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a b s t r a c t 

Reflection symmetry is a very commonly occurring feature in both natural and man-made objects, which 

helps in understanding objects better and makes them visually pleasing. Detection of reflection symmetry 

is a fundamental problem in the field of computer vision and computer graphics which aids in under- 

standing and representing reflective symmetric objects. In this work, we attempt the problem of detect- 

ing the 3D global reflection symmetry of a 3D object represented as a point cloud. The main challenge 

is to handle outliers, missing parts, and perturbations from the perfect reflection symmetry. We propose 

a descriptor-free approach, in which, we pose the problem of reflection symmetry detection as an op- 

timization problem and provide a closed-form solution. We show that the proposed method achieves 

state-of-the-art performance on the standard dataset. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

There are three main types of symmetry present in the natural

nd man-made objects - reflection symmetry, rotational symmetry,

nd translational symmetry. Reflection symmetry is the most fre-

uently occurring symmetry in natural and man-made objects. Ob-

ects can be represented as digital images or 3D point clouds. The

rimary motivation for detecting reflection symmetry in 3D point

louds is the following. There are various applications such as 3D

urface reconstruction [1] , model completion [1–3] , symmetriza-

ion [4] , model reduction [5] , 3D model reconstruction from a sin-

le image [6] , symmetric object segmentation and recognition [7–

1] , and viewpoint selection [12] . These applications require robust,

ast, and accurate detection of 3D reflection symmetry for further

rocessing. 

The problem of detecting reflection symmetry is an example

f the pattern recognition problem where our goal is to find the

epetitive patterns present in the images or 3D point class. For

xample, in an image containing reflective symmetric objects, ob-

ect pixels appear two times with respect to the symmetry axis,

hile in an image containing translational symmetric objects, ob-

ect pixels appear multiple times at the grid corners. The pri-

ary challenge is to estimate the reflection symmetry or detecting

he reflection symmetry pattern in the presence of outlier points,

issing parts of the symmetric objects, and deviations from the
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erfect reflection symmetry. The problem of detecting the reflec-

ion symmetry of an object amounts to solving the following two

ub-problems - (a) determining the plane of reflection symmetry

nd (b) finding correspondences between the reflective symmetric

oints. There exist several approaches for detecting symmetry in

D point clouds [13] . However, these methods do not scale well

ith the size of the input point cloud and can not handle a large

umber of outliers, missing parts, and deviations from the perfect

ymmetry. For example, a recent method proposed in [14] solves

n integer linear program that prohibits it from being used to find

ymmetry in large point clouds. The method proposed in [15] is

ot robust to the outliers. 

We pose the problem of reflection symmetry detection as an

ptimization problem by using the reflection symmetry transfor-

ation proposed in [14] . We parametrize the plane of reflection

ymmetry using a rotation matrix and a translation vector and

epresent the correspondences between the reflective symmetric

oints using a permutation matrix. We solve the proposed opti-

ization problem for the reflection matrix, the translation vector,

nd the permutation matrix. The main challenge lies in the fact

hat the proposed optimization problem is non-linear and non-

onvex in the reflection matrix and NP-hard in the estimation of

orrespondences between the reflective symmetric points. There

re impurities present in the input point cloud, such as outliers,

issing parts, and deviation from symmetry, which further make

his problem hard to solve. We propose a fast randomized algo-

ithm to initialize the reflection matrix such that the estimated

eflection matrix is in the proximity of the global minimum. We

https://doi.org/10.1016/j.patcog.2020.107483
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107483&domain=pdf
mailto:rn@iitj.ac.in
mailto:shanmuga@iitgn.ac.in
https://doi.org/10.1016/j.patcog.2020.107483


2 R. Nagar and S. Raman / Pattern Recognition 107 (2020) 107483 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

f  

a  

t  

a  

[  

t  

A  

e  

p  

a  

t  

p  

b  

o  

r  

t  

s  

u  

w  

a  

p

 

t  

p  

m  

t  

d  

i  

s  

f  

e  

[  

h  

m  

n  

t  

r  

s  

w  

t  

t  

i  

[  

a  

p  

d  

r

3

 

a  

p  

t  

t  

x  

c  

t  

l

 

r

p  
also initialize the translation vector as the mean of the input point

cloud using the fact that the reflection symmetry plane of an ob-

ject passes through the center of mass of the object. We use the

reflection matrix and the translation vector to estimate the sym-

metric correspondences. Then, we update the reflection matrix and

the translation vector using these correspondences. We iteratively

repeat this procedure until convergence. 

The proposed approach depends only on the geometry of the

input point cloud and does not use any feature descriptor. There-

fore, our approach can be applied to data of any form such as point

cloud sampled from the surface of the symmetric object and the

volumetric point cloud. This is advantageous since all the descrip-

tors might not be invariant to the outliers and the type of descrip-

tor used also depends on the form of the input point cloud. 

Our main contributions are the following. 

• We formulate the problem of detecting reflection symmetry as

an optimization problem to find the global reflection symmetry

in both the volumetric point cloud and the point cloud sam-

pled from the surface of an object in the presence of outliers,

perturbation from the perfect symmetry, and missing parts. 
• We empirically show that the proposed optimization problem

is a non-linear and non-convex problem and provides a fast

descriptor-free randomized algorithm to initialize the reflection

symmetry plane. We also give a theoretical understanding for

2-dimensional point clouds. 
• We provide a closed-form solution to the problem of estimating

the global 3D reflection symmetry plane. 

The rest of the paper is organized as follows. In Section 2 , we

review the literature corresponding to the 3D reflection symme-

try. In Section 3 , we formulate the problem of detecting global re-

flection symmetry in point clouds as an optimization problem. In

Sections 4 and 5 , we discuss the proposed solution for this op-

timization problem. In Section 6 , we present results and compar-

isons with the state-of-the-art methods on the benchmark dataset.

In Section 7 , we conclude our approach and discuss future direc-

tions. 

2. Related work 

The problem of reflection symmetry detection in objects repre-

sented by 3D point clouds has been an active topic of research in

computer vision, computer graphics, and pattern recognition for a

long time. The survey paper in [16] reviewed the 2D symmetry de-

tection algorithms and the state-of-the-art report in [17] reviewed

the 3D symmetry detection algorithms. 

There exist several approaches that automatically detect the

plane of reflection symmetry in point clouds without using fea-

tures. Lipman et al. in [18] and Xu et al. in [19] find correspon-

dences between the reflective symmetric points without using fea-

ture descriptors. However, both the methods depend on the choice

of a hyper-parameter to detect the reflection symmetry in the per-

turbed patterns and the bad choice of this hyper-parameter can

lead to a higher computation time. Zabrodsky et al. find the plane

of reflection symmetry in a set of points in R 

2 which needs point

correspondences computed in advance [20] . Authors in the work

[14] proposed a manifold optimization-based approach detecting

approximate reflection symmetry of d -dimensional point clouds.

The method proposed in [21] only detects symmetry in the pla-

nar point clouds. The method proposed in [22] uses multiple view-

points of a 3D model to detect the plane of reflection symme-

try. Whereas, our approach can detect symmetry using only one

viewpoint. The method proposed in [23] automatically detects the

plane of reflection symmetry. However, it requires many parame-

ters to be initialized and it is a computationally expensive method.
The methods proposed in the works [1,5] and [24] used surface

eatures such as curvature to find reflection symmetry. However,

eatures in the presence of outliers and missing parts are not reli-

ble. Authors in the work [25] used the generalized moment func-

ions. Authors in the work [26] detectedsymmetry by constructing

 graph based on slippage features. Authors in the works [27] and

28] used image features to detect symmetry in the structure from

he motion pipeline which highly relies on the underlying images.

uthors in the work [15] proposed a registration (iterative clos-

st point (ICP) [29,30] ) based approach. They reflected the input

oint cloud about an arbitrary plane and registered the original

nd the reflected point clouds. However, it suffered from the ini-

ialization problem and is not robust to the outliers. Ecins et al.

roposed a symmetrical fitting based approach which is not ro-

ust to the outliers and the missing parts [13] . Both these meth-

ds [15] and [13] pose the problem of symmetry detection as a

egistration problem which increases the number of parameters of

he transformation matrix. Nagar and Raman posed the reflection

ymmetry problem as an optimization problem which they solved

sing the manifold optimization technique [14] . This method works

ell for the approximate symmetries but less robust to outliers

nd missing parts. Furthermore, it has high computational com-

lexity due to the use of an integer linear program. 

There are various exciting approaches that use surface features

o detect symmetry such as [31–33] . For example, the method pro-

osed in [34] uses line features on a generated graph and the

ethod proposed in [35] uses extended Gaussian images to de-

ect the reflection symmetry. However, these approaches can not

irectly be adapted to work on volumetric point clouds. There ex-

st several methods that use mesh connectivity to find the intrinsic

ymmetry and assume that the points are sampled from the sur-

ace of 2-manifolds. For example the methods in [36] and [37] used

igenfunction of the Laplace-Beltrami operator, the method in

38] uses the functional map framework, the method in [39] used

eat kernel signatures, the method in [40] uses Mobius transfor-

ation to detect intrinsic symmetry. However, these methods can

ot be used to detect extrinsic symmetry in the point clouds as

hey rely on the point connectivity and assume that the shape

epresents a 2-manifold. In [41–46] , authors proposed detecting

ymmetry in images. The symmetry detection problem in real-

orld images also is an active research problem [47] . For example,

he methods proposed in [48] and [49] use gradient information,

he method in [50] uses spectral clustering, the method proposed

n [51] uses edge orientation of objects, the method proposed in

52] local appearance structural descriptors, and [53] use texture

nd gradient information to detect the reflection symmetry axes

resent in the input image. However, these methods can not be

irectly extended to point clouds. Furthermore, these approaches

ely on accurate feature descriptors. 

. Problem formulation 

Let P = { p 1 , p 2 , . . . , p n } be the input point cloud with n points

nd represented by a matrix P = 

[
p 1 p 2 . . . p n 

]
∈ R 

3 ×n . As

roposed in [14] , the reflection of a point about a given symme-

ry axis is obtained by translating the origin of the coordinate sys-

em on the symmetry axis and then by rotating it such that the

 -axis is aligned with the symmetry axis. Then, we negate the y -

oordinate of the point and rotate back the coordinate system to

he original position. A similar sequence of transformations is fol-

owed in the 3D space. 

More formally, if p j is the reflection of the point p i , then we can

epresent this whole procedure as follows. 

 j = R 

� 
θx 

R 

� 
θy 

QR θy 
R θx 

(p i − c ) + c . (1)
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Fig. 1. Key steps of our approach. (a) Input point cloud with reflection symmetry shown in light-green color. (b) We first estimate the reflection symmetry, shown in light- 

blue color, using a randomized initialization strategy and discrete initialization of parameter. (c) The green color point represents the true reflection symmetry and the blue 

point represents the initialized reflection symmetry. (d) The obtained reflection symmetry axis and the pairs of reflective symmetric points using the proposed approach. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

b  

r  

s  

p  

t  

T  

r  

t  

p  

f  

r  

t  

p  

c  ∑
 

c  

i  

t

s

 

c

4

 

w  

i  

s  

c  

i  

R  

t  

a

 

m  

�  

e  

o  

T  

e  

t  

t  

p  

c  

t

�

 

4

a  

W  

c  

w  

b

m  

 

U  

w  

m  

t  

A  

t

4

 

t  

m  

e  

N  

−  

0

B

 ∥∥
 

g  

i

 

c

P  

4

4  

t

4

8  

matrix. Therefore, the function f is convex in c . �
Here, the matrices R θx 
and R θy 

represent the rotation matrices

y the angle θ x about x -axis and by the angle θ y about the y -axis,

espectively. The variable c is a point on the plane of reflection

ymmetry. The matrix Q = [ 
I 2 0 2 

0 � 
2 

−1 
] negates the z -coordinate of a

oint. Here, I 2 is the 2 × 2 identity matrix and 0 2 is the zero vec-

or of size 2 × 1. Now, let R = R θy 
R θx 

, then p j = R 

� QR (p i − c ) + c .

herefore, given the input point cloud P, our goal is to find the

eflection symmetry transformation matrices R θx 
, R θy 

, c , and all

he pairs ( p i , p j ) of reflective symmetric points. We formulate the

roblem of finding the reflection symmetry in an optimization

ramework as follows. For each pair ( p i , p j ) of reflective symmet-

ic points, we want p j = R 

� QR (p i − c ) + c . However in practice,

his equality does not hold true due to perturbations from the

erfect symmetry. Therefore, we want the error ‖ R 

� QR (p i − c ) +
 − p j ‖ 2 2 to be as small as possible. Therefore, we want the error
 

i ∈ [ n ] ‖ R 

� QR (p i − c ) + c − p j ‖ 2 2 
to be minimized with respect to R,

 , and all the pairs ( p i , p j ). Here, [ n ] = { 1 , 2 , . . . , n } . Thus, our goal

s to solve the optimization problem defined in the below equa-

ion. 

arg min 

R , c , 
(i, j) , ∀ i ∈ [ n ] 

∑ 

i ∈ [ n ] 

∥∥R 

� QR (p i − c ) + c − p j 

∥∥2 

2 

ubject to R 

� R = I , det (R ) = 1 , R ∈ R 

3 ×3 , c ∈ R 

3 . (2) 

In Fig. 1 , we show the key steps of our approach which we dis-

uss in Section 4 . 

. Proposed approach 

In order to solve the optimization problem defined in Eq. (2) ,

e follow the following alternating optimization approach. We first

nitialize the reflection matrices R, c , and find the pairs of reflective

ymmetric points. We then update the reflection symmetry matri-

es R and c . We again update the mirror image of each point. We

teratively repeat this process until there are no further changes in

, c , and the mirror image of each point. First, we rewrite the op-

imization problem defined in Eq. (2) in a more convenient form

s follows. 

Let us denote the correspondences between the reflective sym-

etric points by the matrix � ∈ {0, 1} n × n , such that �(i, j) =
( j, i ) = 1 , if p j = R 

� QR (p i − c ) + c and �(i, j) = �( j, i ) = 0 , oth-

rwise. We further let S = R 

� QR . The matrices R and Q are orthog-

nal matrices and the determinant of the matrix Q is equal to −1 .

herefore, the matrix S is an orthogonal matrix with determinant

qual to −1 . We observe that the matrix � is a permutation ma-

rix. Further, since the plane of reflection symmetry passes through

he center of mass of the object and the point c is any point on the

lane of reflection symmetry. Therefore, we center the input point

loud to have c = 0 by subtracting the mean. Now, the optimiza-
ion problem defined in Eq. (2) can be reformulated as below. 

arg min 

∈{ 0 , 1 } n ×n , S ∈ R 3 ×3 , c ∈ R 3 

∥∥S (P − c1 

� ) + c1 

� − P�
∥∥2 

F 

subject to S � S = I , det (S ) = −1 . (3) 

Here, 1 is vector of size n × 1 with all the elements equal to 1.

.1. Fix �, c and estimate the optimal S 

In order to find the reflection matrix S , we fix the matrix �
nd minimize the problem in Eq. (3) with respect to the matrix S .

e derive a closed-form solution for the matrix S as follows. We

an rewrite the optimization problem in Eq. (3) for optimizing it

ith respect to S as max 
S 

trace ((P − c1 � ) � S ( P� − c1 � )) . This can

e further modified using the property of trace as below. 

ax 
S 

trace (S ( P� − c1 

� )(P − c1 

� ) � ) . (4)

Now, let W = ( P� − c1 � )(P − c1 � ) � be a matrix and W =
�V 

� be the singular value decomposition of the matrix W . Then,

e have that max 
S 

trace (S U�V 

� ) = max 
S 

trace ( �V 

� SU ) . Since the

atrices S, U , and V are orthogonal matrices, V 

� SU is also an or-

hogonal matrix. Now, according to Sorkine and Alexa [54] and

run et al. [55] , the optimal solution S � to this problem satisfies

he condition S � = UV 

� with determinant equal to −1 . 

.2. Fix R, � and estimate the optimal c 

In order to find the optimal c , we fix the rotation matrix R and

he symmetric correspondences matrix �. We minimize the opti-

ization problem in Eq. (3) with respect to c . Let us rewrite the

rror function as ‖ A − Bc1 � ‖ 2 
F 
. Here, A = SP − P� and B = S − I .

ow, in order to find the optimal point, we set the gradient

2 B 

� A1 − 4 Bc 1 � 1 of the error function with respect to c equal to

 . Therefore, 

c � = 

1 

2 n 

B 

� A1 . (5) 

We further show that the function f (R , c , �) =
S (P − c1 � ) + c1 � − P�

∥∥2 

F 
is convex in c . Therefore, c � is the

lobal minimizer. We show it by proving that the Hessian matrix

s a positive semi-definite matrix. 

Claim: The Hessian matrix H of the cost function with respect to

 , which is equal to 4 n (I − S ) , is a positive semi-definite matrix. 

roof. Consider the scalar x � Hx , ∀ x ∈ R 

3 . We have that x � Hx =
 n x � (I − S ) x = 4 n x � (I − R 

� QR ) x = 4 n ‖ x ‖ 2 
2 

− 4 n x � R 

� QR x = 

 n ‖ x ‖ 2 2 − 4 n ( Rx ) � Q Rx . Now, let y = Rx . Since R is a rotation ma-

rix, we have ‖ y ‖ 2 
2 

= ‖ x ‖ 2 
2 
. Therefore, x � H c x = 4 n (x 2 

1 
+ x 2 

2 
+ x 2 

3 
) −

 n (y 2 
1 

+ y 2 
2 

− y 2 
3 
) = 4 n (x 2 

1 
+ x 2 

2 
+ x 2 

3 
) − 4 n (x 2 

1 
+ x 2 

2 
+ x 2 

3 
− y 2 

3 
− y 2 

3 
) = 

 y 2 3 ≥ 0 . Hence, the Hessian matrix is a positive semi-definite
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4.3. Fix R , c and estimate the optimal �

The correspondences matrix � is a binary matrix and the prob-

lem of finding the exact � amounts to solving an integer linear

program which is an NP-hard problem. Instead, we find the ap-

proximate � using the nearest neighbor approach as follows. Let

us define the matrix containing the reflected points as columns to

be P r = S (P − c1 � ) + c1 � . Then, we shall define the mirror reflec-

tion point for the point p i as the nearest column from the columns

of the matrix P r . After finding the approximate reflection points,

we further keep only the pairs such that if the reflection point of

the point p i is the point p j , and vice versa. Now, we show that the

cost function f is a non-linear and a non-convex function. There-

fore, we need an initialization close to the optimal solution. We

propose a fast randomized algorithm to search for a good initial-

ization. 

5. Initialization strategy 

We have seen that there exists a closed form solution for S, c

is the solution of a linear system, and the matrix � can be ap-

proximated by a nearest neighbor approach. We have proposed an

alternating framework where we fix other variables and optimize

with respect to one variable. The core problem of this alternating

strategy is the initialization. There are two possibilities: (a) initial-

izing the correspondences matrix � and (b) initializing the reflec-

tion symmetry parameter S . 

Initialize �: This is an intractable problem since the possible

permutation matrices � are n 
2 ! . Even for hundred points, there

will be 3.0414093 × 10 64 permutation matrices. 

Initialize S : This is a more feasible approach as we show be-

low. Let us parameterize the space of all orthogonal matrices with

determinants equal to −1 . We have seen that S = R 

� QR , where R

is an orthogonal matrix with determinant equal to +1 . The matrix

R = R θx 
R θy 

represents the rotation about the y -axis by an angle of

θ y followed by the rotation about the x -axis by an angle of θ x .

Therefore, the space of all matrices S is parameterized by the pa-

rameters θ x and θ y , such that θx , θy ∈ [ −90 ◦, +90 ◦] . Although the

domain [ −90 ◦, +90 ◦] × [ −90 ◦, +90 ◦] has infinitely many points to

try, we show the following result. 

Result 1. Let the point θ� = [ θ� 
x θ

� 
y ] 

� be the global minimizer

of the cost function f (θ) = 

∥∥S (θx , θy )(P − c1 � ) + c1 � − P�
∥∥2 

F 
. Then

f ( θ) ≥ f ( θ� ), ∀ θ ∈ [ θx − φ, θx + φ] × [ θy − φ, θy + φ] for some angle

φ. 

We empirically show that the approximate value of φ is around

10 ◦. Therefore, we try only for 100 points of the set [ −90 ◦, +90 ◦] ×
[ −90 ◦, +90 ◦] . Now, we empirically find the value of the angle φ.

We perform the following two experiments. First, we construct

n 1 = 10 0 0 0 point clouds P with each containing 50 0 0 points with

known ground truth symmetry planes and the correspondences

between the reflective symmetric points are defined using Eq. (1) . 

Experiment 1. In the first experiment, we empirically find the

diameter of the set (in the space of rotation angles) around the

global minimum [ θ� 
x θ

� 
y ] 

� such that if we initialize the rotation an-

gles in this set, then our method converges to [ θ� 
x θ

� 
y ] 

� . More for-

mally, we find the diameter of the set defined as below 

S i = 

{
θ0 

i ∈ [ −90 

◦
, 90 

◦
] × [ −90 

◦
, 90 

◦
] : ‖ θi 

c − θi 
g ‖ 2 = 0 

◦}, ∀ i ∈ [ n 1 ] . (6

Here, θi 
0 = [ θ0 

x θ
0 
y ] 

� 
is the initialization point for our approach,

θi 
c is the optimal solution returned by our approach, and θi 

g is the

global minimum for the i th point cloud. In Fig. 2 , we show the av-

erage error 1 
n 1 

∑ n 1 
i =1 

‖ θi 
c − θi 

g ‖ 2 vs the initialization angles θ x and

θ y . We circularly shift the error ‖ θi 
c − θi 

g ‖ 2 , so that the global min-

imum is 0 ◦, ∀ i , to find the average of these errors. We observe that

‖ θi 
c − θi 

g ‖ 2 = 0 ◦, if θ0 
i 

∈ [ −10 ◦, 10 ◦] × [ −10 ◦, 10 ◦] . 
Experiment 2. In the second experiment, we find the following

wo errors: 

e i (θx ) = f (S (θx , θ i 
y ) , c 

i , �i ) , θx ∈ [ −90 ◦, +90 ◦] , i ∈ { 1 , . . . , n 1 } 
nd e i (θy ) = f (S (θ i 

x , θy ) , c i , �i ) , θy ∈ [ −90 , +90] , i ∈ { 1 , . . . , n 1 } .
ere, θ i 

x , θ
i 
y , c 

i , and �i are the ground-truth variables for the i th

oint cloud. In Fig. 3 , we plot the average error e me = 

1 
n 1 

∑ n 1 
i =1 

e i ,

he upper bound error e ub = max (e 1 , . . . , e n 1 ) , and the lower

ound error e lb = min (e 1 , . . . , e n 1 ) . We circularly shift the error

 i so that the global minimum is 0 ◦, ∀ i , to find these errors. We

bserve that e me , e ub , and e lb are non-linear and non-convex and

n the region (θx , θy ) ∈ [ θ� 
x − 10 ◦, θ� 

x + 10 ◦] × [ θ� 
y − 10 ◦, θ� 

y + 10 ◦] ,

he point (θ� 
x , θ

� 
x ) is the only local minimum point. 

Theoretical Aspects: Without loss of generality, we show that

he cost function is locally convex around the optimal solution for

he case of 2D point clouds. We assume that the center of mass of

he point cloud at the origin. Let, P = 

[
p 1 p 2 · · · p n 

]
∈ R 

2 ×n be

he matrix representing n points. If θ is the parameter representing

he slope of the reflection symmetry line. Then, we have that 

 j = 

[
cos θ − sin θ
sin θ cos θ

][
1 0 

0 −1 

][
cos θ sin θ

− sin θ cos θ

]
p i . 

= RQR 

� p i 

= Sp i . (7)

As shown in Section 4 , the problem of finding the reflection

ymmetry plane, which is determined by the matrix R , is equiva-

ent to minimizing the error f (θ ) = trace ( SW ) , where W = P�P 

� .
ow, we can simplify the function f ( θ ) as below. 

f (θ ) = −trace ( S W ) 

= −trace 

([
cos 2 θ sin 2 θ
sin 2 θ − cos 2 θ

][
w 1 w 2 

w 2 w 3 

])
= −(w 1 − w 3 ) cos 2 θ − 2 w 2 sin 2 θ . (8)

Therefore, we have to show that the error function f (θ ) =
(w 1 − w 3 ) cos 2 θ − 2 w 2 sin 2 θ is convex in the proximity of the

ptimal reflection angle θ� . In order to show this, we analyze the

alues of the second derivative f ′′ ( θ ) of the function f ( θ ). It can

asily verified that f ′′ (θ ) = cos (2 θ − φ) and f (θ ) = − cos (2 θ − φ) .

ere, φ = tan 

−1 
(

2 w 2 
w 1 −w 2 

)
. Therefore, we have that f ′′ (θ ) = − f (θ ) .

ence, both the functions f ( θ ) and f ′′ ( θ ) have the same set of roots

nd are anti-phase of each others. Further, the function f ′′ ( θ ) is al-

ays positive between the roots. Therefore, the function f ( θ ) is lo-

ally convex in the neighborhood of the optimal solution. In Fig. 4 ,

e show this graphically. 

Randomized Initialization. The plane of reflective symmetry

asses through the center of mass of the input point cloud. There-

ore, we initialize c = 

1 
n 

∑ n 
i =1 p i . We have observed that if the

nitialization angles 
[
θ0 

x θ0 
y 

]� 
of our approach are such that

θ0 
x θ0 

y 

]� ∈ D, then the optimal solution achieved by our ap-

roach converges to the global solution 

[
θ� 

x θ� 
y 

]� 
. Here, D =

 θ� 
x − 10 ◦, θ� 

x + 10 ◦] × [ θ� 
y − 10 ◦, θ� 

y + 10 ◦] . Therefore, we find the

pproximate global minimum of the function f on the quantized

omain or the grid domain as below. 

 = {−90 

◦, −70 

◦, . . . , +70 

◦, +90 

◦} 
×{−90 

◦, −70 

◦, . . . , +70 

◦, +90 

◦} . (9)

The size of the input set may be very large. Therefore, eval-

ating the function f on all the points of the grid G can be a

ime consuming step. Hence, we propose the following random-

zed algorithm. We choose a subset P s of points from the set

uniformly at random such that |P s | = n 2 . Then, we find the

rror || (S (θx , θy ))(P s − c1 � ) + c1 � − P s �s || F , for each (θx , θy ) ∈ G.

e choose the pair ( θ x , θ y ) for which the error is minimum. In
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Fig. 2. (a) Distance of the optimal solution θg from the solution θc obtained by the proposed approach if initialized with the angle θ0 = [ θx θy ] 
� 

. (b) We observe that the 

distance ‖ θi 
c − θi 

g ‖ 2 = 0 ◦ if the initialization angles [ θx θy ] 
� ∈ [ −10 ◦, 10 ◦] × [ −10 ◦, 10 ◦] . 

Fig. 3. Illustration of non-convexity of f . The average errors e me ( θ x ), e me ( θ y ), the upper bound errors e ub ( θ x ), e ub ( θ x ), and the lower bound errors e lb ( θ x ), e lb ( θ x ) vs θ x and θ y , 

respectively. 

Fig. 4. The plot of the function f ( θ ), f ′ ( θ ), and f ′′ ( θ ). We observe that f ′′ ( θ ) > 0 

around the optimal solution. 

Fig. 5. Detected plane of reflection symmetry using the proposed approach in the 

scan of a real-world object from Funk et al. [47] . 

F  

t  

m  

u  

t

 

i  

r  

n  

Algorithm 1 Initializing reflection symmetry plane . 

Input : Point cloud P represented as a matrix P = [
p 1 p 2 . . . p n 

]
∈ R 

3 ×n . 

Steps Involved: 

1: Form the grid G = {−90 ◦, −70 ◦, . . . , +70 ◦, +90 ◦} ×
{−90 ◦, −70 ◦, . . . , +70 ◦, +90 ◦} . 

2: C ← { 0 } 10 ×10 . 

3: Construct P s by sampling n 2 columns uniformly at random of 

P . 

4: c s ← median (P s ) . 

5: for each (s, t) ∈ { 1 , . . . , 10 } × { 1 , . . . , 10 } do 

6: (θx , θy ) ← G(s, t) . 

7: P 

r 
s ← S (θx , θy )(P s − c s 1 

� ) + c s 1 
� . 

8: Find nearest column for each column of P 

r 
s in the columns 

of P s to find �s . 

9: C (s, t) ← || P 

r 
s − P s �s || F . 

10: end for 

11: s 0 , t 0 ← argmin 

s,t 
C . 

12: (θ0 
x , θ

0 
y ) ← G(s 0 , t 0 ) . 

Output: Initial (θ0 
x , θ

0 
y ) . 

o  

s  

t

∑

 

e  
ig. 5 , we show the F -score for the proposed method as we vary

he number of points ( n 2 ) sampled uniformly at random for all the

odels in dataset [47] . We note that for n 2 = 500 , the F -scores sat-

rate. Therefore, we choose n 2 = 500 for the model. We present all

he steps in Algorithm 1 . 

Robust Symmetry Detection. We know that the L2-norm loss

s not robust to outliers as even one outlier can produce a wrong

esult. The L1-norm loss can tolerate up to 50% outliers, but it is

ot differentiable at zero. In order to make our approach robust to
utliers, perturbations, and missing parts, we follow the trimming

trategy: the truncated L2-norm [56] . We minimize the cost func-

ion below 

n 
 

i =1 

min 

(‖ S (p i − c ) + c − p j ‖ 

2 
2 , ε

)
. (10) 

Let P r = S (P − c1 � ) + c1 � . Then, we find the nearest column for

ach column of the matrix P r in the columns of the matrix P to
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Fig. 6. Visualization of the initialization and the convergence. (a) The error function 

f ( S, c, �) as we vary the rotation matrix parametrized by the rotation angles θ x and 

θ y about the x -axis and y -axis, perspectively. We observe that it is a non-linear and 

a non-convex function. (b) The zoomed contour map (black colored rectangle in 

(a)). The initial θ x and θ y shown as black colored point obtained by the proposed 

randomized algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Recall vs Precision curves comparisons for Cicconet et al. [15] , Ecins 

et al. [13] , Speciale et al. [1] , Nagar and Raman [14] , and the proposed approach on 

the dataset [47] . We report the maximum F -score in the legends and on the curve 

using a colored point. 
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find �. Let Q = P�. Now, we can represent the i th error residual

for each pair of reflective symmetric points as e i = ‖ p 

r 
i 
− q i ‖ 2 2 . We

set ε equal to median (e 1 , . . . , e n ) of the error residuals. We find the

optimal S and c using the points for which e i ≤ ε. We again up-

date the matrix � for all the points using the updated S and c . We

iteratively keep repeating this process until convergence. We stop

when the change in the normal vector to the estimated reflection

symmetry plane is less the 0.001 ◦ and the change in the point on

the estimated c is less then 0.001. We present the complete proce-

dure in Algorithm 2 . 

Algorithm 2 Robust symmetry detection . 

Input : A point cloud P represented as a matrix P =[
p 1 p 2 . . . p n 

]
∈ R 

3 ×n . 

Steps Involved: 

1: Initialize the matrix S using Algorithm 1. 

2: for k ∈ { 1 , 2 , . . . , 5 } do 

3: P r ← S (P − c1 � ) + c1 � . 
4: Find nearest neighbor for each column of P r in the columns

of P to find �. 

5: Q ← P�. 

6: e i ← ‖ p 

r 
i 
− q i ‖ 2 , ∀ i ∈ [ n ] . 

7: ε ← median (e 1 , . . . , e n ) . 

8: Remove the i th columns of P and P r if e i > ε. Update � as

in step 4. 

9: W ← ( P� − c1 � )(P 

� − 1c � ) . 
10: U�V 

� ← W . 

11: S ← VU 

� . 
12: c ← solution of the linear system (I − S ) c = 

1 
2 n (I −

S )( SP1 + P�1 ) . 

13: end for 

Output: Optimal S , t , and �. 

In Fig. 6 , we show the convergence for an example point cloud.

In Fig. 6 (a), we visualize the error function f ( S, c, �) as we vary

the rotation angles θ x and θ y . In Fig. 6 (b), the initial θ x and θ y 

are shown as a black colored point obtained by the proposed ran-

domized algorithm. We achieve the global solution denoted as the

green colored point in about 5 iterations using the proposed ap-

proach. 
. Results and evaluation 

.1. Evaluation of reflection symmetry plane 

In order to evaluate our method, we follow the procedure pro-

osed in [47] . The dataset in [47] for single symmetric object con-

ains 1354 3D models representing a symmetric object. We com-

are the performance of our approach with the performances of

he state-of-the-art methods in [1,13,15] , and [14] using the F -score

etric proposed in [47] . We also compare the performance of our

ethod with [15] and [14] to see the effect of outliers and per-

urbation along with the computational complexity. We find the

recision vs recall curves and report the F -score. The precision is

efined as P = 

t p 
t p+ f p 

, the recall is defined as R = 

t p 
t p+ f n 

, and the F -

core is defined as F = 

2 PR 
P+ R . Here, t p = the number of estimated

ymmetry planes which are correct, f p = the number of estimated

ymmetry planes which are incorrect, and f n = the number of

round-truth symmetry planes which are not detected. In order to

etermine if a detected plane of reflective symmetry is correct or

ncorrect, we follow the same procedure as that of [47] , which is

tated as follows. Let p 

e 
1 
, p 

e 
2 
, and p 

e 
3 

be three points on the esti-

ated symmetry plane and p 

g 
1 
, p 

g 
2 
, and p 

g 
3 

be three points on the

round truth symmetry plane. These three points are the points of

ntersection of the symmetry plane with the bounding box of the

ymmetric object. Then, the estimated symmetry plane is correct

f the angle between the normals of the estimated plane 

n 

e = (p 

e 
1 

− p 

e 
2 
) × (p 

e 
1 

− p 

e 
3 
) and the ground truth plane n g =

(p 

g 
1 

− p 

g 
2 
) × (p 

g 
1 

− p 

g 
3 
) is less than a threshold angle. Furthermore,

he distance of the center of the estimated plane c e = 

p e 
1 
+ p e 

2 
2 from

he ground truth symmetry plane is below a given threshold τ d .

e vary the angle threshold τ θ ∈ [0, 45 ◦] and the distance thresh-

ld τ d ∈ [0, 2 w ], where, w = min {‖ p 

e 
1 

− p 

e 
2 
‖ 2 , ‖ p 

e 
1 

− p 

e 
3 
‖ 2 , ‖ p 

g 
1 

−
 

g 
2 
‖ 2 , ‖ p 

g 
1 

− p 

g 
3 
‖ 2 } . In Fig. 7 , we show the obtained recall vs pre-

ision curves for the state-of-the-art approaches in [1,13–15] , and

he proposed approach on the dataset in [47] for single reflective

ymmetry plane. We report the maximum F -score in the legends

sing a colored point. We achieve the state-of-the-art performance

n the dataset in [47] . In Fig. 8 , we show the detected plane of

eflective symmetry on a few models from the dataset [47] . Our

ethod can detect symmetry real objects using their partial scans

s well as in presence of significant amount the background points.

or example consider the raw scans shown in Fig. 9 . 
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Fig. 8. The detected plane of reflective symmetry on a few models from the dataset in [47] . 

Fig. 9. A few example of the detected symmetries in scans of real objects. The first two objects are from the dataset [1] and other objects are from a RGBD dataset [57] . 

Here, the blue colored points represents the mid point of line segment joining two reflective symmetric points. We observe that our method is able to detect symmetry in 

the partial scans. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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m  
.2. Evaluation on partial real scans 

In order to test the performance of the proposed approach,

e evaluate the performance on partial scans of real-world ob-

ects. For this, we compare the proposed approach with the per-

ormance of that of the state-of-the-art approach proposed in [14] .

or this purpose, we use the benchmark dataset provided in [47] .

his dataset contains 20 partial scans of real-world objects with

he ground-truth symmetry plane available. In order to compare

he performance of the proposed approach with the performance

f the method proposed in [14] , we use the same evaluation as

d  
iscussed in Section 6.1 . The average F -Score for the proposed is

qual to 0.87 and the F -score for the method proposed in [14] is

qual to 0.72. In Fig. 10 , we show a few examples of the results of

he proposed approach on the partial scans of real world objects

rom the dataset provided in [47] . 

.3. Effect of outliers 

We perform the following experiment to analyze the perfor-

ance of our approach in the presence of outliers. We add ran-

om noise to the input 3D model to get the noisy model P 

new =
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Fig. 10. The detected plane of reflective symmetry on a few scans of the real world objects from the dataset in [47] using the proposed approach. 

Fig. 11. Robustness to the outliers and the perturbation on the models from the 

dataset in [47] compared with the methods in [15] and [14] . (a) The τ vs the F - 

score. (b) The w vs the F -score. 
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P  

c  

f  

r  

t  
P ∪ P 

random . Here, P 

random is a set of noise points and we choose

different number of noise points such that |P 

random | = τ |P| / 100 .

We chose τ ∈ { 0 , 10 , . . . , 200 } . Each point p 

r 
i 

in the set P 

random is a

random vector such that 

p 

r 
i = 

[ 

2(x mx − x mn ) r x − 2 x mn 

2(y mx − y mn ) r y − 2 y mn 

2(z mx − z mn ) r z − 2 z mn 

] 

. (11)

Here, r x , r y , and r z are three independent random variables in

the range [0,1]. x mx and x mn are the maximum and the minimum

values of the x -coordinates for the input models. For each random

P 

new , we measure the F -score for the methods in [14,15] , and the

proposed method. We perform this experiment on the dataset in

[47] by randomly sampling 10 0 0 points from each model so that

we can compare with the method in [14] . In Fig. 11 (a), we plot

the number of outliers τ (% of number of input points) vs the F -
core. We observe that even if 2/3rd of the points are outliers, the

 -score only drops from 0.90 to 0.85 for our approach. Whereas,

he F -score drops from 0.67 to 0.36 for the method in [15] . In

ig. 12 , we show the detected plane of reflective symmetry and

he correspondences between the reflective symmetric points for

= { 0 , 100 , 200 } . 

.4. Effect of perturbation. 

We perform the following experiment to analyze the perfor-

ance of our approach after perturbation of each point of the

odel. We perturb each point p i = 

[
x i y i z i 

]� 
as p 

new 

i 
= p i +

 

random . Here, we define 

 

random = 

[
r sin (θ1 ) cos (φ1 ) r sin (θ1 ) sin (φ1 ) r cos (θ1 ) 

]� 
. 

(12)

Here, r ∼ U(0 , h ) , θ1 ∼ U(0 , π) , and φ1 ∼ U(0 , 2 π) are

hree uniform random variables. We choose different val-

es of h = w × min (x mx − x mn , y mx − y mn , z mx − z mn ) / 100 . Here,

 ∈ { 0 , 20 , . . . , 200 } . We perform this experiment on the dataset in

47] by randomly sampling 10 0 0 points from each model so that

e can compare with the method in [14] . In Fig. 11 (b), we plot the

erturbation radius w (% of number of input points) vs the F -score.

e observe that even if w = 200 , the F -score only drops from

.90 to 0.56. However, for the method in [15] , it reaches till 0.05.

n Fig. 13 , we show the detected planes and the correspondences

etween symmetric points for w ∈ {0, 10 0, 20 0}. 

.5. Effect of missing parts 

We perform the following experiment to analyze the perfor-

ance of our approach after removing some parts from the in-

ut model. We remove a subset of points P r from the input set

 such that |P r | = η|P| , where η ∈ {0, 0.15, 0.28}. For each η, we

alculate the F -score. Again, we use the dataset in [47] to per-

orm this experiment. In Fig. 14 , we show the detected plane of

eflection symmetry and the correspondences between the reflec-

ive symmetric points for an example model. We get the same
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Fig. 12. Robustness to the outliers in a model from the dataset in [58] . The detected plane of reflective symmetry and correspondences between reflective symmetric points 

for τ = { 0 , 100 , 200 } . 

Fig. 13. Robustness to the perturbation to each point of the input model from the dataset in [58] . The detected plane of symmetry and correspondences between reflective 

symmetric points for w ∈ {0, 10 0, 20 0}. Actual points are colored black and the perturbed points are colored red. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 14. Robustness to the missing parts in a model from the dataset in [58] . The detected plane and correspondences between the reflective symmetric points for η ∈ {0, 

0.15, 0.28}. Red points denote the removed points. 
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ehavior for the methods [14,15] , and the proposed approach as

hat of the case for outlier points. The reason is that, if a part is

issing, then the points corresponding to the mirror part will be

utliers. 

.6. Computation time 

The method in [15] takes 2060 s to compute symmetry in

ll 1354 models of the dataset in [47] and takes on an average

.52 s for each model with an average number of vertices equal

o 30,0 0 0. The method in [14] solves an Integer Linear Program

which takes O ( n 3.5 ) time) and it would take lots of time to find

ymmetry in a model with an average number of vertices equal to

0,0 0 0. It takes around 38.5 s even for a model with a number of

ertices equal to 500. We were not able to solve the integer linear

rogram for n = 30 , 0 0 0 in our system. Our algorithm takes 866 s

o compute symmetry in all 1354 models of the dataset in [47] and

akes on an average of 0.63 s for each model with an average num-

er of vertices equal to 30,0 0 0. We do this comparison on a Linux

achine with i7 processor with 2.7 GHz frequency using MATLAB

7. 
. Conclusion 

We have proposed a robust approach to find the global reflec-

ion symmetry of the symmetric 3D object with missing parts and

ontaining by outlier points. We have posed the problem of de-

ecting the reflection symmetry as an optimization problem which

s a non-convex and a non-linear problem. We have proposed a

ast randomized algorithm to find the approximate reflection sym-

etry for initialization to solve the non-convex problem. We have

rovided a closed-form solution for the problem of detecting the

lane of reflection symmetry. 

We have achieved state-of-the-art performance on a standard

ataset and have shown that the proposed approach is robust to

utliers, perturbation in each point of the symmetric object, and

issing parts of the symmetric object. Another advantage of the

roposed approach is that the proposed approach is independent

f any feature descriptors which makes it applicable to any form

f the input data such as point clouds sampled from the surface of

 symmetric object and the volumetric point clouds. Our approach

s applicable to the single reflective symmetric object. We would

ike to extend the proposed framework for detecting the multiple

D reflection symmetries. 
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We believe that the high accuracy of our algorithm would en-

able applications such as 3D surface reconstruction [1] , model

completion [1,2] , symmetrization [4] , model reduction [5] , 3D

model reconstruction from single image [6] , and viewpoint selec-

tion [12] as they will acquire better accuracy. 
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