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Abstract

Large language models present opportuni-001
ties for innovative Question Answering over002
Knowledge Graphs (KGQA). However, they003
are not inherently designed for query genera-004
tion. To bridge this gap, solutions have been005
proposed that rely on fine-tuning or ad-hoc ar-006
chitectures, achieving good results but limited007
out-of-domain distribution generalization. In008
this study, we introduce a novel approach called009
Dynamic Few-Shot Learning (DFSL). DFSL010
integrates the efficiency of in-context learning011
and semantic similarity and provides a gener-012
ally applicable solution for KGQA with state-013
of-the-art performance. We run an extensive014
evaluation across multiple benchmark datasets015
and architecture configurations.016

1 Introduction017

The growth of the Semantic Web has led to the018

creation and storage of vast amounts of structured019

knowledge (Hitzler, 2021; Shadbolt et al., 2006),020

organized into massive Knowledge Graphs (KGs)021

such as Wikidata (Pellissier Tanon et al., 2016),022

DBpedia (Lehmann et al., 2014), and FreeBase023

(Bollacker et al., 2008). The scale of these KGs,024

with over 109 million items in Wikidata alone,1 has025

made extracting relevant information from them026

increasingly challenging. This led to the emer-027

gence of Knowledge Graph Question Answering028

(KGQA), whose goal is to answer natural language029

questions posed over KGs.030

A typical KGQA system consists of three main031

components: Entity Linking (EL), Relation Link-032

ing (RL), and Query Genration (QG). Starting from033

a natural language question q, EL and RL return a034

set of entities Eq and relations Rq therein. The QG035

module, crucially, takes q, Eq and Rq and generates036

a SPARQL query that produces the answer.037

1https://www.wikidata.org/wiki/Wikidata:
Statistics

This paper focuses on the QG component. State- 038

of-the-art approaches to SPARQL query genera- 039

tion are based on fine-tuning language models like 040

T5 (Qi et al., 2024), or ad-hoc architectures lever- 041

aging LLMs and dependency trees (Rony et al., 042

2022). Despite their success, such approaches have 043

limited flexibility and scalability. Fine-tuning in 044

particular may be computationally expensive and 045

struggle with out-of-domain distributions. 046

This paper proposes a novel approach to KGQA, 047

leveraging in-context learning with Large Lan- 048

guage Models (LLMs). The main intuition is that a 049

significant number of errors could be addressed by 050

making better use of the examples in the training 051

set. Our methodology, termed Dynamic Few-Shot 052

Learning (DFSL), leverages semantic search to re- 053

trieve similar questions from the training set and 054

enrich the prompt accordingly. 055

To evaluate the performance and robustness of 056

DFSL, we run experiments on two widely-used 057

Knowledge Bases, DBpedia and Wikidata, using 058

four publicly available datasets: QALD-9, based 059

on DBpedia, and QALD-9 plus, QALD-10 and 060

LC-QuAD 2.0, based on Wikidata. As backbones, 061

we use three state-of-the-art LLMs: Mixtral 8x7B, 062

Llama-3 70B, and CodeLlama 70B. Our experi- 063

mental results demonstrate that our model achieves 064

new state-of-the-art results, with significant advan- 065

tages in terms of speed and efficiency. We also run 066

ablation studies to gauge the effectiveness of the 067

approach without gold information from the EL 068

and RL modules. 069

Our main contributions are: (1) a novel approach 070

to KGQA, called DFSL, that leverages semantic 071

search for dynamic few-shot learning; (2) state- 072

of-the-art results by a significant margin in most 073

benchmarks; (3) an extensive evaluation and abla- 074

tion study to investigate quantitatively and qualita- 075

tively the impact of hyperparameters, backbones, 076

embedding methods, answer selection strategies 077

and gold entity/relation information. 078
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In-Context Prompt
The task involves translating questions from English into
SPARQL queries for the Wikidata knowledge graph. The
queries must follow specific guidelines to ensure
accuracy and correct execution:
1. Enclose SPARQL queries within <SPARQL></SPARQL> tags.
2. Utilize all provided golden entities and relations
exclusively to construct the query accurately. Do not use
any other entities or relations. 
3. Examples are provided below for guidance.

Examples:

###

Question: Where was Bach born?

Golden entities:
http://www.wikidata.org/entity/Q1339 (Johann 
Sebastian Bach)
Golden relations:
http://www.wikidata.org/prop/direct/P19 (place of birth)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> 
PREFIX wd: <http://www.wikidata.org/entity/> SELECT
DISTINCT ?uri WHERE { wd:Q1339 wdt:P19 ?uri . }</SPARQL>
###

...
###

Question: Which country was Bill Gates born in?

Gold Entities:
http://www.wikidata.org/entity/Q5284 (Bill Gates)

Gold Relations:
http://www.wikidata.org/prop/direct/P19 (place of birth),
http://www.wikidata.org/prop/direct/P17 (country)

Query:

Question: Which country was Bill Gates born in?
Entities: http://www.wikidata.org/entity/Q5284
Relations: http://www.wikidata.org/prop/direct/P19,
http://www.wikidata.org/prop/direct/P17

Encode

Multi-Query Generation

LLM

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri . }

Answer
Selection

PREFIX wdt: <http://www.wikidata.org/prop/direct/>  PREFIX wd:
<http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { wd:Q5284
wdt:P19 ?uri . ?uri wdt:P17 ?uri2 .

Encode

SPARQL
Engine

http://www.wikidata.org/entity/Q30(United States of America)

... b

Dynamic Few-Shot Retrieval

Figure 1: Sketch of DFSL. Given a question, its entities and its relations, k-most similar examples are retrieved
from a text-to-SPARQL collection S and injected into the in-context prompt. Then, the LLM generates one or more
queries that are all executed by a SPARQL engine. An answer selection strategy identifies which response to pick.

2 Related work079

Early research in KG query generation was rule-080

based (Guo et al., 2005; Owens et al., 2008),081

template-based (Zenz et al., 2009; Unger et al.,082

2012) or search-based. For example, Görlitz et al.083

(2012) developed a query generation heuristic to084

predict the final SPARQL representations by ex-085

haustively checking all possible combinations of086

query patterns. However, manual or semi-manual087

approaches hit scalability issues with KGs like088

WikiData and DBpedia. More recent approaches089

belong to two main streams: information-retrieval090

based methods and Text-to-SPARQL approaches.091

Information Retrieval KGQA. This family of092

methods involves the identification of sub-graphs093

relevant to q. Approaches include divide-and-094

conquer (Kim et al., 2023), fact retrieval based on095

linked entities (Baek et al., 2023), more complex096

methods involving hops, relation predictions, and097

triple sampling (Wu et al., 2023), or Evidence Pat-098

tern Retrieval (EPR) through structural dependency099

modeling (Ding et al., 2024).100

Text-to-SPARQL. With the recent wave of 101

decoder-based LLMs such as GPT (Brown et al., 102

2020), Mixtral (Jiang et al., 2024), and LLamA 103

(Touvron et al., 2023), generative AI was also used 104

to translate q into SPARQL queries. Notably, Zou 105

et al. (2021) introduced a text-to-SPARQL model 106

that leverages a relation-aware attention decoder 107

and a pointer network encoder, incorporating three 108

separate scaled dot-product attention mechanisms 109

to generate SPARQL queries that capture entity, 110

relation, and keyword representations. Banerjee 111

et al. (2022) experimented with various models, 112

including T5 (Raffel et al., 2020), BART (Lewis 113

et al., 2019), and Pointer Generation Networks (See 114

et al., 2017), to explore their efficacy in KGQA 115

tasks. Rony et al. (2022)’s SGPT employs a stack 116

of transformer encoders to extract linguistic fea- 117

tures from q and GPT-2 as a decoder. However, 118

this architecture is limited by its inability to cap- 119

ture connections among entities and relations in the 120

underlying knowledge graph, leading to errors in 121

generating triple sequences in the final SPARQL 122

queries. Pliukhin et al. (2023) presented a one- 123

shot generative approach, where the prompt is aug- 124
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mented with a KG fragment required to construct125

the query and a question-subgraph query example.126

Despite promising results, these architectures127

are prone to systematic errors. One such error, the128

so-called “triple-flip", refers to the reversal of sub-129

ject and object positions in the generated SPARQL130

triples, yielding wrong, often empty answers. Qi131

et al. (2024) addressed this issue by developing132

TSET, a fine-tuned T5 model with a pretraining133

stage called Triplet Structure Correction. This ap-134

proach aims to deepen the model’s understanding135

of triple order, establishing state-of-the-art perfor-136

mance on major KGQA datasets.137

Example Selection in Few-Shot Learning. In-138

context learning (ICL) is a paradigm that leverages139

reasoning through analogies. A task description,140

question, and demonstration context are usually141

concatenated to create a prompt, which is then in-142

put into an LLM for prediction. Unlike fine-tuning,143

ICL performs predictions without gradient updates144

(Dong et al., 2023). Few-Shot Learning is a type145

of ICL where the demonstration context includes146

a few examples. Owing to the effectiveness of147

ICL and the obvious advantage of building systems148

that don’t need domain-specific training, a great149

deal of research and engineering efforts have been150

devoted to designing suitable prompts. ICL has151

been successfully applied to many NLP problems,152

including QA (Chada and Natarajan, 2021; Chen153

et al., 2023) and KGQA (Li et al., 2023). Some154

studies have also focused on the selection of in-155

context examples. In particular, Liu et al. (2022)156

developed KATE, an unsupervised retriever that157

utilizes k-nearest neighbors and distance metrics158

(e.g., L2 distance and cosine similarity) to select159

in-context examples for tasks such as sentiment160

analysis, table-to-text generation, and question an-161

swering. Levy et al. (2023) explored the incor-162

poration of diverse demonstrations into prompts163

for compositional semantic parsing task, demon-164

strating that such diversity leads to better structural165

coverage in target utterances. Kim et al. (2022)166

leveraged the generative capabilities of pre-trained167

language models to generate demonstrations for168

each class in downstream tasks, conditioned on test169

inputs and class information. Gonen et al. (2022)170

found that selecting examples based on perplex-171

ity, in particular lower perplexity, is an effective172

strategy. However, to the best of our knowledge, ex-173

ample selection has not yet been applied to KGQA.174

Text-to-SQL. A cognate domain, text-to-SQL, 175

aims at the translation of natural language ques- 176

tions to SQL queries. There, Rajkumar et al. (2022) 177

demonstrated a zero-shot and few-shot approach 178

using simple prompts, achieving lower results com- 179

pared to fine-tuned approaches with models such 180

as GPT-3 (Brown et al., 2020) and CODEX (Chen 181

et al., 2021). Nan et al. (2023) introduced various 182

strategies for selecting examples based on similari- 183

ties/dissimilarities, selecting similar questions with 184

the same difficulty level and dissimilar questions 185

by using k-means clustering to obtain k diverse 186

examples close to each centroid. More recently, 187

Zhang et al. (2023) proposed an automatic chain- 188

of-thought (Wei et al., 2023) approach, where ques- 189

tion slices are matched with all possible table and 190

column names to identify the most relevant ones for 191

a given question, using models such as GPT 3.5 and 192

GPT 4. In spite of the similarities between text-to- 193

SQL and text-to-SPARQL, the methods developed 194

so far for the former are not applicable in the lat- 195

ter, where instead of a data model with a relatively 196

small-sized set of tables and columns, the domain 197

is modeled by a large-scale, semi-structured KG. 198

3 Method 199

Given a collection of natural language questions Q 200

and a knowledge graph G := (E ,R,F), where E 201

are entities, R are relations, and F ⊆ E ×R× E 202

are facts, KGQA is the problem of answering ques- 203

tions in Q based on G. KGQA can be framed 204

as a text-to-SPARQL task, where a question q 205

must be translated into a SPARQL query sq to be 206

executed on G by a SPARQL engine, to return a 207

(possibly empty) answer a. The entities and re- 208

lations in q, denoted as Eq and Rq, may be, and 209

usually are, extracted from q before generating sq. 210

Hence, query generation can be tackled as a con- 211

ditional text generation problem given q, Eq and 212

Rq. Within the scope of ICL, Pθ is a pre-trained 213

LLM and the conditional input Eq,Rq, q is com- 214

bined with other contextual information C, such as 215

additional instructions, guidelines, constraints and 216

demonstrations, all expressed via natural language 217

text. Accordingly, the generated query is: 218

sq = argmax
s

Pθ(s|C, Eq,Rq, q). (1) 219

3.1 Dynamic Few-Shot Retrieval 220

In few-shot ICL, the choice of demonstrations to 221

inject in the prompt can significantly affect perfor- 222
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Approach Backbone QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

Zero-shot Learning 49.90 33.76 40.66 65.73
Few-shot Learning Mixtral 7x8 54.80 (+4.90) 50.26 (+16.50) 61.04 (+20.38) 63.86 (-1.87)
DFSL 71.75 (+21.85) 49.90 (+16.14) 81.81 (+41.15) 72.74 (+7.01)

Zero-shot Learning 63.01 58.31 54.21 70.49
Few-shot Learning Llama-3 70B 67.69 (+4.68) 51.28 (-7.03) 68.52 (+14.31) 68.84 (-1.65)
DFSL 73.60 (+10.59) 56.59 (-1.72) 81.93 (+27.72) 72.66 (+2.17)

Zero-shot Learning 45.94 33.36 38.40 66.43
Few-shot Learning CodeLlama 70B 64.49 (+18.55) 57.38 (+24.02) 64.46 (+26.06) 72.67 (+6.24)
DFSL 76.59 (+30.65) 57.69 (+24.33) 85.45 (+47.05) 75.14 (+8.71)

Table 1: Comparison between zero-shot, few-shot and DFSL with different backbones. Absolute F1 gains with
respect to the naive zero-shot approach are reported between parenthesis.

Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

DFSL 76.59 57.69 85.45 75.14

DFSL-MQPLS 73.67 58.85 85.06 73.25
DFSL-MQPFS 74.40 58.34 85.38 73.92

DFSL-MQLS 83.21 60.48 85.54 72.06
DFSL-MQFS 84.45 (+7.86) 62.20 (+4.51) 89.10 (+3.65) 77.89 (+2.75)

Table 2: Multi-query Generation: comparing DFSL-MQ with DFSL and Multi-query prompting baselines. Absolute
F1 gains with respect to DFSL are reported for the best performing configuration.

mance. Usually, few-shot examples are predeter-223

mined representative instances of the task, hand-224

picked during prompt design. Conversely, we aim225

to retrieve good examples dynamically, based on226

their relevance to the input question. Inspired by227

Liu et al. (2022), we adopt a retrieval approach228

based on the similarity between a question q and a229

set of previously answered text-to-SPARQL exam-230

ples collected in a storage S (see Figure 1), where231

each example is a tuple including a question x, its232

entities Ex and relations Rx, and the associated233

SPARQL query sx. The question, its entities and234

relations ⟨q, Eq,Rq⟩ are mapped onto a vector rep-235

resentation eq ∈ Rd using a sentence encoder. To236

properly feed such information to an encoder-only237

LM, we concatenate question, entities and relations238

in a single input sequence q := [q, Eq,Rq]. Like-239

wise, we encode each example x ∈ S into a vector240

ex ∈ Rd and then compute the similarity between241

the target question and the storage:242

score(q,x) = sim(eq, ex),∀x ∈ S, (2)243

where the sim is a similarity function. Based on244

such a scoring, we retrieve the k-most similar ex-245

amples S and include them as demonstrations in246

the in-context prompt.247

3.2 In-Context Prompt 248

The in-context prompt has three parts. The first is 249

the task description, instructing the LLM with a 250

numbered list of guidelines on the output format 251

and on the available information. The second, high- 252

lighted in Figure 1 with a green block, contains the 253

k retrieved demonstrations. Each demonstration 254

consists of a question, its entities and relations, de- 255

noted as gold entities/relations, all paired with their 256

SPARQL query delimited by <SPARQL></SPARQL> 257

tags. The ### symbol delimits each single exam- 258

ple. The final part is the input question, associated 259

with its gold entities and relations. The answer 260

returned by the LLM prompted as such is then 261

parsed to extract the generated text enclosed in 262

<SPARQL></SPARQL> tags. The resulting query sq 263

is executed by a SPARQL engine on G to yield 264

the answer to q. We call our approach Dynamic 265

Few-Shot Learning (DFSL). 266

3.3 Multi-Query Generation 267

A typical challenge faced by LLMs in SPARQL 268

query generation is the understanding of what is 269

the subject and what is the object of a relation, an 270

information the model does not have. This problem 271

is called triple-flip error (Qi et al., 2024). LLMs of- 272

ten end up in swapping the subject with the object 273
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in the query, almost choosing one way or the other274

randomly. Thanks to DFSL, this issue may be alle-275

viated whenever there are similar demonstrations276

in the in-context prompt that clarify the subject-277

object roles. To further reduce triple-flip errors,278

we propose the generation of multiple SPARQL279

queries by retaining all the final hypotheses gener-280

ated during beam search. The model uncertainty in281

placing subject and object is likely to be reflected282

in the beam search exploration. Intuitively, both283

triple-ordering hypotheses are considered plausible284

by the model. Thus, instead of just returning the285

most probable sequence s according to Equation 1,286

we keep the whole b queries {sq,1, . . . , sq,b} formu-287

lated by beam search. We use DFSL-MQ to denote288

such a multi-query extension of DFSL.289

Answer Selection. Executing multiple queries in-290

evitably leads to multiple possible answers. There-291

fore, we must define an answer selection criterion.292

We designed two heuristics: Largest Set (LS) and293

First Set (FS). LS executes all the b queries, obtain-294

ing with each query sq,j a (possibly empty) answer295

set Aj . LS then selects, among {A1, . . . ,Ab}, the296

largest one2, i.e:297

A = argmax
Ai

(|A1|, . . . , |Ab|),298

the rationale being that incorrect candidates will299

likely have empty results. However, LS can be mis-300

led into selecting answers from under-constrained301

queries that return many irrelevant instances. FS302

adheres to the natural beams ordering by selecting303

the first query that yields a non-empty answer set.304

4 Experiments305

In this section, we aim to study the effects of each306

component involved in our DFSL approach. We307

evaluate DFSL and its extension DFSL-MQ on four308

KGQA datasets. In our investigation, we consider309

different backbones and we compare with multiple310

baselines and state-of-the-art solutions.311

4.1 Datasets312

To assess the flexibility and robustness of our313

approach, we evaluate it on four heterogeneous314

KGQA benchmarks based on two different Knowl-315

edge Graphs (Wikidata, DBpedia).316

QALD-9 DB. QALD-9 (Ngomo, 2018) is a317

dataset from the Question Answering over Linked318

2In case of ties, we take the first largest set.

Data (QALD) challenge series. It comprises 408 319

training questions and 150 test questions. Unlike 320

the other KGQA benchmarks, the SPARQL queries 321

are meant for a DBpedia Knowledge Graph. We 322

refer to it as QALD-9 DB to emphasize that. 323

QALD-9 plus. QALD-9 plus extends QALD-9 324

on new languages and transfers SPARQL queries 325

from DBpedia to Wikidata. Although some queries 326

were not portable to Wikidata due to the absence of 327

corresponding information, it still comprises 371 328

training questions and 136 test questions. In our 329

experiments, we only consider English questions. 330

QALD-10. QALD-10 (Usbeck et al., 2023) is 331

the latest dataset in the QALD series, designed to 332

increase the complexity of gold SPARQL queries. 333

It consists of 412 training questions extracted from 334

QALD-9 plus Wikidata. The test set was created 335

from scratch, comprising 394 test questions that ex- 336

press real-world information needs. Test questions 337

significantly differ from those in training. 338

LC-QuAD 2.0. LC-QuAD 2.0 (Dubey et al., 339

2019) is a large-scale dataset grounded on Wiki- 340

data. It consists of 30,226 simple and complex 341

questions: 24,180 in training, and 6,046 in test. 342

Questions are diverse. They include single- and 343

multi-fact, boolean, count, and other query types. 344

LC-QuAD 2.0 allows us to gauge the DFSL perfor- 345

mance against a large text-to-SPARQL storage. 346

4.2 Backbones 347

Mixtral 8x7B. Based on the Sparse Mixture of 348

Experts (SMoE) architecture (Fedus et al., 2022), 349

Mixtral 8x7B (Jiang et al., 2024) is a 46.7B param- 350

eters model. Among the backbones adopted in this 351

paper, Mixtral is the smallest. Moreover, thanks 352

to the characteristics of its SMoE architecture, less 353

than 13B are active at each inference step, making 354

Mixtral particularly efficient. 355

Llama-3 70B. Built upon the Llama architec- 356

ture (Touvron et al., 2023), Llama-3 70B has been 357

trained on 15T tokens, a 650% increase from its 358

predecessor, Llama 2. At the moment we are writ- 359

ing, Llama-3 70B is one of the best-performing 360

open-weights LLMs available. 361

CodeLlama 70B. Initialized from Llama2 70B, 362

CodeLlama (Rozière et al., 2024) is a specialized 363

version fine-tuned on 1T tokens of code-heavy data. 364

Therefore, we expect CodeLlama to be particularly 365

suitable for SPARQL query generation. 366
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QALD-9 Plus WD QALD-10 LC-QUAD 2.0 QALD-9 DB
40
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F1

Mixstral 7x8
DFSL w/o encoding q, q

DFSL

QALD-9 Plus WD QALD-10 LC-QUAD 2.0 QALD-9 DB
Dataset

Llama-3 70B
DFSL w/o encoding q, q

DFSL

QALD-9 Plus WD QALD-10 LC-QUAD 2.0 QALD-9 DB

CodeLlama 70B
DFSL w/o encoding q, q

DFSL

Figure 2: Comparison of Embeddings: DFSL (in orange) encoding that incorporates question, entities and relations
versus an embedding solely based on the question q (in blue).

4.3 Baselines367

Plain Question. This is a naive baseline where368

we feed an LLM only with the task description and369

the question q. Without in-context examples nor370

any entity or relation associated with q, the LLM371

can only rely on its parameter memory.372

Zero-Shot Learning. Here we do not provide373

any demonstrative example in the prompt. How-374

ever, unlike the plain question baseline, we do in-375

ject golden entities and relations into the prompt.376

With reference to Figure 1, the In-Context prompt377

remains the same but without the green-like block378

containing the demonstrations.379

Few-Shot Learning. The prompt is filled with a380

single set of k manually selected examples, used for381

all the questions in the test set. The examples were382

chosen to maximize diversity and cover different383

kinds of queries3.384

Multi Query Prompting (DFSL-MQP). As an385

alternative to our proposed multi-query generation386

(DFSL-MQ), this baseline consists in a naive multi-387

query prompting strategy. Essentially, we ask the388

model to generate more queries to answer the ques-389

tion. To ease the creation of inverted subject-object390

queries that can solve triple-flip errors, we extend391

the prompt to explicitly ask the model to produce392

this kind of SPARQL queries. Answer selection393

uses LS and FS heuristics, like with DFSL-MQ.394

4.4 Experimental Setup395

Implementation. In our experiments, the training396

set of each dataset serves as storage for the re-397

trieval of the k most similar examples (see the next398

3The chosen examples and more details are provided in
Appendix B.

paragraph for details on k tuning) with DFSL. Ex- 399

amples are encoded with a sentence transformer4, 400

all-mpnet-base-v25, and sim is defined as the co- 401

sine similarity. Inference is performed via beam 402

search in both DFSL, where b is set to 3, and DFSL- 403

MQ, with b set to 10. All the experiments were run 404

on a cluster of 4 NVIDIA A100 GPUs. 405

1 3 5 7
k

40

50

60

70

80

F1

QALD-9 Plus WD
QALD-9 DB
QALD-10
LC-QUAD 2.0

Figure 3: Impact of the number of in-context examples
on the four benchmarks.

Number of Few-shot Examples. We first an- 406

alyzed how the number of few-shot examples k 407

retrieved by DFSL affects the performance. We 408

chose among k = {1, 3, 5, 7} and evaluated DFSL 409

with Llama 3 70B backbone on the four datasets. 410

The results shown in Figure 3 suggest that values 411

of k greater than one perform comparably well 412

on smaller benchmarks, while on LC-QUAD 2.0, 413

where there are about 25 thousands examples as 414

storage, increasing k seems to be beneficial. This 415

may be due to the increased likelihood of finding 416

similar examples in larger datasets as k grows. We 417

set k = 5 for all the forthcoming experiments, 418

which is a good trade-off across all the datasets. 419

4https://www.sbert.net/index.html
5https://huggingface.co/sentence-transformers/

all-mpnet-base-v2
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Approach QALD-9 Plus QALD-10 LC-QUAD 2.0 QALD-9 DB

Plain Question 0.08 0.02 12.00 16.42
BART (Banerjee et al., 2022) - - 64.00 -
PGN-BERT-BERT (Banerjee et al., 2022) - - 86.00 -
SGPT (Rony et al., 2022) - - 89.04 67.82
TSET-small (Qi et al., 2024) 72.86 47.15 94.00 -
TSET-base (Qi et al., 2024) 75.85 51.37 95.00 -

Zero-shot Learning 45.94 33.36 38.40 66.43
Few-shot Learning 64.49 57.38 64.46 72.67
DFSL 76.59 57.69 85.45 75.14
DFSL-MQ beam FS 84.45 (+8.60) 62.20 (+10.83) 89.10 (-5.90) 77.89 (+10.07)

Table 3: DFSL and ICL approaches vs state-of-the-art fine-tuned models.

Prompt. The prompt illustrated in Figure 1 con-420

stitutes the default template in our experimenta-421

tions. However, slight variations are required in422

certain cases. For example, when running experi-423

ments on DBpedia knowledge graph, we replace424

the Wikidata reference with DBpedia in the first425

text segment. When we study the absence of gold426

information instead, we remove all the references427

to gold entities/relations (according to the ablation)428

from the entire prompt. There are no differences in429

the prompts layout when running few-shot-learning430

baseline experiments. In zero-shot learning, only431

the in-context examples any reference to them are432

removed, all else being equal.433

Evaluation metric. We follow a standard F1434

score evaluation in KGQA benchmarks. The F1 is435

computed between the answer set returned by the436

target SPARQL query and the predicted one. When437

both the queries return an empty set, we assign an438

F1 score of 1. The F1 scores of all the examples439

are then averaged.440

4.5 Results441

Impact of Dynamic Examples. To measure the442

importance of retrieving few-shot examples dynam-443

ically, we compare DFSL on different backbones444

against Zero-Shot and Few-Shot Learning base-445

lines. Results are outlined in Table 1.446

In terms of backbones, Llama 3 consistently447

outperforms both Mixtral and CodeLlama in zero-448

shot learning scenario, whereas in few-shot, results449

are generally comparable between Llama-3 and450

CodeLlama. Such a strong Llama 3 zero-shot per-451

formance may be caused by some sort of data con-452

tamination, however we leave such an investigation453

for future works.454

Both few-shot learning and DFSL generally455

yield substantial gains with respect to zero-shot456

baseline on all the backbones and datasets. An457

exception occurs in QALD-10 with Llama-3. No- 458

tably, when comparing DFSL and Few-shot Learn- 459

ing baseline, we can see our approach improving F1 460

scores by a large margin in LC-QUAD 2.0, QALD- 461

9 Plus and QALD-9 DB, with F1 increasing up to 462

21 absolute points6. In QALD-10 instead, where 463

the test set has a different distribution from its train- 464

ing, there are no significant differences between 465

DFSL and the standard few-shot learning approach. 466

Indeed, an approach like DFSL brings little benefits 467

when the storage only contains unrelated examples. 468

Overall, DFSL with CodeLlama3 achieved the 469

greatest performance with respect to all the other 470

configurations. Therefore, we adopt CodeLlama as 471

our backbone in the following DFSL experiments. 472

Impact of Multi-Query Generation. Here we 473

investigate DFSL-MQ, the multi-query approach 474

extending DFSL. We evaluate both answer selec- 475

tion strategies, LS and FS, and compare them 476

against the plain DFSL and the multi-query prompt- 477

ing baseline described in Section 4.3. All the re- 478

sults are outlined in Table 2. 479

Having multiple queries is not necessarily bene- 480

ficial. Indeed, the multi-query prompting baseline 481

under-performs in three datasets out of four with 482

respect to (single query) DFSL, regardless of the an- 483

swer selection method adopted. DFSL-MQ instead 484

proves to be generally beneficial. Both Largest Set 485

and First Set heuristics are effective when the hy- 486

potheses come from the beams. Furthermore, FS 487

consistently outperforms LS, even by substantial 488

margins in QALD-9 DB. 489

In-context Learning vs Fine-tuning. Up to this 490

point, we have assessed DFSL in the scope of 491

In-Context Learning approaches. In Table 3 in- 492

stead, we compare our approach against state-of- 493

6Some qualitative examples illustrate the benefits of DFSL
over few-shot learning in Appendix A (see Table 6).
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the-art models trained and/or fine-tuned for specific494

downstream KGQA datasets. Without any training,495

DFSL-MQ outperforms current state-of-the-art ap-496

proaches in three out of four benchmarks, namely497

QALD-9 Plus, QALD-10 and QALD-9 DB, even498

with the single query DFSL setup. DFSL-MQ does499

not obtain state-of-the-art results in LC-QUAD 2.0,500

the dataset most affected by triple-flip errors. This501

means that multi-query generation only alleviates502

the issue, but the problem still remains.503

4.6 Ablation studies504

Different Example Encoding. As described in505

Section 3.1, to compute the embeddings we con-506

catenated the textual input made of the question and507

its list of entities and relations. Here, we gauge the508

impact of this additional information on DFSL per-509

formance. In Figure 2 we compare DFSL, with a510

variant where we only embed the natural language511

question q, without any additional data concate-512

nated. The evaluation carried out in all the bench-513

marks and with all the backbones, demonstrates514

that such information improves the quality of the515

generated queries.516

Approach QALD-9 DB

Plain Question 16.42

DFSL 75.14

DFSL w/o Rq 56.62 (-18.56)
DFSL w/o Eq 60.92 (-14.22)
DFSL w/o Eq,Rq 49.59 (-25.55)

Table 4: DFSL in the absence of entities and/or rela-
tions.

Absence of gold information. In KGQA, text-517

to-SPARQL generation usually relies not only on518

the question itself, but also on entities and relations519

associated to it. Here we assess DFSL when either520

the entities Eq or the relations Rq, or both are miss-521

ing. The information is removed throughout the522

entire process. For example, when removing enti-523

ties, we discard them from both the storage and the524

prompt. Even the embeddings for the retrieval are525

computed by encoding an input without any entity526

concatenated in q, i.e. becoming q = [q,Rq]. We527

report this on QALD-9 DB dataset. By observing528

the results outlined in Table 4, it is clear that, with-529

out full knowledge of the entities and the relations530

required for generating the query, the LLM perfor-531

mance drops significantly. Nonetheless, even in 532

the case where no information is given (DFSL w/o 533

Eq,Rq), the presence of dynamic demonstrations 534

is essential, yielding a 33+ absolute F1 increase 535

compared to plain question baseline. 536

5 Conclusion 537

In this paper, we introduced DFSL, a novel ap- 538

proach to Knowledge Graph Question Answering. 539

This method leverages semantic search to dynami- 540

cally retrieve relevant examples from the training 541

set, enriching the prompt for LLMs to improve 542

the generation of SPARQL queries. We conducted 543

comprehensive experiments on four publicly avail- 544

able datasets based on two widely-used KBs, DB- 545

pedia and Wikidata. By employing three different 546

state-of-the-art LLMs as backbones, we demon- 547

strated that DFSL achieves superior performance 548

compared to both standard in-context learning tech- 549

niques and state-of-the-art models fine-tuned on the 550

downstream task. We further conducted an exten- 551

sive evaluation of DFSL through ablation studies to 552

measure the impact of hyper-parameters, different 553

backbones, embedding methods, answer selection 554

strategies, and the inclusion or exclusion of entities 555

and relations information associated to a question. 556

The code will be released publicly upon acceptance 557

of the paper. In the future, we plan to study the 558

effectiveness of DFSL in cognate domains like text- 559

to-SQL. 560

Limitations 561

We recognize some limitations in our work. Our ex- 562

periments are all on English-based datasets, where 563

notoriously LLMs are better performing. Moreover, 564

the massive pre-training of those LLMs on a vast 565

portion of the Web, may expose those models to 566

unintended data contamination. Experiments only 567

focused on LLMs with large number of parame- 568

ters, without investigating the behaviour of smaller 569

models. To encode examples, we limited the in- 570

vestigation to what kind of text to encode (just 571

the question, or the question and its entities and 572

relations), without exploring different embedding 573

models, similarity criteria or other input concate- 574

nation strategies. We leave these investigations to 575

future work. 576
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A Qualitative Analysis826

In this appendix we provide some qualitative analyses of DFSL and DFSL-MQ. First of all, we report827

some examples in Table 6 that highlight the benefits from introducing similar examples with DFSL with828

respect to standard few-shot learning approach. Then, we show some examples in Table 7 where the829

multi-query approach solves triple-flip errors. In Table 5 instead, we showcase errors caused by employing830

LS answer selection heuristic. Notably, by choosing larger sets, LS sometimes selects queries that are831

often relegated to latter positions in the beam hypotheses, which tend to be more general, thus more prone832

to returning a greater number of results.833

Question Target Query Answer
Selection

Predicted Query Beam

What is manufactured
NEC PC-9800 series
whose sector is electron-
ics?

SELECT ?answer WHERE
{ wd:Q183505 wdt:P176
?answer . ?answer
wdt:P452 wd:Q11650 }

LS SELECT ?answer WHERE {
wd:Q183505 wdt:P176 ?X . ?X
wdt:P452 wd:Q11650 . ?X
wdt:P31 ?answer}

7

FS select distinct ?obj where
{ wd:Q183505 wdt:P176 ?obj .
?obj wdt:P452 wd:Q11650 }

4

What is the enthalpy of
vaporization for potas-
sium hydroxide?

select distinct
?answer where {
wd:Q132298 wdt:P2116
?answer}

LS ASK WHERE { wd:Q14982
wdt:P2116 ?obj filter(?obj =
37400) }

3

FS select distinct ?answer
where { wd:Q132298 wdt:P2116
?answer}

1

Which is the rural city
of Fukushim?

SELECT ?answer WHERE
{ wd:Q161176 wdt:P131
?answer . ?answer
wdt:P150 wd:Q1347240}

LS SELECT ?answer WHERE {
wd:Q161176 wdt:P131 ?X . ?X
wdt:P150 ?answer}

3

FS SELECT ?answer WHERE {
wd:Q161176 wdt:P131 ?answer .
?answer wdt:P150 wd:Q1347240}

1

Table 5: Qualitative comparison between different answer selection strategies in DFSL-MQ.

B Few-shot Learning Examples834

We report in Figure 4 the examples selected for the Few-shot learning baseline prompt. The five examples835

were chosen to be the most representative of the training set, including queries of different kind and836

structure, such as ASK, COUNT and SELECT.837
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Question Target Query Approach Predicted Query Similar In-context Ex-
ample

Who is the daughter
of Robert Kennedy
married to?

SELECT DISTINCT
?uri WHERE {
wd:Q25310 wdt:P40
?daughter .
?daughter wdt:P21
wd:Q6581072 .
?daughter wdt:P26
?uri .}

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P40 wd:Q25310
; wdt:P21 wd:Q6581072 ;
wdt:P26 ?spouse .

-

DFSL SELECT DISTINCT ?uri
WHERE { wd:Q25310 wdt:P40
?child . ?child wdt:P21
wd:Q6581072 . ?child
wdt:P26 ?uri . }

SELECT DISTINCT
?uri WHERE {
wd:Q43247 wdt:P40
?child . ?child
wdt:P26 ?uri . }

Which countries are
connected by the
Rhine?

SELECT DISTINCT
?uri WHERE {
wd:Q584 wdt:P17
?uri . ?uri wdt:P31
wd:Q6256 . }

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P31 wd:Q6256 ;
wdt:P17 wd:Q584 .}

-

DFSL SELECT DISTINCT ?uri WHERE
{ wd:Q584 wdt:P17 ?uri .
?uri wdt:P31 wd:Q6256 . }

SELECT DIS-
TINCT ?res
WHERE { wd:Q3392
wdt:P885/wdt:P17 ?res .
}

Give me the capitals
of all countries in
Africa.

SELECT DISTINCT
?uri WHERE {
?country wdt:P31
wd:Q6256 . ?country
wdt:P30 wd:Q15 .
?country wdt:P36
?uri . }

Few-Shot SELECT DISTINCT ?uri WHERE
{ ?uri wdt:P31 wd:Q6256 ;
wdt:P30 wd:Q15 ; wdt:P36
?capital . }

-

DFSL SELECT DISTINCT ?uri
WHERE { ?country wdt:P31
wd:Q6256 . ?country
wdt:P30 wd:Q15 . ?country
wdt:P36 ?uri . }

SELECT DISTINCT
?uri WHERE {
wd:Q5451 wdt:P17
?country . ?country
wdt:P36 ?uri . }

Table 6: A qualitative comparison between DFSL and Few-shot Learning. Thanks to the similar in-context examples
retrieved with DFSL, the LLMs generates the corret query.

Question Target Query Approach Predicted Query

Who is the enclave within of
Montreal?

select distinct ?sbj where { ?sbj
wdt:P501 wd:Q340 . ?sbj wdt:P31
wd:Q171441 }

DFSL select distinct ?obj where { wd:Q340
wdt:P501 ?obj . ?obj wdt:P31
wd:Q171441 }

DFSL-MQ select distinct ?sbj where { ?sbj
wdt:P501 wd:Q340 . ?sbj wdt:P31
wd:Q171441 }

The trachea is of what anatomi-
cal branch?

select distinct ?answer where {
?answer wdt:P3261 wd:Q175449}

DFSL select distinct ?answer where {
wd:Q175449 wdt:P3261 ?answer}

DFSL-MQ select distinct ?answer where { ?an
swer wdt:P3261 wd:Q175449}

What revolution caused the de-
struction of the Russian Empire?

select distinct ?obj where {
wd:Q34266 wdt:P770 ?obj . ?obj
wdt:P31 wd:Q10931 }

DFSL select distinct ?sbj where { ?sbj
wdt:P770 wd:Q34266 . ?sbj wdt:P31
wd:Q10931 }

DFSL-MQ select distinct ?obj where {
wd:Q34266 wdt:P770 ?obj . ?obj
wdt:P31 wd:Q10931 }

Table 7: Some triple-flip errors that are solved by DFSL-MQ.
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Examples:

Question: Give me all companies in Munich.

Entities:
http://www.wikidata.org/entity/q4830453 (business), http://www.wikidata.org/entity/q1726 (Munich)

Relations:
http://www.wikidata.org/prop/direct/p279 (subclass of), http://www.wikidata.org/prop/direct/p31 (instance of),
http://www.wikidata.org/prop/direct/p159 (headquarters location)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?type wdt:P279*
wd:Q4830453 . ?uri wdt:P31 ?type ; wdt:P159 wd:Q1726 . }
</SPARQL>
###

Question: Was Marc Chagall a jew?

Entities:
http://www.wikidata.org/entity/q93284 (Marc Chagall), http://www.wikidata.org/entity/q7325 (Jewish people)

Relations:
http://www.wikidata.org/prop/direct/p172 (ethnic group)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q93284 wdt:P172 wd:Q7325 . }
</SPARQL>
###

Question: How many films did Leonardo DiCaprio star in?

Entities:
http://www.wikidata.org/entity/q11424 (film), http://www.wikidata.org/entity/q38111 (Leonardo DiCaprio)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p161 (cast member)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT (COUNT(DISTINCT ?uri) AS ?c) WHERE { ?uri
wdt:P31 wd:Q11424 ; wdt:P161 wd:Q38111 . }
</SPARQL>
###

Question: Give me all libraries established earlier than 1400.

Entities:
http://www.wikidata.org/entity/q7075 (library)

Relations:
http://www.wikidata.org/prop/direct/p31 (instance of), http://www.wikidata.org/prop/direct/p571 (inception)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> SELECT DISTINCT ?uri WHERE { ?uri wdt:P31 wd:Q7075
; wdt:P571 ?date . FILTER (YEAR(?date) < 1400 ) }
</SPARQL>
###

Question: Is Christian Bale starring in Batman Begins?

Entities:
http://www.wikidata.org/entity/q166262 (Batman Begins), http://www.wikidata.org/entity/q45772 (Christian Bale)

Relations:
http://www.wikidata.org/prop/direct/p161 (cast member)

Query:
<SPARQL>
PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX wd: <http://www.wikidata.org/entity/> ASK WHERE { wd:Q166262 wdt:P161 wd:Q45772 }
</SPARQL>

Figure 4: Examples injected in the Few-shot-learning baseline prompt.
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