also underscore the importance of1025

robust defenses against stealthy triggers.1026

C.5 Hyper-parameter Settings1027

We have provided the full set of optimization hyperparameters used for SNEAKDOOR on the STL101028

dataset across four condensation baselines: DM, DC, IDM, and DAM, including learning rates,1029

number of epochs, batch sizes, etc. These details are listed in Tab.5 - Tab.8, allowing replication of1030

our experiments. In addition, we will release the full source code in a future version of the paper. This1031

will include the complete training pipeline for both the trigger generator and dataset condensation1032

procedures. Our goal is to ensure that the community can easily reproduce and extend our work.1033

The overall method is divided into four stages:1034

1. Training the Surrogate Model. The surrogate model serves two key purposes: (i) estimating1035

inter-class boundary vulnerability (ICBV), and (ii) guiding the training of the trigger generator.1036

2. Training the Trigger Generator Gϕ. The generator learns to produce input-aware perturbations that1037

cause misclassification.1038

3. Malicious Condensation. This phase incorporates the trigger signal into the synthetic dataset via a1039

standard condensation framework.1040

4. Downstream Model Training. Standard training on the poisoned condensed dataset using typical1041

optimization settings.1042
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Figure 5: STL10 Stealthiness Illustration

Table 15: Hyperparameters for Surrogate Model Training
Hyperparameter Value
Optimizer SGD
Batch size 256
Learning rate 0.01
Momentum 0.9
Weight decay 0.0005
Epochs 50

Table 16: Hyperparameters for Trigger Generator Training
Hyperparameter Value
Learning rate 5e-5
Perturbation scaling factor α 0.25
Maximum perturbation bound ε 0.5

Table 17: Hyperparameters for Malicious Dataset Condensation
Hyperparameter Value
Images per class (IPC) 50
Condensation epochs 20000
Synthesis learning rate 1.0
Batch size 256
Optimizer Adam

Table 18: Hyperparameters for Downstream Model Training
Hyperparameter Value
Optimizer SGD
Batch size 256
Learning rate 0.01
Momentum 0.9
Weight decay 0.0005
Epochs 10000
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