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Abstract

Dataset condensation aims to synthesize compact yet informative datasets that
retain the training efficacy of full-scale data, offering substantial gains in efficiency.
Recent studies reveal that the condensation process can be vulnerable to backdoor
attacks, where malicious triggers are injected into the condensation dataset, manipu-
lating model behavior during inference. While prior approaches have made progress
in balancing attack success rate and clean test accuracy, they often fall short in
preserving stealthiness, especially in concealing the visual artifacts of condensed
data or the perturbations introduced during inference. To address this challenge,
we introduce SNEAKDOOR, which enhances stealthiness without compromising
attack effectiveness. SNEAKDOOR exploits the inherent vulnerability of class deci-
sion boundaries and incorporates a generative module that constructs input-aware
triggers aligned with local feature geometry, thereby minimizing detectability. This
joint design enables the attack to remain imperceptible to both human inspection
and statistical detection. Extensive experiments across multiple datasets demon-
strate that SNEAKDOOR achieves a compelling balance among attack success rate,
clean test accuracy, and stealthiness, substantially improving the invisibility of both
the synthetic data and triggered samples while maintaining high attack efficacy.
The code is available at https://github.com/XJTU-AI-Lab/SneakDoor,

1 Introduction

Dataset Condensation (DC) [} 2} [3} 14} IS, |6] has recently emerged as a powerful paradigm for
synthesizing compact training datasets that retain the learning efficacy of their full-sized counterparts,
offering substantial benefits in terms of computation, memory, and deployment efficiency. However,
DC introduces inherent vulnerabilities to backdoor attacks [[7, 18, 9l [10], where malicious triggers
can be injected into the distilled samples during the condensation process. Once compromised, the
distilled dataset can disseminate malicious behaviors across downstream models, undermining model
integrity and posing serious security threats.

A growing body of work demonstrates that malicious triggers, once implanted into the distilled
set, can persist across downstream training and inference, leading to consistent and targeted mis-
classification [IL1} [12,[13]. One of the earliest approaches is the Naive Attack [[L1], which directly
adds a fixed visual pattern (typically a static patch) to instances from clean training samples before
condensation. While conceptually simple, this method suffers from limited attack success rates, as the
uniform trigger tends to degrade through the condensation process. To enhance attack effectiveness,
Doorping [[11] introduces a bilevel optimization framework that iteratively updates both the distilled
data and the backdoor trigger during training. Doorping better preserves the trigger semantics and
achieves stronger attack success rate. However, it incurs significant computational cost due to its
bilevel nature and lacks a theoretical foundation. A more recent work [12] adopts a kernel-theoretic
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Figure 1: Stealthiness Illustration

lens to reinterpret backdoor vulnerability in condensation. They propose two variants, simple-trigger
and relax-trigger. The former attack focuses exclusively on minimizing the generalization gap, aiming
to ensure that the backdoor learned during condensation reliably transfers to test-time behavior. The
relax-trigger introduces a joint optimization objective that simultaneously reduces projection loss
(mismatch between synthetic and clean distributions), conflict loss (interference between clean and
poisoned instances), and the generalization gap. Notably, relax-trigger maintains high attack success
rate while avoiding the computational overhead of bilevel optimization.

However, existing approaches fall short of achieving a well-calibrated trade-off among attack success
rate (ASR), clean test accuracy (CTA), and stealthiness (STE). While some methods attain high
ASR or maintain acceptable CTA, they frequently neglect STE, a critical dimension that reflects
the visual and statistical imperceptibility of both the distilled data and the triggered inputs (See
Figure [T). This oversight is particularly damaging, without sufficient stealthiness, even highly
effective attacks become vulnerable to detection, significantly limiting their practical viability. This
persistent imbalance motivates our proposed method, SNEAKDOOR, which leverages input-aware
trigger generation and decision boundary sensitivity, achieving a more favorable balance among ASR,
CTA, and STE.

Specifically, SNEAKDOOR consists of two stages, (1) Trigger Generation and (2) Backdoor Injection.
In the first stage, a generative network is trained to produce input-aware triggers tailored to individual
samples. By aligning each trigger with the local semantic content of its host image, the perturbations
remain visually coherent and difficult to isolate. In the second stage, the backdoor injection is
formulated as an optimization problem. The generated triggers are embedded into a subset of clean
samples to form a poisoned subset. These triggered samples are then incorporated into the training
set prior to condensation, allowing the distilled dataset to encode backdoor behavior alongside clean
task representations. As a result, downstream models trained on the synthesized data exhibit the
intended malicious behavior without sacrificing generalization to clean inputs.

Our contributions are summarized below:

* We present the first investigation of backdoor attacks against distribution matching-based
dataset condensation, with a focus on jointly optimizing ASR, CTA, and STE.

* We provide a theoretical analysis of stealthiness concerning SNEAKDOOR, offering formal
guarantees and insights into the conditions under which backdoor signals remain unde-
tectable throughout the condensation and training process.

» Extensive experiments across six datasets demonstrate that SNEAKDOOR consistently out-
performs existing methods in achieving a superior balance across ASR, CTA, and STE.

2 Related Work

Distribution Matching-based Dataset Condensation: Dataset condensation (DC) aims to syn-
thesize a compact set of synthetic samples that can replace large-scale datasets while preserving
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comparable model performance. Among various condensation paradigms, distribution matching
(DM)-based methods have emerged as a leading approach due to their scalability, generality, and
empirical effectiveness. Unlike earlier techniques based on gradient matching or training trajectory
alignment, DM-based methods directly align statistical or feature-level distributions between real
and synthetic data. A seminal example is DM [3]], which matches the second-order moments (co-
variance) of feature embeddings extracted by random encoders. A core formulation in distribution
matching-based dataset condensation leverages the maximum mean discrepancy (MMD) to quantify
the distance between the feature distributions of real and synthetic samples in a high-dimensional
embedding space. The objective is to minimize this discrepancy over the synthetic set S, ensuring
statistical alignment with the original dataset 7. Specifically, the optimization problem is defined

as: ming Egp, ||ﬁ ST g (A, w)) — ﬁ \JS:|1 Yo (A(s;j,w))||?, where 1y is a randomly
initialized and fixed embedding function, and A(-,w) denotes a differentiable Siamese augmenta-
tion operator applied to both real and synthetic samples, parameterized by w. This formulation
encourages the synthetic set to preserve the statistical structure of the real dataset under randomized

transformations, thereby promoting generalization across model initializations drawn from Pp.

Subsequent extensions, such as IDM and DAM, enhance class-conditional alignment through kernel-
based moment matching, adaptive feature regularization, and encoder updates, yielding improved
performance. IDM introduces practical enhancements to the original distribution matching framework,
incorporating progressive feature extractor updates, stronger data augmentations, and dynamic class
balancing to improve generalization. In parallel, DataDAM leverages attention map alignment to
better preserve spatial semantics, guiding synthetic samples to activate similar regions as real data
while maintaining computational efficiency. These methods advance the state of dataset condensation
by demonstrating that richer supervision and adaptive training dynamics are critical for generating
high-fidelity synthetic datasets.

Backdoor Attacks against Dataset Condensation: Backdoor attacks aim to manipulate model
behavior at inference time by injecting carefully crafted triggers into a subset of training data. When
effective, the model performs normally on clean inputs but consistently misclassifies inputs containing
the trigger. While extensively studied in standard supervised learning, backdoor attacks in the context
of dataset condensation have only recently received attention. A pioneering study by Liu et al. [[11]
introduces backdoors by poisoning real data before dataset condensation. Their Naive Attack appends
a fixed trigger to target-class samples before condensation, but suffers from trigger degradation and
reduced attack efficacy due to the synthesis process. To address this, Doorping employs a bilevel
optimization scheme that jointly refines the trigger and the synthetic data. Although more effective, it
incurs substantial computational overhead. More recently, Chung et al. [12] provide a kernel-theoretic
perspective on backdoor persistence in condensation. They propose simple-trigger, which minimizes
the generalization gap of the backdoor effect, and relax-trigger, which further reduces projection and
conflict losses for improved robustness.

Importantly, existing approaches focus predominantly on maximizing ASR or preserving CTA, often
overlooking STE, which is a critical factor for realistic attacks. In contrast, we propose SNEAKDOOR,
a novel framework that explicitly addresses the ASR—-CTA—-STE trade-off through input-aware trigger
generation and stealth-aware integration into distribution matching-based condensation.

3 Methodology

3.1 Threat Model

Attack Scenario. We consider a collaborative setting where one entity possesses a high-quality
dataset and shares a compact version with another party via dataset condensation, due to privacy
or bandwidth constraints. The condensed dataset is typically regarded as a trustworthy proxy for
training. However, this trust can be exploited. A malicious provider, with full access to the original
data and sole control over the condensation process, can embed backdoor triggers into the synthetic
data. These triggers, while preserving high utility for clean tasks, can cause targeted misclassification
in downstream models.

Moreover, our threat model does not assume that the attacker knows the downstream (victim) model
architecture. This upstream threat underscores a critical vulnerability: even limited data sharing can
serve as a potent attack vector when the condensation process is adversarially controlled.
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Attacker’s Goal. The attacker’s objective in backdooring condensed datasets is inherently multi-
faceted, requiring a delicate balance among three goals: stealthiness (STE), attack success rate (ASR),
and clean test accuracy (CTA). Due to space constraints, detailed definitions of these metrics are
provided in Appendix A.

3.2 Stealthy Backdoor Attack against Dataset Condensation

(1) Trigger Generation

Trigger generation starts by identifying the source—target class pair (¢, ) with the highest inter-class
misclassification rate:

1 N
Oinj = ;H(gec(fef (z1)) =4), xx €T, (1)

where 7T; represents the subset of the original dataset 7" with ground-truth label 4, fq, and gy, denote
the feature extractor and classifier, respectively, I(-) is the indicator function that equals 1 if the
classifier assigns the sample x, to class j, and O otherwise. In practice, we estimate O;_,; by
sampling N examples from class ¢, mapping them to the latent space with fy,, and computing the
fraction that gy, assigns to class j.

We evaluate O;_, ; for all ordered class pairs and select the pair with the maximal value. The chosen
pair indicates the most error-prone direction for label confusion; a trigger is then designed to exploit
this specific weakness. By targeting the pair with highest misclassification rate, the attack achieves
consistent source—target misclassification while limiting collateral impact on overall model accuracy.

The computation of O;_,; depends on the model parameters § = {6, 6.}, which correspond to the
feature extractor fp, and the classifier fy_, respectively. To obtain these parameters, we first construct

a condensed dataset S = {(z,y!)}}¥, from the original dataset 7 = {(z;,v:)}£,, where N < M.
The synthetic dataset S is generated by minimizing a distribution-matching objective over randomly
initialized models, ensuring that training on S approximates the behavior of models trained on the

full dataset 7:
S = arg;nin Epmpr, 2'mps, 0pe D(Pr(x;0), Ps(2';0)) + AR(S), 2)

where Pr(x;6) and Ps(x’;0) denote the feature distributions induced by the original and condensed
datasets, respectively. The distance measure D(-, -), such as Maximum Mean Discrepancy (MMD),
quantifies the discrepancy between these distributions. R (.S) is a regularization term, and \ balances
the trade-off between distribution alignment and regularization.

After generating the condensed dataset S, we train a surrogate model parameterized by 6 = {60¢,6.}
using only S. This surrogate serves as an efficient approximation of the downstream model’s decision
behavior. Once trained, it is evaluated on the original dataset 7, and a normalized confusion matrix
is computed to analyze inter-class prediction tendencies.

C= ocle
Yo Cij 3)
Cij= Y Ily=illlgs,(fo,)(x) = j]
(z,y)€T

where o, is the total number of classes in the original dataset 7. C;; represents the empirical proba-
bility that a sample from class ¢ is misclassified as class j. The maximum inter-class misclassification
rate O, —,,. is then calculated as follows:

Oy, —y, = argmaxCi;, i# ] )
0,J

This measure identifies the class pair (7, j) with the highest misclassification probability, revealing
the most vulnerable decision boundary in the model.

We then proceed to the trigger generation phase, where the objective is to create a trigger that, when
added to an input sample, causes the model to misclassify the input from the source class y; to the
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target class y,. Speicifically, we utilize a generator model G, which generates perturbations, or
triggers, which are added to the original input data. The perturbation is designed to be imperceptible,
ensuring the trigger remains stealthy while causing misclassification. The trigger generation process
can be represented as follows:

T=z+aG4(x), YxeT,

®
st. |Gp(@)|loo <&, Vzx
where G4(x) represents the generated adversarial noise, while ¢ is a constraint that controls the
maximum permissible perturbation, ensuring that the perturbation remains subtle and undetectable.
The perturbed input is denoted as z. The subset 7, refers to the portion of the original dataset for
which the label is y,. « is a small constant, further controlling the size of the perturbation.

In practice, the maximum permissible perturbation constraint in Eq.(3) is enforced by applying a
clamping operation to the generator output G (z) before adding it to the original input. Specifically,
the adversarial noise is clamped such that its £.,-norm lies within the range [—e, £, ensuring the
perturbation remains imperceptible. This clamped noise is then added to the clean image, followed
by another clamping step to maintain the pixel values within the valid image range. The loss in Eq.(6)
is computed on these clamped, perturbed images, allowing the generator to be implicitly optimized
under the perturbation constraint without the need for an explicit penalty term in the objective.

The generator model G, is trained alongside 6 = {6y, 6.}, with the objective of minimizing the
classification loss associated with the target class y.,. Specifically, the generator is updated based on
the following objective function:

d=0d—ny ¥ L(go.(fo,(x+GCy(x))),y-) (6)

€Ty,

where L is the loss function, which measures the error in predicting the target class v, after applying
the trigger to the input x, and 7 is the learning rate for the generator.

By iteratively updating the generator, the generator G is refined to produce more effective backdoor
triggers. The process continues until the trigger causes consistent misclassifications of the source
class ys as the target class v, while keeping the perturbation within the imperceptibility threshold
. This approach enables the adversary to design highly effective backdoor triggers, leveraging the
generator to produce stealthy perturbations that successfully compromise the performance of the
downstream model.

(2) Backdoor Injection

Once the generator G4 has been trained to generate perturbations that cause misclassifications of
the source class y; to the target class y,, we proceed with the backdoor injection process. This
step involves adding the learned perturbations to the source class samples in the original dataset 7.
Specifically, we add the perturbations generated by G to each sample xz € 7, :

T=z+aGy(x) VreT, @)

where Z represents the perturbed sample, and G («) is the perturbation generated by the adversarial
generator. These perturbed samples are then relabeled to the target class y...

This process ensures that adversarial perturbations are applied to the samples from the source class,

. . . ~ Nriﬂ ere :
resulting in a set of triggered samples, Tiiggered = (T, yr ), ¢, where the perturbed inputs are

labeled as the target class y.. In the subsequent step, the triggered samples are incorporated with the
clean samples from the target class y,. The primary objective of this combination is to introduce a
fraction of the triggered samples into the target class, thereby facilitating the model to misclassify
source class samples as the target class when subjected to the adversarial trigger. This process ensures
that the model’s decision boundary is subtly manipulated to favor misclassification under specific
conditions. Let Nyiggerea be the total number of triggered samples generated in the previous step, each
labeled with the target class y.. The number of clean samples in the target class ¥, in the original
dataset 7y, is denoted by N7, . Based on the poison ratio p, we will add p - N7,  triggered samples
into 7, . Specifically, we first randomly select p - N7, samples from Tyiggered and add them into 7. .
The resulting poisoned dataset Tpixeq consists of both the clean target class samples and the triggered
samples:

Toixed = Ty, UL(E, yn) Yoy v ®)
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The next step is to recondense the target class 7,_. The objective of recondensation is to generate
anew subset S, within the synthetic dataset, which preserves the key characteristics of the target
class while amplifying the influence of the triggered samples. This process seeks to strike a balance
between maintaining the intrinsic features of the target class and maximizing the impact of the
adversarial samples. Specifically, the objective is to generate a synthetic dataset Sy, that closely
approximates the target class distribution in the poisoned data 7y, . The optimization objective is
defined as:

_— .
Sy, = ar%mlnEfﬂNPTmixed,z’Npsy, 79NP9D (anixed

(2;0), Ps,, (2;0)) + AR(S,,) 9)

YT

where Pr, ,(x;0) is the probability distribution of the target class incorporating triggered samples.
Ps, (x';0) is the probability distribution of the recondensed target class.

4 Stealthiness Analysis

A critical challenge in designing effective backdoor attacks on dataset condensation is achieving
stealthiness, ensuring that poisoned samples and the resulting synthetic data are indistinguishable from
their clean counterparts. Our goal is to formalize stealthiness through a geometric and distributional
lens, grounded in the feature space induced by deep neural architectures.

To this end, our analysis is guided by the following question: How does input-aware backdoor
injection perturb the structure of data manifolds in feature space, and can this deviation be rigorously
bounded to guarantee stealth? Since distribution matching-based condensation aligns global feature
statistics (e.g., moments of embedded data), it is essential to understand whether triggers introduce
detectable geometric or statistical anomalies in the condensed representation. We conduct our
analysis in a Reproducing Kernel Hilbert Space (RKHS), where class-specific data, both clean and
triggered, are assumed to lie on smooth, locally compact manifolds. By modeling the trigger as a
bounded, input-aware perturbation and invoking assumptions on manifold regularity and inter-class
proximity, we show that triggered samples remain tightly coupled to the clean data manifold under
mild conditions. This theoretical framework enables us to quantify the effect of poisoning both at
the feature level (Theorem[3]) and at the level of the condensed dataset (Theorem [2). These results
provide principled justification for SNEAKDOOR’s empirical stealth: the perturbations introduced
by the trigger remain latent-space-aligned and distributionally consistent, limiting their detectability
after condensation.

Formal statements of assumptions, intermediate lemmas, and proofs supporting our theoretical
analysis are deferred to Appendix B for clarity and completeness.

Definition 1 (Kernel). k& : X x X — R on a non-empty set X is a kernel if it satisfies the following
two conditions: (1) symmetry: k(z,z') = k(z',z), Vax,2’ € X. (2) Positive Semi-Definiteness:
for any finite subset {x1,x2, -+ ,xn} C X, the Gram matrix K = [k(x;,x;)|}';_; is positive
semi-definite.

Definition 2 (Reproducing Kernel Hilbert Space, RKHS). Given a kernel k : X x X — R, the
Reproducing Kernel Hilbert Space Hy, is a Hilbert space of functions f : X — R satisfying: (1) For
every x € X, the function k(z,-) € Hg. (2)Vax € X and f € Hy, f(z) = (f, k(z,))1,-

Theorem 1 (Upper Bound on Feature-Manifold Deviation under Poisoning). Let 7,,_ denote the clean
target-class dataset and Tiriggered the triggered (poisoned) dataset, with corresponding feature-space
distributions Pp,,,, and Pp,,,......, respectively. Define the mixed distribution as: Pp,;,..
(1= 0)PMarean + PPM,siggerear Where p € [0, 1] denotes the poisoning ratio. Under Assumptions 1
(Lipschitz Continuity), 2 (Local Compactness of Feature Manifold), and 3 (Inter-Class Hausdorff
Distance), the expected deviation of samples from the mixed distribution to the target feature manifold
satisfies:

Eonpu inf |z — 2 [la| < plye+9), (10)

mixed | 2 € Mecican

where H is the RKHS associated with the feature encoder.

Theorem 2 (Upper Bound on the Discrepancy Between Poisoned and Clean Condensation Datasets).
Let T, denote the clean target-class dataset and Tixed = Ty, U Tiriggered» Where Tiriggered CONSists
of source-class samples x € T, perturbed by a trigger generator G 4 and relabeled as the target class.
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Let Sclean and Spoison denote the condensation datasets distilled from Ty and Thixea, respectively,
by minimizing: §* = argming MMD(T,S) + AR(S), where T € {T,., Tmixed }» A > 0, and R is
a pg strongly convex regularizer. Under Assumptions 1 (Lipschitz Continuity), 2 (Local Compactness
of Feature Manifold), and 3 (Inter-Class Hausdorff Distance), the MMD between Scican and Spoison
satisfies:

Lip(ve +9)

ABR
zs — zr||n, p is the poisoning rate, and € bounds

MMD (Sclean; Spoison) <

where y = Ly, § = sup,_¢ p
the input perturbation.

lanT EMclean

source

5 Experiments

Datasets and Networks. We evaluate SNEAKDOOR across five standard datasets: FMNIST [14],
CIFAR-10 [15], SVHN [16], Tiny-ImageNet [17], STL-10 [18], and ImageNette [[19]]. These datasets
span a diverse range of visual complexity, semantic granularity, and image resolution, enabling a com-
prehensive evaluation of attack generality. Each dataset is processed according to the standard dataset
condensation protocol, with 50 images per class used for condensation. Specifically, we adopt two
common synthetic data backbones: ConvNet and AlexNetBN [20], which represent lightweight and
moderately expressive condensation encoders. For downstream training and evaluation, we consider
four architectures: ConvNet, AlexNetBN, VGG11 [21], and ResNet18 [22]. Moreover, we evaluate
SNEAKDOOR in comparison with four state-of-the-art attacks: NAIVE [11], DOORPING [11],
SIMPLE [12]], and RELAX [12].

Evaluation Metrics. We evaluate attack performance across three key dimensions: ASR, CTA, and
STE. Following prior work [23]], STE is quantified using three complementary metrics: (1) PSNR
(Peak Signal-to-Noise Ratio), measuring pixel-level similarity between triggered and clean samples,
where higher values indicate lower perceptual distortion. (2) SSIM (Structural Similarity Index),
which measures structural similarity, with values closer to 1 indicating stronger visual alignment;
and (3) IS (Inception Score) quantifies the KL divergence between the predicted label distribution
of a sample and the marginal distribution over all samples. Lower IS values suggest reduced
recognizability, indicating higher stealth and improved resistance to detection. For convenience, we
define an inverted score IST = (10~3 — IS)e~*, where larger values correspond to improved stealth.

Overall Attack Effectiveness. We first evaluate the overall effectiveness of each backdoor attack
in balancing three key objectives: ASR, CTA, and STE. To illustrate this trade-off, we visualize the
normalized performance of each method using radar plots (Figure [2] Figure 3)) that jointly capture all
three dimensions. SNEAKDOOR consistently achieves a superior balance across the three criteria. In
contrast, while Doorping and Relax achieve high ASR, they suffer from significant degradation in
either CTA or STE. Conversely, Naive and Simple maintain better CTA but fail to deliver competitive
ASR or STE. These results validate our central hypothesis: input-aware trigger design combined with
distribution-aligned injection enables the attack that is both effective and stealthy.

Sneakdoor [T Doorping [ Naive Simple Relax

PSNR PSNR PSNR

7124 7015 69:59
- ,4'/

SSIM  CTA %/ |\ 056SSIM CTAdgr \ o4y SSIM  CTA 0\5§ o3g SSIM
1.00\9 X7 1.00 JZ P 1.00 P
ASR 1s' ASR 1s' ASR 1s'
DC IDM DAM

Figure 2: Attack Performance on STL10. Larger area indicates better balance.

Effectiveness on Different Datasets To rigorously assess the effectiveness of SNEAKDOOR, we
evaluate CTA and ASR across five datasets and four dataset condensation baselines: DM [3], DC [24],
IDM [25]], and DAM [26]. Results are summarized in Table|l| with each entry reporting the mean
and standard deviation over five random seeds. SNEAKDOOR consistently achieves high ASR across
all datasets and condensation methods, while maintaining competitive CTA. These results highlight
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8.75 \\ 8.86 \ 8.9:
00— 096 LI
ASR 1s
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w Y
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Figure 3: Attack Performance on Tiny-ImageNet. Larger area indicates better balance.

298 the robustness and generalizability of SNEAKDOOR, with improvements most evident in scenarios
299 where baseline methods overfit to specific condensation schemes.

Table 1: Effectiveness on Different Datasets

SNEAKDOOR DOORPING SIMPLE RELAX
CTA ASR CTA ASR CTA ASR CTA ASR

DM  0.626 £0.001 0.989 £ 0.000 0.621 4 0.001 0.988 & 0.005 0.584 4 0.000 0.590 £ 0.012 0.574 £ 0.000 1.000 = 0.000
DC  0.537£0.000 0.996 £ 0.000 0.566 & 0.001 1.000 % 0.000 0.497 £ 0.001 0.657 & 0.021 0.511 4+ 0.001 1.000 £ 0.000
IDM  0.643 +0.002 0.975 £ 0.001 0.654 4 0.002 0.165 % 0.007 0.652 £ 0.001 0.142 £ 0.008 0.653 +0.002 0.522 £ 0.021
DAM  0.591 £ 0.001 0.979 & 0.001 0.531 4+ 0.001 1.000 £ 0.000 0.537 £ 0.001 0.674 £ 0.032 0.559 & 0.001 1.000 == 0.001

DM  0.598 £ 0.001 0.973 & 0.000 0.577 £ 0.001 0.149 £ 0.007 0.597 4 0.001 0.096 £ 0.009 0.596 & 0.001 1.000 % 0.001
DC  0.565£0.001 0.998 £0.001 0.598 £ 0.001 0.227 & 0.011 0.550 & 0.001 0.112 £ 0.011 0.563 £ 0.000 0.998 £ 0.001
IDM  0.658 4 0.001 0.979 & 0.001 0.661 +0.001 0.314 £ 0.015 0.658 £ 0.001 0.100 £ 0.007 0.658 & 0.001 0.954 4 0.011
DAM  0.532 4 0.001 0.992 #+0.001 0.533 £ 0.001 1.000 £ 0.000 0.535 +0.001 0.103 £ 0.004 0.535 4 0.001 1.000 % 0.000

DM  0.876 £ 0.001 0.998 4+ 0.000 0.876 + 0.000 0.093 £ 0.006 0.868 4+ 0.000 0.178 £ 0.005 0.828 4 0.000 1.000 + 0.000
DC  0.851 £0.001 0.998 & 0.000 0.872+0.001 1.000 £ 0.000 0.837 4+ 0.001 0.277 £0.014 0.824 £ 0.001 1.000 % 0.000
IDM  0.877 4+ 0.001 1.000 £ 0.000 0.884 4 0.000 0.998 & 0.002 0.879 £ 0.000 0.159 £ 0.007 0.875 + 0.001 1.000 =+ 0.000
DAM  0.877 4 0.000 0.996 + 0.000 0.813 £ 0.001 1.000 £ 0.000 0.880 + 0.000 0.151 £0.012 0.874 4 0.000 1.000 % 0.000

DM  0.800 £ 0.000 1.000 = 0.000 0.780 4 0.001 1.000 £ 0.001 0.748 £ 0.000 0.110 % 0.007 0.747 £ 0.000 1.000 £ 0.000
DC  0.687 £ 0.000 1.000 = 0.000 0.583 +0.001 0.703 £ 0.017 0.636 + 0.001 0.100 £ 0.009 0.689 £ 0.001 1.000 % 0.000
IDM  0.83140.001 0.986 & 0.001 0.839 +0.001 0.061 £ 0.006 0.842 £ 0.001 0.114 £ 0.008 0.834 £ 0.002 0.992 4= 0.003
DAM  0.782 £ 0.001 1.000 £ 0.000 0.721 4 0.000 1.000 £ 0.000 0.759 & 0.001 0.114 £+ 0.005 0.745 £ 0.001 1.000 £ 0.000

DM  0.503 £0.001 1.000 £ 0.000 0.496 £ 0.002 1.000 & 0.000 0.493 4= 0.003 0.100 = 0.004 0.494 £ 0.003 0.996 £ 0.000

TINY DC  0.432+£0.002 1.000 £ 0.000 0.492 £ 0.001 0.398 & 0.005 0.391 4+ 0.002 0.192 £ 0.006 0.418 £ 0.003 0.952 £ 0.001
IMAGENET DM  0.517 4 0.004 1.000 £ 0.000 0.512 = 0.005 0.089 = 0.013 0.509 = 0.003 0.046 = 0.002 0.484 & 0.006 0.941 £ 0.002
DAM  0.482 £ 0.003 1.000 & 0.000 0.449 4 0.003 1.000 == 0.000 0.458 £ 0.003 0.082 £ 0.002 0.465 £ 0.002 0.973 4= 0.001

Dataset Method

CIFAR10

STL10

FMNIST

SVHN

soo Effectiveness on Cross Architectures To evaluate SNEAKDOOR in cross-architecture settings,
301 where the condensation model differs from the downstream model, we follow prior work [[11] and
302 consider four architectures: ConvNet, AlexNetBN, VGG11, and ResNet18. Specifically, we use
303 ConvNet or AlexNetBN for data condensation and the remaining models for downstream training.

304 As shown in Table 2] we evaluate SNEAKDOOR. across 36 cross-architecture scenarios spanning
305 various datasets, condensation methods, and downstream models. SNEAKDOOR demonstrates
306 consistent performance across most architecture pairs, indicating strong transferability. However,
307 when using the DC algorithm, performance systematically degrades on specific architectures. Prior
so8 studies, as well as our own findings, suggest that DC often produces lower-quality distilled datasets,
so9 as reflected in its relatively low CTA. This implies that the reduced ASR in these cases is more likely
st0 due to DC'’s limited ability to retain both task-relevant and backdoor-relevant information, rather
311 than a shortcoming of the attack mechanism itself. When excluding DC-based cases, 27 scenarios
312 remain, of which only 6 exhibit ASR below 90%. This demonstrates that SNEAKDOOR consistently
313 achieves high ASR in most settings, provided the underlying condensed data is of sufficient quality.

Table 2: Cross-architecture CTA and ASR

DM DC IDM DAM
CTA ASR CTA ASR CTA ASR CTA ASR

VGGI11  0.568 £0.000 0.971 4 0.000 0.472 £ 0.000 0.865 £ 0.000 0.645 % 0.000 0.719 4 0.008 0.539 £ 0.000 0.929 +£ 0.001
CIFAR10  AlexNetBN 0.616 +0.001 0.942 4 0.002 0.426 & 0.004 0.000 £ 0.000 0.689 4 0.002 0.539 & 0.003 0.623 £ 0.001 0.902 + 0.004
ResNet18 0.548 4-0.001 0.959 £ 0.000 0.435 £ 0.001 0.534 4 0.003 0.656 & 0.001 0.766 £ 0.003 0.510 £ 0.001 0.857 4= 0.002

VGGI11  0.587 £0.001 0.999 + 0.001 0.564 4 0.000 0.790 £ 0.003 0.676 + 0.001 0.900 & 0.001 0.582 £ 0.000 0.924 + 0.001
STL10 AlexNetBN 0.589 4 0.002 0.905 £ 0.005 0.542 £ 0.001 0.796 4 0.002 0.670 & 0.003 0.798 £ 0.005 0.636 £ 0.001 0.981 4 0.001
ResNet18 0.463 4 0.001 0.989 £ 0.000 0.396 £ 0.001 0.783 4 0.003 0.647 £ 0.001 0.949 £ 0.001 0.436 £ 0.001 0.941 4 0.002

TINY VGGI11  0.488£0.001 1.000 4 0.000 0.384 4 0.001 1.000 £ 0.000 0.541 £ 0.002 1.000 % 0.000 0.449 £ 0.002 1.000 =% 0.000
IMAGENET AlexNetBN 0.517 4 0.003 0.796 £ 0.015 0.292 £ 0.007 0.704 £ 0.008 0.572 4 0.004 1.000 £ 0.000 0.541 +0.003 1.000 + 0.000
ResNet18 0.456 4= 0.002 1.000 £ 0.000 0.358 £ 0.001 0.524 4 0.008 0.483 £ 0.005 0.988 £ 0.010 0.438 £ 0.002 1.000 == 0.000

Dataset Network

s14  Evaluation of Stealthiness As shown in Figure[d] SNEAKDOOR consistently achieves the highest
315 PSNR and SSIM across all condensation methods, highlighting its ability to produce visually and
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structurally imperceptible triggers. In contrast, the other methods exhibit notable declines in both
metrics, suggesting visible artifacts or structural distortions in the perturbed samples. Moreover,
while Simple and Naive achieve slightly lower IS values, they fail to maintain competitive ASR or
CTA, limiting their overall effectiveness. SNEAKDOOR achieves a similarly low IS while preserving
high ASR, indicating enhanced stealth without sacrificing attack strength.

Doorping Naive Simple Relax I Sneakdoor
6e-4
60 0.4
40 4e-4
0.2
20 2e-4
0.0 I
1 |
0 DM DC _IDM DAM DM DC IDM DAM 0 DM DC  IDM DAM
PSNR SSIM IS

Figure 4: Stealthiness Performance on STL10

Robust to Defense  To evaluate the resilience of SNEAKDOOR against existing defense mechanisms,
we conduct comprehensive experiments spanning model-level, input-level, and dataset-level defenses.
Results in Table 3] show that SNEAKDOOR consistently evades state-of-the-art model-level defenses
such as NC [27] and PIXEL [28], with all anomaly scores remaining below detection thresholds.
Input-level defenses also fail to recover effective triggers, as indicated by uniformly low REASR
values across all settings [29]. While dataset-level methods such as RNP [30]] and PDB [31]] succeed
in suppressing ASR, they face significant drops in CTA, reflecting a sharp trade-off. These findings
highlight SNEAKDOOR as a robust attack that remains effective under diverse defense conditions.

Table 3: NC, ABS, and PIXEL across different datasets and condensation methods.

Dataset NC Anomaly Index ABS REASR PIXEL
pmMm DC IDM DAM DM DC IDM DAM DM DC IDM DAM
STL10 1.3180 1.0872 1.3648 0.9843 0.19 0.19 0.25 0.17 1.5525 1.0515 0.7688 1.5425

CIFAR10 1.8762 0.9518 1.7640 1.3787 0.24 0.35 0.29 0.57 1.7705 1.2625 1.7750 0.9472
TINY-IMAGENET 1.4706 1.6199 1.2201 1.9065 0.17 0.14 0.15 0.16 1.7813 1.4252 1.9528 1.3447

Table 4: Effects of (1) Class Pair Selection and (2) Input-Aware Trigger Generation

) %)) CTA ASR PSNR SSIM IS
X v 0.5912 £ 0.0004 0.9946 4 0.0005 65.8677 0.12915 1.3058 x 107°
v X 0.6211 £ 0.0005 0.9876 4+ 0.0050 59.8469 0.08217 2.2987 x 1074
v v 0.6262 £ 0.0005 0.9890 £ 0.0000 73.2285 0.66151 4.8441 x 10~°
Table 5: CTA/ASR Before and After Defense

Dataset Method DM DC DAM IDM
W/O Defense 0.6262/0.9890 0.5372/0.9960 0.5906/0.9794 0.6431/0.9754
CIFAR10 RNP 0.2334/0.5490 0.3874/0.1340 0.5748/0.9850 0.4424/0.2870
PDB 0.1388/0.1380 0.1000/0.0000 0.0664/0.0300 0.3191/0.4190
W/O Defense 0.5979/0.9725 0.5653/0.9975 0.5324/0.9918 0.6582/0.9790
STL10 RNP 0.2791/0.0625 0.3955/0.8962 0.4961/0.8488 0.4889/0.5887
PDB 0.4719/0.0425 0.1150/0.0100 0.1293/0.0313 0.2646/0.0038
W/O Defense 0.5026/1.0000 0.4318/1.0000 0.4822/1.0000 0.5174/1.0000
TINY-IMAGENET RNP 0.2700/0.0600 0.2450/0.0200 0.3320/0.7600 0.3450/0.9200
PDB 0.1030/0.0000 0.0570/0.0000 0.0540/0.0000 0.0800/0.1600

Ablation study To assess the contribution of key components in SNEAKDOOR, we perform ablation
studies on (1) inter-class boundary-based class pair selection and (2) input-aware trigger generation.
Removing (1) and using arbitrary class pairs slightly reduces ASR but significantly degrades CTA
and stealth metrics (PSNR, SSIM). Replacing (2) with fixed patterns, as in Doorping, maintains ASR
and CTA but severely compromises stealthiness, as shown by reduced similarity and elevated IS.
These results underscore the necessity of both components.
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Due to space limitations, we report supplementary results in Appendix C, including comparisons
with additional attack baselines, analysis of varying the number of condensed samples per class, and
evaluations using AlexNet as the condensation model.

6 Limitations

While SNEAKDOOR achieves a good balance across ASR, CTA, and STE, it does not consistently
surpass all existing methods on any single metric. In certain cases, baseline approaches such
as DOORPING attain higher ASR or CTA when considered in isolation. This trade-off reflects
the inherent challenge of jointly optimizing multiple, often competing objectives. Future work
could investigate methods that enhance a specific metric without sacrificing other metrics. Further
refinement may lead to more adaptable backdoor attacks tailored to specific deployment or threat
scenarios. Another limitation lies in the dependence on a relatively high poisoning ratio to reach
optimal attack effectiveness. Reducing this requirement would make the approach more practical in
real-world scenarios where the attacker’s control over data is limited. Finally, SNEAKDOOR does not
fully capture more complex threat models that involve targeted source-to-target manipulations, such
as altering “Stop Sign” to “Speed Limit: 60 mph”, which poses serious safety risks. In such cases,
the attack’s effectiveness may decrease. Extending SNEAKDOOR to handle diverse and task-specific
attack objectives remains an important direction for future research.

7 Conclusion

This work introduces SNEAKDOOR, a novel attack paradigm that exposes critical vulnerabilities
in distribution-matching—based dataset condensation methods. By integrating input-aware trigger
generation with inter-class misclassification analysis, SNEAKDOOR injects imperceptible yet highly
effective backdoors into synthetic datasets. The theoretical analysis in reproducing kernel Hilbert
space (RKHS) formalizes the stealth properties of the attack, showing that the induced perturbations
remain bounded in both geometric and distributional space. Extensive experiments across multiple
datasets, condensation baselines, and defense strategies confirm that SNEAKDOOR achieves strong
ASR-CTA-STE trade-offs and maintains high transferability under cross-architecture evaluation.
Together, these results reveal that even condensed data, often regarded as a privacy-preserving
substitute for raw data, can serve as a potent vector for model compromise when the condensation
process is adversarially controlled. This study lays the foundation for understanding the vulnerabilities
and defense limitations of current condensation frameworks, emphasizing the need for proactive
safeguards in synthetic data pipelines.

Broader Impact

Backdoor attacks against dataset condensation pose significant risks given the growing use of
condensed datasets in privacy-sensitive or resource-constrained settings such as outsourced data
compression, federated learning, machine unlearning, and continual learning. For instance, in
continual learning systems deployed in edge Al applications, such as autonomous vehicles or medical
diagnosis assistants, lightweight condensed datasets enable efficient model updates without full
retraining. If an adversary injects imperceptible backdoor triggers into this data, the resulting models
may misclassify critical inputs (e.g., road signs or tumor types), leading to serious safety and ethical
consequences. Given these risks, the responsible disclosure of such attacks is essential. The goal of
our work is to expose vulnerabilities in distribution-matching-based condensation methods to inform
the design of more effective defenses. To mitigate misuse, we recommend: (1) incorporating robust
anomaly detection and certified defenses during condensation; (2) encouraging transparency and
reproducibility in condensation pipelines; and (3) enforcing rigorous provenance tracking to dataset
generation processes. Our findings serve both as a cautionary signal and a foundation for developing
secure and resilient dataset condensation techniques.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction outline the motivation and detail the technical
contributions of the proposed approach.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: While SNEAKDOOR achieves the best overall balance across Attack Success
Rate (ASR), Clean Test Accuracy (CTA), and Stealthiness (STE), it does not consistently
outperform existing methods on any single metric.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theoretical result is provided the full set of assumptions and a complete
(and correct) proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

14



568
569

570

571

572
573
574

575
576

577
578
579
580
581
582
583
584
585

586
587
588

589
590

591

593
594
595
596
597
598
599
600
601

602

603
604
605

606

607

608

609

610
611

612
613
614
615

616
617
618
619
620

Justification: The disclosed information is enough to reproduce the main experiments. We
will also release the source code late.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide essential parts for the code and details in supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all details about the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The error is shown in our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted utilizing the NVIDIA GeForce RTX 4090
GPU.
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9.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the policy.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Backdoor attacks against dataset condensation pose significant risks given
the growing use of condensed datasets in privacy-sensitive or resource-constrained settings
such as outsourced data compression, federated learning, machine unlearning, and continual
learning. To mitigate misuse, we recommend: (1) incorporating robust anomaly detection
and certified defenses during condensation; (2) encouraging transparency and reproducibil-
ity in condensation pipelines; and (3) enforcing rigorous provenance tracking to dataset
generation processes.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The primary contribution of our proposed SNEAKDOOR is to expose vulnerabil-
ities in distribution-matching-based condensation methods. Our work lays the groundwork
for understanding the attack surface and limitations of current defenses, enabling the com-
munity to proactively build secure and trustworthy dataset condensation frameworks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best-faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM was used solely for language editing and clarity improvement. It did
not contribute to the design, implementation, or validation of the proposed methods.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Attacker’s Goal

Attacker’s Goal. The attacker aims to achieve a multi-faceted objective when injecting backdoors
into condensed datasets. This objective consists of three key goals: maintaining stealthiness, ensuring
backdoor effectiveness, and preserving model utility on clean data.

Stealthiness (STE). The attacker’s goal is to ensure that malicious modifications remain imperceptible.

This involves two requirements. Firstly, the poisoned condensed dataset D must be visually and
statistically indistinguishable from the clean version D. This is critical, as condensed datasets are
small (|D| < |D]) and likely to be examined manually. Secondly, the triggered test samples remain
imperceptibly different from unmodified test data. This requirement ensures that the backdoor remains
undetectable during evaluation or deployment, whether through human inspection or automated
analysis.

Attack Success Rate (ASR). In parallel, the attacker aims to embed a functional backdoor that remains
inactive during standard operation but activates reliably in the presence of a specific trigger. Let f

denote the downstream model trained on D and A the backdoor trigger. For a triggered test sample
x; + A, the ASR defined as:

Ny
ASR = NLZ]I(f(xi—f—A) = 1) (11)
ti=1

where ¢ is the target label, IV, is the number of triggered test samples, and I is the indicator function.
The attacker aims to maximize ASR.

Clean Test Accuracy (CTA). Simultaneously, the attacker must preserve model accuracy on clean,
non-triggered data. In other words, the condensed dataset must retain sufficient utility to support
standard training objectives. This ensures that models trained on the poisoned data still generalize
well to benign test sets. Let the clean test accuracy be defined as:

N,
1 c
CTA=+ ;H(f(x» =y) (12)

where y; is the ground truth label of the test sample xz;, N, is the number of clean test samples. The
attacker seeks to maintain a high CTA so that the backdoor remains covert.

B Stealthiness Analysis

A critical challenge in designing effective backdoor attacks on dataset condensation is achieving
stealthiness, ensuring that poisoned samples and the resulting synthetic data are indistinguishable from
their clean counterparts. Our goal is to formalize stealthiness through a geometric and distributional
lens, grounded in the feature space induced by deep neural architectures.

To this end, our analysis is guided by the following question: How does input-aware backdoor
injection perturb the structure of data manifolds in feature space, and can this deviation be rigorously
bounded to guarantee stealth? Since distribution matching-based condensation aligns global feature
statistics (e.g., moments of embedded data), it is essential to understand whether triggers introduce
detectable geometric or statistical anomalies in the condensed representation. We conduct our analysis
in a Reproducing Kernel Hilbert Space (RKHS) [32] 33} 134, where class-specific data, both clean
and triggered, are assumed to lie on smooth, locally compact manifolds. By modeling the trigger as a
bounded, input-aware perturbation and invoking assumptions on manifold regularity and inter-class
proximity, we show that triggered samples remain tightly coupled to the clean data manifold under
mild conditions. This theoretical framework enables us to quantify the effect of poisoning both at
the feature level (Theorem 3] and at the level of the condensed dataset (Theorem [2). These results
provide principled justification for SNEAKDOOR’s empirical stealth: the perturbations introduced
by the trigger remain latent-space-aligned and distributionally consistent, limiting their detectability
after condensation.

Assumption 1 (Lipschitz Continuity). The feature mapping fo, : X — H is assumed to be Lipschitz
continuous. That is, for all x,z' € X,

1fo, (@) = fo, (@)l < Lgllz — 2’|, (13)
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where Ly € R denotes the Lipschitz constant, and || - || is the Lo-norm in the input space.

Assumption 2 (Local Compactness of Feature Manifolds). Let the clean target class dataset T, and
the triggered dataset Tyiggerea lie on smooth manifolds M jean and M yiggerea, respectively, embedded
in a Reproducing Kernel Hilbert Space (RKHS) H. The following condition holds: For any point
2 € M jean, there exists a neighborhood N (z) C H and a diffeomorphism ¢, : N'(z) 0 M jean —
U C RY, where U is an open subset and d is the intrinsic dimension of the manifold.

Assumption 3 (Inter-Class Hausdorff Distance). Let M e and M cjean denote the RKHS-embedded
manifolds of the source and target (clean) classes, respectively. Their Hausdor{f distance is defined
as:

§& s inf — 14
JSwp dn Es = el 14

This condition implies that the decision boundary between source and target classes is locally
reachable in feature space, enabling feasible cross-class perturbations by the trigger generator.

Lemma 1 (Boundedness of Latent Space Perturbation). Under Assumption[I|(Lipschitz Continuity),
the perturbation in the latent space of the triggered sample & = x + aG () is bounded as follows:

1fo, (@) = fo; (@)l < Lyae, (15)

where Ly is the Lipschitz constant of the feature mapping fo,, and € is the upper bound on the input
perturbation, satisfying ||G ()]s < €.

Proof. According to Eq (5), the perturbation generated by the trigger generator G4 satisfies the input
space constraint ||Gy(z)[[ < €. Therefore, the following conclusion can be obtained:

1fo, (%) = fo, (@)lln = |l fo, (z + aGy(x)) — fo, (z) |2
< LillaGy (@) oo (16)
< LfOéé

This lemma shows that the perturbation’s effect in the feature space is controlled by both the input
perturbation bound «, € and the Lipschitz constant L. O

Lemma 2. Let M jeqn and M yiggerea be smooth manifolds in the Reproducing Kernel Hilbert Space
(RKHS) H, induced by the feature map fo, : X — H. Under Assumption [I} 2| and 3| there
exists a diﬁeomorphism v Msource — Mtriggered such that: (1) SUPZSGMW,(_E \I}(Zs) - Zs”H <
) where V= LfOé (2) Mtriggered - N5’ (Mclean)a 8 = Lfa5 + 5; where N&’(Mclean) denotes
the &' -neighborhood of M jean in H.

Proof. By Assumption for each z, € Mource, there exists a local chart ¢4 : N (25) N Msource —
U, C R?, where N/ (zs) C H is a neighborhood and Uy is an open subset.

Define the local mapping ), : U — Miggered by:
Gul) = fo, (f57 (031 W) + Gl 15, (6 (W) (17)

The smoothness of 1, follows from the differentiability of G and fy e Then, by Lemmam we can
obtain: ||1)s(u) — @5t (u)||s < Lyae = ve.

To construct a global diffeomorphism, take a finite open cover {/\ (zsl.)}f:1 of Mource, With corre-
sponding charts ¢, and a smooth partition of unity {p; }:

k
U(zs) = Zpi(ZS) s, (05,(25)). (18)

i=1
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We now bound the total perturbation:

k
H\II(ZS) - ZSHH < Zp7(zg)||1/1g1 (QDSi, (ZG)) - ZSHH

k
<Y pilzs)Las (19
=1

= Lyae

= ’)/g
For any z; € Miggered, there exists z; € Mource such that z; = ¥(z,). By Assumption 3, there
exists z; € Miean With |25 — 2z ||%x < 6. Then by the triangle inequality:

20 = 27 llw < llze = 2sllm + ll2s = 27l

20
<Ljac+4d=14 20)
Hence, Mtriggered C NzV (Mclean)-

To verify ¥ is a diffeomorphism:

* Injectivity: Follows from local injectivity of each 1, and the partition of unity.
* Surjectivity: For any z; € M yiggered, there exists € T, such that z; = fy ; (x+aGy(z)) =
(fo, (x)).
* Smooth Inverse: Local inverses v ! exist by the inverse function theorem and can be
smoothly blended via {p; }.
O

Theorem 3 (Upper Bound on Feature-Manifold Deviation under Poisoning). Let 7,,_ denote the clean
target-class dataset and Tiriggered the triggered (poisoned) dataset, with corresponding feature-space
distributions Pp,,,,, and Pp,,.,...q» respectively. Define the mixed distribution as:

PMmixed = (1 - p)PMclean + pPMtriggered’

where p € [0, 1] denotes the poisoning ratio. Under Assumptions and|3| the expected deviation
of samples from the mixed distribution to the target feature manifold satisfies:

]EZNPMmixed |:Z G%/\I}lfl ||Z - ZT||H:| S p(’yé‘ + 6)’ (21)

where H is the RKHS associated with the feature encoder.

Proof. By the linearity of expectation and the definition of Py, we have:

{inf |z — zT||H}

mixed ?

EZNPM

mixed

(1= D) Eapy {igf |z — zT||H} (22)

=0
bt [ 2l

Since clean samples z ~ Pyy,.,, lie on the target manifold, their distance minimum distance to the
target manifold is zero. Therefore:

EZNPM

mixed

{inf Iz — zT||H}
’ (23)

Bt 015 2]
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By Lemma|z|, for any z; € Mriggered, there exists z, € M_iean such that:
l2e = zrllag < 0" =y 4 0. (24)
Hence,
inf |lze — 2 ||Jn <6 (25)

zZr €EMclean

Taking the expectation over Pag,,;.....q» WE Obtain:
: /
BonPryiperea |:lgf Iz — zT||H} <4 (26)
Substituting into Eq.(22)) yields:

]EZNPMmixed |:1£f ||Z - ZT|H:| < P(’YE + 5) (27)

O

Theorem 4 (Upper Bound on the Discrepancy Between Poisoned and Clean Condensation Datasets).
Let T, denote the clean target-class dataset and Tmixed = Ty, U Tiriggered, Where Tiriggered CONSists
of source-class samples x € T, perturbed by a trigger generator G and relabeled as the target
class.

Let Scican and Spoison denote the condensation datasets distilled from Ty and Thixea, respectively,
by minimizing:
S* = arg n}Sin MMD(T,S) + AR(S), (28)

where T € {Ty,, Tmixed}, A > 0, and R is a strongly convex regularizer.
Under Assumptions[I} 2| and[3| the MMD between Scican and Spoison Satisfies:
L3p(ve +9)

MMD(S eanas oison <
( cl p ) >\/«LR

where v = Lya, 0 = SUp,_c pm,ro0 02 e Mepoan 125 — 27|21, p is the poisoning rate, and & bounds
the input perturbation.

Proof. By Theorem |3}

E.opu, inf ||z — 2z |ln| < plye+9). (29)

mixed | 2 € Meclean

This inequality constrains the average deviation of the mixed distribution from the clean target
manifold by p(ve + 9).

In RKHS, MMD can be expressed via the norm of mean embeddings:
MMD(ETa'ﬁnixed) = ”:uclean - /Jmixed”H- (30)

where
Heclean = Ea:~PTyT [f@f (:1?)}

Hmixed = Ea:NPT?Jmixed [fef ("I")}
Using the decomposition, the mean embedding of the mixed distribution can be written as::

Mmixed = (]- - p)/iclean + p,ultriggered (31)

we get:
Helean — Mmixed = p(,uclean - ,Uftriggered) (32)
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Hence:
MMD(ET ) ﬁnixed) = p”,uclean - ,Utriggered”?-[

< p(ye +9) 53

Let the clean and poisoned synthetic datasets, Scican and Spoison, be obtained by solving the following
optimization problems:

Selean = aTg msin MMD(7,,,S) + AR(S),

34
Spoison = arg mgn MMD(Tmixed; S) + AR(S) (34)
According to the first-order optimality condition, the solutions Scjcan and Spoison satisfy:
VMMDS (7;,/.,. ) Sclean) + AVR(Sclean) =0 (35)
VNH\/IDS (ﬁ/mixed’ Spoison) + )\VR(Spoison) =0
Subtracting the optimality conditions:
/\(VR(Sclean) - VR(Spoison)) = VMMDS (ﬁnixem Spoison) (36)
- VMMDS (7?;7- ’ Sclean)
Since R is ur-strongly convex, we obtain:
<VR(Sclean) - v,R'(Spoison)v Sclean - Spoison> (37)
Z ,U/R”Sclean - Spoison||2
Then, we can obtain:
||Sc1ean - poison”
< ||VSMMD(7;T ) Sclean) - VSMMD(,]:nixeda Spoison) ||
N AHR
< LfMMD(ET ) ﬂnixed) (38)
- AHR
< Liplye +9)
N AUR
According to Assumption [T}
MMD(Scleam Spoison) S Lf“Sclean - Spoison”
_ Lip(ve +0) . (39)
B AR
O]

C Additional Experiments

In dataset condensation, simple architectures such as ConvNet or AlexNetBN are typically employed
as condensation networks, rather than more complex models. This design choice is motivated by
several factors. First, computational efficiency and stability: simpler networks are faster and less
resource-intensive to train, which is essential given the iterative optimization cycles required in
dataset condensation. In contrast, deeper architectures substantially increase computational cost and
introduce greater instability during optimization. Second, optimization tractability: simple models
possess smoother and more navigable loss landscapes, facilitating the extraction of effective gradients
from synthetic data. Complex architectures, with highly non-convex objectives, complicate this
process and hinder optimization. Third, fairness and generality: the distilled data is intended to
generalize across a range of architectures. Relying on a highly specialized, deep network risks
overfitting the synthetic data to its unique characteristics. Employing a lightweight, generic model
encourages the generation of broadly transferable synthetic datasets.
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970 To further substantiate the choice of AlexNetBN as the condensation network, we report additional
971 experimental results in the appendix. While ConvNet is widely adopted in dataset condensation for its
972 simplicity, AlexNetBN introduces greater depth and batch normalization, offering a complementary
973 evaluation of the distilled data’s robustness and generalizability. These experiments assess whether the
974 performance patterns observed with ConvNet persist under a moderately more complex architecture,
975 thereby strengthening the evidence for the reliability of the distilled datasets.

976 C.1 Effectiveness on Different Datasets and Settings

o77  Firstly, for completeness, we report the results of the Naive attack in Table 6]
Table 6: Effectiveness on Different Datasets

SNEAKDOOR NAIVE

Dataset Method CTA ASR CTA ASR
DM 0.626+0.001 0.989+0.000 0.632+0.001 0.113+0.012
CIFAR10 DC 0.537+0.000 0.996+0.000 0.552+0.001 0.102+0.007
IDM 0.643+0.002 0.975+0.001 0.652+0.001 0.103+0.006
DAM 0.591+0.001 0.97940.001 0.582+0.001 0.086+0.003
DM 0.598+0.001 0.9734+0.000 0.62140.001 0.103+0.006
STL10 DC 0.565+0.001 0.998+0.001 0.583+0.001 0.090+0.007
IDM 0.658+0.001 0.979+0.001 0.667+0.001 0.102+0.007
DAM 0.532+0.001 0.992+0.001 0.549+0.001 0.088+0.009
DM 0.8760.001 0.998+0.000 0.887+0.001 0.090-+0.008
FMNIST DC 0.851£0.001 0.998-+0.000 0.857+0.001 0.0860.002
IDM 0.877+0.001 1.000+0.000 0.887+0.001 0.093+0.007
DAM 0.877+0.000 0.996+0.000 0.881+0.001 0.098-+0.005
DM 0.800+0.000 1.000+£0.000 0.799+0.000 0.111£0.006
SVHN DC 0.687+0.000 1.000+0.000 0.699+0.001 0.115+0.011
IDM 0.831+0.001 0.986+0.001 0.840+0.000 0.122+0.010
DAM 0.782+0.001 1.000=£0.000 0.770+0.000 0.112+0.006
DM 0.503+0.001 1.000+0.000 0.497+0.002 0.070+0.002
TINY DC 0.432+0.002 1.000+0.000 0.421+0.002 0.019+0.001
IMAGENET IDM 0.517+0.004 1.000+£0.000 0.501+0.008 0.042+0.004
DAM 0.482+0.003 1.000+0.000 0.462+0.003 0.042+0.002

o78  Table[7]and [§reports the ASR and CTA of different dataset condensation methods using AlexNetBN
979  as the condensation network across multiple datasets. The results reveal how distilled data behaves
980 under both clean and backdoor settings when applied to AlexNetBN. This provides a comprehensive
981 view of each attack’s robustness and generalization in adversarial contexts.

Table 7: Effectiveness on Different Datasets condensed with AlexNetBN

SNEAKDOOR NAIVE DOORPING
CTA ASR CTA ASR CTA ASR

DM 0.595+£0.001  0.947£0.004 0.608+£0.002 0.093£0.011 0.505+0.001  1.000=0.000
DC 0.222+0.001  0.003+0.001  0.140£0.001  0.000£0.000 0.3194+0.007  0.000£0.000

Dataset Method

CIFARIO  \hvr 070040002 0.946+0.003 0.739-40.002  0.104£0.009 0.639+0.003  1.000+0.000
DAM  0.606+£0.001 072140013 0.609+0.001 0.096:0.010 0.565-£0.001 1.000+0.000
DM 0.562+0.001 0993£0.000 0573£0.004 0.104£0.010 0.557+0.004 1.00040.000
STL10 DC  0.15540.006 0.0034£0.002 017820001 0.00040.000 0.278+0.003 1.000+0.000
DM 0.72340.002  0.98640.002 072940003 0.100£0.007 0.646:0.003  1.00040.000
DAM  0.58440.001 096240003 0.603+0.004 0.10140.010 0.565-£0.000 1.000+0.000
DM 0.822£0.000 1.00040.000 084420001 009040010 0.636£0.005 1.00040.000
EMNIST DC  0.287+0.000 0.000£0.000 017200003 0.32040.018 0.516+0.010 1.000+0.000
DM 0.844+0.001 0.97840.002 08580001 0.113£0.003 0.736:0.001  1.000£0.000
DAM 083140003 1.0004£0.000 0.821-40.002 0.1004£0.003 0.758--0.003 1.000+0.000
DM 0.622£0.020 1.00040.000 06970007 0.12440.006 0.774:0.001 1.00040.000
SVEN DC  0.108+0.001 0.984+£0.001 0095:0.001 0.069+0.010 0.37940.006 1.000+0.000

IDM 0.880£0.001  0.966£0.001 0.886+0.001 0.116£0.010 0.781+£0.002  1.000=0.000
DAM  0.672£0.006 0.999+£0.000 0.7014+0.002 0.112£0.008 0.593+0.003  1.000+0.000

DM 0.463+£0.002 0.920£0.013 0.457£0.003 0.011£0.002 0.485+0.002  1.000=£0.000

TINY DC 0.247£0.003  1.000£0.000 0.269£0.005 0.013£0.003 0.260+0.004  0.000=0.000
IMAGENET IDM 0.260£0.005  0.860£0.013  0.284+0.007  0.000£0.000 0.293£0.006  1.000=0.000
DAM  0.44240.006 0.9724+0.010 0.4304+0.013 0.010£+0.001 0.4194+0.010 ~ 1.00040.000
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Table 8: Effectiveness on Different Datasets condensed with AlexNetBN

SNEAKDOOR SIMPLE RELAX

Dataset  Method CTA ASR CTA ASR CTA ASR
DM 0.595+0.001 0.947+0.004 0.581+0.001 0.183+£0.013 0.603+0.001 0.70440.022
CIFARIO DC  0.22240.001 0.003+0.001 0.169+0.002 0.000+0.000 0.152+0.001 0.047-£0.018
IDM  0.700£0.002 0.946+0.003 0.727+0.001 0.146+0.009 0.252+0.002 0.636-0.024
DAM  0.6064+0.001 0.72140.013 0.584--0.001 0.204+0.024 0.591+0.002 0.978-0.004
DM 0.56240.001 0.993+0.000 0.544+0.002 0.092+0.007 0.550-£0.003 0.7060.010
STLIO DC  0.15540.006 0.003£0.002 0.12140.008 0.117+0.013 0.144+0.003 0.574-0.036
IDM  0.72340.002 0.986+0.002 0.724+0.003 0.102+0.013 0.719+0.002 0.668-0.029
DAM  0.5844+0.001 0.962+0.003 0.568-0.003 0.098+0.010 0.566+0.005 0.872-0.022
DM 0.8224£0.000 1.000+£0.000 0.81240.006 0.952+0.009 0.816:£0.003 1.000+0.000
FVINIST DC  0287+0.000 0.000+£0.000 0.161+0.001 0.895+0.018 0.1710.001 0.646+0.033
IDM  0.844-+0.001 0.978+0.002 0.849+0.001 0.231+0.028 0.856--0.001 0.719+0.015
DAM  0.83140.003 1.000+£0.000 0.806--0.002 0.482+0.128 0.8110.002  1.000+0.000
DM 0.622+0.020 1.000+£0.000 0.484+0.010 0.07140.005 0.672+0.009 0.978=0.007
SVEN DC  0.108+0.001 0.984+0.001 0.157+0.006 0.060+0.006 0.137-+0.004 0.119+0.027
IDM  0.880-+£0.001 0.966+0.001 0.880+0.001 0.118-0.008 0.874-:0.001 1.000+0.001
DAM  0.67240.006 0.999+0.000 0.693+£0.006 0.092+0.007 0.692+0.003 0.996--0.003
DM 0463+0.002 0920+£0.013 0.457+0.003 0.011£0.002 0.449+0.003 0.835+0.017
TINY DC  0247+0.003 1.00040.000 0.200+0.008 0.000+0.000 0.259-+0.002 0.471+0.023
IMAGENET IDM  0.260+0.005 0.860+0.013 0.337+0.006 0.053+0.008 0.313+0.007 0.759+0.058
DAM  0.44240.006 0.97240.010 0443+0.007 0.013+£0.002 0.441+0.004 0.787+0.027

Moreover, we have expanded our evaluation in two key directions: (1) incorporating a larger, higher-
resolution dataset, ImageNette (resolution 3 x 224 x 224), as shown in Table@], and (2) evaluating
key parameters on STL10 (resolution 3 x 96 x 96), including ipc (the number of synthetic samples
per clas), perturbation bound ¢, and poisoning ratio, as shown in Table and[12]

Table Q] reports SNEAKDOOR’s attack performance under DM and DAM on the ImageNette dataset,
demonstrating that SNEAKDOOR remains effective on higher-resolution, larger-scale data. Due to
computational resources constraints, we could not include results for DC and IDM, as a single run
with DC or IDM takes about three to four days, making full tuning impractical. We plan to include
these results in a future version to provide a more complete picture of performance across algorithms
and settings.

Table 9: Attack Performance of SNEAKDOOR on the ImageNette Dataset.

Method ASR CTA PNSR  SSIM IS

DM 0.9809+£0.0000  0.5625+0.0007 68.62  0.6673 2.25e-4

DAM 0.9429+0.0008  0.4598+0.0003  72.16  0.6814 2.08e-4

Table 10: Impact of IPC on Attack Performance

Method ipc ASR CTA PSNR SSIM IS
DM 10 0.8735+0.0009  0.4347+0.0003 73.0381 0.8211 9.05e-5
DM 20 0.9872+0.0005 0.4882+0.0008 73.5021 0.7950 1.32e-4
DM 50  0.9725£0.0000 0.5979+0.0006 70.1216 0.8066 1.4le-4
IDM 10 0.9778+0.0015 0.5965+0.0004 74.1393 0.8199 1.05e-4
IDM 20 0.9573£0.0009  0.6217+£0.0006  73.9608 0.8049 2.39e¢-4
IDM 50  0.9790+£0.0009  0.6582+0.0005 70.1548 0.7554 1.40e-4
DAM 10 0.8910+£0.0015 0.3678+£0.0006  73.6366 0.8106 9.21e-5
DAM 20 0.8902+0.0025 0.4522+0.0004 73.8535 0.8146 9.22e-5
DAM 50  0.9918+0.0006  0.5324+0.0007 73.7877 0.8245  9.14e-5
DC 10 0.9258+0.0035 0.4675+£0.0006 73.1598 0.8072  9.54e-5
DC 20 0.9243+£0.0035 0.5282+0.0002  73.0987 0.8018 9.05e-5
DC 50  0.9975+0.0008 0.5653+0.0011 71.2365 0.7550  7.26e-5

As shown in Table@} varying ipc notably affects CTA, while ASR and STE metrics (PSNR, SSIM,
IS) remain relatively stable. This is expected, as fewer samples per class reduce the fidelity of
clean distribution modeling, impacting generalization. In contrast, ASR stays high across ipc values,
indicating that once embedded, the backdoor remains effective even with limited data. STE metrics
also show minimal change, suggesting the perturbations remain visually subtle and robust.

As shown in Table [T1] increasing the perturbation bound ¢ improves ASR but reduces STE, as
reflected in lower PSNR, SSIM, and IS. This is expected, since a larger ¢ allows stronger and more
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noticeable triggers, enhancing attack success at the expense of stealth. Notably, CTA remains stable
across ¢ values, indicating that stronger triggers do not significantly harm generalization on clean
data. These results highlight a trade-off between ASR and STE controlled by €.

Table 11: Impact of Perturbation Bound € on Attack Performance

Method € ASR CTA PSNR SSIM IS
DM 0.1  0.7755£0.0049  0.6045+0.0009 82.1241 0.9548 2.97e-5
DM 0.2 0.9332+0.0006  0.5824+0.0008 76.9565 0.8769 5.46e-5
DM 0.3 0.9732+0.000 0.5981+£0.0010 74.0076  0.7963  6.32e-5
IDM 0.1  0.5400+£0.0076  0.6627+0.0010  78.7475 0.7914 1.14e-4
IDM 0.2 0.7905+0.0073  0.6624+0.0013  76.4274 0.7931 1.30e-4
IDM 0.3 0.9790+0.0009  0.6582+0.0005 70.1548 0.8054 1.40e-4
DAM 0.1  0.6785+0.0022  0.5278+0.0012  82.0221 0.9594  3.06e-5
DAM 0.2  0.8715+0.0015  0.5389+0.0007 76.8882 0.8916 5.51e-5
DAM 0.3 0.9918+0.0006  0.5324+0.0007 73.7877 0.8245 9.14e-5
DC 0.1 0.6128+0.004 0.5743+0.0002  78.8841 0.7633  7.54e-5
DC 0.2 0.7828+0.0056 0.58+0.0011 73.3082  0.5337 1.06e-4
DC 0.3  0.9980+0.0010 0.5650+0.0010 71.2365 0.5551 7.25e-5
Table 12: Impact of Poisoning Ratio on Attack Performance
Method  poison ratio ASR CTA PSNR SSIM IS
DM 0.10 0.8810+0.0020  0.5986+0.001  74.0086 0.8285  8.82e-5
DM 0.25 0.8970£0.0019  0.6009+0.0009  73.7735 0.7942  9.55e-5
DM 0.5 0.9725+0.0000  0.5979+0.0006  73.0076  0.7963  1.14e-4
IDM 0.10 0.8205+£0.0026  0.6645+0.0015 74.0362 0.7803 2.6le-4
IDM 0.25 0.8615+0.0044  0.6592+0.0007 70.2375 0.7788 1.33e-4
IDM 0.5 0.9790+£0.0009  0.6582+0.0005 70.1548 0.7554 1.40e-4
DAM 0.10 0.5073£0.0035  0.5526+0.0003  74.2949  0.8200 8.10e-5
DAM 0.25 0.7820+£0.0017  0.5488+0.0006  73.5737 0.8429 1l.1le-4
DAM 0.5 0.9918+0.0006  0.5324+0.0007  73.7877 0.8245 9.14e-5
DC 0.10 0.7912+£0.0041  0.5745+£0.0007  69.7258 0.5573 1.32e-4
DC 0.25 0.8627+0.0031  0.5851+0.0005 70.4030 0.5113 1.49e-4
DC 0.5 0.9980£0.0010  0.5650+0.0010  71.2365 0.5551  7.25e-5

As shown in Table[T2] increasing the poisoning ratio improves the ASR, which aligns with the intuition
that more poisoned samples enhance the trigger’s influence in the condensed dataset. However, this
improvement comes with a slight degradation in CTA. Interestingly, the decline in CTA is relatively
limited even at higher poisoning ratios (e.g., 0.5), suggesting that the trigger’s interference with the
clean distribution remains modest. Nevertheless, the reliance on a relatively high poisoning ratio to
achieve optimal attack effectiveness highlights a limitation of the current approach.

C.2 Stealthiness on CIFAR10, SVHN, and FMNIST

We have included stealthiness for the remaining datasets, i.e., CIFAR10, SVHN, and FMNIST. These
additional results offer a comprehensive assessment of SNEAKDOOR’s visual imperceptibility across
diverse datasets. Notably, we omit the Inception Score (IS) evaluation for FMNIST because it is a
single-channel (grayscale) dataset, which is incompatible with the standard IS computation that relies
on a pre-trained Inception network trained on RGB images. Applying IS directly to grayscale data
would yield unreliable and uninformative results.

C.3 Effectiveness on Cross Architectures

We further include cross-architecture evaluations with AlexNetBN. This setting tests the transferability
of the backdoor attack to a moderately different network from the condensation model. The results
offer additional evidence of the generalization and robustness of SNEAKDOOR across architectures.
This property is critical for practical deployment in real-world scenarios.

C.4 Visual Analysis of Trigger Stealthiness

We provide visualizations of original images after injecting the trigger during inference. Figure[5]
illustrates the effect following trigger injection. The images demonstrate the trigger’s subtlety and
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Table 13: PSNR, SSIM, and IS on CIFAR10, SVHN, and FMNIST

Method  Backdoor CIFAR-10 SVHN FMNIST
PSNR SSIM 1S PSNR SSIM IS PSNR SSIM IS
SNEAKDOOR | 73.94 0.61  5.80e-05 | 74.68 0.77  3.90e-05 | 58.41 0.39 -
Doorping 59.85 0.08  2.30e-04 | 60.27 0.08  2.08e-04 | 55.68 0.12 -
DM Relax 6097 -0.01 248e-04 | 6147 -0.14 245e-04 | 51.88 -0.07 -
naive 63.67 0.15  3.56e-04 | 62.27 0.10  4.60e-04 | 54.15 0.10 -
Simple 60.98 0.69  8.10e-05 | 61.59 0.74  7.95e-05 | 54.01 0.00 -
SNEAKDOOR | 70.48 046  7.10e-05 | 73.15 042  8.10e-05 | 57.39 0.24 -
Doorping 59.22 0.05 2.43e-04 | 61.25 0.06  2.00e-04 | 60.11 0.52 -
DC Relax 61.37 0.04 2.38e-04 | 62.17 -0.04 243e-04 | 52.15 -0.11 -
naive 64.46 0.18  3.62e-04 | 60.45 0.04 4.92e-04 | 54.21 0.06 -
Simple 60.74 0.66  8.70e-05 | 61.44 0.72  8.08e-05 | 53.99 0.00 -
SNEAKDOOR | 74.88 0.77  4.40e-05 | 72.19 0.68  6.30e-05 | 57.16 0.10 -
Doorping 59.23 0.10  2.23e-04 | 59.66 0.06  2.17e-04 | 57.26 0.06 -
IDM Relax 61.18 0.02  2.46e-04 | 61.17 -020 2.70e-04 | 52.04 -0.08 -
naive 64.23 0.14  3.44e-04 | 62.05 0.07  5.02e-04 | 54.15 0.05 -
Simple 61.05 0.69  8.60e-05 | 61.21 0.70  8.00e-05 | 54.23 0.00 -
SNEAKDOOR | 74.40 0.74  4.50e-05 | 7891 0.74  4.30e-05 | 57.39 0.24 -
Doorping 59.52 0.08 1.62e-04 | 59.67 0.08 1.05e-04 | 57.16 0.10 -
DAM Relax 61.19 0.02  2.31e-04 | 6236 -0.24 2.04e-04 | 51.83 -0.10 -
naive 62.99 0.13  4.53e-04 | 60.43 0.04  5.39e-04 | 55.07 0.12 -
Simple 60.85 0.64  8.70e-05 | 61.78 0.75  7.95e-05 | 54.07 0.00 -

Table 14: Cross-architecture CTA and ASR condensed with AlexNetBN

DM DC IDM DAM
CTA ASR CTA ASR CTA ASR CTA ASR

VGGI11 0.544+0.000 0.96140.000 0.20940.000 0.009-+0.000 0.6734-0.000 0.945+0.001 0.54240.000 0.73340.001
CIFAR10  ResNet 0.495+0.001 0.91540.002 0.186=0.000 0.00940.000 0.671+0.001 0.926+0.001 0.50040.001 0.491-0.001
ConvNet 0.585+0.001 0.807+0.002 0.216+0.001 0.004£0.001 0.6384-0.001 0.951£0.002 0.582+0.001 0.45740.005

VGGI1 0.527£0.001 0.921£0.000 0.19540.001 0.012£0.001 0.6944-0.000 0.947+£0.002 0.547+0.001 0.92440.002
STL10 ResNet  0.41340.001 0.999:£0.000 0.16040.001 0.011+£0.001 0.644+0.001 0.99140.001 0.445+0.002 0.99540.000
ConvNet 0.532+0.000 0.84140.002 0.180+0.000 0.152-+0.005 0.69340.001 0.828+0.011 0.55540.001 0.99740.001

TINY VGGI11 0.427+0.001 0.92040.000 0.17440.002 0.860-0.000 0.4354-0.003 0.588+0.024 0.437+0.002 0.96040.000
IMAGENET ResNet  0.361+0.002 0.800£0.000 0.22740.002 0.716=0.008 0.22840.004 0.360+0.036 0.391+0.002 1.0004-0.000
ConvNet 0.443+0.003 0.604+0.008 0.21740.003 0.932£0.010 0.3354-0.009 0.604+£0.015 0.430£0.004 0.88440.015

Dataset  Network

stealthiness. Changes to the original images are minimal and barely perceptible. Despite this, the
trigger effectively activates the backdoor in the model. These visual results emphasize the challenge
of detecting such backdoors through simple inspection. They also underscore the importance of
robust defenses against stealthy triggers.

C.5 Hyper-parameter Settings

We have provided the full set of optimization hyperparameters used for SNEAKDOOR on the STL10
dataset across four condensation baselines: DM, DC, IDM, and DAM, including learning rates,
number of epochs, batch sizes, etc. These details are listed in Tab.5 - Tab.8, allowing replication of
our experiments. In addition, we will release the full source code in a future version of the paper. This
will include the complete training pipeline for both the trigger generator and dataset condensation
procedures. Our goal is to ensure that the community can easily reproduce and extend our work.

The overall method is divided into four stages:

1. Training the Surrogate Model. The surrogate model serves two key purposes: (i) estimating
inter-class boundary vulnerability (ICBV), and (ii) guiding the training of the trigger generator.

2. Training the Trigger Generator G4. The generator learns to produce input-aware perturbations that
cause misclassification.

3. Malicious Condensation. This phase incorporates the trigger signal into the synthetic dataset via a
standard condensation framework.

4. Downstream Model Training. Standard training on the poisoned condensed dataset using typical
optimization settings.
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Backdoored

Figure 5: STL10 Stealthiness Illustration

Table 15: Hyperparameters for Surrogate Model Training

Hyperparameter Value
Optimizer SGD
Batch size 256
Learning rate 0.01
Momentum 0.9
Weight decay 0.0005
Epochs 50

Table 16: Hyperparameters for Trigger Generator Training

Hyperparameter Value
Learning rate Se-5
Perturbation scaling factor o 0.25
Maximum perturbation bound ¢ 0.5

Table 17: Hyperparameters for Malicious Dataset Condensation

Hyperparameter

Value

Images per class (IPC)
Condensation epochs
Synthesis learning rate
Batch size

Optimizer

50
20000
1.0
256
Adam

Table 18: Hyperparameters for Downstream Model Training

Hyperparameter Value
Optimizer SGD
Batch size 256
Learning rate 0.01
Momentum 0.9
Weight decay 0.0005
Epochs 10000
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