
Adaptive Message Passing: A General Framework to Mitigate
Oversmoothing, Oversquashing, and Underreaching

Federico Errica 1 Henrik Christiansen 1 Viktor Zaverkin 1

Takashi Maruyama 1 Mathias Niepert 1 2 Francesco Alesiani 1

Abstract
Long-range interactions are essential for the cor-
rect description of complex systems in many sci-
entific fields. The price to pay for including them
in the calculations, however, is a dramatic increase
in the overall computational costs. Recently, deep
graph networks have been employed as efficient,
data-driven models for predicting properties of
complex systems represented as graphs. These
models rely on a message passing strategy that
should, in principle, capture long-range informa-
tion without explicitly modeling the correspond-
ing interactions. In practice, most deep graph
networks cannot really model long-range depen-
dencies due to the intrinsic limitations of (syn-
chronous) message passing, namely oversmooth-
ing, oversquashing, and underreaching. This work
proposes a general framework that learns to mit-
igate these limitations: within a variational in-
ference framework, we endow message passing
architectures with the ability to adapt their depth
and filter messages along the way. With theoret-
ical and empirical arguments, we show that this
strategy better captures long-range interactions,
by competing with the state of the art on five node
and graph prediction datasets.

1. Introduction
Complex systems, characterized by interacting entities and
emergent behavior, are a cornerstone of research in many
scientific disciplines. Mathematical models of such systems
should consider the effects of both short and long-range
interactions between entities, and the latter are often crucial
to describe the system’s behavior with the highest degree of
precision. For instance, in computational physics, it is well-

1NEC Laboratories Europe 2University of Stuttgart. Correspon-
dence to: Federico Errica <federico.errica@neclab.eu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

known that electrostatic and gravitational interactions decay
slowly with distance (Campa et al., 2014); in computational
chemistry and material sciences, the accurate modeling of
non-local effects, such as non-bonded interactions in molec-
ular systems, is necessary to estimate properties like the free
energy (Shirts et al., 2007; Piana et al., 2012); in biology,
disrupting long-range interactions in mRNA can inhibit slic-
ing (Rüegsegger et al., 2001); in immunology, the distant
interactions between a major histocompatibility complex
and regions of the T-cell receptor molecule correlate with
their binding process (Ferber et al., 2012).

Complex systems can be represented as graphs of interact-
ing entities. Modeling long-range interactions often implies
that the graph has dense connectivity, meaning the number
of interactions is quadratic in the number of entities. Ma-
chine learning researchers tried to address these problems by
relying on accurate surrogates for computationally demand-
ing simulations (Sanchez-Gonzalez et al., 2020). Some
of these methods rely on Deep Graph Networks (DGNs)
(Bacciu et al., 2020b), deep learning models implement a
message passing paradigm of computation. In message pass-
ing, nodes repeatedly exchange messages with each other to
propagate information across the graph and compute their
embeddings. More rounds of message passing increase the
“receptive field” of each node.

Despite its long-standing history (Sperduti & Starita, 1997;
Micheli, 2009; Scarselli et al., 2009; Bacciu et al., 2020b),
research in graph representation learning has gained more
traction in recent years, and there are still many open ques-
tions. For instance, it is well-known that most message
passing architectures are ineffective at capturing long-range
dependencies, thus reducing their impact in the scientific
fields mentioned before. Researchers relate this problem
to at least three others, namely oversmoothing (Li et al.,
2018), oversquashing (Alon & Yahav, 2021; Rusch et al.,
2023), and underreaching (Alon & Yahav, 2021). Briefly,
oversmoothing means that the node embeddings of a DGN
tend to converge to the same value as the depth increases.
In contrast, oversquashing relates to the bottleneck of com-
pressing a (possibly) exponential amount of information
from neighboring nodes into a single node embedding. Fi-

1

Adaptive Message passing

nally, underreaching refers to DGNs’ inability to propagate
a node’s information to more than K hops away.

This work provides a general framework for improving the
ability of any message passing architecture to capture long-
range dependencies; we extend the general message passing
formulation to propagate relevant information across the
graph. At the heart of our proposal is the idea to let DGNs
learn how many layers of message passing to use and when
to send specific messages. As a matter of fact, one typically
observes oversmoothing and oversquashing when too many
messages are propagated, hence learning which messages
to discard is important. At the same time, solving under-
reaching requires a sufficient number of message passing
rounds to be performed, and it is crucial to learn this infor-
mation from that task rather than guessing it via expensive
grid searches. In light of these characteristics, we call our
approach Adaptive Message Passing (AMP).

Our contributions are multi-faceted. We extend a recent vari-
ational framework for unbounded depth networks (Nazaret
& Blei, 2022) to the processing of graphs, and we introduce
new families of distributions with specific properties to over-
come previous limitations. We also propose a soft message
filtering scheme to prune irrelevant information for the task
at hand and favor the propagation of messages to distant
regions of the input graph. Theoretically, we show how to
propagate a message unchanged between any two connected
nodes in the graph and that filtering decreases the upper
bound on sensitivity (Topping et al., 2022); thus, underreach-
ing and oversquashing can be mitigated. Empirically, AMP
significantly and consistently improves the performances
of message passing architectures on five well-known node
and graph prediction datasets where long-range information
is important. Qualitative analyses provide further evidence
that AMP mitigates oversmoothing and oversquashing as
well as learning the number of message-passing layers. Fi-
nally, we conduct an in-depth study of our approach via
ablations and visualizations of the models’ predictions.

2. Related Work
Due to space reasons, we provide an extended literature
review in Appendix A.

Oversquashing. There are many methods that attempt to
address the oversquashing problem with the goal of better
capturing long-range dependencies (Alon & Yahav, 2021).
Some works learn how a node should completely stop propa-
gating a message in a fixed-depth architecture (Spinelli et al.,
2020) or if it should only listen, isolate, or receive/broadcast
its own message (Finkelshtein et al., 2024). Similarly, one
can learn to sample edges at each message passing layer
according to some learned parametrization (Hasanzadeh
et al., 2020) or have a completely asynchronous message
passing (Faber & Wattenhofer, 2023). Ordinary differen-

tial equation-based message passing approaches, instead,
provably preserve information regardless of the depth in the
network (Gravina et al., 2023; Heilig et al., 2025). On the
other hand, most graph rewiring methods alter the graph
connectivity to increase the node sensitivity (Topping et al.,
2022), which has been theoretically linked to a form of
“topological oversquashing”. Some of them preserve lo-
cality and sparsity of the rewiring process (Barbero et al.,
2024) or perform dynamic rewiring (Gutteridge et al., 2023).
Probabilistic approaches to rewiring are based on sampled
sub-graphs (Qian et al., 2024a). Recently, a critical perspec-
tive on the effectiveness of rewiring approaches has also
been given (Tortorella & Micheli, 2022).

Oversmoothing. One practical mitigation to the over-
smoothing problem is dropping edges, reducing the overall
flow of messages and avoiding the convergence of all em-
beddings to the same value (Rong et al., 2020). Another
possibility is to employ skip/residual connections (Kipf &
Welling, 2017; Li et al., 2019). The concatenation of node
representations across layers is yet another a way to contain
oversmoothing, which has been adopted in neural and proba-
bilistic models to improve the downstream performances on
several node and graph-related tasks (Bacciu et al., 2018; Xu
et al., 2018). Instead, an orthogonal research direction con-
siders implicit neural networks for graphs that correspond
to infinite-depth models and seem to be able to capture
long-range dependencies (Poli et al., 2021; Liu et al., 2021).
These models simulate synchronous message passing with
a potentially infinite number of message-propagation steps,
and some of them appear to be empirically robust to the
oversmoothing problem.

Adaptive Architectures. This family of methods tries to
learn the models’ architecture during training. Our work
is inspired by the unbounded depth networks (UDNs) of
Nazaret & Blei (2022), who proposed a variational frame-
work for learning the depth in multi-layer perceptrons and
convolutional neural networks. In the graph domain, the
first approach to learning the depth of a DGN was proposed
by Micheli (2009), who applied the cascade correlation al-
gorithm (Fahlman & Lebiere, 1989). Other works attempted
to learn the “width” of each message passing layer by ex-
ploiting Bayesian non-parametric models (Castellana et al.,
2022), which allows to save time and memory when build-
ing deeper probabilistic DGNs. Finally, it is important to
notice that these works, including this manuscript, are all
orthogonal to the popular field of neural architecture search
(Zhou et al., 2022): The former attempts at dynamically
modifying the architecture during learning, whereas most
neural architecture search approaches find smarter ways to
carry out a grid search or assume a maximum number of
layers. An advantage of adaptive approaches is that they
can greatly reduce time and computational costs to perform

2

Adaptive Message passing

a hyper-parameter search.

Contrary to all these approaches, AMP uses a variational
framework to jointly learn both the depth of the DGN and
filter messages passed between nodes in each of these layers.

3. Adaptive Message Passing
This section introduces the probabilistic framework of AMP,
which we train with simple backpropagation to optimize
a variational lower bound. This bound is composed of a
predictive term and two (optional) regularizers over the
parameters and the DGN’s depth.

Definitions. We consider directed attributed graphs g =
(V, E ,X ,A), each consisting of a set of nodes V =
{1, . . . , ng} that are connected together via a set of oriented
edges E = {(u, v)|u, v ∈ V}. When a graph is undirected,
each edge is converted into two oriented ones, that is, (u, v)
and (v, u). The set X = {xv ∈ Rd|v ∈ V} defines the
d-dimensional attribute vector of each node in the graph,
and similarly for the d′-dimensional edge attributes belong-
ing to the set A = {auv ∈ Rd′ |(u, v) ∈ E}. Finally, we
define the neighborhood of a node v as the set of incoming
edges Nv = {u|(u, v) ∈ E}. As outlined in previous works
(Hammer et al., 2005; Bongini et al., 2018), each attributed
graph can be seen as a realization of some random variable
(r.v.) G with support in the graph domain. Similarly to clas-
sical machine learning, we do not have access to the data
distribution p(G), rather we are interested in modeling the
conditional distribution p(T = Yg|G = g), where Yg stands
for the target value(s) to be predicted.

Multi-output Family of Architectures. AMP produces
deep graph networks of potentially infinite depth, where
each layer ℓ comprises a message passing operation MP
and a readout mapping R (Bacciu et al., 2020b) from node
embeddings to the desired output.

Without loss of generality, a message passing layer MPℓ can
compute node embeddings hℓ

v,∀v ∈ V as follows:

hℓ
v = ϕℓ

(
hℓ−1
v , Ψ({ψℓ(hℓ−1

u ,auv)|u ∈ Nv})
)
, (1)

where ϕℓ and ψℓ are learnable functions and Ψ is a permu-
tation invariant function that aggregates the embeddings of
v’s neighbors computed at the previous layer. When ℓ = 1,
h1
v is obtained by applying a learnable transformation of the

node v’s features h0
v = xv , and no neighbor aggregation is

performed. Instead, the readout mapping Rℓ depends on the
task: If one needs node-wise predictions, then the readout
implements a learnable map ŷℓ

v = ρℓ(hℓ
v) from hℓ

v to a node
output ŷℓ

v; On the other hand, in the case of whole-graph
predictions, a global aggregation has to be performed first:

ŷℓ = ρℓ2
(
Φ
(
{ρℓ1(hℓ

v)|v ∈ V}
))
, (2)

Θℓ

Ti
i = 1 . . . |D|

Gi LFi

ℓ = 1 . . .∞

Figure 1. The graphical model of AMP, where white and blue cir-
cles denote, respectively, latent and observable random variables.
Θℓ is the r.v. over the parameters of layer k, Fi defines a distribu-
tion over the message filters, L implements a distribution over the
layers of the architecture, while Gi and Ti are distributions over
the (observable) input graph and the target label, respectively.

where ρ1, ρ2 denote learnable functions and Φ is a global
pooling function that aggregates all node representations
computed at a given layer ℓ. The learnable functions
ϕℓ, ψℓ, ρℓ1, ρ

ℓ
2 are typically implemented as 1-hidden layer

MLPs parametrized by Θℓ.

Variational Inference Given a dataset D of |D| i.i.d.
graphs, we seek to maximize the log-likelihood

ln p(Y |G) = ln

|D|∏
i

p(Ygi |gi) =
|D|∑
i

ln p(Ygi |gi). (3)

One usually assumes the existence of a set of latent variables
Z such that p(Y |G) =

∫
p(Y,Z|G)dZ. By designing a

proper graphical model, which encodes conditional indepen-
dence assumptions, we define how to compute p(Y,Z|G);
however, the integral to maximize often remains intractable.
Therefore, one approach is to turn to variational inference
(Jordan et al., 1999; Blei et al., 2017), which maximizes the
Expected Lower Bound (ELBO) instead. In particular, by
arbitrarily defining a distribution q(Z|G), one has

ln p(Y |G) ≥ Eq(Z|G)

[
ln
p(Y,Z|G)
q(Z|G)

]
. (4)

Below, we show how we define the joint distribution
p(Y,Z|G) as well as the variational distribution q(Z|G)
in the specific context of AMP.

AMP Formulation. Figure 1 represents the graphical
model associated with AMP, where white and blue circles
represent latent and observed r.v.s, respectively. We extend
the formulation of Nazaret & Blei (2022) to the domain of
graphs by modeling the message filtering strategy: The vari-
able Θℓ follows a distribution over the parameters of layer
ℓ of an infinite-depth network, and L follows a distribution
over layers L ∈ N∗ and is used to truncate the network to a
finite depth L. For the i-th graph gi, Fi follows a distribu-
tion over soft message filters Fi ∈ [0, 1]|V|×L×d. In partic-
ular, given a node v and a layer ℓ, the d-dimensional vector

3

Adaptive Message passing

Fi(v, ℓ) specifies how much of hℓv has to be propagated
through the outgoing edges in the next message passing
layer. The generative model is

θ ∼ p(Θ) =

∞∏
ℓ=1

p(Θℓ) (5)

L ∼ p(L) (6)
Fi|gi, L,θ ∼ p(Fi|gi, L,θ) (7)
Ygi |gi,Fi, L,θ ∼ p(Ti; ΩL(gi,Fi,θ)), (8)

with ΩL being the infinite DGN truncated at depth L whose
output parametrizes the target distribution. This means that
the joint distribution decomposes as

p(Y,θ,Fi, L|G) =

= p(θ)p(L)

|D|∏
i

p(Ygi |θ,Fi, L, gi)p(Fi|gi, L,θ) (9)

Note that the independence of the priors is key for an effi-
cient approximation of the posterior distribution (Nazaret &
Blei, 2022).

In Figure 2, we visually represent the effect that message
filtering has on the propagation of messages across DGN
layers. A graph of seven nodes (a) is provided and the mes-
sage filtering scheme (b) has been discretized in the interest
of simplicity. For instance, node 1 will send its message
only at message passing layer 1, nodes 2 & 3 will never
send a message, and node 4 will send a message only at
layer 2. Compared to the standard message passing (c),
where all nodes send their messages at each layer, AMP
implements a learnable filtering (d), where a subset of all
possible messages is propagated at each layer in a way that
depends on the task to be solved. In Section D, we discuss
the implications of this adaptive message filtering scheme
in mitigating the well-known issues of oversquashing, un-
derreaching, and oversmoothing. Notably, message filtering
does not introduce a significant computational burden since
it has linear complexity in the number of nodes.

Choice of the Variational Distributions. We now
need to define the learnable variational distribution
q(θ, L,Fi, |gi, Ygi). We assume it factorizes as
q(θ|L;ν)q(L;λ)q(Fi|gi, L,θ), where ν, λ are learnable
parameters. We also assume that the variational posterior
does not depend on Ygi (so we can drop the term) to allow
for predictions on unseen graphs. Below, we describe how
to compute each factor so that the computation of the ELBO
is tractable.

The distribution q(L;λ) has to belong to an unbounded with
bounded and connected members’ family (see Definition B.1
in Section B). In short, since the support of each distribution
q in the family is bounded, we can compute its expectation

1

3

4

65

72

1 2 L

1

1 2 L

1

1 2 L

1

1 2 L

1

1 2 L

1

1 2 L

1

1 2 L

1

Standard MP (ℓ=1,2) Adaptive MP (ℓ=1) Adaptive MP (ℓ=2)

1 1 1

2 2 23 3 3

4 4 4

5 5 56 6 6

7 7 7

(a) (b)

(c)

node 1 node 2 node 3

node 6node 5node 4 node 7

(d)

Figure 2. Given an input graph (a) and a discrete message filtering
scheme (b), we observe how a L=2-layer standard message passing
(c) differs from AMP (d) in terms of the number of messages sent.
Please refer to the text for more details.

Eq(L;λ)[f(L)] as the sum
∑

ℓ∈support(q) q(ℓ)f(ℓ) for any
function f . In Appendix B, we extend the original treat-
ment of Poisson distributions to Gaussians and mixtures
of distributions. Second, we define q(θ|L;ν) such that we
cannot make any statement about the layers greater than L
(Kurihara et al., 2007):

q(θ|L;ν) = q(θ1:L;ν1:L)

∞∏
ℓ=L+1

p(θℓ) (10)

and p(θℓ) can be, for instance, a Gaussian prior. We also fix
q(θ1:L;ν1:L) =

∏L
ℓ=1 N (θℓ;νℓ, I).

Finally, we define q(Fi|gi, L,θ) as a Dirac delta function
δFi

whose parameters Fi ∈ [0, 1]|V|×L×d are computed by
a function f(gi). Choosing the delta function makes the
computation of its expectation straightforward, but other
choices can, in principle, be made. We propose two ver-
sions of the function f(gi), whose choice is left as a hyper-
parameter: the first computes Fi(v, ℓ) = fℓ(xv) and the
second computes Fi(v, ℓ) = fℓ(h

ℓ
v), where fℓ is a Multi-

Layer Perceptron (MLP) with sigmoidal activations. In
other words, a node’s outgoing messages will be filtered
according to either the input features of that node or its em-
bedding at layer ℓ. Given Fi ∼ q(Fi|gi, L,θ), we extend
Equation 1 to apply such filtering:

hℓ
v = ϕℓ(hℓ−1

v ,

Ψ({Fi(u, ℓ− 1)⊙ ψℓ(hℓ−1
u ,auv)|u ∈ Nv})), (11)

with ⊙ being the element-wise product. Such message
filtering is similar in spirit to many works (Franceschi et al.,
2019; Spinelli et al., 2020; Finkelshtein et al., 2024), but our
approach does not require gradient approximations caused
by discrete operations and is fully differentiable.

4

Adaptive Message passing

Computation of the ELBO. Our choice of the variational
distributions allows us to compute the ELBO efficiently and
maximize it using backpropagation (Rumelhart et al., 1986).
In particular, we write (the full derivation is in Appendix C)

ln p(Y |G) ≥
L̂∑

ℓ=1

q(ℓ;λ)

[
ln

p(ℓ)

q(ℓ;λ)
+ ln

p(ν)

q(ν|ℓ;ν)

+

|D|∑
i

[
ln

p(Fi)

q(Fi|gi, ℓ,ν)
+ ln p(Ygi |ℓ,Fi,ν, gi)

]]
, (12)

where L̂ = support(q(L)), p(L) is a prior over layers,
such as a Poisson distribution, and p(Fi) is a prior over all
possible message filtering schemes (uninformative in this
work, so the term cancels). The second equivalence relies on
the specific properties of the variational distributions and on
the approximation of expectation Eq(θ|L;ν)[f(θ1:L)]), for
a function f , at the first order1 with f(Eq(θ|L;ν)[θ1:L]) =
f(ν1:L) as in Nazaret & Blei (2022).

Akin to Nazaret & Blei (2022), AMP makes predictions
about a new graph gj as:

p(Ygj |gj) ≈ Eq(θ,L,Fj ,|gj)
[
p(Ygj ; ΩL(gj ,Fj ,θ)

]
(13)

≈
L̂∑

ℓ=1

q(ℓ;λ)p(Ygj ; Ωℓ(gj ,Fj ,ν)). (14)

In other words, using the fact that q(ℓ;λ) has bounded
support up to L̂, we obtain the prediction as the weighted
sum of the L̂ output layers of the DGN, and the variational
distribution q(ℓ;λ) over layers provides said weights.

We now show that there is a direct relation between the
ability to filter out messages of Equation 11 and the upper
bound on the Jacobian sensitivity discussed in Di Giovanni
et al. (2023).

Theorem 3.1. For AMP with m layers and u, v ∈ V ,∥∥∥∥∥∂h(m)
v

∂h
(0)
u

∥∥∥∥∥
L1

≤ d ((cup (crsI + cmp (cF kh + kF)A))
m
)vu

Here, MPNN is in the following form

hℓv = up

(
rs(hℓ−1

v) + mp(
∑
u

AvuF (h
ℓ−1
u)⊙ hℓ−1

u)

)
where up, rs, and mp are Lipschitz functions as in Di Gio-
vanni et al. (2023) with constants cup, crs, cmp, cF is the
upper bound of the entry-wise L1 matrix norm of ∂F

∂x for
the filtering function F , kh is the maximal absolute value
among entries of h, and similarly kF for the output of F .

Proof. The proof is provided in Appendix D.

1First-order second-moment method (FOSM) of probability.

Note that kF ≤ 1; if we consider for simplicity a constant
filtering function, namely cF = 0 and we filter enough,
meaning kF < 1, then filtering will decrease the sensitiv-
ity’s upper bound. At the same time, this helps to reduce the
amount of messages that get squashed into a fixed size vec-
tor Alon & Yahav (2021), contradicting the widely accepted
notion that “improving sensitivity mitigates oversquashing”.
Please consult Appendix D for a more detailed discussion
on this matter.

Practical Considerations. The depth of AMP varies dy-
namically; in particular, the support of the distribution
q(ℓ;λ) is obtained by truncating it as the quantile func-
tion evaluated at 0.99 (in our experiments). Whenever the
quantile threshold shifts, we either grow or shrink the DGN
by instantiating a new message-passing layer and increasing
the output dimension of the function f(gi) that produces Fi.
When shrinking the DGN, we can retain the excess layers
to account for future expansions or delete them; here we
opt for the retention strategy. Importantly, the depth is not
a hyper-parameter to be tuned anymore. While AMP re-
quires choosing a family of truncated distributions q(L) and
a proper initialization, it is generally believed that this has
a smaller effect on the final result (Goel & Degroot, 1981;
Bernardo & Smith, 2009). Also, setting uninformative pri-
ors works well in our experiments but they are convenient
way to penalize the computational costs of deeper networks.

We conclude with a theorem on AMP’s ability to propagate
a message unchanged from two connected nodes in a graph,
which would not be possible on classical (synchronous)
message-passing neural networks. However, achieving such
behavior in practice might be difficult.

Theorem 3.2 (Short Version). For each graph g, a source
node v and a destination node u, there exists a parametriza-
tion of AMP and a depth K such that hK

u = h0
v = xv.

Proof. The proof is provided in Appendix D, and Figure 8
sketches the process formalized in the theorem.

3.1. Computational Considerations

The cost of filtering messages is O(|V|). Therefore, the
message passing operation is not altered significantly, since
it has a cost of O(|V|+ |E|). However, the additional burden
introduced by AMP, compared to classical message-passing
architectures, is the layer-wise readout that we implemented
as an MLP. Classical MPNNs employ a single readout with
cost O(|V|) or O(1) depending on the task nature, whereas
we use one per layer, so we have O(|V|L) and O(|V|L)
respectively. In terms of training costs, we employ standard
backpropagation with at most two light-weight additional
regularizers, which is not so different from classical ap-
proaches.

5

Adaptive Message passing

4. Experimental Details
We evaluate AMP on two sets of tasks, both requiring the
ability to capture long-range interactions.2 Additional node
classifcation results can be found in Appendix F.

Synthetic Datasets We consider the tasks of predicting
the diameter, the single-source shortest paths (SSSP), and
the node eccentricity on synthetic graphs (Corso et al., 2020).
In particular, we closely follow the setup of Gravina et al.
(2023) with graph sizes ranging from 25 to 35 nodes, topolo-
gies sampled from different graph generators, and each node
has one random (sampled from a Normal distribution) fea-
ture attached. For SSSP, a binary feature is added to each
node to indicate whether it is the source node in the graph
or not. Each dataset amounts to 7040 graphs split into 5120
for training, 640 for validation, and 1280 for testing. The
metric to be optimized is the log10 of the mean squared error
(MSE). We apply early stopping on the validation MSE.
We have observed that the performance reported in Gravina
et al. (2023) can be improved by a significant margin if we
average results over 20 rather than four final (that is, after
model selection) training runs and increase the patience
of the early stopper from 100 to 300, giving models more
time to converge to a good solution. Therefore, to ensure
a more robust set of results, we re-evaluated all baselines3

considering these changes, and in many cases, we improved
the scores. We combine AMP with three message pass-
ing architectures, namely the Graph Convolutional Network
(GCN) (Kipf & Welling, 2017), the Graph Isomorphism
Network (GIN) (Xu et al., 2019), and the Anti-Symmetric
DGN (ADGN) (Gravina et al., 2023), and in addition we
compare against GAT (Velickovic et al., 2018), GraphSAGE
(Hamilton et al., 2017), GCNII (Chen et al., 2020a), DGC
(Wang et al., 2021), and GRAND (Chamberlain et al., 2021).
Hyper-parameter details can be found in Appendix E.

Chemical Datasets We also test AMP on real-world
chemical graph prediction benchmarks, taken from the Long
Range Graph Benchmark, called peptides-func and peptides-
struct (Dwivedi et al., 2022). The first is an imbalanced
multi-label graph classification dataset with ten total peptide
functions, and we measure performances using the average
precision (AP). The second is a multi-label graph regres-
sion task where we want to predict the peptides’ properties
based on their 3D information, and one evaluates the mean
absolute error (MAE). Both datasets contain 15535 peptides
with approximately 150 nodes each, and the data is split
into 70 % for training, 15 % for validation, and 15 % for
testing. We apply early stopping on the validation MAE.
We rely on the fair re-evaluation of Tönshoff et al. (2023a)
that shows how simple baselines like a GCN can achieve

2https://github.com/nec-research/Adaptive-Message-Passing
3We received support from the authors of paper.

very competitive performances when properly tuned. In
addition, we follow previous works (Rampášek et al., 2022;
Tönshoff et al., 2023a) and add random-walk structural
encodings for peptides-func and Laplacian positional encod-
ings for peptides-struct. For completeness, we include re-
sults from Dwivedi et al. (2022), its re-evaluation (Tönshoff
et al., 2023a), and other results such as CRaWL (Tönshoff
et al., 2023b), DRew (Gutteridge et al., 2023), Exphormer
(Shirzad et al., 2023), GRIT (Ma et al., 2023), Graph ViT
and G-MLPMixer (He et al., 2023), LASER (Barbero et al.,
2024), CO-GNN (Finkelshtein et al., 2024), NBA (Park
et al., 2024), PH-DGN (Heilig et al., 2025), GRED (Ding
et al., 2024), PR-MPNN (Qian et al., 2024a) and IPR-MPNN
(Qian et al., 2024b).

We evaluate AMP on GCN, GINE (Hu et al., 2020), and
GatedGCN (Bresson & Laurent, 2017); our grid search
follows the best hyper-parameter reported by Tönshoff et al.
(2023a) (except the depth). As above, details on AMP’s
hyper-parameters can be found in Appendix E. Because the
optimal depth ultimately depends on the task and the specific
configuration of the model, we cannot impose arbitrary
restrictions on the number of total parameters as done in
Dwivedi et al. (2022); instead, we are interested in letting
the model freely adapt and choose the best parametrization
that maximizes the performance.

5. Results
5.1. Quantitative Results

Table 1 reports the test scores for the Diameter, SSSP, and
Eccentricity datasets for all baselines and AMP versions.
On all datasets, AMP always grants a reduction of the test
error, with an average improvement of 63 % on Diameter,
72 % on SSSP, and 32 % on Eccentricity. These results
show that learning the proper depth of a network and a pol-
icy for filtering messages exchanged between nodes is more
effective than relying on a manually crafted grid search and
a fully synchronous message passing behavior. Eccentricity
is the most difficult task to solve, whereas one could claim
that SSSP is almost solved for the graphs considered. We
achieved the greatest reduction in error with respect to the
GIN model, probably because the authors in Gravina et al.
(2023) found that a 1-layer GIN was the best configuration
across all tasks after tuning the depth. This stresses the
positive impact of letting the model learn how and when
to propagate messages. On the chemical datasets (Table 2),
we observe a similar trend. Regardless of the base message
passing architecture, AMP consistently improves its perfor-
mance on classification and regression tasks. On peptides-
func, we achieve an improvement of 2 to 3.4 % compared to
the base models and a reduction of MAE on peptides-struct
that positions all AMP versions at state-of-the-art levels
(considering overlap of standard deviations). Our analyses

6

Adaptive Message passing

Diameter Rel Imp SSSP Rel Imp Eccentricity Rel Imp

GCN 0.6146 ± 0.0375 0.9132 ± 0.0051 0.7398 ± 0.0705
GAT 1.4367 ± 0.3558 0.6070 ± 0.0375 1.0714 ± 0.0616
GRAPHSAGE 0.6146 ± 0.0744 −1.0139 ± 0.0120 1.0859 ± 0.0001
GIN 0.2408 ± 0.0154 −0.2648 ± 0.4437 0.9229 ± 0.0002
GCNII 0.5057 ± 0.0309 −0.9172 ± 0.4396 0.7112 ± 0.0255
DGC 0.5601 ± 0.0220 −0.0254 ± 0.0077 0.8051 ± 0.0017
GRAND 0.9477 ± 0.2160 0.1909 ± 0.3103 0.7450 ± 0.1369
ADGN −0.4530 ± 0.0883 −3.5448 ± 0.2749 0.0547±0.0732

AMPGCN −0.1072† ± 0.0791 -81% 0.5440† ± 0.0108 -57% 0.6054† ± 0.0919 -26%
AMPGIN −0.4874† ± 0.1111 -81% −3.0628† ± 0.3159 -99% 0.4093† ± 0.0546 -69%
AMPADGN −0.5891† ± 0.0720 -27% −3.9579† ± 0.0769 -61% 0.0515† ± 0.1819 -1%
Avg Rel Imp -63% -72% -32%

Table 1. Mean log10(MSE) and standard deviation averaged over 20 final runs on Diameter, SSSP, and Eccentricity. A † indicates that
AMP yields an improvement in the mean score compared to the base model.

Method peptides-func peptides-struct
Test AP ↑ Test MAE ↓

L
R

G
B

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045
GATEDGCN 0.6069 ± 0.0035 0.3357 ± 0.0006
TRANSFORMER 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN 0.6439 ± 0.0075 0.2545 ± 0.0012
GPS 0.6535 ± 0.0041 0.2500 ± 0.0005

R
E

-E
V

A
L GCN 0.6860 ± 0.0050 0.2460 ± 0.0007

GINE 0.6621 ± 0.0067 0.2473 ± 0.0017
GATEDGCN 0.6765 ± 0.0047 0.2477 ± 0.0009
GPS 0.6534 ± 0.0091 0.2509 ± 0.0014

O
T

H
E

R
S

CRAWL 0.7074 ± 0.0032 0.2506 ± 0.0022
DREWGCN 0.7150 ± 0.0044 0.2536 ± 0.0015
DREWGATEDGCN 0.6977 ± 0.0026 0.2539 ± 0.0007
EXPHORMER 0.6527 ± 0.0043 0.2481 ± 0.0007
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012
GRAPH VIT 0.6942 ± 0.0075 0.2449 ± 0.0016
G-MLPMIXER 0.6921 ± 0.0054 0.2475 ± 0.0015
LASER 0.6440 ± 0.0010 0.3043 ± 0.0019
CO-GNN 0.6990 ± 0.0093 -
NBAGCN 0.7207 ± 0.0028 0.2472 ± 0.0008
NBAGATEDGCN 0.6982 ± 0.0014 0.2466 ± 0.0012
PH-DGN 0.7012 ± 0.0045 0.2465 ± 0.0020
GRED 0.7041 ± 0.0049 0.2584 ± 0.0015
PR-MPNN 0.6825 ± 0.0086 0.2477 ± 0.0005
IPR-MPNN 0.7210 ± 0.0039 0.2422 ± 0.0007

AMPGCN 0.7161† ± 0.0047 0.2446† ± 0.0026

AMPGINE 0.7065† ± 0.0105 0.2468† ± 0.0026

AMPGATEDGCN 0.6943† ± 0.0046 0.2480† ± 0.0012

Table 2. Mean test scores and standard deviation averaged over
4 final runs on the chemical datasets. The † indicates that AMP
yields an improvement compared to the base architecture.

also found that the number of hidden units is an important
hyper-parameter to perform well on these tasks, and a larger
value seems to correlate well with good performances. Com-
bined with the above results, we argue that the parameter
budget imposed by previous works (Dwivedi et al., 2022)
might limit the future progress on these tasks, as deeper
networks are probably needed (we provide an analysis of
the depth found by AMP below). The average diameter of
these peptides is 57, meaning that using ten layers as done
in other works might not be enough to capture long-range
dependencies (Tönshoff et al., 2023a). We provide a visual
analysis of predictions in Appendix G.

5.2. AMP mitigates oversmoothing and oversquashing

0 10 20 30

Layers

−1

0

1

2

3

4

5

6

ln
L

ay
er

-w
is

e
D

ir
ic

hl
et

E
ne

rg
y

0 10 20 30

Layers

4

6

8

10

12

14

16

ln
L

ay
er

-w
is

e
Se

ns
iti

vi
ty

Eccentricity (GCN)
Eccentricity (AMPGCN)
Diameter (GCN)
Diameter (AMPGCN)
SSSP (GCN)

SSSP (AMPGCN)
peptides-func (GCN)
peptides-func (AMPGCN)
peptides-struct (GCN)
peptides-struct (AMPGCN)

Figure 3. We show the Dirichlet energy (left) and the sensitivity
(right) across layers for the GCN model and its AMP version.

We now comment on AMP’s ability to mitigate oversmooth-
ing and oversquashing, and we refer to Figure 3 for a quali-
tative analysis of the former (left) and of the latter (right).
First, we computed the logarithm of the Dirichlet energy
over embeddings of a trained GCN for different layers and
datasets. This analysis reveals that the Dirichlet energy for
AMP’s variants is typically higher than the corresponding
baselines and it can exhibit a stable, decreasing, or increas-
ing behavior as the depth grows, in contrast to existing
theoretical research on the GCN model where the Dirichlet
energy constantly decreases and embeddings converge to
the same value (Li et al., 2018; Rusch et al., 2023); note that
we apply skip connections to the base GCN, so the energy
does not immediately decreases. Therefore, it appears that
our approach is indeed capable of controlling oversmooth-
ing; we attribute this to the combination of message filtering
and a layer-wise loss, which favors the propagation of gra-

7

Adaptive Message passing

0 5 10 15 20 25 30 35

Layers

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
Eccentr. (E), Diameter (D), SSSP (S)

E (AMPGCN)

E (AMPGIN)

E (AMPADGN)

D (AMPGCN)

D (AMPGIN)

D (AMPADGN)

S (AMPGCN)

S (AMPGIN)

S (AMPADGN)

0 10 20 30 40

Layers

0.00

0.05

0.10

0.15

Pr
ob

ab
ili

ty

peptides func (F) / struct (S)

F (AMPGCN)

F (AMPGINE)

F (AMPGATEDGCN)

S (AMPGCN)

S (AMPGINE)

S (AMPGATEDGCN)

Figure 4. We show the distribution learned by the best configurations of each base model on the synthetic and chemical datasets.

dient to intermediate layers. We also report the layer-wise
logarithm of node embeddings’ sensitivity4 as the gradient
of the embeddings of the last layer L with respect to the
ones of intermediate layers l:

∑
(v,u)∈V

∣∣∣∣∣∣∂hL
v

∂hℓ
u

∣∣∣∣∣∣
1
. Sensi-

tivity provides insights into how pruning messages affects
oversquashing; in fact, filtering messages might reduce said
sensitivity with respect to the input. We report a quite het-
erogeneous picture in Figure 3 (right): the sensitivity of
AMP can peak at the first or last layers, increase abruptly,
or remain relatively stable. In all these cases, we have
seen how AMPGCN substantially improves performances
on tasks where it seems important to address oversquash-
ing. This evidence also warns us against using sensitivity as
the sole metric to measure oversquashing as a performance
bottleneck.

5.3. Analysis of the AMP’s Learned Depth

To understand how AMP mitigates underreaching, we in-
spect the learned distributions for synthetic datasets in Fig-
ure 4 (left). AMP uses more layers than the baselines (de-
tails in Appendix H) to achieve the best score on Eccentric-
ity. Instead, it is found that about 20 layers are necessary to
solve the task for the Diameter dataset, with all runs attain-
ing a mean value between 17 and 22 layers. Finally, SSSP
seems to be the task that requires fewer layers on average,
with AMPGIN selecting less than ten layers to reach a very
competitive score. Overall, it appears that folded normal
and mixtures of folded normal distributions were selected
more frequently as the best hyper-parameter for the syn-
thetic tasks; in particular, the distributions for Eccentricity
look sharply peaked, as if the models would need to use
only the information computed at the very end of the deep
architecture. It is worth remarking that this behavior is com-
pletely adaptive and guided by the task. Finally, we observe
that the distributions learned on the chemical datasets are

4Averaged over 250 validation nodes due to prohibitive costs.

mostly Poisson ones, and AMP learns deeper networks than
the corresponding baselines to reach better scores. These
distributions peak at around ten layers for peptides-struct,
which is more or less in line with what was reported in
previous works (Tönshoff et al., 2023a). In any case, AMP
enables training of very deep architectures thanks to its
layer-wise output. However, this has a non-negligible cost
in terms of number of readout parameters.

5.4. On the Effects of Message Filtering

Figure 5 visualizes the amount of information pruned at
each layer by AMPGCN on all datasets, together with an
ablation study about the benefits of message filtering. The
amount of information pruned is computed by summing the
message filters’ activations and normalizing the result by
the total number of messages exchanged at each layer. We
can see how AMPGCN gradually increases the amount of
information to be used for Eccentricity, whereas in peptides-
func, this quantity is almost always below 50%. One can
appreciate how, depending on the task, the behavior of the
message filtering changes significantly.

The ablation study, on the other hand, provides evidence
that message filtering is, in most cases, a good strategy for
performance improvements. We see that, for each model and
dataset, input-based and embedding-based filtering provide
a positive improvement in scores compared to no-filtering.
Points lying in the grey area correspond to no improvement.
We conclude that the choice of which filtering strategy to
use remains a matter of empirical investigations.

6. Conclusions
We have introduced Adaptive Message Passing, a probabilis-
tic framework that endows message passing architectures
with the ability to learn how many messages to exchange
between nodes and which messages to filter out. Our ap-

8

Adaptive Message passing

0 5 10 15 20 25 30

Layers

0

20

40

60

80

100
%

of
in

fo
rm

at
io

n
pr

es
er

ve
d

AMPGCN
Eccentricity
Diameter
SSSP
peptides-func
peptides-struct

−2.0 −1.5 −1.0 −0.5 0.0

Input Based Filter (∆log10MSE)

−2.0

−1.5

−1.0

−0.5

0.0

E
m

be
d.

B
as

ed
Fi

lte
r(

∆
lo

g
1
0
M

S
E

) Diameter (AMPADGN)
Diameter (AMPGCN)
Diameter (AMPGIN)
Eccentricity (AMPADGN)
Eccentricity (AMPGCN)
Eccentricity (AMPGIN)
SSSP (AMPADGN)
SSSP (AMPGCN)
SSSP (AMPGIN)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Input Based Filter (∆AP)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

E
m

be
d.

B
as

ed
Fi

lte
r(

∆
A

P
) peptides-func (AMPGCN)

peptides-func (AMPGINE)

peptides-func (AMPGATEDCGN)

−0.005−0.004−0.003−0.002−0.001 0.000 0.001 0.002

Input Based Filter (∆MAE)

−0.005

−0.004

−0.003

−0.002

−0.001

0.000

0.001

0.002

E
m

be
d.

B
as

ed
Fi

lte
r(

∆
M

A
E

)

peptides-struct (AMPGCN)

peptides-struct (AMPGINE)

peptides-struct (AMPGATEDCGN)

Figure 5. (Top right) we visualize the amount of information preserved in each layer by AMPGCN. (Others) Ablation study of message
filtering scheme: If a point lies in the area represented by the gray color, then filtering is not beneficial.

proach actively targets the long-range issue by relying on the
observation that filtering messages mitigates oversmooth-
ing and oversquashing, whereas learning depth can ideally
solve underreaching. AMP achieves competitive results
on long-range datasets without imposing strong inductive
biases. Through qualitative analyses, our findings reveal
how AMP learns very deep architectures if necessary for the
task, and the amount of information propagated can greatly
be reduced compared to classical message passing. Overall,
our approach suggests that it might not be necessary to alter
the initial graph structure, e.g., through rewiring, to improve
the performances on long-range tasks. We hope Adaptive
message passing will foster exciting research opportuni-
ties in the graph machine learning field and find successful
applications in physics, chemistry, and material sciences.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Abboud, R., Dimitrov, R., and Ceylan, I. I. Shortest path net-

works for graph property prediction. In The 1st Learning
on Graphs Conference (LoG), 2022.

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,
Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning (ICML), 2019.

Alon, U. and Yahav, E. On the bottleneck of graph neural
networks and its practical implications. In 9th Interna-
tional Conference on Learning Representations (ICLR),
2021.

Bacciu, D., Errica, F., and Micheli, A. Contextual Graph
Markov Model: A deep and generative approach to graph
processing. In Proceedings of the 35th International
Conference on Machine Learning (ICML), volume 80, pp.
294–303, 2018.

Bacciu, D., Errica, F., and Micheli, A. Probabilistic learn-
ing on graphs via contextual architectures. Journal of
Machine Learning Research, 21(134):1–39, 2020a.

9

Adaptive Message passing

Bacciu, D., Errica, F., Micheli, A., and Podda, M. A gentle
introduction to deep learning for graphs. Neural Net-
works, 129:203–221, 9 2020b.

Banerjee, P. K., Karhadkar, K., Wang, Y. G., Alon, U., and
Montúfar, G. Oversquashing in gnns through the lens of
information contraction and graph expansion. In Proceed-
ings ot the 58th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), 2022.

Barbero, F., Velingker, A., Saberi, A., Bronstein, M. M., and
Giovanni, F. D. Locality-aware graph rewiring in GNNs.
In Proceedings of the 12th International Conference on
Learning Representations (ICLR), 2024.

Bernardo, J. M. and Smith, A. F. Bayesian theory, volume
405. John Wiley & Sons, 2009.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Bober, J., Monod, A., Saucan, E., and Webster, K. N.
Rewiring networks for graph neural network training us-
ing discrete geometry. In International Conference On
Complex Networks And Their Applications, 2023.

Bongini, M., Rigutini, L., and Trentin, E. Recursive neural
networks for density estimation over generalized random
graphs. IEEE Transactions on Neural Networks and
Learning Systems, 29(11):5441–5458, 2018.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Brockschmidt, M. Gnn-film: Graph neural networks with
feature-wise linear modulation. In Proceedings of the
37th International Conference on Machine Learning
(ICML), 2020.

Campa, A., Dauxois, T., Fanelli, D., and Ruffo, S. Physics
of long-range interacting systems. OUP Oxford, 2014.

Castellana, D. and Errica, F. Investigating the interplay
between features and structures in graph learning. In
MLG Workshop at ECML PKDD, 2023.

Castellana, D., Errica, F., Bacciu, D., and Micheli, A. The
infinite contextual graph Markov model. In Proceedings
of the 39th International Conference on Machine Learn-
ing (ICML), pp. 2721–2737, 2022.

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bronstein,
M., Webb, S., and Rossi, E. Grand: Graph neural diffu-
sion. In Proceedings of the 38th International Conference
on Machine Learning (ICML), 2021.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-aware
transformer for graph representation learning. In Proceed-
ings of the 39th International Conference on Machine
Learning (ICML). PMLR, 2022.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In Proceedings of
the 37th International Conference on Machine Learning
(ICML), 2020a.

Chen, Y., Wu, L., and Zaki, M. Iterative deep graph learning
for graph neural networks: Better and robust node embed-
dings. In Proceedings of the 34th Conference on Neural
Information Processing Systems (NeurIPS), 2020b.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
In Proceedings of the 34th Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Deac, A., Lackenby, M., and Veličković, P. Expander graph
propagation. In The 1st Learning on Graphs Conference
(LoG), 2022.

del Castillo, J. and Pérez-Casany, M. Overdispersed and
underdispersed poisson generalizations. Journal of Sta-
tistical Planning and Inference, 134:486–500, 2005.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio, P.,
and Bronstein, M. M. On over-squashing in message
passing neural networks: The impact of width, depth,
and topology. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023.

Ding, Y., Orvieto, A., He, B., and Hofmann, T. Recur-
rent distance filtering for graph representation learning.
In Proceedings of the 41st International Conference on
Machine Learning (ICML), 2024.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. In Proceedings of the 36th Conference on Neural
Information Processing Systems (NeurIPS), 2022.

Errica, F. On class distributions induced by nearest neighbor
graphs for node classification of tabular data. In Pro-
ceedings of the 37th Conference on Neural Information
Processing Systems (NeurIPS), 2023.

Faber, L. and Wattenhofer, R. GwAC: GNNs with asyn-
chronous communication. In The 2nd Learning on
Graphs Conference (LoG), 2023.

Fahlman, S. and Lebiere, C. The cascade-correlation learn-
ing architecture. In Proceedings of the 3rd Conference
on Neural Information Processing Systems (NIPS), 1989.

10

Adaptive Message passing

Fatemi, B., Abu-El-Haija, S., Tsitsulin, A., Kazemi, M.,
Zelle, D., Bulut, N., Halcrow, J., and Perozzi, B. Ugsl:
A unified framework for benchmarking graph structure
learning. In Topology, Algebra, and Geometry in Machine
Learning Workshop, ICML, 2023.

Ferber, M., Zoete, V., and Michielin, O. T-cell receptors
binding orientation over peptide/mhc class i is driven by
long-range interactions. PloS one, 7(12):e51943, 2012.

Finkelshtein, B., Huang, X., Bronstein, M. M., and Ceylan,
I. I. Cooperative graph neural networks. In Proceedings of
the 41st International Conference on Machine Learning
(ICML), 2024.

Franceschi, L., Niepert, M., Pontil, M., and He, X. Learning
discrete structures for graph neural networks. In Proceed-
ings of the 36th International Conference on Machine
Learning (ICML), 2019.

Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bron-
stein, M., and Monti, F. Sign: Scalable inception graph
neural networks. In Graph Representation Learning and
Beyond (GRL+) Workshop, ICML, 2020.

Gabrielsson, R. B., Yurochkin, M., and Solomon, J.
Rewiring with positional encodings for graph neural net-
works. Transactions on Machine Learning Research,
2023. ISSN 2835-8856.

Gasteiger, J., Weißenberger, S., and Günnemann, S. Diffu-
sion improves graph learning. In Proceedings of the 33rd
Conference on Neural Information Processing Systems
(NeurIPS), 2019.

Goel, P. K. and Degroot, M. H. Information about hy-
perparamters in hierarchical models. Journal of the
American Statistical Association, 76(373):140–147, 1981.
ISSN 01621459.

Gravina, A., Bacciu, D., and Gallicchio, C. Anti-symmetric
DGN: a stable architecture for deep graph networks. In
11h International Conference on Learning Representa-
tions (ICLR), 2023.

Gruber, L., Schäfl, B., Brandstetter, J., and Hochreiter, S.
Processing large-scale graphs with g-signatures. In ICML
2024 AI for Science Workshop, 2024.

Gutteridge, B., Dong, X., Bronstein, M. M., and Di Gio-
vanni, F. Drew: Dynamically rewired message passing
with delay. In Proceedings of the 40th International Con-
ference on Machine Learning (ICML), 2023.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Proceedings of
the 31st Conference on Neural Information Processing
Systems (NIPS), pp. 1024–1034, 2017.

Hammer, B., Micheli, A., and Sperduti, A. Universal approx-
imation capability of cascade correlation for structures.
Neural Computation, 17(5):1109–1159, 2005.

Harris, T., Yang, Z., and Hardin, J. W. Modeling underdis-
persed count data with generalized poisson regression.
The Stata Journal, 12:736–747, 2012.

Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M.,
Duffield, N., Narayanan, K., and Qian, X. Bayesian
graph neural networks with adaptive connection sampling.
In Proceedings of the 37th International Conference on
Machine Learning (ICML), 2020.

He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. A generalization of vit/mlp-mixer to graphs.
In Proceedings of the 40th International Conference on
Machine Learning (ICML), 2023.

Heilig, S., Gravina, A., Trenta, A., Gallicchio, C., and Bac-
ciu, D. Port-hamiltonian architectural bias for long-range
propagation in deep graph networks. In Proceedings of
the 13th International Conference on Learning Represen-
tations (ICLR), 2025.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. In 8th International Conference on Learning
Representations (ICLR), 2020.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. An introduction to variational methods for graphical
models. Machine Learning, 37:183–233, 1999.

Karhadkar, K., Banerjee, P. K., and Montufar, G. FoSR:
First-order spectral rewiring for addressing oversquash-
ing in GNNs. In The 11th International Conference on
Learning Representations (ICLR), 2023.

Kazi, A., Cosmo, L., Ahmadi, S.-A., Navab, N., and Bron-
stein, M. M. Differentiable graph module (dgm) for graph
convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45:1606–1617, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations (ICLR), 2017.

Kurihara, K., Welling, M., and Teh, Y. W. Collapsed varia-
tional dirichlet process mixture models. In Proceedings
of the 20th International Joint Conference on Artificial
Intelligence (IJCAI), 2007.

Leone, F. C., Nelson, L. S., and Nottingham, R. B. The
folded normal distribution. Technometrics, 3:543–550,
1961.

11

Adaptive Message passing

Li, G., Muller, M., Thabet, A., and Ghanem, B. DeepGCNs:
Can GCNs go as deep as CNNs? In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI), 2018.

Li, Y., Wang, Y., Huang, L., Yang, H., Wei, X., Zhang, J.,
Wang, T., Wang, Z., Shao, B., and Liu, T.-Y. Long-short-
range message-passing: A physics-informed framework
to capture non-local interaction for scalable molecular
dynamics simulation. In Proceedings of the 12th Interna-
tional Conference on Learning Representations (ICLR),
2024.

Liu, J., Kawaguchi, K., Hooi, B., Wang, Y., and Xiao, X.
Eignn: Efficient infinite-depth graph neural networks. In
Proceedings of the 35th Conference on Neural Informa-
tion Processing Systems (NeurIPS), 2021.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P., and Lim, S.-N. Graph in-
ductive biases in transformers without message passing.
In Proceedings of the 40th International Conference on
Machine Learning (ICML), 2023.

Micheli, A. Neural network for graphs: A contextual con-
structive approach. IEEE Transactions on Neural Net-
works, 20(3):498–511, 2009.

Müller, L., Galkin, M., Morris, C., and Rampášek, L. At-
tending to graph transformers. Transactions on Machine
Learning Research, 2024.

Nazaret, A. and Blei, D. Variational inference for infinitely
deep neural networks. In Proceedings of the 39th In-
ternational Conference on Machine Learning (ICML),
2022.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In 8th
International Conference on Learning Representations
(ICLR), 2020.

Park, S., Ryu, N., Kim, G., Woo, D., Yun, S.-Y., and Ahn, S.
Non-backtracking graph neural networks. Transactions
on Machine Learning Research, 2024.

Piana, S., Lindorff-Larsen, K., Dirks, R. M., Salmon, J. K.,
Dror, R. O., and Shaw, D. E. Evaluating the effects
of cutoffs and treatment of long-range electrostatics in
protein folding simulations. PLoS One, 7(6):e39918,
2012.

Poli, M., Massaroli, S., Rabideau, C. M., Park, J., Yamashita,
A., Asama, H., and Park, J. Continuous-depth neural
models for dynamic graph prediction. arXiv preprint
arXiv:2106.11581, 2021.

Qian, C., Manolache, A., Ahmed, K., Zeng, Z., Broeck,
G. V. d., Niepert, M., and Morris, C. Probabilistically
rewired message-passing neural networks. In Proceed-
ings of the 12th International Conference on Learning
Representations (ICLR), 2024a.

Qian, C., Manolache, A., Morris, C., and Niepert, M. Prob-
abilistic graph rewiring via virtual nodes. In The 38th
Annual Conference on Neural Information Processing
Systems (NeurIPS), 2024b.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T.,
Wolf, G., and Beaini, D. Recipe for a general, powerful,
scalable graph transformer. In Proceedings of the 36th
Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. In 8th International Conference on Learning
Representations (ICLR), 2020.

Roy, D. The discrete normal distribution. Communications
in Statistics - Theory and Methods, 32:1871–1883, 2003.
doi: 10.1081/sta-120023256.

Rüegsegger, U., Leber, J. H., and Walter, P. Block of hac1
mrna translation by long-range base pairing is released
by cytoplasmic splicing upon induction of the unfolded
protein response. Cell, 107(1):103–114, 2001.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing representations by back-propagating errors. Nature,
323:533–536, 1986.

Rusch, T. K., Chamberlain, B., Rowbottom, J., Mishra, S.,
and Bronstein, M. Graph-coupled oscillator networks.
In Proceedings of the 39th International Conference on
Machine Learning (ICML), 2022.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on
oversmoothing in graph neural networks. arXiv preprint
arXiv:2303.10993, 2023.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In Proceedings of
the 37th International Conference on Machine Learning
(ICML), 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

12

Adaptive Message passing

Shirts, M. R., Mobley, D. L., Chodera, J. D., and Pande, V. S.
Accurate and efficient corrections for missing dispersion
interactions in molecular simulations. Journal of Physical
Chemistry B, 111:13052–13063, 2007.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland,
D. J., and Sinop, A. K. Exphormer: Sparse transformers
for graphs. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023.

Sperduti, A. and Starita, A. Supervised neural networks
for the classification of structures. IEEE Transactions on
Neural Networks, 8(3):714–735, 1997.

Spinelli, I., Scardapane, S., and Uncini, A. Adaptive propa-
gation graph convolutional network. IEEE Transactions
on Neural Networks and Learning Systems, 32(10):4755–
4760, 2020.

Tönshoff, J., Ritzert, M., Rosenbluth, E., and Grohe, M.
Where did the gap go? reassessing the long-range graph
benchmark. In The 2nd Learning on Graphs Conference
(LoG), 2023a.

Tönshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Walk-
ing out of the weisfeiler leman hierarchy: Graph learn-
ing beyond message passing. Transactions on Machine
Learning Research, 2023b.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature. In 10th International
Conference on Learning Representations (ICLR), 2022.

Tortorella, D. and Micheli, A. Leave graphs alone: Address-
ing over-squashing without rewiring. In The 1st Learning
on Graphs Conference (LoG), 2022.

Toth, C., Lee, D., Hacker, C., and Oberhauser, H. Capturing
graphs with hypo-elliptic diffusions. In The 36th Annual
Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. In 6th
International Conference on Learning Representations
(ICLR), 2018.

Wang, C., Tsepa, O., Ma, J., and Wang, B. Graph-mamba:
Towards long-range graph sequence modeling with se-
lective state spaces. arXiv preprint arXiv:2402.00789,
2024.

Wang, Y., Wang, Y., Yang, J., and Lin, Z. Dissecting the
diffusion process in linear graph convolutional networks.
In The 35th Annual Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-I.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. Proceedings of the 35th
International Conference on Machine Learning (ICML),
pp. 5453–5462, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In 7th International
Conference on Learning Representations (ICLR), 2019.

Young, L. C. An inequality of the hölder type, connected
with stieltjes integration. Acta Mathematica, 67:251–282,
1936. URL https://api.semanticscholar.
org/CorpusID:122618935.

Yu, D., Zhang, R., Jiang, Z., Wu, Y., and Yang, Y. Graph-
revised convolutional network. In Proceedings of the Ma-
chine Learning and Knowledge Discovery in Databases:
European Conference (ECML PKDD), 2020.

Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., and
Shah, N. Data augmentation for graph neural networks.
In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), 2021.

Zhou, K., Huang, X., Song, Q., Chen, R., and Hu, X. Auto-
gnn: Neural architecture search of graph neural networks.
Frontiers in Big Data, 5:1029307, 2022.

Zhou, Z., Zhou, S., Mao, B., Zhou, X., Chen, J., Tan, Q.,
Zha, D., Feng, Y., Chen, C., and Wang, C. Opengsl:
A comprehensive benchmark for graph structure learn-
ing. In Proceedings of the 37th Conference on Neural
Information Processing Systems (NeurIPS), 2023.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. In Proceedings
of the 34th Conference on Neural Information Processing
Systems (NeurIPS), 2020.

13

https://api.semanticscholar.org/CorpusID:122618935
https://api.semanticscholar.org/CorpusID:122618935

Adaptive Message passing

A. Extended Related Work Section
Below we provide a more detailed related work section that does not fit in the main paper.

Oversquashing. There are many methods that attempt to address the oversquashing problem with the goal of better
capturing long-range dependencies (Alon & Yahav, 2021; Li et al., 2024). There is agreement that modifying the message
passing scheme leads to improved performances; in this sense, the graph structure does not match exactly the computational
graph used to compute the node embeddings. Some works learn how a node should completely stop propagating a message
in a fixed-depth architecture (Spinelli et al., 2020) or if it should only listen, isolate, or receive/broadcast its own message
(Finkelshtein et al., 2024). Similarly, one can learn to sample edges at each message passing layer according to some learned
parametrization (Hasanzadeh et al., 2020) or have a completely asynchronous message passing (Faber & Wattenhofer, 2023).
Our work differs from these works as we apply a learned (soft) filtering to all existing messages.

Another idea is to modify message passing to avoid backtracking of messages back to the source node, to achieve less
redundancy of information (Park et al., 2024). While this choice proves effective at several tasks, it is still an open question
whether it is always the best choice for the task at hand. In attention-based approaches (Velickovic et al., 2018), an edge
filter is computed using some non-linear relationship between the embeddings of the source and destination nodes. This
can introduce a severe computational burden as the function needs to be applied to all edges. Similarly, GNN-FiLM
(Brockschmidt, 2020) learns a feature-wise linear modulator that depends on the destination node and modulates the
magnitude of all incoming messages.

On the other hand, rewiring approaches try to alter the graph connectivity rather than the message passing operation. This
action is meant to increase the sensitivity (Topping et al., 2022) of a node with respect to another, and it has been theoretically
linked to the oversquashing problem. Some recent works try to preserve locality and sparsity of the rewiring process
(Barbero et al., 2024) or dynamically rewire the graph based on the layers (Gutteridge et al., 2023). In contrast, others take a
probabilistic approach to rewiring based on sampled sub-graphs (Qian et al., 2024a). Recently, a critical perspective on the
effectiveness of rewiring approaches has also been given (Tortorella & Micheli, 2022).
Finally, we mention ordinary differential equation-based message passing approaches, which are provably preserving
information regardless of the depth in the network (Gravina et al., 2023) and have shown great results on datasets aimed at
capturing long-range dependencies.

Oversmoothing. Oversmoothing is perhaps one of the first problems that emerged empirically and was then analyzed
theoretically (Li et al., 2018; Oono & Suzuki, 2020; Rusch et al., 2023). Not surprisingly, one practical solution to
oversmoothing is dropping edges to reduce the overall flow of messages and, thus, avoid the convergence of all embeddings
to the same value (Rong et al., 2020). Another well-known solution to alleviate oversmoothing is to employ skip/residual
connections (Kipf & Welling, 2017; Li et al., 2019), which consists of summing the representations learned at deeper layers
with those of previous ones. Similarly to what is done in this work, the concatenation of node representations across layers
is also a way to circumvent oversmoothing, which has been adopted in neural and probabilistic models to improve the
downstream performances on several node and graph-related tasks (Bacciu et al., 2018; Xu et al., 2018; Bacciu et al., 2020a).
Instead, an orthogonal research direction considers implicit neural networks for graphs that correspond to infinite-depth
models and seem to be able to capture long-range dependencies (Poli et al., 2021; Liu et al., 2021). These models simulate
synchronous message passing with a potentially infinite number of message-propagation steps, and some of them appear to
be empirically robust to the oversmoothing problem.

Adaptive Architectures. The last part of this section is dedicated to works that try to learn the architecture of the model
during training. Our work is inspired by the unbounded depth networks (UDNs) of Nazaret & Blei (2022), who proposed a
variational framework for learning the depth in deep neural networks. In the graph domain, the first approach to learning
the depth of a DGN was proposed by Micheli (2009), who applied the cascade correlation algorithm (Fahlman & Lebiere,
1989) to learn a proper depth for the task. In the field of graph representation learning, other works attempted to learn the
width of the representation of each message passing layer by exploiting Bayesian non-parametric models (Castellana et al.,
2022), which allows to save time and memory when building deeper probabilistic DGNs. Finally, it is important to notice
that these works, including this manuscript, are all orthogonal to the popular field of neural architecture search (Zhou et al.,
2022): The former attempts at dynamically modifying the architecture during learning, whereas neural architecture search
approaches find smarter ways to carry out a grid search. An advantage of adaptive approaches is that they can greatly reduce
time and computational costs to perform a hyper-parameter search.

14

Adaptive Message passing

Graph Rewiring, Structure Learning, and Transformer Models for Graphs. There has been a growing interest in
adapting the input graph structure and, therefore, the message-passing operations of DGNs. These approaches can be
roughly divided into graph structure learning and rewiring methods on one hand and transformer-based models on the other.
There are several strategies of graph rewiring such as incorporating multi-hop neighbors (Gabrielsson et al., 2023) and nodes
reachable through shortest paths (Abboud et al., 2022). Gutteridge et al. (2023) is most related to the filtering approach we
introduce as it rewires the graph for every message-passing layer. The methods MixHop (Abu-El-Haija et al., 2019), SIGN
(Frasca et al., 2020), and DIGL (Gasteiger et al., 2019) can also be considered as graph rewiring as these leverage different
heuristics to reach further-away neighbors in a single message-passing layer. Deac et al. (2022); Shirzad et al. (2023) use the
notion of expander graphs to alter the messages, while Karhadkar et al. (2023) resort to spectral techniques, and Banerjee
et al. (2022) propose a random edge flip approach. There also exist rewiring heuristics based on particular metrics such as
Ricci and Forman curvature (Bober et al., 2023). Finally, recent work has proposed an approach to rewire the input graph
probabilistically and in a data-driven way (Qian et al., 2024a).

Graph structure learning (GSL) approaches are another line of work rewiring the input graphs. Here the focus is on node
classification problems on a single graph. Typically, these methods maintain a learnable function that assigns prior scores to
the edges, and based on these scores a subset of edges is selected from the original graph (Chen et al., 2020b; Yu et al., 2020;
Zhao et al., 2021). To introduce discreteness and sparsity, Franceschi et al. (2019); Kazi et al. (2022); Zhao et al. (2021) use
discrete categorical (sampled from using the Gumbel softmax trick) and Bernoulli distributions, respectively. Most existing
GSL approaches typically use a k-NN algorithm, a simple randomized version of k-NN, or represent edges with independent
Bernoulli random variables. For a comprehensive survey of GSL, see Fatemi et al. (2023); Zhou et al. (2023). In the context
of node classification, there has been recent progress in a more principled understanding of the possible advantages of GSL
in the fully supervised setting (Castellana & Errica, 2023; Errica, 2023).

Graph transformers (Dwivedi et al., 2022; He et al., 2023; Müller et al., 2024; Rampášek et al., 2022; Chen et al., 2022)
adaptively change the message-passing operations for each layer by applying an attention mechanism among all nodes of the
input graphs. Experimental results have shown that graph transformers have the ability to mitigate over-squashing (Müller
et al., 2024). Due to their attention mechanism, however, transformer-based models have typically a quadratic space and
memory requirement.

State space models have also been applied to graphs (Wang et al., 2024). Similarly, theoretically grounded sequence-
processing frameworks (Toth et al., 2022; Gruber et al., 2024), leveraging randomized signatures, demonstrated promising
potential in alleviating oversquashing effects in large graphs. The main differences with AMP, Wang et al. (2024) relies on a
separate sequence model to develop a node selection mechanism whereas we work on the message passing itself; Toth et al.
(2022) develops a new graph Laplacian that is better suited for long-range propagation; Gruber et al. (2024) converts a graph
into a latent representation that can be passed to downstream classifiers.

Contrary to all these approaches, AMP, the adaptive message passing approach presented here, uses a variational framework
to jointly learn both the depth of the DGN and a filtering of the messages passed between nodes in each of these layers.

B. Generalization to New Families of Truncated Distributions
The family of “truncated” Poisson distributions, proposed by Nazaret & Blei (2022) to learn unbounded depth networks,
satisfies specific requirements that allow us to efficiently perform (variational) inference. In particular, by truncating the
Poisson distribution at its quantile function evaluated at c, one can bound its support and compute expectations in finite
time. However, the Poisson distribution suffers from equidispersion, meaning that the variance is equal to the mean; this is a
particularly limiting scenario when learning distributions over the importance of layers. In fact, one might also want to
model variances that are smaller or greater than the mean, which is referred to as under and over-dispersion, respectively, to
learn a broader class of distributions (del Castillo & Pérez-Casany, 2005; Harris et al., 2012). To address this problem, in the
following we introduce two families of distributions and prove that they also satisfy the requirements defined in Nazaret &
Blei (2022); we formally recall such requirements below.
Definition B.1. A variational family Q = q(ω) over N+ is unbounded with connected and bounded members if

1. ∀q ∈ Q, support(q) is bounded

2. ∀L ∈ N+,∃q ∈ Q such that L ∈ argmax(q)

3. Each parameter in the set ω is a continuous variable.

15

Adaptive Message passing

0 5 10 15 20 25 30 35

`

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
p.

m
.f.

0 5 10 15 20 25 30 35

`

0.0

0.2

0.4

0.6

0.8

1.0

c.
m

.f.

true quantile function at 0.99
quantile lower bound at 0.99
quantile upper bound at 0.99

Figure 6. (Left) Probability mass function of a DFN distribution with µ = 1 and σ = 5. (Right) The cumulative mass function of the
distribution with an example of lower and upper bounds (vertical dashed lines) for the true quantile function evaluated at 0.99 of the
corresponding FN distribution (horizontal dashed line).

Condition 1 is necessary to compute the expectation over q(ℓ;λ) in finite time, condition 2 ensures that we can give enough
probability mass to each point in the support of q, and condition 3 is required for learning the distributions’ parameters in a
differentiable manner.

The Discrete Folded Normal Distribution. folded normal (FN) distributions (Leone et al., 1961) can model under-, equi-,
and over-dispersion. They are parametrized by a mean parameter µ and a standard deviation σ. Its density is defined as

pFN(x;µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 +
1√
2πσ2

e−
(x+µ)2

2σ2 , µ, σ ∈ R, x ≥ 0. (15)

To use a FN distribution in AMP, the idea is to first define a discrete version of the folded normal (DFN) with the strategy
highlighted in Roy (2003):

pDFN(0;µ, σ) = SFN(1;µ, σ) (16)

pDFN(x;µ, σ) = SFN(x+ 1;µ, σ)− SFN(x;µ, σ),∀x ∈ N+ (17)

where SFN(x;µ, σ) is the cumulative distribution function (c.d.f.) of the folded normal distribution evaluated at x.5 It is also
useful to notice the equivalence between the c.d.f of the DFN SDFN(x;µ, σ) and that of a folded normal SFN(x;µ, σ)

SDFN(x;µ, σ) =

x∑
i=0

pDFN(x;µ, σ) = SFN(x+ 1;µ, σ), x ∈ N, (18)

which implies that SDFN(x;µ, σ) ≥ SFN(x;µ, σ). Figure 6 shows the probability mass function (p.m.f.) of a DFN
distribution with µ = 1 and σ = 5 and its cumulative mass function (c.m.f.).

Clearly, condition 3 of Definition B.1 is satisfied. It is also trivial to satisfy condition 2 by choosing a peaked distribution
with a small value of σ. In what follows, we focus on lower and upper bounds to the quantile function evaluated at c of the
DFN distribution so that we know we can truncate the distribution to the finite quantile threshold, meaning condition 1 is
also satisfied.
Theorem B.2. There exists lower and upper bounds to the quantile evaluated at c, 0 < c < 1, for any DFN distribution
with σ > 0.

Proof. We first need to compute a lower bound to the quantile function of the FN distribution since there is no closed
formula for it. To start, we note that the c.d.f. of the Gaussian distribution is greater or equal to that of a folded normal
distribution:

1

2
erf
(
x− µ

σ
√
2

)
+

1

2
≥ 1

2
erf
(
x− µ

σ
√
2

)
+

1

2
erf
(
x+ µ

σ
√
2

)
︸ ︷︷ ︸

≤ 1
2

= SFN(x;µ, σ). (19)

5We note that the support is defined over N and not on N+, but this is not an issue from a practical point of view.

16

Adaptive Message passing

where “erf” is the error function. This implies that the quantile threshold of the Gaussian xG, which we know how to
compute, is reached earlier than that of the FN xFN, that is, xG ≤ xFN, and in particular ⌊xG⌋ ≤ ⌊xFN⌋ are also lower
bounds. It then follows from Equation 18 that ⌊xG⌋ - 1 is a lower bound for the DFN distribution.

To find an upper bound, we apply Chernoff’s Bound

p(X ≥ x) ≤ MX(t)

etx
, ∀t > 0 (20)

where X is a r.v. that follows a folded normal distribution with mean µ and standard deviation σ, and MX(t) = E[etX]
is the well-known moment generating function of the X . To find an upper bound to the quantile threshold, we need that
(1− c) = MX(t)

etx for some choice of t. Defining Φ as the normal c.d.f. Φ(x) = 1
2

[
1 + erf

(
x√
2

)]
≥ 0, we choose t = 1

σ

and obtain

MX(t)

etx
= e−tx

(
e

σ2t2

2 +µtΦ
(µ
σ
+ 1
)
+ e

σ2t2

2 −µtΦ
(
−µ
σ
+ 1
))

(21)

= e−
x
σ e

1
2 e

µ
σ

(
Φ
(µ
σ
+ 1
)
+Φ

(
−µ
σ
+ 1
) 1

e2µ/σ

)
(22)

= ke
µ−x
σ , (23)

k = e
1
2

(
Φ
(µ
σ
+ 1
)
+Φ

(
−µ
σ
+ 1
) 1

e2µ/σ

)
> 0. (24)

Therefore, the upper bound of the quantile threshold is given by

ke
µ−x
σ = (1− c) (25)

ln k +
µ− x

σ
= ln(1− c) (26)

σ ln k + µ− x = σ ln(1− c) (27)
x = µ+ σ ln k − σ ln(1− c). (28)

Therefore, if the upper bound to the quantile of the FN is x, it follows from Equation 18 that x− 1 is also an upper bound of
the DFN.

Consequently, we can efficiently find the true quantile threshold by running a binary search between the lower and the upper
bounds. Figure 6 (right) shows an example of lower and upper bounds (vertical dashed lines) as well as the true quantile
threshold of the FN distribution.

A Mixture of Simpler Distributions. It is possible to learn more complex distributions q(ℓ;ω) that satisfy the conditions
of Definition B.1 by mixing simpler distributions like the DFN defined above. A mixture of C families of unbounded
distributions q1(ℓ;ω), . . . , qC(ℓ;ω) with bounded and connected members is defined as:

qM(ℓ;ω) =

C∑
i=0

wiqi(ℓ;ω) (29)

where 0 ≤ wi ≤ 1 is mixture’s i weight and
∑C

i=0 wi = 1. Conditions 2 and 3 are again trivially satisfied (a mixture can
always collapse to one of its distributions that satisfy said conditions), and below, we show that lower and upper bounds still
exist.
Theorem B.3. There exist lower and upper bounds to the quantile evaluated at c, 0 < c < 1, for a mixture of C distributions
that satisfy the conditions of Definition B.1, provided that lower and upper bounds exist for each distribution in the mixture.

Proof. The c.m.f. of a mixture of discrete distributions can be written as a weighted sum of c.m.f.s:

SM(x;ω) =

C∑
i=0

wiSi(x;ω). (30)

17

Adaptive Message passing

Let x∗ be the greatest upper bound of the quantile threshold across all C components of the mixture, and let i∗ be the
associated component. It follows that, ∀j, Sj(x

∗;ω) ≥ c, and

SM(x∗;ω) =

C∑
i=0

wiSi(x
∗;ω) ≥

C∑
i=0

wic = c. (31)

Therefore, x∗ is also an upper bound for the mixture of distributions. It is possible to prove that a lower bound of the mixture
is the smallest lower bound of the quantile threshold across all C components using a similar approach.

To summarize, we have shown how one can use more complex families of distributions in the context of AMP, allowing us
to model under and over-dispersion. In this work, we will treat the choice of the family of distributions q(ℓ;ω) to use as a
hyper-parameter to be tuned.

C. ELBO Derivation
We now report the full derivation of our ELBO for a single sample:

ln p(gi, Ygi) ≥ Eq(θ,L,Fi,|gi,Ygi
) [ln p(Ygi , L,Fi,θ|gi)− ln q(L,Fi,θ|gi)] (32)

= Eq(L;λ)

[
ln

p(L)

q(L;λ)
+ Eq(θ|L;ν)

[
ln

p(θ)

q(θ|L;ν)

]
(33)

+ Eq(θ|L;ν)q(Fi|gi,L,θ)

[
ln

p(Fi)

q(Fi|gi, L,θ)
+ ln p(Ygi |L,Fi,θ|gi)

]]
(34)

=

L̂∑
ℓ=1

q(ℓ;λ)

[
ln

p(ℓ)

q(ℓ;λ)
+ ln

p(ν)

q(ν|ℓ;ν)
+ ln

p(Fi)

q(Fi|gi, ℓ,ν)
+ ln p(Ygi |ℓ,Fi,ν, gi)

]
, (35)

The extension to the full dataset is identical except for the decomposition of the rightmost term into a product of conditional
probabilities, one for each i.i.d. sample.

D. On Oversmoothing, Oversquashing, and Underreaching
In this section, we discuss AMP’s implications on oversmoothing, oversquashing, and underreaching, all of which hamper
the ability of DGNs to capture long-range interactions between nodes in the graph and are related in subtle ways.

Oversmoothing. Oversmoothing has been formally defined by Rusch et al. (2023) as the convergence of a node embed-
dings’ similarity as the number of message passing layers increases. In other words, it formalizes the widely accepted notion
that node embeddings tend to become identical after many layers of message passing. Different oversmoothing metrics have
been proposed, and in this work, we consider the Dirichlet energy (Rusch et al., 2022; 2023) at layer ℓ defined as

E(Hℓ) =
1

|V|
∑
u∈V

∑
v∈Nu

||hℓ
u − hℓ

v||2 (36)

where we indicate with Hℓ the set of node embeddings computed at layer ℓ.

There are at least two reasons why AMP alleviates oversmoothing. The first is that, in principle, the adaptive message
filtering scheme reduces the synchronous exchange of all messages at a given layer, and message exchange will be different
depending on the specific layer. The second is that the readout mapping of each layer directly propagates the gradient of the
loss into the corresponding message passing operation, which encourages diversity of node representations of each layer ℓ
as long as q(ℓ;λ) is large enough (that is, layer ℓ’s output is important for the final prediction). In our experiments, we will
show that AMP can generate architectures in which the Dirichlet energy does not decay exponentially and thus suffers less
from oversmoothing than the baselines.

18

Adaptive Message passing

Standard MP

1 3 3 5 6 3

742

3

Adaptive MP

1 3 3 5 6 3

742

3

Figure 7. Comparison of the 2-hop computational tree necessary to compute h2
3 in the graph of Figure 2 for standard message passing

(left) and AMP (right), where we discretized message filtering to simplify the concept. AMP can effectively prune/filter information in
sub-trees to propagate only the relevant information for the task.

Oversquashing. The term oversquashing refers to the compression of an exponentially-growing amount of information
(Micheli, 2009) into fixed-size node embeddings (Alon & Yahav, 2021; Di Giovanni et al., 2023), causing a possibly severe
bottleneck that hampers DGNs’ ability to effectively propagate task-specific information. An intuitive visualization is
provided in Figure 7 (left), where node 3 of the graph defined in Figure 2 needs to compress information of its 2-hop
neighborhood into a single node embedding. The literature on the topic is already vast despite its very recent introduction;
some works address topological bottlenecks through rewiring of the original graph structure (Topping et al., 2022), while
others preserve information by viewing the message passing operations through the lens of ordinary differential equations
(Gravina et al., 2023; Heilig et al., 2025). By properly modifying the curvature of a graph (Topping et al., 2022), some graph
rewiring approaches aim at increasing the sensitivity of a node’s u embedding hL

u with respect to the input xv of another
node v, that is

∣∣∣∣∣∣∂hL
v

∂xu

∣∣∣∣∣∣
1
. Topping et al. (2022) argue that increasing the sensitivity can alleviate oversquashing and better

capture long-range dependencies. Indeed, by rewiring two distant nodes with a new edge, the sensitivity of these two nodes
will almost certainly increase.

While we do agree that long-range dependencies can be better captured, we argue that rewiring might make the computational
bottleneck problem worse by adding extra information to be compressed into a node’s embedding (assuming other edges
are not removed). In contrast, the adaptive filtering scheme of AMP shown in Figure 7 (right) might decrease the overall
sensitivity defined above, but at the same time it will reduce the number of messages that need to be compressed into node
3, hence alleviating oversquashing. Similarly, the synthetic datasets defined in Alon & Yahav (2021), which are meant to
measure how well a model addresses oversquashing, require that all information is preserved to solve a task. This would
certainly be a good test-bed for ODE-based models (Gravina et al., 2023), but other tasks might require propagating only a
subset of the total information contained in the graph. The ability to isolate such information from the rest can be seen as
a solution to the oversquashing problem, which is exactly the opposite goal of the synthetic tasks previously mentioned.
In summary, the problem of “oversquashing” is clearly multi-faceted and requires great care regarding its evaluation. As
such, it might be a good idea for the future to decompose over-squashing into simpler sub-problems, such as the ability to
isolate the relevant information (which AMP can do), the ability to propagate all information, and the ability to increase the
sensitivity between far-away nodes.

We complement this discussion with a Theorem, inspired by Di Giovanni et al. (2023), that shows how AMP can control the
upper bound on the sensitivity by filtering messages.

Theorem 3.1 For AMP with m layers, embedding dimension d, and u, v ∈ V ,∥∥∥∥∂hℓv∂h0u

∥∥∥∥
L1

≤ d
(
(cup (crsI + cmp (cF kh + kF)A))

ℓ
)
vu
.

Here, MPNN is in the following form

(Rd ∋) hℓv = up

(
rs(hℓ−1

v) + mp(
∑
u

AvuF (h
ℓ−1
u)⊙ hℓ−1

u)

)
where up, rs, and mp are Lipschitz functions as in Di Giovanni et al. (2023) with constants cup, crs, cmp, cF is the upper
bound of the entry-wise L1 matrix norm of ∂F

∂x for the filtering function F , kh is the maximal absolute value among the
entries of h, and similarly kF for the output of F .

19

Adaptive Message passing

Proof. Case: ℓ = 1

The gradient of the α-th element of hidden vector after the first layer with respect to the β-th element of an input is written as

∂h1,αv

∂h0,βu

=

d∑
p=1

∂up1,α

∂xp

(
d∑

r=1

∂rs1,p

∂xr

∂h0,rv

∂h0,βu

+

d∑
q=1

∂mp1,p

∂xq

∑
z

Avz

∂
(
F (h0z)⊙ h0z

)q
∂h0,βu

)
.

Hereinafter, α, β ∈ [d] and for a scalar-valued function f , ∂f
∂xs

represents the derivative of f with respect to s-th element xs
of its vector input. We define a part of the second term in the right-hand side of the above equation as

M(z) :=
∂
(
F0(h

0
z)⊙ h0z

)q
∂h0,βu

,

and then

M(z) =
∂F q(h0z)

∂h0,βu

h0,qz + F q(h0z)
∂h0,qz

∂h0,βu

=

d∑
r=1

∂F q(h0z)

∂h0,rz

∂h0,rz

∂h0,βu

h0,qz + F q(h0z)
∂h0,qz

∂h0,βu

.

Therefore,

∣∣∣∣∂h1,αv

∂h0,βu

∣∣∣∣ =
∣∣∣∣∣∂up1,α

∂xp

(
d∑

r=1

∂rs1,p

∂xr

∂h0,rv

∂h0,βu

+

d∑
q=1

∂mp1,p

∂xq

∑
z

AvzM(z)

)∣∣∣∣∣
≤
∣∣∣∣∂up1,α

∂xp

∂rs1,p

∂xβ
δvu

∣∣∣∣+
∣∣∣∣∣∂up1,α

∂xp

d∑
q=1

∂mp1,p

∂xq

∑
z

AvzM(z)

∣∣∣∣∣ . (37)

The right-hand side of (37) is further expanded to

d∑
p=1

∂up1,α

∂xp

d∑
q=1

∂mp1,p

∂xq

∑
z

Avz

d∑
r=1

∂F q

∂xr

∂h0,rz

∂h0,βu

h0,qz (38)

+

d∑
p=1

∂up1,α

∂xp

d∑
q=1

∂mp1,p

∂xq

∑
z

AvzF
q(h0z)

∂h0,qz

∂h0,βu

. (39)

Since this is the very first layer of MPNN, both terms can be reduced to simpler forms. Indeed, (38) can be reduced to

(38) =

d∑
p=1

∂up1,α

∂xp

d∑
q=1

∂mp1,p

∂xq
Avu

∂F q

∂xβ
h0,qu .

Using (generalized) Hölder’s inequality, inequality (3.1) in Young (1936), we get

|(38)| ≤ Avu

d∑
p=1

∣∣∣∣∂up1,α

∂xp

∣∣∣∣ d∑
q=1

∣∣∣∣∂mp1,p

∂xq

∣∣∣∣ ∣∣∣∣∂F q

∂xβ

∣∣∣∣ ∣∣h0,qu

∣∣
≤ Avukh

d∑
p=1

∣∣∣∣∂up1,α

∂xp

∣∣∣∣ d∑
q=1

∣∣∣∣∂mp1,p

∂xq

∣∣∣∣ d∑
q=1

∣∣∣∣∂F q

∂xβ

∣∣∣∣
≤ Avu · cup · cmp · cF · kh. (40)

Similarly, the norm of (39) is also bounded from above

|(39)| ≤ AvucupcmpkF .

20

Adaptive Message passing

The left-hand term of (37) is also bounded by cupcrsIvu (see also the proof of Theorem B.1. in Di Giovanni et al. (2023),)
and we get ∣∣∣∣∂h1,αv

∂h0,βu

∣∣∣∣ ≤ cup (crsI + cmp (cF kh + kF)A)vu .

Case: arbitrary ℓ.

The gradient of the hidden vector at the layer of arbitrary ℓ is written as

∂hℓ+1,α
v

∂h0,βu

=

d∑
p=1

∂upℓ+1,α

∂xp

(
d∑

r=1

∂rsℓ+1,p

∂xr

∂hℓ,rv

∂h0,βu

+

d∑
q=1

∂mpℓ+1,p

∂xq

∑
z

Avz

∂
(
F (hℓz)⊙ hℓz

)q
∂h0,βu

)
.

Define and expand the right-hand term of the above equation as follows:

(#) :=
∑
p

∂upℓ+1,α

∂xp

∑
q

∂mpℓ+1,p

∂xq

∑
z

Avz

∂
(
F (hℓz)⊙ hℓz

)q
∂h0,βu

=
∑
p

∂upℓ+1,α

∂xp

∑
q

∂mpℓ+1,p

∂xq

∑
z

Avz

(
d∑

r=1

∂F q

∂xr

∂hℓ,rz

∂h0,βu

hℓ,qz + F q(hℓz)
∂hℓ,qz

∂h0,βu

)
.

Then, its norm is

|(#)| ≤
∑
p

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
q

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣∑
z

Avz

d∑
r=1

∣∣∣∣∂F q

∂xr

∣∣∣∣ ∣∣∣∣ ∂hℓ,rz

∂h0,βu

∣∣∣∣ ∣∣hℓ,qz

∣∣
+
∑
p

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
q

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣∑
z

Avz

∣∣F q(hℓz)
∣∣ ∣∣∣∣ ∂hℓ,qz

∂h0,βu

∣∣∣∣
≤
(∑

p

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
q

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣∑
z

Avz

d∑
r=1

∣∣∣∣∂F q

∂xr

∣∣∣∣ ∣∣hℓ,qz

∣∣
+
∑
p

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
q

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣∑
z

Avz

∣∣F q(hℓz)
∣∣)

× cℓ+1
up ((crsI + cmp (cF kh + kF)A)

ℓ
)vu. (41)

The first term of (41), except the constant term, is bounded from above:

d∑
p=1

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
z

Avz

(
d∑

q=1

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣ ∣∣hℓ,qz

∣∣∑
r

∣∣∣∣∂F q

∂xr

∣∣∣∣
)

≤
d∑

p=1

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
z

Avz

(
d∑

q=1

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣
)
kh

(∑
r,q

∣∣∣∣∂F q

∂xr

∣∣∣∣
)

≤ cup · cmp · kh · cF ·
∑
z

Avz. (42)

Note that the first inequality is derived by using Hölder inequality again. Similarly, the second term of (41) is

d∑
p=1

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
z

Avz

d∑
q=1

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣ ∣∣F (hℓ,qz)
∣∣ ≤ d∑

p=1

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣∑
z

Avz

(
d∑

q=1

∣∣∣∣∂mpℓ+1,p

∂xq

∣∣∣∣ kF
)

≤ cup · cmp · kF ·
∑
z

Avz. (43)

21

Adaptive Message passing

Finally, define

UB(ℓ) := cℓup(ŨB)ℓ := cℓup (crsI + cmp (cF kh + kF)A)
ℓ
,

and then the norm of ∂hℓ+1,α
v

∂h0,β
u

is

∣∣∣∣∂hℓ+1,α
v

∂h0,βu

∣∣∣∣ ≤ d∑
p=1

∣∣∣∣∂upℓ+1,α

∂xp

∣∣∣∣
(

d∑
r=1

∣∣∣∣∂rsℓ+1,p

∂xr

∣∣∣∣ ∣∣∣∣ ∂hℓ,rv

∂h0,βu

∣∣∣∣
)

+ ((42) + (43)) · UB(ℓ)zu

≤ cupcrs · UB(ℓ)vu + cupcmpkhcF
∑
z

AvzUB(ℓ)zu + cupcmpkF
∑
z

AvzUB(ℓ)zu

= cℓ+1
up

(
crs · ŨB

ℓ

vu +
∑
z

cmp(khcF + kF)AvzŨB
ℓ

zu

)
= cℓ+1

up

(
(crsI + cmp(khcF + kF)A) ŨB

ℓ
)
vu

= UB(ℓ+ 1)vu,

which completes the proof.

Underreaching. Finally, underreaching is defined as the inability of standard message passing with K layers to capture
interactions of range greater than K. Alon & Yahav (2021) addresses this problem by adding a message passing layer on
a fully connected graph at the last layer of the architecture, which empirically improves the performances but does not
fundamentally solve the problem. A solution to this problem is letting the model decide the right depth of the architecture
for the task, which is exactly what AMP does.

Below, we provide the extended formulation and proof of our theorem about the propagation of a message unchanged
through the graph.

Theorem 3.2 Let us consider a graph g = (V, E ,X), where V = {1, . . . , ng} is the set of nodes connected via oriented
edges E = {(u, v)|u, v ∈ V}, and X = {xv ∈ Rd|v ∈ V} is the set of d node attributes. The neighborhood of a node v is
defined as Nv = {u|(u, v) ∈ E}. Further, let us define the following message aggregation scheme, which produces vectors
hℓ
v ∈ Rd for node v at iteration ℓ, up to a maximum iteration K:

h0
v = xv (44)

hℓ
v =

∑
u∈Nv

F (u, ℓ)⊙ hℓ−1
u (ℓ ≥ 1),

where F (u, ℓ) ∈ (0, 1)d,∀u ∈ V, ℓ ∈ [1,K] and ⊙ is the element-wise product. Let us also assume that g contains two (not
necessarily distinct) nodes v and u, and a walk ((v, v2), . . . , (vK , u)) of length K ≥ 1 exists between them. Then, ∀ϵ > 0
there exists a parametrization of F such that hK

u belongs to the closed ball B(xv, dϵ, || · ||1) of radius dϵ centered at xv

under norm || · ||1.

Proof. We prove the statement by induction over K.

Base case (K = 1): In this case, the source node v is a neighbor of the destination node u. It holds that

h1
u =

∑
u′∈Nu

F (u′, 1)⊙ h0
u′

= F (v, 1)⊙ xv +
∑

u′∈Nu\{v}

F (u′, 1)⊙ xu′ .

22

Adaptive Message passing

We choose F (v, 1) = 1− εv and F (u′, 1) = εu′ , for some εv, εu′ with all components > 0, therefore

h1
u = (1− εv)⊙ xv +

∑
u′∈Nu\{v}

εu′ ⊙ xu′

= xv +
∑

u′∈Nu

(−1)δ(u
′,v)εu′ ⊙ xu′ .

At this point, we can always choose εu′ ,∀u′ ∈ Nu such that, ∀i ∈ [1, . . . , d] it holds

−ϵ ≤
∑

u′∈Nu

(−1)δ(u
′,v)εu′ [i]xu′ [i] ≤ ϵ

noting that the inequality is due to the fact that values of xu′ can be negative. Therefore, for every i we have that

xv[i]− ϵ ≤ h1u[i] ≤ xv[i] + ϵ ≡ |h1u[i]− xv[i]| ≤ ϵ (45)

which implies h1
u ∈ B(xv, dϵ, || · ||1).

Inductive case (K > 1): Let us consider a random walk of length K, and assume our proposition holds for values up to
K − 1. With the same arguments as before, we can write

hK
u = (1− εvK)⊙ hK−1

vK +
∑

u′∈Nu\{vK}

εu′ ⊙ hK−1
u′

= hK−1
vK +

∑
u′∈Nu

(−1)δ(u
′,vK)εu′ ⊙ hK−1

u′ .

By the inductive hypothesis we know that there exists a parametrization of F (up to iteration K − 1) such that hK−1
vK ∈

B(xv, d
ϵ
2 , || · ||1). As before, we pick εu′ ,∀u′ ∈ Nu such that, ∀i ∈ [1, . . . , d] it holds

− ϵ

2
≤
∑

u′∈Nu

(−1)δ(u
′,vK)εu′ [i]hK−1

u′ [i] ≤ ϵ

2

and therefore, noting that xv[i]− ϵ
2 ≤ hK−1

u [i] ≤ xv[i] +
ϵ
2 by the inductive hypothesis,

xv[i]− 2 ∗ ϵ
2
≤ hKu [i] ≤ xv[i] + 2 ∗ ϵ

2
≡ |hKu [i]− xv[i]| ≤ ϵ (46)

meaning hK
u ∈ B(xv, dϵ, || · ||1).

It is worth noting that the use of a differentiable sigmoidal activation makes it impossible to propagate the exact same
value, but this holds in the limit of ϵ→ 0. In light of the above discussion, this theorem hints at AMP indeed mitigating
oversmoothing, oversquashing, and underreaching by being able to propagate a single message unchanged, which is
reminiscent of asynchronous message passing (Faber & Wattenhofer, 2023).

E. Hyper-parameters Details
The set of hyper-parameters tried for the baselines and for AMP (except for the number of layers) is the same of Gravina
et al. (2023) and Tönshoff et al. (2023a).

In particular, for the baselines and AMP on the synthetic tasks, we used an Adam optimizer with learning rate 0.003, weight
decay 1e− 6, embedding dimension in [10, 20, 30], tanh activation function and a number of layers (except for AMP) in
[1, 5, 10, 20].

Instead, results on the peptides-func dataset rely on the following hyper-parameters: learning rate 0.001, dropout 0.1, 6, 8, 10
layers for GCN, GINE and GatedGCN respectively, and similarly embedding dimensions 235, 160 and 95. We use a readout
with a depth of 3 layers, and RWSE positional encodings, a batch size of 200 and 250 maximum training epochs.

Finally, results on the peptides-struct rely on a similar set of hyper-parameters with the following exceptions: number of
layers 6, 10, 8 for GCN, GINE, and GatedGCN respectively, Laplacian positional encodings, and embedding dimensions
235, 145, 100.

Below, we report the additional hyper-parameters values that we introduced when evaluating AMP.

23

Adaptive Message passing

1

3

42 1 2 L

1

Adaptive MP (ℓ=1) Adaptive MP (ℓ=2)

node 1

3 1 2 L

1

node 2

3 1 2 L

1

node 3

3

3

2

1

2

Adaptive MP (ℓ=3)

4

3

2 4

1

Figure 8. We sketch the idea of the proof of Theorem 3.2 for a graph of 4 nodes. When messages are filtered appropriately, a message can
flow between node 1 and node 4 almost unchanged.

Synthetic Datasets To perform the grid search on AMP, in addition to the hyper-parameters range used for the base
methods (with the exception of the depth), we tested four different distributions q(ℓ;λ): a Poisson with initial rate λ = 10,
an FN with initial parameters µ = 10 and σ ∈ {5, 10}, and a mixture of two folded normal distributions with initial
parameters µ1 = 5, σ1 = 3, µ2 = 15, σ2 = 3. We fix the prior p(θℓ) = N (θℓ;0, 10 ∗ I), and we choose between three
priors p(L): an uninformative prior, a Poisson with rate 5, and a folded normal with parameters µ = 5 and σ = 10. Finally,
the message filtering function was chosen between one that does not filter at all, a function f(x) acting on node features,
and a function f(hℓ) acting on node embeddings.

Chemical Datasets We tested three different distributions q(ℓ;λ): a Poisson with the initial rate λ = 5, a folded normal
with initial parameters µ = 5 and σ = 1, and a mixture of two folded normal distributions with initial parameters
µ1 = 1, σ1 = 1, µ2 = 5, σ2 = 1. The tested message filtering functions and the number of layers are the same as the
synthetic tasks, whereas p(θℓ) = N (θℓ;0, 10 ∗ I) for peptides-func and p(θℓ) = N (θℓ;0, 1 ∗ I) for peptides-struct. Also,
following Tönshoff et al. (2023a), we use dropout in the output layers, after each activation function, and set its value to 0.1.

F. Node Classification Results
To demonstrate AMP’s applicability on a broader range of tasks, we report node classification performances on different
datasets with varying degrees of homophily, following the data split strategy of Zhu et al. (2020). We train a GCN by
testing the following hyper-parameters: embedding size in [8, 32, 64] and number of layers in [2, 4, 6], Adam optimizer with
learning rate 0.01, a maximum of 2000 training epochs and early stopping with patience 250 on the validation performance.
The hyper-parameters were the same for AMPGCN with the exception for the number of layers, which is replaced by the
distributions tried for the chemical datasets.

Table 3 clearly shows that wrapping our framework around a GCN always grants a performance improvement. Only for
reference, we report other results taken by (Zhu et al., 2020). However, please note that there an homophilic/heterophilic
graph does not imply that the task is long-range, nor the converse is necessarily true.

G. Analysis of AMP’s Predictions
We further delve into the predictions of AMPAMP on a few representative cases. In Figure 9 (left), we report the mean
predictions of the best performing GCN and AMPGCN runs on the Diameter dataset, where the shaded bands denote the
minimal and maximal errors that both models make. Similarly, Figure 9 (right) shows the same plot but for ADGN and
AMPADGN on Eccentricity. We can see how AMP generates an almost ideal average prediction on Diameter and is able to
deal with higher eccentricity than the base model (despite an almost identical error being achieved in the latter case).

24

Adaptive Message passing

Texas Wisconsin Actor Squirrel Chameleon Citeseer Pubmed Cora
Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.74 0.8 0.81
#Nodes 183 251 7,600 5,201 2,277 3,327 19,717 2,708
#Edges 295 466 26,752 198,493 31,421 4,676 44,327 5,278
#Classes 5 5 5 5 5 7 3 6

H2GCN-1 84.86±6.77 86.67±4.69 35.86±1.03 36.42±1.89 57.11±1.58 77.07±1.64 89.40±0.34 86.92±1.37

H2GCN-2 82.16±5.28 85.88±4.22 35.62±1.30 37.90±2.02 59.39±1.98 76.88±1.77 89.59±0.33 87.81±1.35

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 76.04±1.30 88.45±0.50 86.90±1.04

GCN-Cheby 77.30±4.07 79.41±4.46 34.11±1.09 43.86±1.64 55.24±2.76 75.82±1.53 88.72±0.55 86.76±0.95

MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 76.26±1.33 85.31±0.61 87.61±0.85

GraphSAGE+JK 83.78±2.21 81.96±4.96 34.28±1.01 40.85±1.29 58.11±1.97 76.05±1.37 88.34±0.62 85.96±0.83

Cheby+JK 78.38±6.37 82.55±4.57 35.14±1.37 45.03±1.73 63.79±2.27 74.98±1.18 89.07±0.30 85.49±1.27

GCN+JK 66.49±6.64 74.31±6.43 34.18±0.85 40.45±1.61 63.42±2.00 74.51±1.75 88.41±0.45 85.79±0.92

GAT 58.38±4.45 55.29±8.71 26.28±1.73 30.62±2.11 54.69±1.95 75.46±1.72 84.68±0.44 82.68±1.80

GEOM-GCN* 67.57 64.12 31.63 38.14 60.90 77.99 90.05 85.27

MLP 81.89±4.78 85.29±3.61 35.76±0.98 29.68±1.81 46.36±2.52 72.41±2.18 86.65±0.35 74.75±2.22

GCN 52.73±5.98 44.90±7.38 28.02±0.59 27.73±0.91 41.89±1.83 72.71±1.54 87.62±0.59 84.24±1.44

AMPGCN 81.46±3.06 80.45±4.47 34.14±0.71 35.28±0.95 48.56±1.70 75.07±1.29 89.67±1.29 85.68±1.52

Table 3. Node classification results on heterophilic and homophilic graphs. Results are taken from Zhu et al. (2020).

0 5 10 15 20 25

Target diameter

0

5

10

15

20

25

Pr
ed

ic
te

d
di

am
et

er

Ideal
AMPGCN
GCN

0 5 10 15 20 25

Target eccentricity

0

5

10

15

20

25

Pr
ed

ic
te

d
ec

ce
nt

ri
ci

ty

Ideal
AMPADGN
ADGN

Figure 9. We report the average predicted vs target graph diameter and node eccentricities for the GCN and ADGN message passing
architectures, respectively. Shaded bands denote minimal and maximal errors for each prediction.

H. Tuned Depth of Base Models
We report, for the base architectures we have tested within AMP, the number of layers selected by the hyper-parameter
search in the original papers. For the synthetic datasets, we obtained this information directly from the authors (Gravina
et al., 2023), whereas for the chemical datasets this information was already available in Tönshoff et al. (2023a).

I. Impact of Positional and Structural Encodings
For completeness, we investigate the impact of the positional and structural encodings on performances. Our findings show
that, on peptides-func, the performance gain compared to AMP is marginal on GCN and GINE, but it becomes substantial
on GatedGCN. In all cases, even without the additional encodings, AMP has better or comparable performance than the
base models. We observe a similar trend on peptides-struct, with AMPGCN suffering the most from the absence of extra
information; here, the result is significantly worse than the base model.

J. Ablation Study on the Depth
Performing an ablation study about the depth of AMP implies that we perform model selection across a wide range of
(fixed) depths and we learn the importance of each layer. This is an a-posteriori analysis, meaning that we the range of layers

25

Adaptive Message passing

Diameter SSSP Eccentricity peptides-func peptides-struct

GCN 5 5 10 6 6
GIN 1 1 1 - -
ADGN 10 20 20 - -
GINE - - - 8 10
GATEDGCN - - - 10 8

Table 4. Best number of layers selected during hyper-parameter tuning for the models considered within AMP. These values are taken
from the original papers or provided by their authors.

Method peptides-func peptides-struct
Test AP ↑ Test MAE ↓

W
IT

H
P

E
/S

E GCN 0.6860 ± 0.0050 0.2460 ± 0.0007
GINE 0.6621 ± 0.0067 0.2473 ± 0.0017
GATEDGCN 0.6765 ± 0.0047 0.2477 ± 0.0009
AMPGCN 0.7161 ± 0.0047 0.2446 ± 0.0026
AMPGINE 0.7065 ± 0.0105 0.2468 ± 0.0026
AMPGATEDGCN 0.6943 ± 0.0046 0.2480 ± 0.0012

W
/O

AMPGCN 0.7102 ± 0.0074 0.2524 ± 0.0035
AMPGINE 0.6994 ± 0.0098 0.2477 ± 0.0017
AMPGATEDGCN 0.6725 ± 0.0113 0.2466 ± 0.0008

Table 5. Mean test scores and standard deviation averaged over 4 final runs on the chemical datasets.

to try is suggested by our previous results; the whole point of our contribution is that it may be difficult to find the exact
range of message-passing layers that the task needs. The goal of this section is to understand if it is worth fixing the depth
after a sensible range of layers has been found by AMP.

We use the information from Figure 4 to set up a reasonable range of fixed number of message passing layers to try, and
then we ran the experiments again on the real-world chemical datasets. We also fix the other hyper-parameters to the best
configuration found, for each model and dataset, by our model selection procedure.

Method peptides-func peptides-struct
Test AP ↑ Test MAE ↓

AMPGCN 0.7161 ± 0.0047 0.2446 ± 0.0026
AMPGINE 0.7065 ± 0.0105 0.2468 ± 0.0026
AMPGATEDGCN 0.6943 ± 0.0046 0.2480 ± 0.0012

F
IX

E
D

D
E

P
T

H AMPGCN 0.7076 ± 0.0059 0.2497 ± 0.0009
AMPGINE 0.6999 ± 0.0041 0.2481 ± 0.0014
AMPGATEDGCN 0.6750 ± 0.0029 0.2493 ± 0.0013

Table 6. Mean test scores and standard deviation averaged over 4 final runs on the chemical datasets.

It appears that fixing the depth does not allow to obtain better performances than the fully adaptive AMP.

26

