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Abstract

Question answering (QA) in the field of healthcare has received much attention
due to significant advancements in natural language processing. However, existing
healthcare QA datasets primarily focus on medical images, clinical notes, or struc-
tured electronic health record tables. This leaves the vast potential of combining
electrocardiogram (ECG) data with these systems largely untapped. To address
this gap, we present ECG-QA, the first QA dataset specifically designed for ECG
analysis. The dataset comprises a total of 70 question templates that cover a wide
range of clinically relevant ECG topics, each validated by an ECG expert to ensure
their clinical utility. As a result, our dataset includes diverse ECG interpretation
questions, including those that require a comparative analysis of two different
ECGs. In addition, we have conducted numerous experiments to provide valuable
insights for future research directions. We believe that ECG-QA will serve as
a valuable resource for the development of intelligent QA systems capable of
assisting clinicians in ECG interpretations.

1 Introduction

In recent years, significant advancements in natural language processing have revolutionized the field
of question answering (QA) in a wide range of domains. Previous works have demonstrated the
great potential of QA systems in various domains, where they have been combined with different
modalities such as images [1, 32, 15, 8] or tables with images [24, 13]. Concurrently, QA systems
have also been explored in the healthcare domain, including visual QA with chest X-ray [11, 14],
clinical-note-based QA [20], and QA over structured electronic health record (EHR) data [28, 12].
These pioneering efforts have successfully bridged the gap between general-domain QA and the
medical field, unlocking new possibilities to improve healthcare outcomes and enhance medical
decision-making processes.

Despite this remarkable progress, there is a noticeable absence of datasets that combine electro-
cardiogram (ECG) data with question answering. As a fundamental diagnostic tool in cardiology,
ECG provides critical insights into the electrical activity of the heart and plays an important role
in detecting various cardiac conditions [3, 22, 33]. Consequently, integrating ECG data with QA
systems holds tremendous potential to improve the interpretation of cardiac data, leading to more
accurate diagnoses and personalized treatment plans.

To this end, we present ECG-QA1, a novel QA dataset that incorporates ECG data for question
answering tasks. To the best of our knowledge, ECG-QA is the first dataset that combines QA and
ECG, opening up new avenues for integrating multi-modal machine learning with cardiac healthcare.

The main contributions of this work are threefold:
1The dataset is available at https://github.com/Jwoo5/ecg-qa, licensed under CC-BY-4.0 license.
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SCP Code

Does this ECG show 
1st degree av 

block?

yes

Noise

Which noise does this 
ECG show, baseline 
drift or static noise?

Neither of them

Stage of infarction

What stage of 
infarction is this ECG 

at?

None

Extra systole

Does this ECG show 
ventricular 

extrasystoles?

No

Heart axis

What direction is this 
ECG deviated to?

Normal axis

Numeric feature

Does the RR interval 
of this ECG fall above 

the normal range?

Yes

(a) Questions to a single ECG

(b) Comparison questions between two different ECGs

SCP Code

What symptoms have been resolved in the recent tracing 
as compared to the previous one?

1st degree av block

Numeric feature

Compared to the previous tracing,
has the RR Interval of the recent tracing become normal?

Yes

Figure 1: Sample question-answer pairs in ECG-QA. (a) Questions to a single ECG with various
types of attributes. (b) Comparison questions between two different ECGs. Refer to Section 3.1.1 for
more details about each attribute type.

• We propose the ECG-QA dataset, a diverse collection of questions focused on ECG interpretation
and analysis (See Figure 1). This dataset introduces the novel concept of incorporating question
answering into the realm of ECG analysis, making it a valuable resource for developing and
evaluating QA systems in the context of cardiology.

• To cover more complex yet clinically critical questions, we include questions that require compar-
ative analysis of two ECGs (See Figure 1 (b)). This inclusion brings a new degree of complexity,
as addressing these comparison questions extends beyond the conventional scope of ECG analysis
using machine learning. By incorporating these types of questions, we not only address the
real-world needs of medical professionals but also broaden the potential applications of machine
learning in ECG analysis.

• We provide a benchmark for QA models, including recent large language models (LLMs), on the
ECG-QA dataset, promoting further research and encouraging the development of novel methods
to leverage ECG signals for question answering tasks. We believe that ECG-QA will serve as
a valuable resource in advancing machine learning applications in cardiology and improving
medical decision-making processes.

2 Related works

Medical QA datasets QA systems have been extensively explored in the healthcare domain,
catering to the specific needs and challenges of medical data. However, most existing medical QA
datasets are primarily based on clinical texts, medical images, or structured EHR tables. For example,
Pampari et al. [20] proposed the emrQA dataset, consisting of question-answer pairs derived from
unstructured clinical notes. In addition, Kovaleva et al. [11] and Liu et al. [14] proposed datasets for
visual QA using X-ray images, aiming to investigate intelligent interactive systems for radiology.
Meanwhile, in the field of QA over structured EHR data, Wang et al. [28] and Lee et al. [12] have
developed datasets called MIMICSQL and EHRSQL respectively, which consist of questions and
their corresponding SQL queries. While these healthcare QA systems demonstrate the potential of
leveraging medical data with QA to improve healthcare outcomes, there is currently no dedicated QA
dataset specifically designed for ECG data despite its widespread use in diagnosing cardiovascular
conditions and monitoring patients’ heart health.

Electrocardiogram Previous studies in the field of ECG have predominantly focused on using ECG
data for diagnostic purposes such as identifying various heart diseases. For instance, Nejedly et al.
[18] proposed an ensemble of residual networks with attention modules to classify cardiac diseases
using ECGs, which won first place in the PhysioNet/Computing in Cardiology Challenge 2021 [21].
At the same challenge, Han et al. [6] achieved second place by utilizing SE-WRN [31], which is a
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Table 1: Sample template questions for different question & attribute types in ECG-QA.
Question type Attribute type Example template question

Single-Verify

SCP Code Does this ECG show symptoms of non-specific ST changes?

Noise Does this ECG show baseline drift in lead I?

Stage of infarction Does this ECG show early stage of myocaridal infarction?

Extra systole Does this ECG show ventricular extrasystoles?

Heart axis Does this ECG show left axis deviation?

Numeric feature Does the RR interval of this ECG fall within the normal range?

Single-Choose

SCP Code Which symptom does this ECG show, conduction disturbance
or hypertrophy?

Noise Which noise does this ECG show, baseline drift or static noise?

Stage of infarction Which stage of infarction is this ECG at,
early stage of myocardial infarction or late stage of myocardial infarction?

Extra systole Which kind of extra systoles does this ECG show, ventricular extrasystoles
or supraventricular extrasystoles?

Heart axis Which cardiac axis does this ECG show, left axis deviation or
right axis deviation?

Numeric feature Which range does the RR interval of this ECG fall in,
below the normal range or within the normal range?

Single-Query

SCP Code What form-related symptoms does this ECG show?

Noise What kind of noises does this ECG show in lead I?

Stage of infarction What stage of infarction is this ECG at?

Extra systole What kind of extra systoles does this ECG show?

Heart axis What direction is this ECG deviated to?

Numeric feature What range does the RR interval of this ECG fall in?

Comparison-
-Consecutive-Verify

SCP Code Compared to the previous tracing, has left ventricular hypertrophy been
resolved in the recent tracing?

Numeric feature Compared to the previous tracing, has the PR interval of the recent tracing
become normal?

Comparison-
-Consecutive-Query

SCP Code What symptoms have been resolved in the recent tracing as compared to the
previous one?

Numeric feature What numeric features of the recent tracing now have become normal compared
to the previous one?

Comparison-
-Irrelevant-Verify

SCP Code Compared to the first ECG, has atrial fibrillation been newly detected in the
second ECG?

Numeric feature Compared to the first ECG, has the P duration of the second ECG changed
to an abnormal value?

Comparison-
-Irrelevant-Query

SCP Code What symptoms still remain in the second ECG as compared to the first ECG?

Numeric feature What numeric features of the second ECG are now considered abnormal values
as compared to the first ECG?

combination of wide residual network [30] and squeeze-and-excitation modules [7]. Furthermore,
several works [4, 10, 19] studied self-supervised learning with ECGs to improve performances on the
cardiac arrhythmia classification task. These works concentrate on classifying diagnoses based on a
single ECG, and do not consider the significance of comparing two ECGs, despite its importance in
clinical contexts. For example, by detecting resolved symptoms after some treatments, the medical
practitioners can assess the effectiveness of the treatments and evaluate the progress of the patient’s
condition. To reflect this clinical reality, we have included questions that involve the comparison of
two ECGs within the ECG-QA dataset, making our dataset unique and valuable.

3 Dataset Construction

We constructed the ECG-QA dataset upon the PTB-XL dataset [26]2, which offers comprehensive
metadata regarding ECGs annotated by expert cardiologists. This metadata covers a wide range of
information including ECG reports, diagnostic statements, diagnosis likelihoods, and signal-specific
properties. To ensure the high quality of our dataset, we performed additional filtering on the original

2This dataset is licensed under CC-BY-4.0 license.
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(a) Attribute Type & Question Type
Attribute Type

SCP Code

Noise

Heart axis

Stage of infarction

Extra systole

Numeric feature

1st Question Type

Single

Comparison-
Consecutive

Comparison-
Irrelevant

2nd Question Type

Verify

Choose

Query

(b) Templatization
Question Template

Does this ECG show symptoms of ${scp_code}?

Which symptom does this ECG show, ${scp_code1} or 
${scp_code2}?

What diagnostic symptoms does this ECG show, including 
uncertain symptoms?

Compared to the previous tracing, has ${scp_code} been 
resolved in the recent tracing?

⋯

(c) Question & Answer Collection
Template Question Answer

Does this ECG show symptoms of conduction 
disturbance? Yes / No

Which symptom does this ECG show, 
conduction disturbance or hypertrophy? CD / HYP / Both / Neither

What diagnostic symptoms does this ECG 
show, including uncertain symptoms? None / (LAFB, AMI) / (LVH, ISC_) / ⋯

⋯ ⋯

(d) Sampling
Sampled ECGs

Yes: [14834, 10248, ⋯] No: [14399, 7445, ⋯]

CD: [21343, 13523, ⋯] HYP: [14798, 6206, ⋯]
Both: [3242, 964, ⋯] Neither: [2931, 4388, ⋯]

None: [62, 73, ⋯] (LAFB, AMI): [308, 1977, ⋯]
(LVH, ISC_): [16300, 12440, ⋯] ⋯

⋯

Figure 2: Visualization of the ECG-QA sample generation pipeline. The numbers in the sampling
stage (d) stand for the ECG IDs in the PTB-XL dataset. In the sampling process, we also convert the
template questions into pre-defined paraphrases for each sample.

PTB-XL dataset. Specifically, we selected ECGs that were marked with a validated_by_human
tag set to True, which indicates the validation by a human cardiologist, and excluded ECGs that had
empty reports. As a result, the ECG-QA dataset was constructed using 16, 054 samples of 10-second
ECGs from the PTB-XL dataset. In addition, we split the samples into training and test sets according
to a 8:2 ratio based on their patient IDs before generating QA samples to prevent the overlapping of
ECGs between training and test sets. We again split the training samples into training and validation
sets by a 9:1 ratio, yielding 7.2:0.8:2.0 training-validation-test distribution.

3.1 Question template

To generate QA samples, we start by creating the question templates to collect questions, answers,
and their corresponding ECGs. Because the questions are fully derived from these templates, it is
important to define templates that are not only diverse but also clinically meaningful. To achieve
this goal, we extracted the relevant attributes from the PTB-XL metadata to determine the content of
the questions (i.e., attribute types) and categorized the questions into several question types. Then,
we combined these types to construct the template questions, and additionally generated template
paraphrases to add lexical diversity to our dataset. As a result, we defined a total of 70 templates
as shown in Supplementary A.2, and we also provide the example questions derived from these
templates in Table 1. All the processes of designing question templates have been validated by a
board-certified medical expert from the Department of Critical Care and Emergency Medicine in
terms of clinical utility. The detailed processes of each step are described in the following subsections,
as well as visualized in Figure 2 (a) and (b).

3.1.1 Attribute type extraction

SCP code The PTB-XL dataset provides SCP codes for each ECG sample, consisting of 71
different ECG symptoms that adhere to the SCP-ECG v0.4 that preceded the current SCP-ECG
standard [23]. These attributes are composed of form-related (e.g., inverted T-waves), rhythm-related
(e.g., sinus arrhythmia), and diagnostic symptoms (e.g., non-specific ischemic) along with additional
5 superclasses for diagnostic labels. Given that detecting cardiac symptoms is a primary objective in
many ECG studies [18, 6, 4, 10, 19], we included questions that inquire about various ECG symptoms
in the ECG-QA dataset. To ensure the dataset quality, we excluded attributes with a low number of
positive ECG samples in the test split, such as WPW (wolf-parkinson-white syndrome), resulting in a
final selection of 64 attributes, including the 5 superclasses. Furthermore, we developed a regular
expression parser to extract the grounded lead position of form-related symptoms from the ECG
reports (See Supplementary B.1). This enables us to include questions in the ECG-QA dataset that
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specifically address the leads in which symptoms are detected (e.g., Does this ECG show symptoms
of inverted T-waves in lead I?), making the ECG-QA dataset more comprehensive.

Noise Considering that ECG measurements involve placing electrodes on specific body surfaces, it
is inevitable to encounter various signal interferences such as baseline drift, which can be caused by
patient movement or machine issues. Therefore, it becomes crucial to differentiate these interferences
from the original ECG signals during analysis. To reflect this aspect in the ECG-QA dataset, we
leveraged the signal noise information available in the PTB-XL metadata. This information is
provided as a string indicating the specific lead positions where each noise is detected (e.g., “v1-v6”
or “i-iii”). We parsed these strings to identify the exact lead positions associated with four different
types of noises: Baseline drift, Static noise, Burst noise, and Electrode problems.

Stage of infarction Since identifying the stage of myocardial infarction (MI) helps healthcare
professionals determine the most appropriate management strategies by assessing the risk profile
for the patient, we also have considered the stage of infarction as an important attribute in the
ECG-QA dataset. In the PTB-XL dataset, it distinguishes the stage of MI into six levels including
intermediate stages: "I," "I-II," "II," "II-III," "III," and "Unknown." In addition, because there are two
fields indicating the stage of infarction (infarction_stadium1 and infarction_stadium2), the
statements could be potentially multiple. For the sake of simplicity, we simplified the stages into 4
levels by regarding the intermediate stages ("I-II" and "II-III") as their "lower" stage ("I" and "II").
Then, we used the second statement if there are multiple entries at a time. After defining an additional
stage called "None" for those who do not have MI, we could derive five attributes for the stage of
infarction.

Extra systole Since extra systoles can be a sign of underlying cardiac conditions or abnormalities,
it is also important to detect them to evaluate the patient’s heart health. To address the presence of
extra systoles in the ECG-QA dataset, we utilized the relevant annotations provided in the PTB-XL
metadata, which includes information about the occurrence of different types of extra systoles:
Extrasystoles, Ventricular extrasystoles, and Supraventricular extrasystoles.

Heart axis The heart axis provides valuable information about the direction of the heart’s electrical
activity during each cardiac cycle. In the ECG-QA dataset, we have considered the heart axis as
another crucial attribute since it is an important parameter that can help in diagnosing certain cardiac
conditions. Although the PTB-XL metadata includes heart axis information, we did not utilize it
because it does not specify the actual numerical values of the heart axis. Instead, we manually
calculated the heart axis degrees by employing an external tool, NeuroKit2 [16] 3. Then, we classified
them into four categories following the conventional standards: Normal heart axis, Left axis deviation,
Right axis deviation, and Extreme axis deviation.

Numeric feature The ECG-QA dataset also incorporates numeric features that provide further
insights into the cardiac signals. Similar to the heart axis, we used NeuroKit2 to calculate the numeric
values for these features since the PTB-XL dataset does not explicitly provide such information.
Specifically, we extracted the locations of P, Q, R, S, and T waves for each beat present in lead II,
and computed six different numeric features: RR interval, P duration, PR interval, QRS duration,
QT interval, and QT corrected. Given that a 10-second ECG recording typically contains multiple
beats and thus multiple numeric values for each feature, we represented each feature using its median
value. This approach helps to minimize the impact of abnormal contractions, such as ventricular
premature contractions, on the calculated values. Additionally, we categorized each numeric value
as below, within, or above the normal range, where the normal range criteria are described in
Supplementary B.2, derived from a previous study [27]. These ranges serve as a useful reference for
assessing the numerical measurements and identifying potential abnormalities in the cardiac signals.

3.1.2 Question type definition

We have defined two different types of questions. The first type pertains to the type of ECGs associated
with a question, which can be categorized as follows: 1) Single, which refers to questions involving
a single ECG; 2) Comparison-Consecutive, which involves comparison questions between two

3This software is licensed under MIT license.
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Table 2: Test performances for different question types. We also provide 95% confidence interval across 3
random seeds. The best performances for each question type are highlighted with boldface.

Question
Type

per Q-type
majority

M3AE† [2] MedViLL† [17] Fusion Transf. Blind Transf. Deaf Transf.

EM Acc. AUROC EM Acc. AUROC EM Acc. AUROC EM Acc. AUROC EM Acc. AUROC

S-Verify 67.7 74.6±0.4 0.761±0.002 73.9±0.5 0.768±0.011 72.1±0.5 0.725±0.008 67.7±0.0 0.629±0.008 67.3±0.2 0.613±0.003

S-Choose 31.2 57.1±0.8 0.850±0.002 54.1±0.8 0.839±0.001 46.4±0.4 0.797±0.007 31.0±0.1 0.529±0.006 31.4±0.0 0.786±0.011

S-Query 23.2 41.0±0.5 0.836±0.002 40.4±0.6 0.831±0.004 37.4±0.6 0.791±0.011 24.0±0.0 0.549±0.006 27.0±0.1 0.754±0.006

CC-Verify 62.8 75.5±0.2 0.792±0.002 74.3±2.6 0.778±0.047 71.9±0.6 0.760±0.003 65.7±0.8 0.610±0.001 59.5±0.6 0.510±0.009

CC-Query 16.9 20.1±1.6 0.808±0.003 22.0±1.3 0.816±0.003 18.4±1.3 0.781±0.003 16.9±0.0 0.568±0.023 16.9±0.1 0.693±0.012

CI-Verify 66.1 75.3±0.9 0.769±0.010 77.5±1.6 0.823±0.021 68.1±0.6 0.723±0.010 66.2±0.1 0.508±0.004 61.1±0.5 0.505±0.004

CI-Query 1.10 4.19±0.2 0.741±0.008 3.50±0.2 0.758±0.004 2.19±0.1 0.704±0.004 0.95±0.1 0.527±0.008 1.11±0.0 0.632±0.016

S: Single, CC: Comparison-Consecutive, CI: Comparison-Irrelevant

consecutive ECGs from the same patient; and 3) Comparison-Irrelevant, which involves comparison
questions between two irrelevant ECGs from different patients. Although Comparison-Irrelevant
questions may not seem realistic in a clinical setting, we included these questions since they can help
to reinforce a machine’s comprehension ability and be utilized for model evaluation when comparing
two different ECGs. In addition, inspired by GQA [8], the second type of question refers to the main
function it should perform. These can be categorized as follows: 1) Verify, which corresponds to
yes/no questions; 2) Choose, which applies to questions where the selection is made from two given
options; and 3) Query, which are open-ended questions that seek to retrieve specific attributes.

By combining these two types, we could derive a total of 9 possible question types. However, we did
not include the combinations of Comparison and Choose types since it seemed unnatural to select
from two given options when comparing different ECGs. Similarly, with regards to the attribute
types, we only considered SCP code and Numeric feature for comparison questions because these
two attribute types are providing the most informative features when comparing two ECGs.

3.1.3 Paraphrase generation

To enhance the lexical diversity of the ECG-QA dataset, we manually curated paraphrases for
each question template based on the machine-generated candidates by utilizing OpenAI’s ChatGPT.
We ensured that the questions in the test split were not included in the training set to evaluate
the generalizability of the QA models on different lexical variations. The detailed procedure for
generating paraphrases and its results are presented in Supplementary A.3.

3.2 QA sample collection

As shown in Figure 2 (b) and (c), we collected questions by plugging the corresponding attributes into
the placeholder that existed in the question templates. For example, a question template “Does this
ECG show symptoms of ${scp_code}?” can be transformed into “Does this ECG show symptoms
of conduction disturbance?” We further gathered the corresponding answers for each question and
paired them to create (question, answer) pairs. Then, for each (question, answer) pair, we again
randomly sampled the corresponding ECGs from the candidate ECGs. In each split, the candidate
ECGs can be 1) all the single ECGs for Single questions; 2) all the (ECG1, ECG2) pairs where ECG1

and ECG2 are the consecutive ECGs from the same patient for Comparison-Consecutive questions;
and 3) all the (ECG1, ECG2) combinations where ECG1 and ECG2 have different patient IDs for
Comparison-Irrelevant questions. After we finally replaced the template question with randomly
selected paraphrases that matched the corresponding question’s template, the process of collecting
QA samples was complete. The detailed sampling strategies for different question types are described
in Supplementary B.3.

After all these processes, the ECG-QA dataset consists of 267,539 training samples, 64,663 validation
samples, and 82,146 test samples, which cover various types of attributes and questions. More
detailed statistics of the dataset are described in Supplementary B.4.

4 Experiments

Task formulation We formulate QA task as a multi-label classification over all possible answer
options that exist in the ECG-QA dataset. The answer labels are composed of 88 attributes from the
six attribute sets, 12 lead positions (i.e., lead I - lead V6), and 3 answers for Verify questions (yes, no,
not sure), leading to a total of 103 answers. Note that we processed “None” answer as an empty label.
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Baselines We implemented the following QA baselines: M3AE† [2], MedViLL† [17], Fusion
Transformer, Blind Transformer (seeing questions only), and Deaf Transformer (seeing ECGs only).
Because the original implementations of M3AE and MedViLL were intended to pre-train images
with texts, we modified them to be applied to ECGs instead of images and pre-trained them using
ECG data, as marked with †. Additionally, similar to the per Q-type prior in VQA [1], we include a
prior model, per Q-type majority, which outputs only the most frequent answer for each question type
in the test split. More details about each model implementation including training hyperparameters
are described in Supplementary C.1.1.

4.1 Evaluation metrics

Exact match accuracy To calculate the exact match accuracy, we applied a threshold value of
0.5 to each score in the model’s output vector, ŷ ∈ R103, which gives a multi-hot vector of length
103. Then, we compare the output vector with the ground truth answer vector. If the two vectors are
exactly the same, we assign a score of 1; otherwise, we assign a score of 0. To obtain the overall
accuracy, we sum the scores for all the test questions and divide the aggregated score by the total
number of questions, yielding the percentage of questions that were answered exactly.

AUROC While the exact match accuracy is a useful metric, it may not fully capture the model’s
performance since it does not consider partial credits, especially in the case of Query questions that
require consideration of much more attributes. To provide a more comprehensive evaluation, we
employ the area under ROC curve (AUROC) as another metric. When calculating AUROC, we
adopt a cautious approach by only considering the "valid" answer candidates for each question. This
approach aims to prevent overestimation, as the model might naturally assign lower scores to "invalid"
answer options. For example, in a question like “Which noise does this ECG show, baseline drift
or static noise?”, we exclusively consider the scores of the answer options baseline drift and static
noise. We collect scores for each answer option over all the samples and compute macro-averaged
AUROC among the answer options.

4.2 Upper bound experiments

In the field of clinical medicine, even experienced medical practitioners cannot be entirely certain
when making crucial decisions, such as diagnosing a patient’s condition. Similarly, the ECG-QA
dataset can also suffer from this inherent uncertainty even though we extracted attributes from the
existing annotations made by expert cardiologists. As 100% accuracy is unlikely to attain due to the
inherent uncertainty, we aim to estimate the upper bound performance a model can achieve with our
dataset, and use it as a reference when evaluating the model performance.

Within our dataset, we speculate that questions of the Single-Verify type necessitate basic perceptual
abilities while other question types can be solved by logically combining these perceptual abilities.
For example, Single-Choose questions can be answered by verifying the presence of each attribute in
the given two options, and similarly, Single-Query questions can be solved by verifying the presence
of each element within the specified attribute set. Consequently, we hypothesize that achieving high
performance on the whole ECG-QA dataset is unlikely without a high level of perceptual ability.
Based on this hypothesis, we can estimate the upper bound performances for the whole ECG-QA
dataset by measuring the upper bound performances of the Single-Verify samples. To this end, we
designed the following experiments.

We convert all the Single QA samples (Single-Verify, Single-Choose, Single-Query) in the training
set into the format that ECG classification models can process, and train the classification models
using the converted training samples. Similarly, after converting the Single-Verify samples in the
test set, we estimate the upper bound performance by measuring performances on the converted
Single-Verify test samples. Then, we compare this upper bound with Single-Verify performances
of QA models to show how much the QA baselines can be improved in terms of their perceptual
ability. The detailed process of converting QA samples into ECG classification format is described in
Supplementary C.1.2.

For these experiments, we employ powerful ECG classification models classifying all the individual
attributes present in the Single-Verify samples. The models we use include a Transformer-based
model pre-trained with the W2V+CMSC+RLM [19] method, Resnet with Attention [18], and SE-
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Table 3: Macro-averaged test performances of up-
per bound models over all attributes for Single-
Verify questions

Upper bound Model Acc. AUROC

W2V+CMSC+RLM [19] 83.0±0.4 0.864±0.003

Resnet-Attention [18] 82.6±0.3 0.875±0.002

SE-WRN [6] 83.1±0.3 0.883±0.002

MAX 85.4±0.4 0.907±0.002

Table 4: Macro-averaged test performances
of QA models over all attributes for Single-
Verify questions.

QA Model Acc. AUROC

M3AE† [2] 80.8±0.3 0.808±0.006

MedViLL† [17] 79.8±0.3 0.809±0.005

Fusion Transf. 76.4±0.6 0.764±0.010

WRN [6]. In addition, to present the maximized upper bound, we derive another model that takes only
the maximum score among the three models for each attribute, which is denoted as MAX. Detailed
model implementations and training configurations are presented in Supplementary C.1.2.

4.3 Modeling with LLMs

As for one of the future research directions with our dataset, we further investigated the possibility of
leveraging LLMs for ECG-QA. Inspired by ChatCAD [29], for each QA sample, we transformed
ECGs into text descriptions using the output from the trained upper bound model (SE-WRN) and
forwarded them to several OpenAI’s GPT models (gpt-4, gpt-3.5-turbo, text-davinci-003)4

along with the corresponding question. Due to the restricted quota of OpenAI’s api usage policy, we
randomly sampled 10% from the ECG-QA test set and conducted experiments only once for each LLM
model. The detailed processes including prompts that we used are described in Supplementary C.1.3.

4.4 Results

QA results The baseline results are presented in Table 2. We also report test performances
for different attribute types in Supplementary C.2. As expected, Blind and Deaf Transformer
exhibit poor performance while other models all achieve higher scores compared to the prior model
(per Q-type majority), indicating that our dataset cannot be solved by solely seeing each question
and ECG separately. Furthermore, among the top three models (M3AE†, MedViLL†, and Fusion
Transformer), the pre-trained models (M3AE† and MedViLL†) outperform Fusion Transformer,
which demonstrates the potential advantages of utilizing novel multi-modal pre-training methods for
our dataset. Additionally, the lower performance of Choose or Query questions compared to Verify
questions suggests that the primary challenges in our dataset lie on a model’s ability to learn logical
and set operations based on the basic perceptual abilities that can be acquired from Verify questions.

Upper bound results The results of the upper bound experiments are reported in Table 3 and 4.
When we compare SE-WRN, which is the best upper bound model, with the best QA model, M3AE†,
we can see that the perceptual ability of baseline models can be improved by 2.3%p and 7.5%p in
terms of EM accuracy and AUROC, respectively. Moreover, when comparing with MAX, which is
expected to show a higher upper bound, the differences are increased to 4.6%p in EM accuracy and
9.9%p in AUROC. We believe these upper bound results can serve as a useful yardstick for assessing
the basic perceptual ability required for more complicated questions such as Choose or Query.

LLM modeling results The results of the experiments with LLMs are presented in Table 5.
Interestingly, the performance of all the GPT models did not surpass that of the QA baseline model.
We speculate that this is due to two primary reasons: 1) the upper bound model (i.e. SE-WRN) fails to
accurately extract necessary information, and 2) some questions were too complicated to be answered
with a zero-shot prompt. Since LLMs fully rely on the ECG classification model for interpreting
the ECGs, their performance inevitably depends on the capabilities of the ECG classification model.
However, we cannot guarantee that SE-WRN is such a perfect model that always outputs accurate
interpretations, because it has been trained with a limited set of QA training set to measure only the
upper bound of the perceptual ability. Therefore, we expect significant performance gains if we have

4As all of these experiments were conducted prior to June 7th, 2023, the associated models were referencing
the earlier legacy versions. More precisely, at the time of the experiments, gpt-4 corresponded to gpt-4-0314,
and gpt-3.5-turbo matched with gpt-3.5-turbo-0301.
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Table 5: Test EM accuracies for different question types. Note that we randomly sampled 10% from the
ECG-QA test set for each question type to test the models due to the restricted quota of OpenAI’s api usage
policy. The best performance for each question type are highlighted with boldface.

Question
Type

per Q-type
majority

SE-WRN
+ gpt-4

SE-WRN
+ gpt-3.5-turbo

SE-WRN
+ text-davinci-003 M3AE† [2]

S-Verify 69.1 71.0 69.3 75.0 76.0±0.7

S-Choose 30.7 48.1 36.1 37.8 58.2±0.9

S-Query 25.3 35.7 31.1 36.0 40.0±1.6

CC-Verify 58.4 54.9 58.2 56.3 74.7±1.2

CC-Query 17.3 13.0 10.5 15.4 21.2±2.0

CI-Verify 67.0 68.8 64.1 71.5 75.2±1.7

CI-Query 1.32 2.53 1.32 1.40 4.36±0.7

S: Single, CC: Comparison-Consecutive, CI: Comparison-Irrelevant

a strong classification model that can extract all the existing information from an ECG, and fine-tune
LLMs with our QA training set (i.e., applying instruction learning to LLMs).

5 Conclusion

In this work, we present ECG-QA, the first QA dataset that incorporates ECG data for question
answering tasks. Our dataset is designed to ensure clinical relevance and has been validated by an
ECG expert. We created carefully designed question templates, which leverage clinically meaningful
attributes extracted from the PTB-XL dataset, to generate a diverse collection of questions, including
those that require the comparison of two ECGs. We believe that our dataset has the potential to
significantly advance the field of ECG question answering research and contribute to the improvement
of clinical practice in analyzing ECG data.

As for the future research directions with ECG-QA, one of the promising avenues is the exploration
of multi-modal LLMs that can simultaneously process both ECG signals and natural language. While
there is extensive work on LLMs that combine vision and language, there has been limited research
on models that integrate signal processing with natural language. We believe our dataset can serve as
an excellent testbed for such models.

6 Limitation

Despite our best efforts to create the current version of the dataset, there are some limitations as
follows.

Small number of ECGs Due to the limited number of ECGs available in the original dataset
(PTB-XL), our dataset was constructed using a relatively small number of ECGs (∼16k), which
leads that questions involving too rare symptoms (e.g., Wolf-Parkinson-White syndrome) could not be
included. To provide more diverse combinations of ECGs and questions by incorporating questions
regarding very rare attributes, we are planning to employ another dataset that is larger than the
PTB-XL dataset such as MIMIC-IV-ECG [5], which is planned to be released in late 2023.

Upper-bound of the dataset As mentioned in Section 4.2, given the intricacies of the medical field,
even medical experts cannot provide 100% accurate diagnoses for all questions. Thus, the upper-
bound of the dataset itself is not expected to be 100%. To address this, we conducted experiments
demonstrating the estimated upper-bound for each question type and attribute.

Old version of SCP-ECG standard Despite SCP-ECG v3.0 being the latest version, the metadata
of the original dataset, PTB-XL, follows the SCP-ECG v0.4 standard. Consequently, in ECG-QA, we
were constrained to categorize various symptoms based on the SCP-ECG v0.4 standard. However,
after investigating how the SCP codes in SCP-ECG v3.0 are categorized, we found that there is only a
little difference between SCP-ECG v0.4 and v3.0 regarding the SCP codes used in PTB-XL. Among
the SCP codes used in PTB-XL, only one SCP code (BIGU, bigeminal pattern - unknown origin,

9



SV or Ventricular) has a different representation, which has changed to "SVBIG" (supraventricular
bigeminy BIGU bigeminal pattern - unkown origin, SV or Ventricular) in SCP-ECG v3.0. The rest
of the SCP codes have maintained their codes and definitions intact in SCP-ECG v3.0. Therefore,
we believe that the impact of the differences between the two versions will not be significant in the
ECG-QA dataset.

Automatic generation of paraphrases Although the paraphrases were manually curated, the initial
candidates were automatically generated by ChatGPT, which may not be an optimal strategy. We
expect that paraphrases could have been more diverse if we had involved medical practitioners in
manually generating paraphrases.
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