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Abstract

Large language models present opportuni-
ties for innovative Question Answering over
Knowledge Graphs (KGQA). However, they
are not inherently designed for query genera-
tion. To bridge this gap, solutions have been
proposed that rely on fine-tuning or ad-hoc ar-
chitectures, achieving good results but limited
out-of-domain distribution generalization. In
this study, we introduce a novel approach called
Dynamic Few-Shot Learning (DFSL). DFSL
integrates the efficiency of in-context learning
and semantic similarity and provides a gener-
ally applicable solution for KGQA with state-
of-the-art performance. We run an extensive
evaluation across multiple benchmark datasets
and architecture configurations.

1 Introduction

The growth of the Semantic Web has led to the
creation and storage of vast amounts of structured
knowledge (Hitzler, 2021; Shadbolt et al., 2006),
organized into massive Knowledge Graphs (KGs)
such as Wikidata (Pellissier Tanon et al., 2016),
DBpedia (Lehmann et al., 2014), and FreeBase
(Bollacker et al., 2008). The scale of these KGs,
with over 109 million items in Wikidata alone,! has
made extracting relevant information from them
increasingly challenging. This led to the emer-
gence of Knowledge Graph Question Answering
(KGQA), whose goal is to answer natural language
questions posed over KGs.

A typical KGQA system consists of three main
components: Entity Linking (EL), Relation Link-
ing (RL), and Query Genration (QG). Starting from
a natural language question ¢, EL. and RL return a
set of entities £, and relations R, therein. The QG
module, crucially, takes g, £, and R, and generates
a SPARQL query that produces the answer.

1https://www.wikidata.org/wiki/Wikidata:
Statistics

This paper focuses on the QG component. State-
of-the-art approaches to SPARQL query genera-
tion are based on fine-tuning language models like
T5 (Qi et al., 2024), or ad-hoc architectures lever-
aging LLMs and dependency trees (Rony et al.,
2022). Despite their success, such approaches have
limited flexibility and scalability. Fine-tuning in
particular may be computationally expensive and
struggle with out-of-domain distributions.

This paper proposes a novel approach to KGQA,
leveraging in-context learning with Large Lan-
guage Models (LLMs). The main intuition is that a
significant number of errors could be addressed by
making better use of the examples in the training
set. Our methodology, termed Dynamic Few-Shot
Learning (DFSL), leverages semantic search to re-
trieve similar questions from the training set and
enrich the prompt accordingly.

To evaluate the performance and robustness of
DFSL, we run experiments on two widely-used
Knowledge Bases, DBpedia and Wikidata, using
four publicly available datasets: QALD-9, based
on DBpedia, and QALD-9 plus, QALD-10 and
LC-QuAD 2.0, based on Wikidata. As backbones,
we use three state-of-the-art LLMs: Mixtral 8x7B,
Llama-3 70B, and CodeLlama 70B. Our experi-
mental results demonstrate that our model achieves
new state-of-the-art results, with significant advan-
tages in terms of speed and efficiency. We also run
ablation studies to gauge the effectiveness of the
approach without gold information from the EL
and RL modules.

Our main contributions are: (1) a novel approach
to KGQA, called DFSL, that leverages semantic
search for dynamic few-shot learning; (2) state-
of-the-art results by a significant margin in most
benchmarks; (3) an extensive evaluation and abla-
tion study to investigate quantitatively and qualita-
tively the impact of hyperparameters, backbones,
embedding methods, answer selection strategies
and gold entity/relation information.
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Question: Which country was Bill Gates born in?

Entities: http://www.wikidata.org/entity/05284 ,E, Ry
( Relations: http://www.wikidata.org/prop/direct/P19, ————p
http://www.wikidata.org/prop/direct/P17

In-Context Prompt
The task involves translating questions from English into
SPARQL queries for the Wikidata knowledge graph. The
queries must follow specific guidelines to ensure
accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations
exclusively to construct the query accurately. Do not use
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any other entities or relations.
3. Examples are provided below for guidance.

Examples:

#i4
Question: Where was Bach born?

Golden entities:
http://www.wikidata.org/entity/Q1339 (Johann
Sebastian Bach)
Golden relations:
\_)httpz Jwww.wikidata.org/prop/direct/P19 (place of birth)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd: <http:
DISTINCT ?uri WHERE { wd:Q1339 wdt:P19 2uri .
44

}</SPARQL> |

b

Gold Entities:
\—) http://www.wikidata.org/entity/Q5284 (Bill Gates)

Gold Relations:
http://www.wikidata.org/prop/direct/P19 (place of birth),

www.wikidata.org/entity/> SELECT | —

—>

LLM

v

Multi-Query Generation

\4

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:05284
wdt:P19 ?uri . ?uri wdt:P17 2uri . }

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:05284

wdt:P19 ?uri . ?uri wdt:P17 2uri2 .

Answer
Selection

J

SPARQL
Engine

http://www.wikidata.org/prop/direct/P17 (country

Query:

(;—)-httpz /www.wikidata.org/entity/Q30 (United States of America)

Figure 1: Sketch of DFSL. Given a question, its entities and its relations, k-most similar examples are retrieved
from a text-to-SPARQL collection S and injected into the in-context prompt. Then, the LLM generates one or more
queries that are all executed by a SPARQL engine. An answer selection strategy identifies which response to pick.

2 Related work

Early research in KG query generation was rule-
based (Guo et al.,, 2005; Owens et al., 2008),
template-based (Zenz et al., 2009; Unger et al.,
2012) or search-based. For example, Gorlitz et al.
(2012) developed a query generation heuristic to
predict the final SPARQL representations by ex-
haustively checking all possible combinations of
query patterns. However, manual or semi-manual
approaches hit scalability issues with KGs like
WikiData and DBpedia. More recent approaches
belong to two main streams: information-retrieval
based methods and Text-to-SPARQL approaches.

Information Retrieval KGQA. This family of
methods involves the identification of sub-graphs
relevant to gq. Approaches include divide-and-
conquer (Kim et al., 2023), fact retrieval based on
linked entities (Baek et al., 2023), more complex
methods involving hops, relation predictions, and
triple sampling (Wu et al., 2023), or Evidence Pat-
tern Retrieval (EPR) through structural dependency
modeling (Ding et al., 2024).

Text-to-SPARQL. With the recent wave of
decoder-based LLMs such as GPT (Brown et al.,
2020), Mixtral (Jiang et al., 2024), and LLamA
(Touvron et al., 2023), generative Al was also used
to translate g into SPARQL queries. Notably, Zou
et al. (2021) introduced a text-to-SPARQL model
that leverages a relation-aware attention decoder
and a pointer network encoder, incorporating three
separate scaled dot-product attention mechanisms
to generate SPARQL queries that capture entity,
relation, and keyword representations. Banerjee
et al. (2022) experimented with various models,
including T5 (Raffel et al., 2020), BART (Lewis
et al., 2019), and Pointer Generation Networks (See
et al., 2017), to explore their efficacy in KGQA
tasks. Rony et al. (2022)’s SGPT employs a stack
of transformer encoders to extract linguistic fea-
tures from ¢ and GPT-2 as a decoder. However,
this architecture is limited by its inability to cap-
ture connections among entities and relations in the
underlying knowledge graph, leading to errors in
generating triple sequences in the final SPARQL
queries. Pliukhin et al. (2023) presented a one-
shot generative approach, where the prompt is aug-



mented with a KG fragment required to construct
the query and a question-subgraph query example.

Despite promising results, these architectures
are prone to systematic errors. One such error, the
so-called “triple-flip", refers to the reversal of sub-
ject and object positions in the generated SPARQL
triples, yielding wrong, often empty answers. Qi
et al. (2024) addressed this issue by developing
TSET, a fine-tuned TS5 model with a pretraining
stage called Triplet Structure Correction. This ap-
proach aims to deepen the model’s understanding
of triple order, establishing state-of-the-art perfor-
mance on major KGQA datasets.

Example Selection in Few-Shot Learning. In-
context learning (ICL) is a paradigm that leverages
reasoning through analogies. A task description,
question, and demonstration context are usually
concatenated to create a prompt, which is then in-
put into an LLM for prediction. Unlike fine-tuning,
ICL performs predictions without gradient updates
(Dong et al., 2023). Few-Shot Learning is a type
of ICL where the demonstration context includes
a few examples. Owing to the effectiveness of
ICL and the obvious advantage of building systems
that don’t need domain-specific training, a great
deal of research and engineering efforts have been
devoted to designing suitable prompts. ICL has
been successfully applied to many NLP problems,
including QA (Chada and Natarajan, 2021; Chen
et al., 2023) and KGQA (Li et al., 2023). Some
studies have also focused on the selection of in-
context examples. In particular, Liu et al. (2022)
developed KATE, an unsupervised retriever that
utilizes k-nearest neighbors and distance metrics
(e.g., L2 distance and cosine similarity) to select
in-context examples for tasks such as sentiment
analysis, table-to-text generation, and question an-
swering. Levy et al. (2023) explored the incor-
poration of diverse demonstrations into prompts
for compositional semantic parsing task, demon-
strating that such diversity leads to better structural
coverage in target utterances. Kim et al. (2022)
leveraged the generative capabilities of pre-trained
language models to generate demonstrations for
each class in downstream tasks, conditioned on test
inputs and class information. Gonen et al. (2022)
found that selecting examples based on perplex-
ity, in particular lower perplexity, is an effective
strategy. However, to the best of our knowledge, ex-
ample selection has not yet been applied to KGQA.

Text-to-SQL. A cognate domain, text-to-SQL,
aims at the translation of natural language ques-
tions to SQL queries. There, Rajkumar et al. (2022)
demonstrated a zero-shot and few-shot approach
using simple prompts, achieving lower results com-
pared to fine-tuned approaches with models such
as GPT-3 (Brown et al., 2020) and CODEX (Chen
et al., 2021). Nan et al. (2023) introduced various
strategies for selecting examples based on similari-
ties/dissimilarities, selecting similar questions with
the same difficulty level and dissimilar questions
by using k-means clustering to obtain k diverse
examples close to each centroid. More recently,
Zhang et al. (2023) proposed an automatic chain-
of-thought (Wei et al., 2023) approach, where ques-
tion slices are matched with all possible table and
column names to identify the most relevant ones for
a given question, using models such as GPT 3.5 and
GPT 4. In spite of the similarities between text-to-
SQL and text-to-SPARQL, the methods developed
so far for the former are not applicable in the lat-
ter, where instead of a data model with a relatively
small-sized set of tables and columns, the domain
is modeled by a large-scale, semi-structured KG.

3 Method

Given a collection of natural language questions Q
and a knowledge graph G := (£, R, F), where £
are entities, R are relations,and F C E X R x £
are facts, KGQA is the problem of answering ques-
tions in @ based on G. KGQA can be framed
as a text-to-SPARQL task, where a question ¢
must be translated into a SPARQL query s, to be
executed on G by a SPARQL engine, to return a
(possibly empty) answer a. The entities and re-
lations in ¢, denoted as &, and R4, may be, and
usually are, extracted from ¢ before generating s,.
Hence, query generation can be tackled as a con-
ditional text generation problem given ¢, &, and
R4. Within the scope of ICL, P is a pre-trained
LLM and the conditional input £;, R4, g is com-
bined with other contextual information C, such as
additional instructions, guidelines, constraints and
demonstrations, all expressed via natural language
text. Accordingly, the generated query is:

sq = argmax Py(s|C, &, Ry, q). (1)

3.1 Dynamic Few-Shot Retrieval

In few-shot ICL, the choice of demonstrations to
inject in the prompt can significantly affect perfor-



Approach Backbone QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9DB
Zero-shot Learning 49.90 33.76 40.66 65.73

Few-shot Learning Mixtral 7x8 54.80 (+4.90)  50.26 (+16.50) 61.04 (+20.38)  63.86 (-1.87)
DFSL 71.75 (+21.85) 49.90 (+16.14)  81.81 (+41.15) 72.74 (+7.01)
Zero-shot Learning 63.01 58.31 54.21 70.49

Few-shot Learning Llama-3 70B 67.69 (+4.68) 51.28 (-7.03) 68.52 (+14.31)  68.84 (-1.65)
DFSL 73.60 (+10.59)  56.59 (-1.72)  81.93 (+27.72)  72.66 (+2.17)
Zero-shot Learning 45.94 33.36 38.40 66.43

Few-shot Learning ~ CodeLlama 70B  64.49 (+18.55) 57.38 (+24.02) 64.46 (+26.06) 72.67 (+6.24)
DFSL 76.59 (+30.65) 57.69 (+24.33)  85.45 (+47.05) 75.14 (+8.71)

Table 1: Comparison between zero-shot, few-shot and DFSL with different backbones. Absolute F1 gains with

respect to the naive zero-shot approach are reported between parenthesis.

Approach QALD-9 Plus QALD-10 LC-QUAD2.0 QALD-9DB
DFSL 76.59 57.69 85.45 75.14
DFSL-MQP; g 73.67 58.85 85.06 73.25
DFSL-MQPgg 74.40 58.34 85.38 73.92
DFSL-MQ g 83.21 60.48 85.54 72.06
DFSL-MQkgg 84.45 (+7.86) 62.20 (+4.51) 89.10 (+3.65) 77.89 (+2.75)

Table 2: Multi-query Generation: comparing DFSL-MQ with DFSL and Multi-query prompting baselines. Absolute
F1 gains with respect to DFSL are reported for the best performing configuration.

mance. Usually, few-shot examples are predeter-
mined representative instances of the task, hand-
picked during prompt design. Conversely, we aim
to retrieve good examples dynamically, based on
their relevance to the input question. Inspired by
Liu et al. (2022), we adopt a retrieval approach
based on the similarity between a question ¢ and a
set of previously answered text-to-SPARQL exam-
ples collected in a storage S (see Figure 1), where
each example is a tuple including a question z, its
entities &, and relations R, and the associated
SPARQL query s,. The question, its entities and
relations (g, &;, R,) are mapped onto a vector rep-
resentation e, € R? using a sentence encoder. To
properly feed such information to an encoder-only
LM, we concatenate question, entities and relations
in a single input sequence q := [¢, &y, R,|. Like-
wise, we encode each example z € § into a vector
e; € R? and then compute the similarity between
the target question and the storage:

2

score(q,x) = sim(eq, ez),Vr € S,

where the sim is a similarity function. Based on
such a scoring, we retrieve the k-most similar ex-
amples S and include them as demonstrations in
the in-context prompt.

3.2 In-Context Prompt

The in-context prompt has three parts. The first is
the task description, instructing the LLM with a
numbered list of guidelines on the output format
and on the available information. The second, high-
lighted in Figure 1 with a green block, contains the
k retrieved demonstrations. Each demonstration
consists of a question, its entities and relations, de-
noted as gold entities/relations, all paired with their
SPARQL query delimited by <SPARQL></SPARQL>
tags. The ### symbol delimits each single exam-
ple. The final part is the input question, associated
with its gold entities and relations. The answer
returned by the LLM prompted as such is then
parsed to extract the generated text enclosed in
<SPARQL></SPARQL> tags. The resulting query s,
is executed by a SPARQL engine on G to yield
the answer to q. We call our approach Dynamic
Few-Shot Learning (DFSL).

3.3 Multi-Query Generation

A typical challenge faced by LLMs in SPARQL
query generation is the understanding of what is
the subject and what is the object of a relation, an
information the model does not have. This problem
is called triple-flip error (Qi et al., 2024). LLMs of-
ten end up in swapping the subject with the object



in the query, almost choosing one way or the other
randomly. Thanks to DFSL, this issue may be alle-
viated whenever there are similar demonstrations
in the in-context prompt that clarify the subject-
object roles. To further reduce triple-flip errors,
we propose the generation of multiple SPARQL
queries by retaining all the final hypotheses gener-
ated during beam search. The model uncertainty in
placing subject and object is likely to be reflected
in the beam search exploration. Intuitively, both
triple-ordering hypotheses are considered plausible
by the model. Thus, instead of just returning the
most probable sequence s according to Equation 1,
we keep the whole b queries {sq,1,. .., ¢} formu-
lated by beam search. We use DFSL-MQ to denote
such a multi-query extension of DFSL.

Answer Selection. Executing multiple queries in-
evitably leads to multiple possible answers. There-
fore, we must define an answer selection criterion.
We designed two heuristics: Largest Set (LS) and
First Set (FS). LS executes all the b queries, obtain-
ing with each query s, ; a (possibly empty) answer
set Aj;. LS then selects, among { Ay, ..., Ay}, the
largest one?, i.e:

A = arg rrfx(|«41!, ey A,

the rationale being that incorrect candidates will
likely have empty results. However, LS can be mis-
led into selecting answers from under-constrained
queries that return many irrelevant instances. FS
adheres to the natural beams ordering by selecting
the first query that yields a non-empty answer set.

4 [Experiments

In this section, we aim to study the effects of each
component involved in our DFSL approach. We
evaluate DFSL and its extension DFSL-MQ on four
KGQA datasets. In our investigation, we consider
different backbones and we compare with multiple
baselines and state-of-the-art solutions.

4.1 Datasets

To assess the flexibility and robustness of our
approach, we evaluate it on four heterogeneous
KGQA benchmarks based on two different Knowl-
edge Graphs (Wikidata, DBpedia).

QALD-9 DB. QALD-9 (Ngomo, 2018) is a
dataset from the Question Answering over Linked

2In case of ties, we take the first largest set.

Data (QALD) challenge series. It comprises 408
training questions and 150 test questions. Unlike
the other KGQA benchmarks, the SPARQL queries
are meant for a DBpedia Knowledge Graph. We
refer to it as QALD-9 DB to emphasize that.

QALD-9 plus. QALD-9 plus extends QALD-9
on new languages and transfers SPARQL queries
from DBpedia to Wikidata. Although some queries
were not portable to Wikidata due to the absence of
corresponding information, it still comprises 371
training questions and 136 test questions. In our
experiments, we only consider English questions.

QALD-10. QALD-10 (Usbeck et al., 2023) is
the latest dataset in the QALD series, designed to
increase the complexity of gold SPARQL queries.
It consists of 412 training questions extracted from
QALD-9 plus Wikidata. The test set was created
from scratch, comprising 394 test questions that ex-
press real-world information needs. Test questions
significantly differ from those in training.

LC-QuAD 2.0. LC-QuAD 2.0 (Dubey et al.,
2019) is a large-scale dataset grounded on Wiki-
data. It consists of 30,226 simple and complex
questions: 24,180 in training, and 6,046 in test.
Questions are diverse. They include single- and
multi-fact, boolean, count, and other query types.
LC-QuAD 2.0 allows us to gauge the DFSL perfor-
mance against a large text-to-SPARQL storage.

4.2 Backbones

Mixtral 8x7B. Based on the Sparse Mixture of
Experts (SMoE) architecture (Fedus et al., 2022),
Mixtral 8x7B (Jiang et al., 2024) is a 46.7B param-
eters model. Among the backbones adopted in this
paper, Mixtral is the smallest. Moreover, thanks
to the characteristics of its SMoE architecture, less
than 13B are active at each inference step, making
Mixtral particularly efficient.

Llama-3 70B. Built upon the Llama architec-
ture (Touvron et al., 2023), Llama-3 70B has been
trained on 15T tokens, a 650% increase from its
predecessor, Llama 2. At the moment we are writ-
ing, Llama-3 70B is one of the best-performing
open-weights LLMs available.

CodeLlama 70B. Initialized from Llama2 70B,
CodeLlama (Roziere et al., 2024) is a specialized
version fine-tuned on 1T tokens of code-heavy data.
Therefore, we expect CodeLlama to be particularly
suitable for SPARQL query generation.
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Figure 2: Comparison of Embeddings: DFSL (in orange) encoding that incorporates question, entities and relations
versus an embedding solely based on the question ¢ (in blue).

4.3 Baselines

Plain Question. This is a naive baseline where
we feed an LLM only with the task description and
the question g. Without in-context examples nor
any entity or relation associated with ¢, the LLM
can only rely on its parameter memory.

Zero-Shot Learning. Here we do not provide
any demonstrative example in the prompt. How-
ever, unlike the plain question baseline, we do in-
ject golden entities and relations into the prompt.
With reference to Figure 1, the In-Context prompt
remains the same but without the green-like block
containing the demonstrations.

Few-Shot Learning. The prompt is filled with a
single set of k manually selected examples, used for
all the questions in the test set. The examples were
chosen to maximize diversity and cover different
kinds of queries?.

Multi Query Prompting (DFSL-MQP). As an
alternative to our proposed multi-query generation
(DFSL-MQ), this baseline consists in a naive multi-
query prompting strategy. Essentially, we ask the
model to generate more queries to answer the ques-
tion. To ease the creation of inverted subject-object
queries that can solve triple-flip errors, we extend
the prompt to explicitly ask the model to produce
this kind of SPARQL queries. Answer selection
uses LS and FS heuristics, like with DFSL-MQ.

4.4 Experimental Setup

Implementation. In our experiments, the training
set of each dataset serves as storage for the re-
trieval of the k£ most similar examples (see the next

3The chosen examples and more details are provided in
Appendix B.

paragraph for details on & tuning) with DFSL. Ex-
amples are encoded with a sentence transformer®,
all—mpnet-base—vzs, and sim is defined as the co-
sine similarity. Inference is performed via beam
search in both DFSL, where b is set to 3, and DFSL-
MQ, with b set to 10. All the experiments were run

on a cluster of 4 NVIDIA A100 GPUs.
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Figure 3: Impact of the number of in-context examples
on the four benchmarks.

Number of Few-shot Examples. We first an-
alyzed how the number of few-shot examples k&
retrieved by DFSL affects the performance. We
chose among k = {1, 3,5, 7} and evaluated DFSL
with Llama 3 70B backbone on the four datasets.
The results shown in Figure 3 suggest that values
of k greater than one perform comparably well
on smaller benchmarks, while on LC-QUAD 2.0,
where there are about 25 thousands examples as
storage, increasing k seems to be beneficial. This
may be due to the increased likelihood of finding
similar examples in larger datasets as k grows. We
set & = 5 for all the forthcoming experiments,
which is a good trade-off across all the datasets.

‘https://www.sbert.net/index.html
5https://huggingface.co/sentence—transformers/
all-mpnet-base-v2
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Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9DB
Plain Question 0.08 0.02 12.00 16.42
BART (Banerjee et al., 2022) - - 64.00 -
PGN-BERT-BERT (Banerjee et al., 2022) - - 86.00 -
SGPT (Rony et al., 2022) - - 89.04 67.82
TSET-small (Qi et al., 2024) 72.86 47.15 94.00 -
TSET-base (Qi et al., 2024) 75.85 51.37 95.00 -
Zero-shot Learning 45.94 33.36 38.40 66.43
Few-shot Learning 64.49 57.38 64.46 72.67
DFSL 76.59 57.69 85.45 75.14
DFSL-MQ beam FS 84.45 (+8.60)  62.20 (+10.83)  89.10(-5.90)  77.89 (+10.07)

Table 3: DFSL and ICL approaches vs state-of-the-art fine-tuned models.

Prompt. The prompt illustrated in Figure 1 con-
stitutes the default template in our experimenta-
tions. However, slight variations are required in
certain cases. For example, when running experi-
ments on DBpedia knowledge graph, we replace
the Wikidata reference with DBpedia in the first
text segment. When we study the absence of gold
information instead, we remove all the references
to gold entities/relations (according to the ablation)
from the entire prompt. There are no differences in
the prompts layout when running few-shot-learning
baseline experiments. In zero-shot learning, only
the in-context examples any reference to them are
removed, all else being equal.

Evaluation metric. We follow a standard F1
score evaluation in KGQA benchmarks. The F1 is
computed between the answer set returned by the
target SPARQL query and the predicted one. When
both the queries return an empty set, we assign an
F1 score of 1. The F1 scores of all the examples
are then averaged.

4.5 Results

Impact of Dynamic Examples. To measure the
importance of retrieving few-shot examples dynam-
ically, we compare DFSL on different backbones
against Zero-Shot and Few-Shot Learning base-
lines. Results are outlined in Table 1.

In terms of backbones, Llama 3 consistently
outperforms both Mixtral and CodeL.lama in zero-
shot learning scenario, whereas in few-shot, results
are generally comparable between Llama-3 and
CodeLlama. Such a strong Llama 3 zero-shot per-
formance may be caused by some sort of data con-
tamination, however we leave such an investigation
for future works.

Both few-shot learning and DFSL generally
yield substantial gains with respect to zero-shot
baseline on all the backbones and datasets. An

exception occurs in QALD-10 with Llama-3. No-
tably, when comparing DFSL and Few-shot Learn-
ing baseline, we can see our approach improving F1
scores by a large margin in LC-QUAD 2.0, QALD-
9 Plus and QALD-9 DB, with F1 increasing up to
21 absolute points®. In QALD-10 instead, where
the test set has a different distribution from its train-
ing, there are no significant differences between
DFSL and the standard few-shot learning approach.
Indeed, an approach like DFSL brings little benefits
when the storage only contains unrelated examples.

Overall, DFSL with CodelLlama3 achieved the
greatest performance with respect to all the other
configurations. Therefore, we adopt CodeLlama as
our backbone in the following DFSL experiments.

Impact of Multi-Query Generation. Here we
investigate DFSL-MQ, the multi-query approach
extending DFSL. We evaluate both answer selec-
tion strategies, LS and FS, and compare them
against the plain DFSL and the multi-query prompt-
ing baseline described in Section 4.3. All the re-
sults are outlined in Table 2.

Having multiple queries is not necessarily bene-
ficial. Indeed, the multi-query prompting baseline
under-performs in three datasets out of four with
respect to (single query) DFSL, regardless of the an-
swer selection method adopted. DFSL-MQ instead
proves to be generally beneficial. Both Largest Set
and First Set heuristics are effective when the hy-
potheses come from the beams. Furthermore, FS
consistently outperforms LS, even by substantial
margins in QALD-9 DB.

In-context Learning vs Fine-tuning. Up to this
point, we have assessed DFSL in the scope of
In-Context Learning approaches. In Table 3 in-
stead, we compare our approach against state-of-

®Some qualitative examples illustrate the benefits of DFSL
over few-shot learning in Appendix A (see Table 6).



the-art models trained and/or fine-tuned for specific
downstream KGQA datasets. Without any training,
DFSL-MQ outperforms current state-of-the-art ap-
proaches in three out of four benchmarks, namely
QALD-9 Plus, QALD-10 and QALD-9 DB, even
with the single query DFSL setup. DFSL-MQ does
not obtain state-of-the-art results in LC-QUAD 2.0,
the dataset most affected by triple-flip errors. This
means that multi-query generation only alleviates
the issue, but the problem still remains.

4.6 Ablation studies

Different Example Encoding. As described in
Section 3.1, to compute the embeddings we con-
catenated the textual input made of the question and
its list of entities and relations. Here, we gauge the
impact of this additional information on DFSL per-
formance. In Figure 2 we compare DFSL, with a
variant where we only embed the natural language
question ¢, without any additional data concate-
nated. The evaluation carried out in all the bench-
marks and with all the backbones, demonstrates
that such information improves the quality of the
generated queries.

Approach QALD-9 DB
Plain Question 16.42
DFSL 75.14
DFSL w/o R, 56.62 (-18.56)
DFSL w/o &, 60.92 (-14.22)

DFSL w/o £, Ry 49.59 (-25.55)

Table 4: DFSL in the absence of entities and/or rela-
tions.

Absence of gold information. In KGQA, text-
to-SPARQL generation usually relies not only on
the question itself, but also on entities and relations
associated to it. Here we assess DFSL when either
the entities &, or the relations R, or both are miss-
ing. The information is removed throughout the
entire process. For example, when removing enti-
ties, we discard them from both the storage and the
prompt. Even the embeddings for the retrieval are
computed by encoding an input without any entity
concatenated in g, i.e. becoming g = [¢, R,]. We
report this on QALD-9 DB dataset. By observing
the results outlined in Table 4, it is clear that, with-
out full knowledge of the entities and the relations
required for generating the query, the LLM perfor-

mance drops significantly. Nonetheless, even in
the case where no information is given (DFSL w/o
&y, Rq), the presence of dynamic demonstrations
is essential, yielding a 33+ absolute F1 increase
compared to plain question baseline.

5 Conclusion

In this paper, we introduced DFSL, a novel ap-
proach to Knowledge Graph Question Answering.
This method leverages semantic search to dynami-
cally retrieve relevant examples from the training
set, enriching the prompt for LLMs to improve
the generation of SPARQL queries. We conducted
comprehensive experiments on four publicly avail-
able datasets based on two widely-used KBs, DB-
pedia and Wikidata. By employing three different
state-of-the-art LLMs as backbones, we demon-
strated that DFSL achieves superior performance
compared to both standard in-context learning tech-
niques and state-of-the-art models fine-tuned on the
downstream task. We further conducted an exten-
sive evaluation of DFSL through ablation studies to
measure the impact of hyper-parameters, different
backbones, embedding methods, answer selection
strategies, and the inclusion or exclusion of entities
and relations information associated to a question.
The code will be released publicly upon acceptance
of the paper. In the future, we plan to study the
effectiveness of DFSL in cognate domains like text-
to-SQL.

Limitations

We recognize some limitations in our work. Our ex-
periments are all on English-based datasets, where
notoriously LLMs are better performing. Moreover,
the massive pre-training of those LL.Ms on a vast
portion of the Web, may expose those models to
unintended data contamination. Experiments only
focused on LLMs with large number of parame-
ters, without investigating the behaviour of smaller
models. To encode examples, we limited the in-
vestigation to what kind of text to encode (just
the question, or the question and its entities and
relations), without exploring different embedding
models, similarity criteria or other input concate-
nation strategies. We leave these investigations to
future work.
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A Qualitative Analysis

In this appendix we provide some qualitative analyses of DFSL and DFSL-MQ. First of all, we report
some examples in Table 6 that highlight the benefits from introducing similar examples with DFSL with
respect to standard few-shot learning approach. Then, we show some examples in Table 7 where the
multi-query approach solves triple-flip errors. In Table 5 instead, we showcase errors caused by employing
LS answer selection heuristic. Notably, by choosing larger sets, LS sometimes selects queries that are
often relegated to latter positions in the beam hypotheses, which tend to be more general, thus more prone
to returning a greater number of results.

Question Target Query Answer Predicted Query Beam
Selection
What is manufactured | SELECT ?answer WHERE LS SELECT ?answer  WHERE {7
NEC PC-9800 series | { wd:Q183505 wdt:P176 wd:Q183505 wdt:P176 ?X . ?X
whose sector is electron- | ?answer . ?answer wdt:P452 wd:Q11650 . ?2X
ics? wdt:P452 wd:Q11650 } wdt:P31 ?answer}
FS 4
What is the enthalpy of | select distinct LS ASK  WHERE { wd:Q14982 | 3
vaporization for potas- | ?answer where { wdt:P2116 ?0bj filter(?obj =
sium hydroxide? wd:Q132298  wdt:P2116 37400) }
?answer?}
FS 1
Which is the rural city | SELECT ?answer WHERE LS SELECT  ?answer WHERE { | 3
of Fukushim? { wd:Q161176 wdt:P131 wd:Q161176 wdt:P131 ?2X . 72X
?answer . ?answer wdt:P150 ?answer}
wdt:P150 wd:Q1347240%
FS 1

Table 5: Qualitative comparison between different answer selection strategies in DFSL-MQ.

B Few-shot Learning Examples

We report in Figure 4 the examples selected for the Few-shot learning baseline prompt. The five examples
were chosen to be the most representative of the training set, including queries of different kind and
structure, such as ASK, COUNT and SELECT.
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Question Target Query Approach Predicted Query Similar In-context Ex-
ample
Who is the daughter | SELECT DISTINCT Few-Shot SELECT DISTINCT ?uri WHERE | -
of Robert Kennedy | ?uri WHERE { { ?uri wdt:P40 wd:Q25310
married to? wd:Q25310  wdt:P40 ; wdt:P21 wd:Q6581072
?daughter . wdt:P26 ?spouse .
?daughter  wdt:P21
wd: Q6581072 .
?daughter  wdt:P26
uri .}
DFSL SELECT DISTINCT ?uri | SELECT DISTINCT
WHERE { wd:025310 wdt:P4@ | ?uri WHERE {
?2child . ?child wdt:P21 | wd:Q43247  wdt:P40
wd:Q6581072 . ?child | ?child .  ?child
wdt:P26 2uri . } wdt:P26 ?uri . }
Which countries are | SELECT DISTINCT Few-Shot SELECT DISTINCT ?uri WHERE | -
connected by the | ?uri WHERE { { ?uri wdt:P31 wd:Q6256 ;
Rhine? wd: Q584 wdt:P17 wdt:P17 wd:Q584 .}
2uri . ?uri wdt:P31
wd:Q6256 . }
DFSL SELECT DISTINCT ?uri WHERE | SELECT DIS-
{ wd:Q584 wdt:P17 ?uri .| TINCT res
2uri wdt:P31 wd:Q6256 . } | WHERE { wd:Q3392
wdt:P885/wdt:P17 ?res .
}
Give me the capitals | SELECT DISTINCT Few-Shot SELECT DISTINCT ?uri WHERE | -
of all countries in | ?uri WHERE { { ?uri wdt:P31 wd:Q6256 ;
Africa. ?country wdt:P31 wdt:P30 wd:Q15 ; wdt:P36
wd:Q6256 . ?country ?capital . }
wdt:P30  wd:Q15
?country wdt:P36
uri .}
DFSL SELECT DISTINCT 2uri | SELECT DISTINCT
WHERE { ?country wdt:P31 | ?uri WHERE {
wd:Q6256 . ?country | wd:Q5451 wdt:P17
wdt:P30 wd:Q15 . 2country | ?country . ?2country
wdt:P36 ?uri . } wdt:P36 ?uri . }

Table 6: A qualitative comparison between DFSL and Few-shot Learning. Thanks to the similar in-context examples
retrieved with DFSL, the LLMs generates the corret query.

Question Target Query Approach Predicted Query

Who is the enclave within of | select distinct ?sbj where { ?sbj DFSL select distinct ?obj where { wd:Q340

Montreal? wdt:P501 wd:Q340 . ?sbj wdt:P31 wdt:P501 ?0bj . ?0bj wdt:P31
wd:Q171441 3 wd:Q171441 }

DFSL-MQ select distinct ?sbj where { [2sbj
wdt:P501 wd:Q340 . ?sbj wdt:P31
wd:Q171441 3}

The trachea is of what anatomi- | select distinct ?answer where { DFSL select distinct ?answer where {
cal branch? ?answer wdt:P3261 wd:Q175449} wd:Q175449 wdt:P3261 ?answer}

DFSL-MQ select distinct ?answer where { 2an
swer wdt:P3261 wd:Q175449}

What revolution caused the de- | select distinct ?0bj where { select distinct ?sbj where { ?sbj

DFSL

struction of the Russian Empire? | wd:Q34266 wdt:P770 ?0bj . ?obj wdt:P770 wd:Q34266 . ?sbj wdt:P31
wdt:P31 wd:Q10931 } wd:Q10931 }
DFSL-MQ select distinct ?obj where {

wd:Q34266 wdt:P770 ?0bj . ?0bj
wdt:P37 wd:Q10931 }

Table 7: Some triple-flip errors that are solved by DFSL-MQ.
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Examples:
Question: Give me all companies in Munich.

Entities:
http://www.wikidata.org/entity/q4830453 (business), http://www.wikidata.org/entity/q1726 (Munich)

Relations:

http://www.wikidata.org/prop/direct/p279 (subclass of), http://www.wikidata.org/prop/direct/p31 (instance of),
http://www.wikidata.org/prop/direct/pl59 (headquarters Tocation)

Query:

<SPARQL>

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?type wdt:P279%
wd:Q4830453 . ?uri wdt:P31 ?type ; wdt:P159 wd:Ql726 . }

</SPARQL>

###

Question: was Marc Chagall a jew?

Entities:
http://www.wikidata.org/entity/q93284 (Marc Chagall), http://www.wikidata.org/entity/q7325 (Jewish people)

Relations:
http://www.wikidata.org/prop/direct/pl72 (ethnic group)

Query:

<SPARQL>

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q93284 wdt:P172 wd:Q7325 . }
</SPARQL>

###

Question: How many films did Leonardo DiCaprio star in?

Entities:
http://www.wikidata.org/entity/ql1424 (film), http://www.wikidata.org/entity/q38111 (Leonardo DiCaprio)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/pl6l (cast member)

Query:

<SPARQL>

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT (COUNT(DISTINCT ?uri) AS ?c) WHERE { ?uri
wdt:P31 wd:Q11424 ; wdt:P161 wd:Q38111 . }

</SPARQL>

###

Question: Give me all Tibraries established earlier than 1400.

Entities:
http://www.wikidata.org/entity/q7075 (library)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p571 (inception)

Query:

<SPARQL>

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?uri wdt:P31 wd:Q7075
; wdt:P571 ?date . FILTER (YEAR(?date) < 1400 ) }

</SPARQL>

###

Question: Is cChristian Bale starring in Batman Begins?

Entities:
http://www.wikidata.org/entity/ql66262 (Batman Begins), http://www.wikidata.org/entity/q45772 (Christian Bale)

Relations:
http://www.wikidata.org/prop/direct/pl6l (cast member)

Query:

<SPARQL>

PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q166262 wdt:P161 wd:Q45772 }
</SPARQL>

Figure 4: Examples injected in the Few-shot-learning baseline prompt.
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