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Abstract

The emergence of Deep Convolutional Neural Networks (DCNNs) has been a pervasive tool
for accomplishing widespread applications in computer vision. Despite its potential capa-
bility to capture intricate patterns inside the data, the underlying embedding space remains
Euclidean and primarily pursues contractive convolution. Several instances can serve as a
precedent for the exacerbating performance of DCNNs. The recent advancement of neural
networks in the hyperbolic spaces gained traction, incentivizing the development of convo-
lutional deep neural networks in the hyperbolic space. In this work, we propose Hyperbolic
DCNN based on the Poincaré Ball. The work predominantly revolves around analyzing the
nature of expansive convolution in the context of the non-Euclidean domain. We further
offer extensive theoretical insights about the universal consistency of the expansive convolu-
tion in the hyperbolic space. Several simulations were performed not only on the synthetic
datasets but also on some real-world datasets. The experimental results reveal that the
hyperbolic convolutional architecture outperforms the Euclidean ones by a commendable
margin.

1 Introduction
The ubiquitous utility of Deep Convolutional Neural Networks (DCNNs) LeCun et al. (1998) dominated the
arena of Computer Vision Yang & Li (2017); Fu et al. (2019); Sonata et al. (2021) over the past decade.
This profound success can be attributed to the effectiveness of the CNNs in approximating the broader class
of continuous functions Lin et al. (2022b). The prevalent convolutional neural architectures He et al. (2016);
Simonyan (2014) predominantly operate in the Euclidean feature space. The choice of Euclidean space is
mostly for implementable closed-form vector space and inner product structures, and their availability in
tabular forms. We are focused on DCNN architectures which evolve around 1− dimensional convolution
based on one input channel and ReLU (Rectified Linear Unit, r(x) := max(0, x) for x ∈ R) activation
function given to the computational units (Neurons). For two functions f, g : Rn → R, we define their
convolution as

f ⊗ g(z) :=
∫
Rn

f(x)g(z − x)dx,

where z ∈ Rn. In the Ballrete version, given a filter w := {wi}∞
i=−∞, where only finitely many wj ̸= 0.

We call w to be a filter of length s if wj ̸= 0 only for 0 ≤ j ≤ s. For a one dimensional input vector
v := {v1, v2, ..., vn} ∈ Rn, we can define two types of convolution operations, namely Expansive Convolution
(w ∗ v) and Contractive Convolution(w ⋆ v), given by the following forms of equations

(w ∗ v)k :=
n∑

i=1
wk−ivi, k = 1, 2, ..., n + s (1)

and

(w ⋆ v)k :=
k∑

i=k−s

wk−ivi, k = s + 1, s + 2, ..., n (2)
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respectively. Now for a set of L filters {wi}L
i=1, where L is the depth of our network with L many bias

vectors {bi}L
i=1, we recursively define the output of an intermediate layer given in terms of the output of the

previous layer as Zhou (2020)

hi(x) = r (wi ◦ hi−1(x) + bi) , for i = 1, 2, ..., L,

starting with the input as h0(x) = x and ◦ can be either ∗ or ⋆ as defined by equations 1 or 2 respectively. The
final one-dimensional output of this network is defined as the scalar product between the output produced
by the Lth layer with a trainable vector aL of compatible length

ho(x) := al · hL(x).

Although this form of Euclidean convolution has been proven to be enormously successful in several tasks
in computer vision, several precedents Lin et al. (2022a); Djeddal et al. (2021); Long & van Noord (2023)
can be put forth where Euclidean feature space seems unproductive, like datasets containing hierarchical
structures. Learning embeddings of hierarchical data in Euclidean spaces often falls short in capturing
meaningful structural information. To address this limitation, researchers have explored neural network
architectures in non-Euclidean spaces, particularly hyperbolic geometry Ganea et al. (2018); Nickel & Kiela
(2017b); Bdeir et al. (2023). Hyperbolic Neural Networks (HNNs) Ganea et al. (2018) have emerged as
a promising framework, leveraging negatively curved spaces to better represent complex relationships and
hierarchical structures. Building on this, Hyperbolic Deep Convolutional Neural Networks (HDCNNs) have
shown success in various image-related tasks. However, despite these empirical advances, a rigorous theoret-
ical understanding of hyperbolic convolution remains largely undeveloped.

Motivated by this gap, our work provides a comprehensive statistical analysis of hyperbolic convolution,
focusing on the consistency of expansive convolutional operations in hyperbolic space—a topic that has
received little attention compared to its Euclidean counterpart. Prior studies, such as Lin et al. (2022b),
have established consistent results for Euclidean convolutional networks using bounds on packing numbers
and error analysis. Yet, similar theoretical foundations for hyperbolic networks are lacking.

To this end, we introduce a theoretical framework for 1−D expansive Hyperbolic Deep Convolutional Neural
Networks (eHDCNNs), extending the conventional Euclidean DCNNs to the hyperbolic domain via the
Poincaré Ball model. This foundation enables the formulation of key statistical properties and paves the
way for theoretical consistency analysis. Empirical results on both synthetic and real-world datasets confirm
the superiority of hyperbolic representations, with significantly faster convergence and lower error rates
compared to Euclidean models, thus validating our theoretical contributions.

Contribution

Our main contributions could be summarized in the following way:

• We provide theoretical insights, including the consistency analysis of the expansive 1-D convolution
in hyperbolic space. To the best of our knowledge, this is the first work to present a complete proof
in the context of a fully hyperbolic set-up. In doing so, we have also introduced the concept of
a fully hyperbolic convolution operation on the Poincaré Ball, which is the generalization of the
conventional Euclidean convolution operation on hyperbolic spaces. Additionally, we have defined
several statistical terminologies within the hyperbolic framework to derive universal consistency. All
necessary proofs and derivations are provided in Section A.

• Our experimental simulations demonstrate that eHDCNN training converges more rapidly than
the training of the Euclidean DCNN, which we have already established theoretically. The faster
reduction of error rate reaffirms the requirements of the lower number of training iterations for hy-
perbolic convolutional networks compared to their conventional Euclidean counterparts, establishing
the effectiveness of eHDCNN. Details of the experiments and simulations are provided in Section 7.
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(a) c = 0 (b) c = 1

Figure 1: Test Root Mean Squared error for f(x) and g(x) plotted using (a) eDCNN architecture curvature
0 (i.e., Euclidean space) and (b) eHDCNN architecture with curvature 1.

2 A Motivating Example

We will demonstrate the efficacy of our proposed hyperbolic expansive convolution over conventional Eu-
clidean expansive convolution through the following simulation.

Experimental Setup

Consider the following functions,

f(x) = sin(∥x∥2)
∥x∥2

, g(x) = cos(∥x∥2)
∥x∥2

,

where f(x) and g(x) both are modeled as regression task like y := h(x) + ϵ. Here, h can be replaced with
either f or g. The training instances are generated by sampling ϵ ∼ N (0, 0.01) and x ∼ unif([−1, 1]5).
A total of 1000 instances will be generated for both cases where 800 and 200 samples will be respectively
used for training and testing. Importantly, the test samples are considered without the Gaussian noise. The
filter length is fixed at 8 with the number of layers is 4. Both models are trained for 100 epochs over the
training set. The test Root Mean Squared Loss (RMSE) is recorded after the completion of training and
presented in Figure 1. Experiments are conducted for two different curvatures c = 0 (Euclidean space) and
c = 1. We considered unit radius Poincaré Ball as the hyperbolic space. Assuming the point set in Ballrete
metric space, we employed Gromov Hyperbolicity (GH) Väisälä (2005) to measure the hyperbolicity (δ) of
the corresponding data points. The metric offers hyperbolicity of f and g are respectively δf = 0.45 and
δg = 0.13, indicating that g is more hyperbolic comparing to f .

3 Related Works

Hyperbolic Image Embedding and NLP Tasks

Developing a Hyperbolic Neural network for computer vision tasks has been mainly focused on combining
Euclidean Encoders and Hyperbolic Embedding. These architectures were demonstrated to be effective in
performing various vision tasks, for example, recognition Khrulkov et al. (2020),Guo et al. (2022a), generation
Nagano et al. (2019), and image segmentation Atigh et al. (2022). While Hyperbolic Embedding has also
been tremendously successful in performing various tasks related to Natural Language Processing Nickel &
Kiela (2017a),Nickel & Kiela (2018). These ideas were mainly motivated by the expressive power of the
hyperbolic spaces to represent graph or tree-like hierarchies in shallow dimensions with very low distortions.
However, deploying Riemannian Optimization algorithms to train this architecture is difficult due to the
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inability to extend them for visual data since NLP tasks lack the availability of Ballrete data Sala et al.
(2018),Sarkar (2011).

Fully Connected Hyperbolic Neural Network

In 2018 Ganea et al. (2018), and in 2020 Shimizu et al. (2020) independently developed the structure of
Hyperbolic Neural Networks on Poincaré Ball by utilizing the gyrovector space structure. They defined the
generalized notions of different layers like fully connected, convolutional, or attention layers. Fan et al. (2022),
Qu & Zou (2022) tried to develop variations of HNN models like fully Hyperbolic GAN on Lorentz Model
space, van Spengler et al. (2023) proposed a fully hyperbolic CNN architecture on Poincaré Ball model. Very
recently, Bdeir et al. (2023) presented a fully convolutional neural network on the Lorentz Model to perform
complex computer vision tasks, where they generalized fundamental components of CNNs and proposed
novel formulations of convolutional layer, batch normalization, and Multinomial Logistic Regression (MLR)
classifier. Moreover, hyperbolic graph neural networks can also accomplish recommendation tasks. There
are numerous recommender systems such as graph neural collaborative filtering Sun et al. (2021), Yang et al.
(2022), social network enhanced network system Wang et al. (2021), knowledge graph enhanced recommender
system Chen et al. (2022), and session-based recommender system Guo et al. (2022a), Li et al. (2021).

Batch Normalization in Hyperbolic Neural Networks

Batch Normalization Ioffe (2015) restricts the internal departure of neuron outputs by normalizing the
outputs produced by the activations at each layer. This adds stability to the training procedure and speeds
up the training phase. Several attempts have been made to transcend the normalization of conventional
neural networks in the hyperbolic setup. The general framework of Riemannian Batch Normalization Lou
et al. (2020), however, suffers from slower computation and iterative update of the Frechét centroid, which
does not arise from Gyrovector Group properties. Additionally, Bdeir et al. (2023) proposed an efficient batch
normalization algorithm based on the Lorentz model, utilizing the Lorentz centroid and a mathematical re-
scaling operation.

Numerical Stability of Hyperbolic Neural Networks

Training of Hyperbolic Neural Networks developed on the Lorentz Model can lead to instability and floating
point error due to rounding since the volume of the Lorentz model grows exponentially with respect to radius.
Sometimes, people work with these floating-point representations in 64-bit precision with a higher memory
cost. Mishne et al. (2023),Guo et al. (2022b),Mathieu et al. (2019) proposed some versions of feature clipping
and Euclidean reparameterization to mitigate these issues. However, they largely overlooked some critical
aspects, such as defining a fully hyperbolic convolutional layer or classifiers like MLR, which are essential
for various computer vision tasks. In this paper, we fully address this gap by developing a novel architecture
from the ground up, along with the theory of its universal consistency.

4 Preliminaries

This section discusses the preliminaries of Riemannian Manifolds and Hyperbolic Geometry which would
underpin the introduction of our proposed framework.

4.1 Riemannian manifold, Tangent space, and Geodesics

Roughly speaking, an n-dimensional Manifold M is a topological space that locally resembles Rn Tu (2017).
For each point x ∈ M, we can define the Tangent Space Tx(M) as the first order linear approximation of M
at x. We call M as a Reimannian Manifold if there is a collection of metrics g := {gx : Tx(M) × Tx(M) →
R, x ∈ M} at every point of M do Carmo (1992). This metric induces a distance function between two points
p, q ∈ M joined by a piecewise smooth curve γ : [a, b] → M with γ(a) = p, γ(b) = q and the distance between
p and q is defined as L(γ) :=

∫ b

a
gγ(t)(γ′(t), γ′(t))1/2dt. The notion of Geodesic between two such points is

meant to be that curve γ for which L(γ) attains the minimum and that L(γ) is referred as the Geodesic
Distance between p and q in that case. Given such a Riemannian Manifold M and two linearly independent
vectors u and v at Tx(M), we define the sectional curvature at x as kx(u, v) := gx(R(u,v)v,u)

gx(u,u)gx(v,v)−gx(u,v)2 , where
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R being the Riemannian curvature tensor defined as R(u, v)w := ∇u∇vw − ∇v∇uw − ∇(∇uv−∇vu)w [∇uv
is the directional derivative of v in the direction of u, which is also known as the Rimannian Connection on
M. ]

We use these notions to define an n-dimensional model Hyperbolic Space as the connected and complete
Riemannian Manifold with a constant negative sectional curvature. There are various models in use for
Hyperbolic Spaces, such as Poincaré Ball Model, Poincaré half Space Model, Klein-Beltrami Model, Hy-
perboloid Model, etc, but the celebrated Killing-Hopf Theorem Lang (1995) asserts that for a particular
curvature and dimension, all the model hyperbolic spaces are isometric. This allows us to develop our ar-
chitecture uniquely (without worrying much about performance variations) over a particular model space,
where we choose to work with the Poincaré Ball model for our convenience. Here, we have briefly mentioned
the critical algebraic operations on this model required for our purpose.

4.2 Poincaré Ball Model

For a particular curvature k(< 0)[c = −k], an n− dimensional Poincaré Ball model contains all of its points
inside the Ball of radius 1/

√
c embedded in Rn Lee (2006). The geodesics in this model are circular arcs

perpendicular to the spherical surface of radius 1/
√

c. The geodesic distance between two points p and q
(where ∥p∥, ∥q∥ < 1/

√
c) is defined as

d(p, q) := 2 sinh−1

(√
2 ∥p − q∥2

c( 1
c − ∥p∥2)( 1

c − ∥q∥2)

)
,

From now on, we will denote Dn
c as the n− dimensional Poincaré Ball with curvature −c.

4.3 Gyrovector Space

The concept of Gyrovector Space, introduced by Abraham A. Ungar [see Ungar (2022)], serves as a frame-
work for studying vector space structures within Hyperbolic Space. This abstraction allows for defining
special addition and scalar multiplications based on weakly associative gyrogroups. For a detailed geometric
formalism of these operations, Vermeer’s work Vermeer (2005) provides an in-depth exploration.

In this context, we will briefly Balluss Möbius Gyrovector Addition and Mobius Scalar Multiplication on
the Poincar’e Ball. Due to isometric transformations between hyperbolic spaces of different dimensions, the
same additive and multiplicative structures can be obtained for other model hyperbolic spaces (refer Fu et al.
(2019)). Utilizing Möbius addition and multiplication is essential when evaluating intrinsic metrics like the
Davies-Bouldin Score or Calinski-Harabasz Index to assess the performance of our proposed algorithm.

1. Möbius Addition: For two points u and v in the Poincaré Ball, the Möbius addition is defined as:
u ⊕c v := (1+2c<u,v>+c∥v∥2)u+(1−c∥u∥2)v

1+2c<u,v>+c2∥u∥2∥v∥2 , where c is the negative of the curvature for the Poincaré
Ball.

2. Möbius Scalar Multiplication: For r ∈ R, c > 0 and u in the Poincaré Ball, the scalar multiplica-
tion is defined as: r ⊗c u := 1√

c
tanh

(
r tanh−1(

√
c∥u∥)

)
u

∥u∥ This addition and scalar multiplication
satisfy the axioms pertaining to the Gyrovector Group [see Ungar (2022)].

4.4 Exponential & Logarithmic Maps

For any x ∈ Dn
c , the expc

x : Tx(Dn
c ) ⊆ Rn → Dn

c translates a point in the tangent space of the Poincare Ball
and projects it on the Poincaré Ball along the unit speed geodesic starting from x ∈ Dn

c in the direction
v ∈ Tx(Dn

c ). The Logarithmic map does precisely the opposite, i.e., logc
x : Dn

c → Tx(Dn
c ) ⊆ Rn, projecting a

point from the Poincaré Ball back to the tangent space at x ∈ Dn
c along the reverse of the geodesic traced

by the Exponential Map. Their formulations are explicitly given as follows:

expc
x(v) := x ⊕c

(
tanh

(√
c
λc

x∥v∥
2

)
v√

c∥v∥

)
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and

logc
x(y) := 2√

cλc
x

tanh−1 (√c∥ − x ⊕c y∥
) −x ⊕c y

∥ − x ⊕c y∥
,

for y ̸= x and v ̸= 0 and the Poincaré conformal factor λc
x := 2

(1−c∥x∥2) .

5 Proposed Method
In this section, we will unravel the design strategy of expansive Hyperbolic Deep Convolutional Neural
Networks (eHDCNN). Let us first define the hyperbolic convolution operation on Poincaré Ball. Assume
two functions f and g from Rn → R, we define the convolution between f and g as:

f ⋆ g(x) :=
∫
Rn

f(z)g(x − z)dz.

Analogously, we define hyperbolic convolution using logarithmic and exponential maps.
Definition 1 (Hyperbolic Convolution (Continuous Version)). For x ∈ Dn

c , we define the convolutions of
two real-valued functions f, g on Rn as a map from : Dn

c → D1
c as

f ⋆ g(x) := expc
0

[∫
Dn

c

f(logc
0(z))g(logc

0(−z ⊕c x))λ(z)
]

, (3)

where λ(z) := dz
1−c∥z∥2 .

Remark 1. Note that for two real-valued functions f, g, their hyperbolic convolution is a map h : Dn
c → D1

c.
We want to keep the range of the output function of the convolution in D1

c, since in the deep convolutional
setup we will again convolute the output with some other filters.
Definition 2 (Hyperbolic Expansive and Contractive Convolution (Ballrete Version) ). Let w := {wj}∞

j=−∞
be an infinite dimensional vector whose elements are in R with finitely many non-zero entries in w. Ex-
plicitly we assume wj ̸= 0 for 0 ≤ i ≤ s. Among two widely used types of 1-D convolutions in Rn, we
talk about only the expansive and contractive type convolutions. Let v = {v1, ..., vn} ∈ Dn

c . We define the
Hyperbolic Expansive Convolution (∗h) and the Hyperbolic Contractive Convolution (⋆h) in the following way:

Let v′ := logc
0(v) = (v′

1, v′
2, ..., v′

n) ∈ Tc
0(Dn

c ) ⊆ Tc
0(Rn), i.e. v′ is an element of the tangent bundle at 0 of

Dn
c .

1. Hyperbolic Expansive Convolution:(w ∗ v′) =
∑n

l=1 wj−lv
′
l for j = 1, 2, ..., n + s. Therefore

(w ∗ v′) ∈ Rn+s. We apply the exp map to put it back in Dn+s
c . Finally, we define

w ∗h v := expc
0(w ∗ logc

0(v)). (4)

2. Hyperbolic Contractive Convolution: The usual contractive convolution for w and v′ is defined
as, w ⋆ v′ =

∑j
l=j−s wj−lvl, j = s + 1, ..., n. We define ⋆h between w and v as

w ⋆h v := expc
0(w ⋆ logc

0(v)), (5)

which lies in Dn−s
c .

Remark 2. Note that for c = 0, we will retrieve the usual sparse Toeplitz operators of dimensions n×(n+s)
and n × (n − s) from those two cases.

Having Ballussed all the necessary terminologies, we are finally set to define the complete architecture of the
Hyperbolic Deep Convolutional Neural Network (HDCNN).
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Filter of length s

Euclidean expansive
convolution

hyperbolic 
convolutional layer

hyperbolic 
convolutional layer

Figure 2: The complete workflow of expansive hyperbolic 1-D convolutional layer on Poincarê Ball is pre-
sented. (best view in digital format)

Definition 3 (Hyperbolic Deep Convolutional Neural Network (HDCNN)). Let L ∈ N be the number
of hidden layers in the network. For a given set of filters {wk}L

k=1 and set of compatible bias vectors
{bk}L

k=1 and a vector aL = {a1, a2, ..., anL
} [Note that these vectors all lie in Euclidean Spaces of Appropriate

Dimensions]. Let σ(t) := max{0, t} be the ReLU, acting component-wise for the multidimensional operation.
We also assume the dimension of the output layer is nL and hL(x) := {h1(x), h2(x), ..., hnL(x)} ∈ DnL

c . The
HDCNN is defined as:

hk(x) = σ(wk ◦ hk−1(x) ⊕c expc
0(bk)), (6)

where hk(x) is the output from the k−th hidden layer for k ∈ {1, 2, ..., L − 1} and hk(x) ∈ Dn+ks
c , where ◦

can be either ∗h or ⋆h as defined in Definition 2, h0(x) = x and the final output is given as:

hL(x) = expc
0 [aL · logc

0(hL(x))] . (7)

The transformation of a vector, lying as a geodesic on Poincaré Ball, is shown in Figure 2 through hyperbolic
convolution performed in an intermediate layer. This transformation projects the vector as another geodesic
in a higher dimensional Poincaré Ball to the subsequent layer.
Remark 3. If we restrict our focus only to the Expansive case (eHDCNN), note that the dimension of the
input to each hidden layer is getting bigger by s units every time. More explicitly, if we have started with
x ∈ Dn

c , and w1 is the first filter of length s, then h1(x) ∈ Dn+s
c , which is the input dimension of the second

hidden layer. Iteratively, the input dimension of the k−th hidden layer is as same as the dimension of hk−1,
which lies in Dn+(k−1)s

c . Finally, when we reach the output layer, the output dimension will be n + Ls, i.e.,
nL = n + Ls. To make the Mö bius addition and the Möbius multiplications compatible, we need to have
aL ∈ Rn+Ls. Also note that for c = 0, this architecture is reduced to the HDCNN architecture described in
Lin et al. (2022b).

6 Theoretical Analyses

We will now provide the proof for universal consistency following the framework established in Lin et al.
(2022b). While we will appropriately generalize the results to the hyperbolic setting, it is first necessary to
define some statistical terminologies to comprehend the mechanism of eHDCNN.

We consider a dataset D = {zi}m
i=1 = {xi, yi}m

i=1, where the samples are assumed to be independent and
identically distributed according to a Borel probability measure ρ on the space Z = X ×Y. Here, xi ∈ X ⊆ Dn

c

and yi ∈ Y ⊆ D1
c . We assume X is a compact set for this Ballussion. The goal is to learn a function

fD : X → R1 that minimizes the following Hyperbolic Generalization Error (HGE):

7
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E(f) :=
∫

Z
(f(x) − logc

0(y))2dρ. (8)

Remark 4. The reason behind taking the log of y ∈ Y is that, the logarithm function will project back y ∈ Y
to T0(D1

c) ⊆ R1. Hence, taking the difference between two real numbers will make sense. Also, if c → 0, we
will return the usual generalization error on the Euclidean Spaces.
Lemma 1. The Hyperbolic Regression Function (HRF) fρ(x) :=

∫
Y logc

0(y)dρ(y|x), defined by the means of
conditional distribution ρ(·|x) of ρ at x ∈ X minimizes the HGE.

The next lemma will deduce what we aim to minimize.
Lemma 2. For any f : Dn

c → R1, we have

E(f) − E(fρ) = ∥f − fρ∥L2
ρX

,

where ρX (x) :=
∫

Y ρ(x, y)dY(y), for each x ∈ X , the marginal distribution of ρ on X .

The estimator that minimizes the hyperbolic generalization error is that estimator which minimizes the em-
pirical error over the class of all functions expressed by our eHDCNN architecture. Hence the corresponding
estimator or the Empirical Risk Minimizer (ERM) is defined as:

fD,L,s := arg min
f∈HL,s

ϵD(f), (9)

where

ED(f) := 1
m

m∑
i=1

(f(xi) − logc
0(yi))2

denotes the empirical risk (HERM) associated with the function f and for the filters wk for k ∈ {1, 2, ..., L}
of length sk = d + ks and

HL,s := {hL(x), wk, bk ∈ Rd+ks, k = 1, 2, ..., L}

is the set of all hyperbolic outputs produced by the eHDCNN defined by 7.

To establish consistency, we must demonstrate that as the sample size m → ∞, the sequence of estima-
tors converges to the true value. Formally, a sequence of estimators is *strongly universally consistent*
if it converges almost surely to the underlying parameter. In regression, this implies that empirical error
estimators—derived via empirical risk minimization—converge to the generalization error over the space of
square-integrable functions (a Hilbert space) with respect to the conditional output distribution. In the
hyperbolic setting, we formalize this notion as follows:
Definition 4. A sequence of Hyperbolic Regression Estimators (HRE) ({fm}∞

m=1) built through ERM is said
to be strongly universally consistent if it satisfies the condition:

lim
m→∞

E(fm) − E(fρ) = 0

almost surely, for every Borel probability distribution λ such that logc
0(Y) ∈ L2(λ(Y|x)).

The main result we will be going to prove here will be the following Theorem, which will prove the strong
universal consistency of eHDCNN when the Hyperbolic Empirical Risk is minimized. The following Theorem
considers a sequence of eHDCNNs as the universal approximators of continuous functions, where the depth
of the network has been taken as a sequence depending upon the sample size of our dataset.

Theorem 1. Suppose L = Lm → ∞, M = Mm → 1√
c
, m−θM2

m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 [con-
strained truncation on the power of sample size] and(

1√
c

tanh−1(Mm
√

c)
)4

L2
m(Lm + d) log(Lm)

m1−2θ
× log

((
1√
c

tanh−1(Mm

√
c)
)

m

)
→ 0, (10)
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hold for θ ∈ (0, 1/2) and input filter length as 2 ≤ s ≤ d. Then πMm
fD,Lm,s is strongly universally consistent,

where πM (l) := min{M, |l|} · sign(l) is the well-known truncation operator.
Remark 5. If we put lim c → 0 in Theorem 1, we get back Theorem 1 in Lin et al. (2022b). Therefore,
Theorem 1 is a more generalized version, which is reduced to its Euclidean version for curvature 0.
Remark 6. When we intend to perform the convergence analysis of a series in mathematical analysis,
we first consider the partial sum of the series up to a certain term (let’s say up to the k−th term) and
then try to observe the behavior of the series by letting k → ∞. This idea generates the involvement of
the truncation operator in Theorem 1. Note that instead of taking Mm → ∞ [which is used in Lin et al.
(2022b)], we have made Mm → 1√

c
(letting our samples lie close to the boundary of the Poincaré Ball,

whose radius is 1√
c
). As Mm → 1√

c
, tanh−1(Mm

√
c) → ∞, so does Mm

(
1

Mm
√

c
tanh−1(Mm

√
c)
)

. It
will ease our work for giving an upper bound on the covering number of HL,s in terms of the truncation
limit. Our adoption of the truncation operator is motivated by the widespread application of this opera-
tor in proving the universal consistency of various learning algorithms Györfi et al. (2002), Lin et al. (2022b).

Apart from the truncation operator in Theorem 1, several constraints are involved which are crucial to
guarantee universal consistency. The constraint on depth Lm → ∞ appears naturally as it is necessary
for the universal approximation used in Lemma 7. The growth of the truncation limit concerning sample
size m is given by m−θM2

m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 instead of M2
mm−θ → 0 [given in Lin et al.

(2022b)] to incorporate the growth restriction of sample error in term of two increasing univariate functions
h1(Mm)h2(m−1), where h1(x) = x2

[
1 + 1

x
√

c
tanh−1(x

√
c)
]2

and h2(x) = xθ, θ > 0. Finally, the constraint
in equation 10 will ensure the absolute difference between the generalization error and empirical error goes to
0, by enforcing the condition that the combined growth effect of the pseudo-dimension and the metric entropy
of the class HL,s is outpaced by the number of input samples, which will be used to prove Lemma 6.
Remark 7. Theorem 1 only demonstrates the universal consistency of the eHDCNN architecture for one-
dimensional convolution. The primary restriction comes from the infeasibility of the convolutional factoriza-
tion that appeared in Zhou (2020) [also described in Lin et al. (2022b)]. Since the analysis in the hyperbolic
set-up also relies on the universal approximation for the conventional eDCNN, the question of universal
consistency remains open for two or higher-dimensional eHDCNN structures.

We now dive into proving Theorem 1. Our main ingredient will be a version of Concentration Inequality
[Theorem 11.4,Györfi et al. (2002)] after suitably adjusting the upper bound of the metric entropy concerning
pseudo-dimension [Lemma 4, Lin et al. (2022b)]. Although our approach is similar to Lin et al. (2022b) to
some extent, we have been able to derive a stronger version of Lemma 6 in Lin et al. (2022b) as presented in
the proof of Lemma 6 in this paper, showing that the truncated empirical error converges to the truncated
generalization error much faster in the case of hyperbolic convolution compared to the traditional Euclidean
one. This will be established once we present our experimental results in terms of different curvatures
(curvature 0 denotes the experiment has been done using eDCNN).

To prove Theorem 1 we divide our works into three parts as demarcated in Lin et al. (2022b) and will develop
the appropriate hyperbolic versions of the corresponding results. We begin with expanding the bounds on
the covering number for the class of functions defined in 7. We first need several terminologies.

Let ν be a probability measure on X ∈ Dn
c . For a function f : X → R, we set

∥f∥Lp(ν) :=
(∫

X
|f(x)|pν(x)dX (x)

)1/p

.

Denote by Lp(ν) the set of all functions with ∥f∥Lp(ν) < ∞. For A ⊆ Lp(ν), we denote N (ϵ, A, ∥ · ∥Lp(ν))
the covering number of A in Lp(ν), which is the least number of Ball s of radius ϵ needed to cover up A with
respect to the ∥ · ∥Lp(ν) metric. In particular we denote Np(ϵ, A, xm

1 ) := Np(ϵ, A, ∥ · ∥Lp(νm)), where νm is
the emperical measure for the dataset xm

1 := {x1, x2, ..., xm} ∈ X m. Further we defineM(ϵ, A, ∥ · ∥Lp(ν)) to
be the ϵ−packing number of A with respect to the ∥ · ∥Lp(ν) norm, which is the largest integer N such that
given any subset {g1, g2, ..., gN } of A satisfies ∥gi − gj∥ ≥ ϵ for all 1 ≤ i < j ≤ N .

9
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Next, we will mention lemma 9.2 from Györfi et al. (2002), which expresses a relation involving inequalities
among the covering and packing numbers.
Lemma 3. Let G be a class of functions from X → R and ν be a probability measure on X . For p ≥ 0 and
ϵ > 0, we have

M(2ϵ, G, ∥ · ∥Lp(ν)) ≤ N (ϵ, G, ∥ · ∥Lp(ν)) ≤ M(ϵ, G, ∥ · ∥Lp(ν)).

In particular,

Mp(2ϵ, G, xm
1 ) ≤ Np(ϵ, G, xm

1 ) ≤ Mp(ϵ, G, xm
1 ).

Next, we have to derive an estimate of the upper bound of the Packing number for the pseudo dimension.

Since the Lemma 2, 3, and 4 from Capacity Estimates in Appendix A of Lin et al. (2022b) are taken from
results proved on general metric spaces, we will just state Lemma 4 from Lin et al. (2022b) without proof in
the context of hyperbolic space, which we will use later.
Lemma 4. For 0 < ϵ ≤ M and c∗ being an absolute constant, we have

log2 sup
x1

m∈X m

N1 (ϵ, πM HL,s, xm
1 ) ≤ c∗L2(Ls + d) log(L(s + d)) log M

ϵ
.

We define the hyperbolic version of the generalization error (HGE) as

EπM
(f) :=

∫
Z

(f(x) − logc
0(yM ))2

dρ,

and the Hyperbolic Empirical Error (HEE) (truncated) as

EπM ,D(f) := 1
m

m∑
i=1

(f(xi) − logc
0(yi,M ))2

,

where lM := min{M, |l|} · sign(l), the well known truncation operator.

We now provide a convergence criterion for the HEE estimates to the HGE estimate. We will use a hyperbolic
version of the concentration inequality as given in Lemma 5, Lin et al. (2022b).

A more generalized version of Theorem 11.4 Györfi et al. (2002) can be presented as follows:
Lemma 5. We assume |y| ≤ B and B ≥ 1√

c
. For a set of functions F from f : X → R satisfying |f(x)| ≤ B

and for all m ≥ 1, we have

P[∃f ∈ F : ϵ(f) − ϵ(fρ) − (ϵD(f) − ϵD(fρ)) ≥ ϵ(α + β + ϵ(f) − ϵ(fρ))]

≤ 14 sup
xm

1 ∈X m

N1

(
βϵ

20B
, F , xm

1

)
exp

(
− ϵ2(1 − ϵ)αm

214(1 + ϵ)B4

)
,

where α, β > 0 and ϵ ∈ (0, 1/2).

Based on Lemma 5, the following Lemma will lay out the convergence criterion of the Truncated HEE
estimates.

Lemma 6. When m−θM2
m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 and equation 10 holds for θ ∈ (0, 1/2), then
we have

lim
m→∞

EπMm
(πMmfD,L,s) − EπMm ,D(πMmfD,L,s) = 0

holds almost surely.

10
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We are finally in a position to prove Theorem 1; we will give our final lemma, which will complete the proof
for universal consistency.
Lemma 7. Let Ω ⊆ Dd

c be compact and 2 ≤ s ≤ d. Then for any f ∈ C(Ω), there exist a sequence of filters
w and bias vectors b of appropriate dimensions and fw,b

L ∈ HL,s such that

lim
L→∞

∥f − fw,b
L ∥C(Ω) = 0.

Remark 8. We notice from the proof of Lemma 6 that the truncated HEE estimates converge much faster
to the corresponding HGE than their Euclidean equivalents. This property gives the eHDCNN architecture
an edge over the eDCNN for faster training with much fewer training iterations needed. Roughly speaking,
since each layer is taking input from a Poincaré Ball, which in turn expresses the complex representation
of the data to the next layer even before the information gets carried out to the next layer directly from the
previous layer, the architecture is very quick to learn the internal representation of the data. This will be
evident from our simulation results, showing the ascendancy of our architecture over its Euclidean version
to achieve lower error rates much faster for certain regression problems.

7 Experiments & Results

We will demonstrate the efficacy of eHDCNN by conducting experiments on synthetic and real-world datasets.
Our Python-based implementation is available at https://github.com/kushalbose92/eHDCNN.

7.1 Synthetic Datasets

We will construct two regression tasks based on the following functions,

f(x) = sin(∥x∥2)
∥x∥2

, g(x) =
√

∥x∥2

1 +
√

∥x∥2
.

We used the regression model y = h(x) + ϵ (where h can be either f or g) to generate the training samples,
where ϵ ∼ N (0, 0.01) and x ∼ unif([−1, 1]10). A fixed set of 800/200 samples for the train/test split is used
for the experiment, except that the test data are taken without the Gaussian noise. We have used a filter
size of length 8 and the number of layers 4. We have trained our model over 100 iterations for 800 training
samples and recorded the mean RMSE. We repeat the experiments for six different sets of curvatures. Refer
to Figures 3(a) and 3(b) for the detailed illustration.

(a) (b) (c)

Figure 3: The performance analysis of eHDCNN with varying space curvatures (a) for f(x) and (b) for g(x),
and (c) House price prediction is demonstrated. The Root Mean Square Error (RMSE) decreases faster with
increasing curvature, justifying the utility of applying hyperbolic convolution. (best view in digital format)

The curves are evidence of the faster convergence of test RMSE loss during the entire training process, which
validates the Remark 8. The loss curves are much steeper when the curvatures are more significant than
zero compared to the same as the Euclidean counterpart. One point should be noted that the performance
of eHDCNN started to deteriorate with the higher value of curvature. The phenomenon can be attributed
to the contraction of Poincaré Ball with a very high curvature. Thus, the loss curves seem to be overlapping.
Yet, the performance is commendable when eHDCNN is trained in the hyperbolic space of low curvature.
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(a) (c)(b)

Figure 4: The performance analysis of eHDCNN with varying space curvatures (a) for Superconductivity
(b) for Wave Energy, and (c) test accuracy for WISDM are demonstrated. The Root Mean Square Error
(RMSE) decreases faster for both (a) and (b) with increasing curvature. On the contrary, test accuracy
increases in (c), justifying the utility of employing hyperbolic convolution. (best view in digital format)

Table 1: The details of four real-world datasets are presented.
Dataset Superconductivity Wave Energy Converters House Price Prediction WISDM
No of samples 288000 21263 545 1073120
No. of features 81 81 12 3
No. of classes - - - 6
Target task Regression Regression Regression Classification

7.2 Real-world Datasets

We considered four real-world datasets to showcase the effectiveness of eHDCNN. The details of the datasets
and the hyperparameters are provided respectively in Table 1 and 2.

Table 2: The complete details of hyperparameters for four real-world datasets are presented to reproduce
the results.

Hyperparameters Superconductivity Wave Energy Converters House Price Prediction WISDM
No of layers 4 4 4 4
length of input filter 8 8 8 9
Noise No No No No
Learning Rate 0.01 0.01 0.01 0.01
Weight decay 0.0005 0.0005 0.0005 0.0005
Train/test split 0.80 0.80 0.80 0.70
No of samples 288000 21263 545 1073120
Input dimension 81 81 12 240
Batch Size 128 128 Full 128

7.2.1 Regression Task

We include 3 real-world regression datasets to demonstrate the performance of eHDCNN over the prevailing
DCNN. We deploy the same eHDCNN architecture with 4 layers, and the length of the input filter is 8 for all
three regression tasks. We split the entire dataset into 80% samples for training and the rest 20% samples
for testing. We record the standardized test RMSE over the number of iterations during the training phase.

House Price Prediction

We consider the widely available house price prediction dataset Wang & Zhao (2022) to solve the regression
task. This dataset consists of 545 samples with 12 input features such as area, number of bedrooms, furnishing

12
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status, air conditioning, etc. At first, we standardize the entire data after numerically encoding its categorical
column. We have trained our model using 4 layers and with an input filter length of 8. The test RMSE has
been plotted against training iterations for six different curvatures in 3(c), where the curvature 0 means that
the test RMSE has been plotted based on the eDCNN model.

Superconductivity

As described in Hamidieh (2018), this dataset contains 21263 samples, each with 81 features like mean
atomic mass, entropy atomic mass, mean atomic radius, entropy valence etc, along with the output feature
as the critical temperature in the 82nd column. We split the dataset into 80 : 20 for our training and testing
purposes. We will train our model with a mini-batch of size 128 in each training iteration. The test RMSE
has been plotted against the number of training iterations for six different curvatures in 4 (a), where the
curvature 0 indicates that the test RMSE has been taken based on the eDCNN model.

Wave-Energy Converters

As described in Mehdipour et al. (2024), this dataset contains 288000 samples, each with 81 features. This
data set consists of positions and absorbed power outputs of wave energy converters (WECs) in four real
wave scenarios from the southern coast of Australia (Sydney, Adelaide, Perth, and Tasmania). We split the
dataset into 80 : 20 for our training and testing purposes. Similar to the Superconductivity dataset, we will
train our model with a mini-batch of size 128 each time. For the test RMSE plot against the number of
training epochs, we refer to 4 (b).

7.2.2 Classification Task

The only dataset we include for solving classification tasks is WISDM.

WISDM

We have applied eHDCNN on the WISDM, a well-adopted Human Activity Recognition (HAR) dataset
Kwapisz et al. (2011). As it is described in Lin et al. (2022c), this dataset has six types of human activities
such as cycling, jogging, sitting, standing, going upstairs and downstairs, with the corresponding accelerations
along x, y, and z axes at different timestamps and several user id ranging from 1 to 36. We have used the
user IDs from 1 to 28 for training and the rest for testing. We have put 80 consecutive timestamps for each
of the six classes together to make our input dimension 80 × 3 = 240. After this conversion, our training
dataset has 10172 samples, and the test dataset has 3242 number of samples. Our experiment is carried out
on a network with 4 layers with input filter length as 9. We have trained our model with a mini-batch of
size 128 in each epoch.

Discussion

We run experiments on the House Price Prediction, Superconductivity, Wave-Energy Converters, and
WISDM, where plots can be seen respectively in Figures 3(c), 4(a), 4(b), and 4(c). Test RMSE loss is the
metric for the first three datasets, and test accuracy is the metric for the last one. The plots elucidate
that the corresponding metric performs better when the curvature increases than the Euclidean variant.
The better performance underscores the efficacy of hyperbolic architecture dominates over its Euclidean
counterpart. One common point is that performance further degrades when the value of the curvature lies in
a very high range. It occurs due to the shrinkage of the Poincaré Ball with a very high value of the curvature.

8 Ablation Studies

We conduct an ablation study to study the effect of the filter length and number of hidden layers of the
eHDCNN. The experiment is performed on Superconductivity. The filter length and number of layers are
chosen respectively from the sets s = {6, 7, 8, 9} and L = {3, 4, 5, 6}. We run experiments for each pair
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s = 6, L = 2 s = 6, L = 3 s = 6, L = 4 s = 6, L = 5

s = 7, L = 2 s = 7, L = 3 s = 7, L = 4 s = 7, L = 5

s = 8, L = 2 s = 8, L = 3 s = 8, L = 4 s = 8, L = 5

s = 9, L = 2 s = 9, L = 3 s = 9, L = 4 s = 9, L = 5

Figure 5: Various experiments were performed on the Superconductivity dataset by varying filter length and
number of convolutional layers of the eHDCNN architecture.

of (s, L), and vary curvatures of the Poincaré Ball. The test RMSE curves are plotted and all results are
presented in Figure 5. It can be observed that the test RMSE slowly decreases during the initial epochs of
training of the eHDCNN. If we increase the number of layers or the length of the input filter, the respective
error rates seem to be more stable and converge faster for the eHDCNN. This emphasizes the stability of
our proposed architecture during training and is a clear indication of the fact that it requires a much lesser
number of training iterations compared to the conventional eDCNN architecture for convergence.

9 Conclusion & Future Works

In this paper, we have identified the limitations of Euclidean spaces in providing meaningful information for
training conventional DCNNs. We demonstrated the superiority of hyperbolic convolutions by treating the
output of each layer as elements of the Poincaré Ball, projecting them onto the Tangent Space for expan-
sive convolution, and then mapping them back to a higher-dimensional Poincaré Ball to capture complex
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hierarchical structures to the next layer. Our primary contribution is the proof of universal consistency by
defining regression and error estimators in the hyperbolic space, drawing an analogy to Euclidean space.
This is the first known result to explore the statistical consistency of architectures developed beyond the
Euclidean domain. Furthermore, our simulation results validate our theoretical justification, showing why
eHDCNN is more adept at capturing complex representations, as noted in Remark 8. We anticipate that
our findings will significantly accelerate the growth of deep learning spanning across the hyperbolic regime.
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A Appendix: Proofs

We provide the detailed proofs and derivations of the Lemmas and Theorem presented in Section 6.
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Lemma 1

The Hyperbolic Regression Function (HRF) fρ(x) :=
∫

Y logc
0(y)dρ(y|x), defined by the means of conditional

distribution ρ(·|x) of ρ at x ∈ X minimizes the Hyperbolic Generalization Error (HGE).

Proof. The HGE can be written in terms of conditional expectation in the following way:

E(f) =
∫

Z
(f(x) − logc

0(y))2dρ

= EX ,Y [f(X ) − logc
0(Y)]2

Now for any function g : X → R1, we write

E(g) =EX

[
EY|X

[
(g(X ) − E[logc

0(Y)|X ] + E[logc
0(Y)|X ] − logc

0(Y))2 |X
]]

=EX

[
EY|X

[
(g(X ) − E[logc

0(Y)|X ])2 |X
]]

+ EX

[
EY|X

[
(E[logc

0(Y)|X ] − logc
0(Y)|X )2 |X

]]
+ 2EX

[
EY|X [(g(X ) − E[logc

0(Y)|X ]) (E[logc
0(Y)|X ] − logc

0(Y)) |X ]
]

.

The cross term in the last expression is 0, since

EX
[
EY|X [(E[logc

0(Y)|X ] − logc
0(Y))]

]
= 0.

Therefore, the expression for HGE is reduced to

E(g) =EX

[
EY|X

[
(g(X ) − E[logc

0(Y)|X ])2 |X
]]

+ EX

[
EY|X

[
(E[logc

0(Y)|X ] − logc
0(Y)|X )2 |X

]]
,

which attains minimum when g(x) = E [logc
0(Y)|x] for each x ∈ X . Alternately, we write for each x ∈ X

g(x) =
∫

Y
logc

0(y)dρ(y|x).

Lemma 2

For any f : Dn
c → R1, we have

E(f) − E(fρ) = ∥f − fρ∥L2
ρX

,

where ρX (x) :=
∫

Y ρ(x, y)dY(y), for each x ∈ X , the marginal distribution of ρ on X .

Proof. Following the proof of Lemma 1, we can write

E(f) − E(fρ) = EX

[
EY|X

[
(f(x) − E[logc

0(Y)|X ])2 |X
]]

= EX ,Y [
[
(f(x) − E[logc

0(Y)|X ])2 |X
]

=
∫

X

∫
Y

(f(x) − fρ(x))ρ(x, y)dX (x)dY(y)

=
∫

X
(f(x) − fρ(x))2

∫
Y

ρ(x, y)dY(y)dX (x)

=
∫

X
(f(x) − fρ(x))2ρX (x)dX (x)

= ∥f − fρ∥L2
ρX

.
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Lemma 3

Let G be a class of functions from X → R and ν be a probability measure on X . For p ≥ 0 and ϵ > 0, we
have

M(2ϵ, G, ∥ · ∥Lp(ν)) ≤ N (ϵ, G, ∥ · ∥Lp(ν)) ≤ M(ϵ, G, ∥ · ∥Lp(ν)).

In particular,

Mp(2ϵ, G, xm
1 ) ≤ Np(ϵ, G, xm

1 ) ≤ Mp(ϵ, G, xm
1 ).

Proof. The same proof mentioned in Lemma 9.2 Györfi et al. (2002), can be applied to any general metric
space M instead of Rd. In particular M can be X . This shows the lemma is unaltered in the case of a
compact subset in a hyperbolic space.

Lemma 6

When m−θM2
m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 and 10 holds for θ ∈ (0, 1/2), then we have

lim
m→∞

EπMm
(πMm

fD,L,s) − EπMm ,D(πMm
fD,L,s) = 0

holds almost surely.

Proof. We have |πM f, D, L, s| ≤ M and | logc
0(yM )|, | logc

0(yi,M )| ≤ 1√
c

tanh−1(M
√

c) [The last two inequali-
ties follow from the fact that tanh−1 is increasing on (−1, 1)]. A little computation will show that

|EπM
(πM fD,L,s)| ≤ M2

[
1 + 1

M
√

c
tanh−1(M

√
c)
]2

.

This leads us to derive that

|EπM
(πM fD,L,s) − EπM ,D(πM fD,L,s)| ≤ 2M2

[
1 + 1

M
√

c
tanh−1(M

√
c)
]2

.

Putting α = β = 1, in Lemma 5 and ϵ = m−θ we get that

EπM
(πM fD,L,s) − EπM

(fρ) −
(
EπM,D

(πM fD,L,s) − EπM,D
(fρ)

)
≤ 2m−θ

[
1 + M2

(
1 + 1

M
√

c
tanh−1(M

√
c)
)]2

holds with probability at least

1 − 14 sup
xm

1 ∈X m

N1

(
1

20 1√
c

tanh−1(M
√

c)mθ
, F , xm

1

)
exp

− m1−2θ

428(1 + ϵ)
(

1√
c

tanh−1(M
√

c)
)4


From lemma Lemma 4 we write

sup
xm

1 ∈X m

N1

(
1

20 1√
c

tanh−1(M
√

c)mθ
, F , xm

1

)
exp

− m1−2θ

428(1 + ϵ)
(

1√
c

tanh−1(M
√

c)
)4


≤ exp

(
c∗ log

(
20
(

1√
c

tanh−1(M
√

c)
)2

mθ

)
L2

m(d + sLm) log(Lm(s + d)) − c′

)
,
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where c′ = m1−2θ

428
(

1√
c

tanh−1(M
√

c)
)4 . The conditions of Theorem 1 indicates that the RHS of the last inequality

goes to 0 as m → ∞. Combining together with the strong law of large numbers we get

EπMm
(πMmfD,Lm,s) − EπMm ,D (πMmfD,Lm,s) ≤ 2m−θ

[
1 + M

(
1 + 1

M
√

c
tanh−1(M

√
c)
)]2

≤ 8M2m−θ → 0

as m → ∞ holds almost surely, completing the proof of Lemma 6.

Lemma 7

Let Ω ⊆ Dd
c be compact and 2 ≤ s ≤ d. Then for any f ∈ C(Ω), there exist a sequence of filters w and bias

vectors b of appropriate dimensions and fw,b
L ∈ HL,s such that

lim
L→∞

∥f − fw,b
L ∥C(Ω) = 0.

Proof. Define g(y) := f(expc
0(y)) for y ∈ logc

0(Ω). Then, by Theorem 1 Zhou (2020), we know that there
exists gw,b

L [where gw,b
L lies in the free parameter space of the DCNN], such that

lim
L→∞

∥g − gw,b
L ∥C(logc

0(Ω)) = 0.

We now define fw,b
L (x) := gw,b

L (logc
0(x)) for x ∈ Dd

c . Now it is easy to verify that

lim
L→∞

∥f − fw,b
L ∥C(Ω) = lim

L→∞
∥g ◦ logc

0 −gw,b
L ◦ logc

0 ∥C(logc
0(Ω)) = 0,

since the logc
0 [hence its inverse expc

0] is global diffemorphism from Dd
c → Rd [from Rd → Dd

c ].

Theorem 1

Suppose L = Lm → ∞, M = Mm → 1√
c
, m−θM2

m

[
1 + 1

Mm
√

c
tanh−1(Mm

√
c)
]2

→ 0 [constrained truncation
on the power of sample size] and(

1√
c

tanh−1(Mm
√

c)
)4

L2
m(Lm + d) log(Lm)

m1−2θ
× log

((
1√
c

tanh−1(Mm

√
c)
)

m

)
→ 0,

(10) hold for θ ∈ (0, 1/2) and input filter length as 2 ≤ s ≤ d. Then πMm
fD,Lm,s is strongly universally

consistent, where πM (l) := min{M, |l|} · sign(l) is the well-known truncation operator.

Proof. Since Mm → 1√
c
, we have Mm ×

(
1

Mm
√

c
tanh−1(Mm

√
c)
)

→ ∞ as m → ∞. We also have
E[(logc

0(y))2] < ∞, i.e. fρ ∈ L2(ρX ). By Lemma 7, we say that there exists a big enough Lϵ so that
fw,b

Lϵ
∈ HLϵ,s with

∥fρ − fw,b
Lϵ

∥2
L2(ρxx) ≤

[
lim sup

x∈X
∥fρ(x) − fw,b

Lϵ
(x)∥

]2
=
[
∥fρ − fw,b

Lϵ
∥C(X )

]2
≤ ϵ,

where the second inequality follows from the fact that ρX being a Borel Probability measure on X .
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By triangle inequality, we write

E(πM (fD,L,s)) − E(fρ) ≤ (ϵE(πM (fD,L,s)) − (1 + ϵ)E(πM (fD,L,s)))
+ (1 + ϵ) (EπM

(πM (fD,L,s))) − EπM ,D(πM (fD,L,s))
+ (1 + ϵ) (EπM ,D(πM (fD,L,s)) − EπM ,D(fD,L,s))
+ (1 + ϵ)(EπM ,D(fD,L,s)) − (1 + ϵ)2(ED(fD,L,s))

+ (1 + ϵ)2
(

ED(fD,L,s) − ED(fw,b
Lϵ

)
)

+ (1 + ϵ)2
(

ED(fw,b
Lϵ

) − E(fw,b
Lϵ

)
)

+ (1 + ϵ)2
(

E(fw,b
Lϵ

) − E(fρ)
)

+
(
(1 + ϵ)2 − 1

)
E(fρ)

=
8∑

i=1
Bi.

We will use an inequality, which we will require throughout the rest of the steps:

(s + t)2 ≤ (1 + ϵ)s2 + (1 + 1/ϵ)t2 (11)

for s, t, ϵ > 0.

We will bound each of the Bi to prove the universal consistency as done in Part 3 of Appendix A in Lin
et al. (2022b).

We will start with B1 as,

B1 = ϵE(πM (fD,L,s)) − (1 + ϵ)E(πM (fD,L,s))

=
∫

Z
|πM (fD,L,s(x)) − (logc

0(yM )) + (logc
0(yM )) − (logc

0(y))|2dρ

− (1 + ϵ)
∫

Z
|πM (fD,L,s) − (logc

0(yM ))|2dρ

≤ (1 + (1/ϵ))
∫

Z
| logc

0(y) − logc
0(yM )|2dρ.

But we have M = Mm → 1√
c

as m → ∞. Since ϵ > 0 is arbitrary, we get B1 → 0 as m → ∞.

By Lemma 7 and the constraints in the statement of Theorem 1 we get

B2 → 0 as m → ∞.

By the definition of the truncation operator, we get,

B3 = 1
m

m∑
i=1

|πM (fD,L,s(xi)) − (logc
0(yi,M ))|2 − 1

m

m∑
i=1

|fD,L,s(xi) − (logc
0(yi,M ))|2 ≤ 0.

By the Strong Law of Large Numbers and inequality 11 we have,

B4 ≤ (1 + ϵ)(1 + 1/ϵ) 1
m

m∑
i=1

| logc
0(yi) − logc

0(yi,M )|2

→ (1 + ϵ)(1 + 1/ϵ)
∫

‡
| logc

0(y) − logc
0(yM )|2dρ

as m → ∞ almost surely. By the fact that Mm → 1√
c

as m → ∞, we get

B4 → 0.
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Since fD,L is the estimator of Emperical Risk Minimizer, we obtain

B5 = (1 + ϵ)2

(
1
m

m∑
i=1

|fD,L(xi) − logc
0(yi)|2 − 1

m

m∑
i=1

|fw,b
Lϵ

(xi) − logc
0(yi)|2

)
≤ 0.

Again by the Strong Law of Large Numbers, we have

B6 → 0

almost surely.

For B7 we have

B7 = (1 + ϵ)2∥fLϵ
− fρ∥2

L2
ρX

.

By Lemma 7, we get

B7 ≤ (1 + ϵ)2ϵ.

Also, we have

B8 ≤ ((1 + ϵ)2 − 1)
∫

Z
|fρ(x) − logc

0(y)|2dρ = ϵ(ϵ + 2)
∫

Z
|fρ(x) − logc

0(y)|2dρ.

Summing up all the terms from B1 to B8, we get

lim sup
m→∞

E(πM (fD,L,s)) − E(fρ) ≤ (1 + ϵ)2ϵ + ϵ(2 + ϵ)
∫

Z
|fρ(x) − logc

0(y)|2dρ

holds almost surely. As ϵ > 0 is arbitrary, we can write

lim sup
m→∞

E(πM (fD,L,s)) − E(fρ) = 0.

This completes the proof of the universal consistency of eHDCNN.
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