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ABSTRACT

Graph neural networks (GNNs) mainly rely on the message-passing paradigm to
propagate node features and build interactions, and different graph learning prob-
lems require different ranges of node interactions. In this work, we explore the
capacity of GNNs to capture node interactions under contexts of different com-
plexities. We discover that GNNs usually fail to capture the most informative
kinds of interaction styles for diverse graph learning tasks, and thus name this
phenomenon as GNNs’ representation bottleneck. As a response, we demonstrate
that the inductive bias introduced by existing graph construction mechanisms can
result in this representation bottleneck, i.e., preventing GNNs from learning inter-
actions of the most appropriate complexity. To address that limitation, we propose
a novel graph rewiring approach based on interaction patterns learned by GNNs
to adjust the receptive fields of each node dynamically. Extensive experiments
on both real-world and synthetic datasets prove the effectiveness of our algorithm
in alleviating the representation bottleneck and its superiority in enhancing the
performance of GNNs over state-of-the-art graph rewiring baselines.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017) have witnessed
growing popularity thanks to their ability to handle graphs that have complex relationships and
interdependence between objects, ranging from social networks (Fan et al., 2019) to computer pro-
grams (Nair et al., 2020). Particularly, GNNs show promising strength in scientific research. They
are used to derive insights from structures of molecules (Wu et al., 2018) and reason about rela-
tions in a group of interacting objects. Subsequently, significant efforts have been devoted to fully
leveraging 3D geometry such as directions (Klicpera et al., 2020b;a) and dihedral angles (Klicpera
et al., 2021; Liu et al., 2021). Since physical rules stay stable regardless of the reference coordinate
system, equivariance has been regarded as a ubiquitous property and integrated upon GNNs with re-
markable benefits (Ingraham et al., 2019; Fuchs et al., 2020; Hutchinson et al., 2021; Satorras et al.,
2021).

The success of GNNs provokes the succeeding bottleneck question: “What are the common lim-
itations of GNNs in real-world modeling applications, such as molecules and dynamic systems?”
Since the majority of GNNs are expressed as a neighborhood aggregation or message-passing
scheme (Gilmer et al., 2017; Veličković et al., 2017), we leverage the tool of multi-order inter-
actions between input variables (Deng et al., 2021) to investigate their representation bottleneck,
aiming to analyze which types of interaction patterns (e.g., certain physical or chemical concepts)
are likely to be encoded by GNNs, and which others are difficult to manipulate.

To this end, we formulate the metric of the multi-order interactions for GNNs from both node-level
and graph-level perspectives. With this computational instrument, we observe that the distribution
of different kinds of node interactions learned by GNNs can deviate significantly from the initial
data distribution of interactions. Furthermore, we relate the capacity of GNNs to capture interac-
tions under different complexities with their model expressiveness. It is discovered that GNNs are
typically incapable of learning the most informative interaction patterns and therefore cannot reach
the global minimal loss point, which we call the representation bottleneck of GNNs.

In this paper, we first attempt to explain this GNNs’ representation bottleneck via graph construction
mechanisms. We prove that existing methodologies to build node connectivity in scientific domains
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such as K-nearest neighbor (KNN) and fully connection (FC) can introduce improper inductive
bias. This improper inductive bias hidden inside the assumption of graph connectivity prohibits
GNNs from encoding some particular interaction modes. To resolve the abovementioned obsta-
cle, we propose a novel graph rewiring technique based on the distribution of interaction strengths
named ISGR. It first detects the interaction pattern that changes most violently, which then is used to
progressively optimize the inductive bias of GNNs and calibrate the topological structures of input
graphs. Massive experimental evidence on both synthetic and real-world datasets validate its con-
siderable potential to ameliorate the representation bottleneck and achieve stronger interpretability
and generalization for GNNs against all graph rewiring baselines.

Last but not least, we revisit the representation behaviors of other categories of DNNs and compare
them with GNNs. As a relevant answer, we observe the liability of CNNs to capture too simple
pairwise interactions rather than more complex ones, which conforms to preceding discovery (Deng
et al., 2021). This inclination of CNNs can also be explained by the inductive bias as CNNs’ fairly
small kernel size usually assumes local connections between pixels or patches. However, as opposed
to GNNs, CNNs are far more vulnerable to and seldom diverge from the original data distribution of
node interactions. This analysis illustrates that both similarities and significant discrepancies exist
between GNNs and other classes of DNNs in their representation activities. Noticeably, due to the
limitation of writing space, we moved the detailed literature review to Appendix E.

2 RELATED WORKS

GNNs’ expressiveness and bottlenecks. GNNs are found to capture only a tiny fragment of first-
order logic (Barceló et al., 2020), which arises from the deficiency of a node’s receptive field. Mean-
while, GNNs do not benefit from the increase of layers due to over-smoothing (Li et al., 2018a;
Klicpera et al., 2018; Chen et al., 2020) and over-squashing (Alon & Yahav, 2020; Topping et al.,
2021). To the best of our knowledge, none considers GNNs’ capacity in encoding pairwise in-
teractions, and we are the foremost to understand GNNs’ expressiveness from interactions under
different contextual complexities and link the expressive limitation with the inductive bias of graph
connectivity. More elaborate related works are in Appendix E.

Graph rewiring. Rewiring is a process of altering the graph structure to control the information
flow. Among existing approaches such as connectivity diffusion (Klicpera et al., 2019), bridge-node
insertion (Battaglia et al., 2018), and multi-hop filters (Frasca et al., 2020), edge sampling shows
great power in tackling over-smoothing and over-squashing. The sampling strategies can be random
drop (Huang et al., 2020b) or based on edge relevance (Klicpera et al., 2019; Kazi et al., 2022). For
instance, Alon & Yahav (2020) modify the last layer to a FC-graph to help GNNs grab long-range
interactions. Taking a step further, Topping et al. (2021) prove that negatively curved edges are
responsible for over-squashing and introduces a curvature-based rewiring method to alleviate that.
Differently, our rewiring algorithm originates from a completely new motivation, i.e., reshaping
graph structure to assist GNNs to learn the most informative order of interactions.

3 MULTI-ORDER INTERACTIONS FOR GRAPHS

Preliminary for GNNs Suppose a graph G = (V, E) has a set of n variables (a.k.a. nodes). G
can be a macroscopic physical system with n celestial bodies, or a microscopic biochemical system
with n atoms, denoted as V = {v1, ..., vn}. f is a well-trained GNN model and f(G) represents
the model output. For node-level tasks, the GNN forecasts a value (e.g., atomic energy) or a vector
(e.g., atomic force or velocity) for each node. For graph-level tasks, f(G) ∈ R is a scalar (e.g., drug
toxicity or binding affinity). Most GNNs make predictions by interactions between input nodes
instead of working individually on each vertex (Qi et al., 2018; Li et al., 2019; Lu et al., 2019;
Huang et al., 2020a). Accordingly, we concentrate on pairwise interactions and use the multi-order
interaction I(m)(i, j) (Bien et al., 2013; Tsang et al., 2017) to measure interactions of different
complexities between two nodes vi, vj ∈ V .

Graph-level Multi-order Interactions Specifically, the m-th order interaction I(m)(i, j) mea-
sures the average interaction utility between nodes vi and vj under all possible subgraphs GS , which
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consists of m nodes. Mathematically, the multi-order interaction is defined as:

I(m)(i, j) = EGS⊆G,{vi,vj}⊆V,|VS |=m[∆f(vi, vj ,GS)], (1)

where 3 ≤ m ≤ n and ∆f(vi, vj ,GS) is defined as f(GS)−f(GS\vi)−f(GS\vj)+f(GS\{vi, vj}).
GS ⊂ G is the context subgraph. f(GS) is the GNN output when we keep nodes in GS unchanged
but delete others in G\GS . Since it is irrational to feed an empty graph into a GNN, we demand the
context S to have at least one variable with m ≥ 3 and omit f(∅). Note that some studies (Zhang
et al., 2020) assume the target variables vi and vj do not belong to the context GS . Contrarily, we
propose to interpret m as the contextual complexity of the interaction and include nodes vi and vj
in the subgraph GS . Proof is provided in Appendix A.2 that the two cases are equivalent but from
different views. An elaborate introduction of I(m) (e.g., the connection with existing metrics) is in
Appendix A.

Node-level Multi-order Interaction I(m)(i, j) in Equ. 1 is designed to analyze the influence of
interactions over the integral system (e.g., a molecule or a galaxy) and is therefore only suitable in
the circumstance of graph-level prediction. However, many graph learning problems are node-level
tasks (Zachary, 1977). For the sake of measuring the effects of those interactions on each component
(e.g., atom or particle) of the system, we introduce a new metric as the following:

I
(m)
i (j) = EGS⊆G,vj∈V,|VS |=m[∆fi(vj ,GS)], (2)

where 2 ≤ m ≤ N and ∆fi(vj ,GS) is formulated as ∥fi(GS)− fi(GS\vj)∥p. ∥.∥p is the p-norm.
We denote fi(GS) as the output for node vi when other nodes in GS are kept unchanged. Equ. 2
allows us to measure the representation capability of GNNs in node-level tasks.

Interaction Strengths To measure the reasoning complexity of GNNs, we compute the graph-
level relative interaction strength J (m) of the encoded m-th order interaction as follows:

J (m) =
EG∈Ω

[
Ei,j

[
| I(m)(i, j | G) |

]]∑
m′

[
EG∈Ω

[
Ei,j

[
| I(m′)(i, j | G) |

]]] , (3)

where Ω stands for the set of all graph samples, and the strength J (m) is calculated over all pairs
of input variables in all data points. Remarkably, the distribution of J (m) measures the distribution
of the complexity of interactions encoded in GNNs. Then we normalize J (m) by the summation
value of I(m)(i, j | G) with different orders to constrain 0 ≤ J (m) ≤ 1 for explicit comparison
across various tasks and datasets. Then the node-level interaction strength is defined as J (m) =

EG∈Ω

[
Ei

[
Ej

[
|I(m)

i (j|G)|
]]]

∑
m′

[
EG∈Ω

[
Ei

[
Ej

[
|I(m

′)
i (j|G)|

]]]] .

4 REPRESENTATION BOTTLENECK OF GNNS

4.1 DEFINITION OF REPRESENTATION BOTTLENECK

For modern GNNs, the loss L is typically non-convex with multiple local and even global min-
ima (Foret et al., 2020). This diversity of minima may yield similar values of L while acquiring
different capacities of GNNs to learn interactions. That is, each loss point must correspond to differ-
ent J (m). Intuitively, we declare in Prop. 1 that, if J (m) learned by a GNN model f is not equivalent
to the optimal strength J (m)∗, then f must be stuck in a local minimum point of the loss surface
(explanation is in Appendix A.4).

Proposition 1 Let J (m)∗ be the interaction strength of GNN f∗ that achieves the global minimum
loss ℓ∗ on some data D. If another GNN model f ′ converges to a loss ℓ′ after the parameters update
and J (m)′ ̸= J (m)∗, then ℓ′ must be a local minimum loss, i.e, ℓ′ > ℓ∗.

Notably, different tasks require diverse ranges of interactions. For instance, short-range interactions
play a more critical role in small-molecule binding prediction (Wu et al., 2022a), while protein-
protein rigid-body docking attaches more significance to the middle-range or long-range interactions
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Figure 1: Distributions of interaction strengths of EGNN and Molformer in graph-level and node-
level prediction tasks. We use double-x axes to represent the order m and the ratio m/n

between residues (Ganea et al., 2021). Thus, J (m)∗ varies according to particular tasks and datasets.
Based on the relationship between J (m) and the training loss l described in Prop. 1, we define the
representation bottleneck of GNNs as the phenomenon that the distribution of interaction strength
J (m) learned by GNNs fails to reach the optimal distribution of interaction strength J (m)∗.

4.2 THE ROLE OF INDUCTIVE BIAS

Many factors can instigate this GNNs’ representation bottleneck. In this paper, we focus on the
improper inductive bias introduced by the graph construction mechanism as a partial answer.

GNNs for Scientific Problems GNNs operate on graph-structured data and have strong ties to the
field of geometric deep learning. Aside from studies on social networks Fan et al. (2019); Hamil-
ton et al. (2017) and citation networks Sen et al. (2008); Tang et al. (2008) as well as knowledge
graphs Carlson et al. (2010), science including biology, physics, and chemistry has been one of the
main drivers in the development of GNNs (Battaglia et al., 2016; Li et al., 2018b; Mrowca et al.,
2018; Sanchez-Gonzalez et al., 2020; Wu et al., 2022b). In this work, our concentration is put on
analyzing the representation behavior of geometric GNNs for scientific explorations.

Notably, graphs in most scientific problems are unlike common applications of GNNs such as recom-
mendation systems (Wu et al., 2022c) and relation extraction (Zhu et al., 2019). Indeed, molecules
or dynamic systems do not have explicit edges. KNN, full connections (FC), and r-ball are the three
most broadly used mechanisms to build node connectivity. KNN-graphs build edges based on pair-
wise distances in the 3D space and are a common technique in modeling macromolecules (Fout
et al., 2017; Ganea et al., 2021; Stärk et al., 2022). FC-graphs, instead, assume all nodes are con-
nected to each other (Chen et al., 2019; Wu et al., 2021; Baek et al., 2021; Jumper et al., 2021). In
r-ball graphs, an edge between any node pair exists as long as their spatial distance is shorter than a
threshold value.

In order to align with the multi-order interaction theory, graph construction must satisfy two prop-
erties: (1) The subgraph maintains the connectivity. (2) No ambiguity is intrigued from either the
structural or feature view. However, r-ball graphs do not satisfy the first property. If node a is
merely linked to node b, it would be isolated if b is removed from the graph. In contrast, subgraphs
in KNN-graphs can be re-constructed via KNN to ensure connectivity, while the removal of any
node in FC-graphs will not influence the association of other entity pairs. Hence, we only consider
KNN- and FC-graphs in the subsequent analysis.

Inductive Bias of GNNs We define the data distribution of interaction strengths on a dataset D,
denoted as J (m)

D , as the experimental distribution of interaction strengths for model f with randomly
initialized parameters, which is later used for the comparison between GNNs and other DNNs. Fig. 1
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Table 1: Comparison of graph rewiring methods for graph-level and node-level prediction tasks.

Task Hamiltonian Dynamics QM7 QM8 Newtonian Dynamics Molecular Dynamics
Model EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer

None 1.392± 0.042 1.545± 0.036 68.182± 3.581 51.119± 2.193 0.012± 0.001 0.012± 0.001 6.951 ± 0.098 1.929 ± 0.051 1.409 ± 0.082 0.848 ± 0.053
+FA 1.168± 0.043 – 55.288± 3.074 – 0.012± 0.001 – 5.348 ± 0.183 – 0.826 ± 0.105 –

DIGL 1.151± 0.044 1.337± 0.072 61.028± 3.804 41.188± 5.329 0.012± 0.001 0.011± 0.001 5.637 ± 0.147 1.902 ± 0.081 1.108 ± 0.131 0.790 ± 0.078
SDRF 1.033± 0.790 1.265± 0.039 59.921± 3.765 35.792± 4.565 0.011± 0.001 0.011± 0.001 5.460 ± 0.133 1.885 ± 0.068 0.942 ± 0.152 0.751 ± 0.046

ISGR 0.892± 0.051 1.250± 0.029 53.134± 2.711 34.439± 4.017 0.011± 0.000 0.010± 0.001 4.734 ± 0.103 1.879 ± 0.066 0.713 ± 0.097 0.736 ± 0.048

reports the learned distributions J (m) and the data distributions J (m)
D for both graph-level and node-

level tasks, where EGNN (Satorras et al., 2021) works on KNN-graphs and Molformer (Wu et al.,
2021) performs on FC-graphs. The complete experimental details are elaborated in subsection 4.3.

Based on these empirical plots, it can be observed that EGNN and Molformer are inclined to learn
interactions of distinct orders. To be specific, EGNN is more prone to pay attention to interactions
of some particular orders, and its J (m) lines usually have one or two spikes. Contrarily, Molformer
learns a more unconstrained J (m). Its J (m) on Newtonian dynamics is extremely smooth like a
straight line, but its J (m) on Hamiltonian and molecular dynamics (MD) are steep curves.

We owe this phenomenon to different inductive biases brought by different graph construction ap-
proaches. Namely, the inductive bias brought by the topological structure of input graphs signifi-
cantly impacts J (m) of GNNs. Noticeably, we demonstrate in Sec. 6 that CNNs can be forbidden
from capturing appropriate orders of interactions due to their inductive bias of locality. This local
characteristic comes from CNNs’ relatively small kernel size. As for GNNs, their representation
manners can also be influenced by the inductive bias, which primarily depends on graph connectiv-
ity. Unequivocally, FC-graphs consist of all pairwise relations and hypothesize that all particles can
affect each other directly. This hypothesis places weaker restrictions on Molformer’s representation
behavior and results in more diverse J (m). On the contrary, KNN-graphs assume that some pairs of
entities possess a connection and others do not. In our setting, the number of nearest neighbors K
for KNN-graphs is kept as K = 8, which is equivalent to the order that has the highest strength in
J (m) of EGNN.

Undeniably, inductive biases introduced by graph construction mechanisms can be improper, and,
subsequently, give rise to poor J (m) that is far away from J (m)∗ after training. Prominently, bad
inductive bias can impose a much huger impact for GNNs on J (m) than for CNNs. This is because
graphs support arbitrary pairwise relational structures (Battaglia et al., 2018) and accordingly, the
inductive bias of GNNs is more flexible and influential. Especially, KNN-graphs are more sus-
ceptible to improper inductive bias. EGNN hardly learns interactions of orders different from the
user-defined constant K, which can cause worse performance. However, FC-graphs are not panacea.
On the one hand, FC-graphs require far more computational costs and may be prohibited in the case
of tremendous entities. On the other hand, the performance of Molformer severely depends on the
sufficiency and quality of training data. As shown in Tab. 1, Molformer does not surpass EGNN
on all datasets and instead behaves worse than EGNN on Hamiltonian (1.250 > 0.892) and MD
(0.736 > 0.713).

4.3 IMPLEMENTATION DETAILS

4.3.1 TASKS AND DATASETS

We present four tasks to explore the representation patterns of GNNs for scientific research. Among
them, molecular property prediction and Hamiltonian dynamics are graph-level prediction tasks,
while Newtonian dynamics and molecular dynamics simulations are node-level ones.

Molecular property prediction. The forecast of a broad range of molecular properties is a funda-
mental task in drug discovery (Drews, 2000). The properties in current molecular collections can be
mainly divided into four categories: quantum mechanics, physical chemistry, biophysics, and phys-
iology, ranging from molecular-level properties to macroscopic influences on the human body (Wu
et al., 2018). We utilize two benchmark datasets. QM7 (Blum & Reymond, 2009) is a subset of
GDB-13 and is composed of 7K molecules. QM8 (Ramakrishnan et al., 2015) is a subset of GDB-
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17 with 22K molecules. Note that QM7 and QM8 provide one and twelve properties, respectively,
and we merely use the E1-CC2 property in QM8 for simplicity.

Newtonian dynamics. Newtonian dynamics (Whiteside, 1966) describes the dynamics of parti-
cles according to Newton’s law of motion: the motion of each particle is modeled using incident
forces from nearby particles, which changes its position, velocity, and acceleration. Several impor-
tant forces in physics, such as the gravitational force, are defined on pairs of particles, analogous
to the message function of GNNs (Cranmer et al., 2020). We adopt the N-body particle simulation
dataset in (Cranmer et al., 2020). It consists of N-body particles under six different interaction laws.
More details can be referred to Appendix B.1.

Hamiltonian dynamics. Hamiltonian dynamics (Greydanus et al., 2019) describes a system’s total
energy H(q,p) as a function of its canonical coordinates q and momenta p, e.g., each particles’
position and momentum. The dynamics of the system change perpendicularly to the gradient of H:
dq
dt = ∂H

∂p , dp
dt = −dH

dq . There we take advantage of the same datasets from the Newtonian dynamics
case study, and attempt to learn the scalar total energyH of the system.

Molecular dynamics simulations. MD (Frenkel & Smit, 2001; Karplus & McCammon, 2002)
has long been the de facto choice for modeling complex atomistic systems from first principles. We
adopt ISO17 (Schütt et al., 2017; 2018), which has 129 molecules and is generated from MD simula-
tions using the Fritz-Haber Institute ab initio simulation package (Blum et al., 2009). Each molecule
contains 5K conformational geometries and total energies with a resolution of 1 femtosecond in the
trajectories. We predict the atomic forces in molecules at different timeframes.

4.3.2 OTHER EXPERIMENTAL SETTINGS

Two state-of-the-art geometric GNNs are selected to perform on these two graph types. We pick
up Equivariant Graph Neural Network (EGNN) (Satorras et al., 2021) for KNN-graphs, and Mol-
former (Wu et al., 2021) with no motifs for FC-graphs. EGNN is roto-translation and reflection
equivariant without the spherical harmonics (Thomas et al., 2018). Molformer is a variant of Trans-
former (Vaswani et al., 2017; Hernández & Amigó, 2021), designed for molecular graph learning.
More experimental details are elucidated in Appendix B.

Meanwhile, it also needs to be clarified how to compute node features for G\GS . Noteworthily, the
widely-used setting proposed by Ancona et al. (2019) for sequences or pixels is not applicable to
GNNs, because an average over graph instances can lead to an ambiguous node type. Alternatively,
we consider dropping nodes and corresponding edges in G\GS instead of replacing them with a
mean value.

5 INTERACTION STRENGTH-BASED GRAPH REWIRING

5.1 REWIRING FOR INDUCTIVE BIAS OPTIMIZATION

In order to approach J (m)∗, recent work (Deng et al., 2021) imposes two losses to encourage or
penalize learning interactions of specific complexities. Nevertheless, they require models to make
accurate predictions on subgraphs. But variable removal brings the out-of-distribution (OOD) prob-
lem (Chang et al., 2018; Frye et al., 2020; Wang et al., 2022), which can manipulate GNNs’ outcome
arbitrarily and produce erroneous predictions (Dai et al., 2018; Zügner et al., 2018). More impor-
tantly, these losses are based on the assumption that the image class remains regardless of pixel
removal. But it is not rational to assume the stability of graph properties if we alter their com-
ponents. In this work, instead of intervening in the loss, we rely on the modification of GNNs’
inductive bias to capture the most informative order m∗ of interactions and therefore reach J (m)∗.

Unfortunately, m∗ can never be known unless sufficient domain knowledge is supplied. As shown
in Fig. 3, J (m) for CNNs does not directly dive into low-order of interactions in the initial training
epochs (e.g., 10 or 50 epochs). Instead, CNNs have the inclination to learn a more informative order
of interactions (e.g., middle-order) regardless of the inductive bias, which has also been observed
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Figure 2: (a) The change of m∗ over epochs for EGNN. (b) The change of interaction strengths over
epochs for EGNN.

for GNNs. So, motivated by this subtle tendency, we resort to the order of interactions that increase
the most in J (m) during training as the guidance to reconstruct graphs and estimate J (m)∗.

To this end, we dynamically adjust the reception fields of each node within graphs by establishing or
destroying edges based on the interaction strength J (m). To begin with, we randomly sample a mini-
batch and calculate its corresponding interaction strengths. If the maximum increase of some order,
i.e., maxm

(
∆J

(m)
t − J

(m)
t−1

)
, exceeds the pre-defined threshold J̄ , then we modify the number

of nearest neighbors K to be closer to the order m∗ whose interaction strength rises the most as
K = (m∗ +K)/2. After that, we reconstruct the node connectivity for {Gi}Ni=1 according to the
new K. This process is iteratively implemented every ∆e epoch for an efficient training speed.

Such a method is often generically referred to as graph rewiring (Topping et al., 2021), so it is
dubbed Interaction Strength-based Graph Rewiring (ISGR) as described in Alg. 1. By adjusting
the graph topology that arouses the inductive bias, GNNs are enabled to break the representation
bottleneck to some extent and J (m) is able to gradually approximate J (m)∗.

5.2 EFFECTS OF ISGR ALGORITHM

Baselines. We compare ISGR to a variety of graph rewiring methods. +FA (Alon & Ya-
hav, 2020) modifies the last GNN layer to be fully connected. DIGL (Klicpera et al.,
2019) leverages generalized graph diffusion to smooth out the graph adjacency and promote
connections among nodes at short diffusion distances. SDRF (Topping et al., 2021) is the
state-of-the-art rewiring technique and alleviates a graph’s strongly negatively curved edges.

Algorithm 1 The workflow of ISGR Algorithm.

Input: threshold J̄ , total epochs E, interval ∆e

for t = 1, 2, ..., E/∆e do
J
(m)
t ← calculate Equ. 1 on a random batch

if maxm

(
J
(m)
t − J

(m)
t−1

)
> J̄ then

m∗ ← argmaxm

(
J
(m)
t − J

(m)
t−1

)
K ← m∗+K

2 ▷ make K closer to m∗

{Gi}Ni=1 ← K ▷ reset K for all KNN-
graphs

end if
end for

Results. Extensive experiments are con-
ducted to examine the efficiency of our ISGR
method. Tab. 1 documents the outcome with
the mean and standard deviation of three
repetitions, where the top two are in bold and
underlined, respectively. Our ISGR algorithm
significantly improves the performance of
EGNN and Molformer upon all baselines on
both graph-level and node-level tasks. Partic-
ularly, the promotion of ISGR for EGNN is
much higher, which confirms our assertion that
GNNs based on KNN-graphs are more likely
to suffer from bad inductive bias. On the flip
side, the improvement for Molformer in QM7
is more considerable than in QM8. This proves
that GNNs based on FC-graphs are more easily
affected by inappropriate inductive bias (i.e., full connection) when the data is insufficient since the
size of QM7 (7K) is far smaller than QM8 (21K). We also see that +FA outweighs DIGL and SDRF,
the rewiring algorithms by edge sampling, when the graph connectivity is built on KNN. However,
when encountering FC-graphs, +FA losses efficacy, and SDRF achieves a larger improvement than
DIGL.

Change of m∗. Fig. 2 plots the variation tendency of m∗ over epochs, showing that different
tasks enjoy various optimal K (denoted as K∗). Explicitly, Hamiltonian dynamics and Newtonian
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Figure 3: (a) The theoretical distributions of F (m) under different n. (b) The change of interaction
strengths for ResNet on CIFAR-10 and ImageNet. (c) The change of interaction strengths for MLP-
Mixer on CIFAR-10 and ImageNet.

dynamics benefit from the full connection (K∗/n = 1), while the molecular property prediction
benefits more from middle-order interactions (K∗/n ≈ 0.5). This phenomenon perfectly fits the
physical laws, because the system in Newtonian and Hamiltonian datasets is extremely compact
with close pairwise distances. Those particles are more likely to be influenced by all the other
nodes.

The change of interaction strengths during training. Fig. 2 also depicts how J (m) changes
when the training proceeds with our ISGR algorithm. Although for molecular property prediction
and Hamiltonian dynamics, J (m)

D mostly concentrate on low-order interactions (m/n ≤ 0.4), J (m)

progressively adjust to middle- and high-order (m/n ≥ 0.4). Regarding Newtonian dynamics,
J
(m)
D is very smooth, but J (m) at initial epochs (i.e., 10 and 20 epochs) oddly focus on low-order

interactions (m/n ≤ 0.4). Nevertheless, our ISGR method timely corrects the wrong tendency, and
eventually, J (m) becomes more intensive in segments of middle- and high-order (m/n ≥ 0.6).

6 REPRESENTATION BOTTLENECKS OF DNNS

6.1 REVISITING FINDINGS OF OTHER DNNS

Recently, the representation bottleneck of other DNNs (e.g., CNNs) has been burgeoningly inves-
tigated. Some (Deng et al., 2021) leverage ∆W (m)(i, j) = R(m) ∂I

(m)(i,j)
∂W in Equ. ?? to represent

the compositional component of ∆W w.r.t. ∂I(m)(i, j)/∂W . They claim that | ∆W (m)(i, j) | is

proportional to F (m) = n−m+1
n(n−1) /

√(
n−2
m−2

)
and experimentally show that J (m) of low-order (e.g.,

m = 0.05n) is much higher than high-order (e.g., m = 0.95n).

Despite their fruitful progress, we argue that F (m) ought to be approximately the same when m/n→
0 or m/n→ 1 (see Fig. 3) if the empty set ∅ is excluded from the input for DNNs. In Appendix A.3,
we demonstrate that even if f(∅) is taken into consideration and n is large (e.g., n ≥ 100), J (m)

ought to be non-zero only when m/n→ 0. Therefore, if | ∆W (m)(i, j) | depends entirely on F (m),
DNNs should fail to capture any middle- or high-order interactions. But DNNs have performed well
in tasks that require high-order interactions such as protein-protein rigid-body docking and protein
interface prediction (Liu et al., 2020).

The inaccurate statement that F (m) determines | ∆W (m)(i, j) | is due to the flawed hypothesis that
the derivatives of ∆f(i, j, S) over model parameters, i.e., ∂∆f(i, j, S)/∂W , conform to normal
distributions (see Appendix B.3). ∂∆f(i, j, S)/∂W , undoubtedly, varies with the contextual com-
plexities (i.e., |S|), and replies on not only the data distribution of interaction strengths in particular
datasets J (m)

D but the model architecture f .

6.2 INDUCTIVE BIAS IN OTHER DNNS

To verify our dissent, we reproduce the interaction strengths of ResNet in CIFAR-10 (Krizhevsky
et al., 2009) and ImageNet (Russakovsky et al., 2015) in Fig. 3. The plot implies that J (m)

D ’s (re-
ferring to the epoch-0 curve) interactions of low and high orders are much stronger than middle
orders. As previously analyzed, this phenomenon is due to a critical inductive bias of CNNs, i.e.,
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locality. It assumes that entities are in spatially close proximity with one another and isolated from
distant ones (Battaglia et al., 2018). Hence, CNNs with small kernel sizes are bound to low-order
interactions.

Several recent studies have demonstrated that increasing the kernel size can alleviate the local in-
ductive bias (Ding et al., 2022). Based on their revelation, we examine the change of interaction
strengths for MLP using MLP-Mixer (Tolstikhin et al., 2021) in Fig. 3. Though MLP shares a
similar J (m)

D with ResNet, its J (m) is much smoother. This is because MLP-Mixer assumes full
connection of different patches with no constraint of the locality. Therefore, it can learn a more
adorable J (m). The implementation details on visual tasks are elaborated in Appendix C.

6.3 COMPARISON BETWEEN CNNS AND GNNS

Recall that in Fig. 1, J (m) learned by GNNs can deviate from and is nearly independent of the
data distribution J

(m)
D . Precisely, J (m)

D for molecular property prediction in QM8 is more intensive
on low orders. But after sufficient training, J (m) for EGNN mainly have high values for middle
orders. J (m) for Molformer also increases the most in the middle-order segment. The trend of
J (m) illustrates that subgraphs with a middle size are exceedingly informative substructures that
reveal small molecules’ biological or chemical properties. This finding verifies that motifs such as
functional groups heavily determine molecular attributes (Yu et al., 2020; Wang et al., 2021; Wu
et al., 2022d). Similarly, although J

(m)
D in QM7 concentrate on low-order, its J (m) are mainly

allocated on middle-order. Especially for EGNN, its spike of J (m) is at m = 9. Concerning
Molformer, the segment of its J (m) that increases most is dispersive between 0.3 ≤ m/n ≤ 0.5.
While for Hamiltonian dynamic systems, J (m)

D is majorly intense for low and middle orders. In
spite of that, J (m) of EGNN concentrates more on high orders but neglects low orders. Regarding
node-level prediction tasks, the scenery is more straightforward. J

(m)
D for EGNN and Molformer

are in different shapes, but J (m) both move towards low orders for MD and high-order interactions
for Newtonian dynamics. All those phenomenons bolster a considerable discrepancy between J (m)

and J
(m)
D for geometric GNNs.

In opposition, as shown in Fig. 3, little difference exists between J
(m)
D and J (m) (referring to non-

zero epoch curves) at different epochs for both ResNet and MLP-Mixer. That is, J (m) learned by
other sorts of DNNs, such as CNNs, are seldom divergent from J

(m)
D . This fact supports our previous

claim in Sec. 4 that graph learning problems are more affected by inductive bias than visual tasks.

7 CONCLUSIONS AND LIMITATIONS

We discover and strictly analyze the representation bottleneck of GNNs from the complexity of in-
teractions encoded in networks. Remarkably, inductive bias rather than the data distribution is more
dominant in the expressions of GNNs to capture pairwise interactions, contradicting the behavior of
other DNNs. Besides, empirical results demonstrate that inductive biases introduced by most graph
construction mechanisms, such as KNN and full connection, can be sub-optimal and prevent GNNs
from learning the most revelatory order of interactions. Inspired by this gap, we design a novel
rewiring method based on the inclination of GNNs to encode more informative interactions.

Limitations and Future Directions Despite the reported success of our proposed ISGR, GNNs
still face a few limitations. In real-world applications such as social networks (Hamilton et al., 2017;
Fan et al., 2019), improper modeling of interactions may lead to the failure to classify fake users
and posts. In addition, since GNNs have been extensively deployed in assisting biologists with the
discovery of new drugs, inappropriate modeling can postpone the screening progress and impose
negative consequences on the drug design. Another limitation of our work is that results are only
demonstrated on small systems with few particles and two sorts of GNNs. The generalization of our
claim remains investigated on larger datasets and more advanced architectures.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021. 20

Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions from neural network
weights. arXiv preprint arXiv:1705.04977, 2017. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017. 6
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APPENDIX

The Appendix is structured as follows:

• In Appendix A, we provide supplementary materials of the multi-order interaction tool for
readers who are not familiar with this field. Moreover, we prove that our reformed multi-
order interaction is equivalent to the original definition, and also offer a straightforward
explanation of the proposition that appeared in the main text.

• In Appendix B, we describe the formulation of datasets, training details, and additional
experimental results, as well as existing graph construction methods.

• In Appendix C, we introduce the details of our implementation in exploring the change of
interaction strengths for CNNs and MLP-Mixer on visual problems.

• In Appendix D, we systematically compare our representation bottleneck with existing
bottlenecks of GNNs.

• In Appendix E, we give more descriptions of prior studies in regard to the expressiveness
and representation capability of GNNs.

A INTRODUCTION AND THEORETICAL ANALYSIS OF MULTI-ORDER
INTERACTIONS

A.1 INTRODUCTION OF MULTI-ORDER INTERACTIONS

In this subsection, we give a more detailed introduction to the multi-order interaction, which is
employed to analyze the representation ability of GNNs and CNNs in the main body, in case some
audiences may find it hard to follow. This introduction largely utilizes previous studies (Zhang et al.,
2020; Deng et al., 2021) for reference, and we strongly recommend interesting readers take a glance
at these articles.

Here we follow the same mathematical description of multi-order interactions as Deng et al. (2021)
for better alignment and convenient comparison. f is a pre-trained DNN (e.g., CNN, RNN, Trans-
former, GNN), and an input sample (e.g., an image or a text) has n variables (e.g., pixels or words)
denoted as N = {1, ..., n}. Then the original multi-order interaction between input variables is
originally defined as follows:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆f(i, j, S)], 3 ≤ m ≤ n, (4)
where ∆f(i, j, S) = f(S ∪ {i, j})− f(S ∪ {i})− f(S ∪ {j}) + f(S) and S ⊂ N represents the
context with m variables. I(m)(i, j) denotes the interaction between variables i, j ∈ N of the m-th
order, which measures the average interaction utility between i, j under contexts of m variables.
There are five desirable properties that I(m)(i, j) satisfies:

- Linear property. If two independent games f1 and f2 are combined, obtaining g(S) = f1(S) +
f2(S), then the multi-order interaction of the combined game is equivalent to the sum of multi-order
interactions derived from f1 and f2, i.e.,I(m)

g (i, j) = I
(m)
f1

(i, j) + I
(m)
f2

(i, j).

- Nullity property. If a dummy variable i ∈ N satisfies ∀S ⊆ N\{i}, f(S∪{i}) = f(S)+f({i}),
then variable i has no interactions with other variables, i.e., ∀m,∀j ∈ N\{i}, I(m)(i, j) = 0.

- Commutativity property. Intuitively, ∀i, j ∈ N, I(m)(i, j) = I(m)(j, i).

- Symmetry property. Suppose two variables i, j are equal in the sense that i, j have same co-
operations with other variables, i.e., ∀S ⊆ N\{i, j}, f(S ∪ {i}) = f(S ∪ {j}), then we have
∀k ∈ N, I(m)(i, k) = I(m)(j, k).

- Efficiency property (Deng et al., 2021). The output of a DNN can be decomposed into the sum
of interactions of different orders between different pairs of variables as:

f(N)− f(∅) =
∑
i∈N

µi +
∑

i,j∈N,i̸=j

n−2∑
m=0

w(m)I(m)(i, j), (5)

where µi = f({i})− f(∅) represents the independent effect of variable i, and w(m) = n−1−m
n(n−1) .
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Connection with Shapley value and Shapley interaction index. Shapley value is introduced
to measure the numerical importance of each player to the total reward in a cooperative game,
which has been widely accepted to interpret the decision of DNNs in recent years (Lundberg & Lee,
2017; Ancona et al., 2019). For a given DNN and an input sample with a set of input variables
N = {1, . . . , n}, we use 2N = {S | S ⊆ N} to denote all possible variable subsets of N . Then,
DNN f can be considered as f : 2N → R that calculates the output f(S) of each specific subset
S ⊆ N . Each input variable i is regarded as a player, and the network output f(N) of all input
variables can be considered as the total reward of the game. The Shapley value aims to fairly
distribute the network output to each individual variable as follows:

ϕi =
∑

S⊆N\{i}

| S |!(n− | S | −1)!
n!

[f(S ∪ {i})− f(S)], (6)

where f(S) denotes the network output when we keep variables in S unchanged while masking
variables in N\S by following the setting in Ancona et al. (2019). It has been proven that the Shapely
value is a unique method to fairly allocate overall reward to each player that satisfies linearity,
nullity, symmetry, and efficiency properties.

Connections between the Shapley interaction index and the Shapely value. Input variables of
a DNN usually interact with each other, instead of working individually. Based on the Shapley
value, Grabisch & Roubens (1999) further proposes the Shapley interaction index to measure the
interaction utility between input variables. The Shapley interaction index is the only axiomatic
extension of the Shapley value, which satisfies linearity, nullity, symmetry, and recursive properties.
For two variables i, j ∈ N , the Shapley interaction index I(i, j) can be considered as the change of
the numerical importance of variable i by the presence or absence of variable j.

I(i, j) = ϕ̃(i)j always present − ϕ̃(i)j always absent, (7)

where ϕ̃(i)jalways present denotes the Shapley value of the variable i computed under the specific con-
dition that variable j is always present. ϕ̃(i)j always absent is computed under the specific condition
that j is always absent.

Connections between the multi-order interaction and the Shapley interaction index. Based
on the Shapley interaction index, Zhang et al. (2020) further defines the order of interaction, which
represents the contextual complexity of interactions. It has been proven that the above Shapley
interaction index I(i, j) between variables i, j can be decomposed into multi-order interactions as
follows:

I(i, j) =
1

n− 1

n−2∑
m=0

I(m)(i, j). (8)

A.2 PROOF OF MULTI-ORDER INTERACTIONS

There we explain why I(m)(i, j) has no difference whether we include variables {i, j} in S or not.
In the setting of (Zhang et al., 2020; Deng et al., 2021), I(m)(i, j) takes the following form:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆f(i, j, S)], (9)

where ∆f(i, j, S) = f(S ∪ {i, j}) − f(S ∪ {i}) − f(S ∪ {j}) + f(S) and i, j /∈ S. While in
our formulation, the order m′ = m + 2 corresponds to the context S′ = S ∪ {i, j}. Now we
denote our version of the multi-order interaction as I ′(m

′)(i, j) with ∆′f(i, j, S) and aim to show
that I(m)(i, j) = I ′(m

′)(i, j).

It is trivial to obtain that f(S ∪ {i, j})− f(S ∪ {i})− f(S ∪ {j}) + f(S) = f(S′)− f(S′\{i})−
f(S′\{j}) + f(S′\{i, j}), which indicates that ∆f(i, j, S) = ∆′f(i, j, S′). Therefor, we can get
I(m+2)(i, j) = I ′(m

′)(i, j).

A.3 THEORETICAL DISTRIBUTIONS OF F (m)

Fig. 4 depicts the theoretical distributions of F (m) for different n. Unlike Fig. 3 (a), the empty
set ∅ is allowed as the input for DNNs. Apparently, when the number of variables n is very large
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(n ≥ 100), F (m) is only positive for m/n → 0. For macromolecules such as proteins, the number
of atoms is usually more than ten thousand. If the theorem in (Deng et al., 2021) that the strengths
∆W (m)(i, j) of learning the m-order interaction is strictly proportional to F (m) holds, DNNs would
be impossible to put attention to any middle-order interactions, which is proven to be critical for
modeling protein-protein interactions (Liu et al., 2020; Das & Chakrabarti, 2021).
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Figure 4: Distributions of F (m) with different numbers of variables n where f(∅) is taken into
consideration.

A.4 EXPLANATION OF PROPOSITION 1

Prop. 1 illustrates an intuitive necessary condition for a model f to achieve the global minimum
loss. That is, the learned strength J (m) must match the optimal strength J (m)∗. Otherwise, f must
be inferior to the best predictor f∗. This proposition is very straightforward. The global minimum
loss L∗ has its corresponding model weight f∗ and thereby a unique learned strength J (m)∗. Given
another model f , if its strength J (m) is different from J (m)∗, then f is different from f∗. As a
consequence, the loss of f must be larger than L∗. Notably, there we consider the loss function
to be non-convex. In contrast, if the loss function is convex, standard optimization techniques like
gradient descent will easily find parameters that converge towards global minima.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 NEWTONIAN DYNAMICS DATASET

The following six forces are utilized in the dataset of Newtonian dynamics: (1) 1/r orbital force:
−m1m2r̂/r; (2) 1/r2 orbital force −m1m2r̂/r

2; (3) charged particles force q1q2r̂/r
2 (4) damped

springs with |r − 1|2 potential and damping proportional and opposite to speed; (5) discontinuous
forces, −

{
0, r2

}
r̂, switching to 0 force for r < 2; and (6) springs between all particles, a (r − 1)2

potential. There we only use the spring force for our experiments.

B.2 TRAINING DETAILS

All experiments are implemented by Pytorch (Paszke et al., 2019) on an A100 GPU. An
Adam (Kingma & Ba, 2014) optimizer is used without weight decay, and a ReduceLROnPlateau
scheduler is enforced to adjust it with a factor of 0.6 and patience of 10. The initial learning rate
is 1e-4, and the minimum learning rate is 5e-6. The batch size is 512 for the sake of a fast training
speed. Each model is trained for 1200 epochs, and early stopping is used if the validation error fails
to decrease for 30 successive epochs. We randomly split each dataset into training, validation, and
test sets with a ratio of 80/10/10.

For both EGNN and Molformer, the numbers of layers (i.e., depths) are 3, and the dimensions
of the input feature are 32. Besides, Molformer has 4 attention heads and a dropout rate of 0.1.
The dimension of the feed-forward network is 128. It is worth noting that we employ multi-scale
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self-attention with a distance bar of [0.8, 1.6, 3] to achieve better performance. This multi-scale
mechanism helps Molformer to concentrate more on local contexts. However, it does not harm
FC-graphs, and the connections between all pairs of entities remain. We also discover that the
multi-scale mechanism has little impact on the distribution of J (m) and J

(m)
D . Regarding the setup

of the ISGR algorithm, the threshold J̄ to adjust the number of neighbors is tuned via a grid search.
The interval of epochs ∆e is 10, and the initial k0 = 8. Concerning baselines, we follow Klicpera
et al. (2019) and Topping et al. (2021) and optimize hyperparameters by random search. Table 2
documents α, k, and ϵ for DIGL, whose descriptions can be found in Klicpera et al. (2019). Table 3
reports the maximum iterations, τ and C+ for SDRF, whose descriptions is available in Topping
et al. (2021).

Table 2: Hyperparameters for DIGL.

Task Newtonian Dynamics Molecular Dynamics Hamiltonian Dynamics QM7 QM8
Model EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer

α 0.0259 0.1284 0.0732 0.1041 0.1561 0.3712 0.0655 0.2181 0.1033 0.1892
k 32 32 32 32 64 64 - - - -
ϵ - - - - 0.0001 - - - - 0.0002

Table 3: Hyperparameters for SDRF.

Task Newtonian Dynamics Molecular Dynamics Hamiltonian Dynamics QM7 QM8
Model EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer EGNN Molformer

Max Iter. 15 11 39 34 16 13 22 17 25 12
tau 120 163 54 72 114 186 33 35 48 60
C+ 0.73 1.28 1.44 1.06 0.96 0.88 0.53 0.70 0.69 0.97

We create a simulated system with 10 identical particles with a unit weight for Hamiltonian and
Newtonian cases. For QM7, QM8, and ISO17 datasets, we sample 10 molecules that have the
lowest MAE. For Hamiltonian and Newtonian datasets, we sample 100 timeframes that have the
lowest prediction errors. Then for each molecule or dynamic system, we compute all pairs of entities
i, j ∈ [N ] without any sampling strategy. Moreover, we limit the number of atoms between 10 and
18 to compute the interaction strengths for QM7 and MQ8.

B.3 EXAMINATION OF THE NORMAL DISTRIBUTION HYPOTHESIS

We use scipy.stats.normaltest in the Scipy package (Virtanen et al., 2020) to test the null hypothesis
that ∂∆f(i,j,S)

∂W comes from a normal distribution, i.e, ∂∆f(i,j,S)
∂W ∼ N

(
0, σ2

)
. This test is based

on D’Agostino and Pearson’s examination that combines skew and kurtosis to produce an omnibus
test of normality. The p-values of well-trained EGNN and Molformer on the Hamiltonian dynamics
dataset are 1.97147e-11 and 2.38755e-10, respectively. The p-values of randomly initialized EGNN
and Molformer on the Hamiltonian dynamics dataset are 2.41749e-12 and 9.78953e-07, separately.
Therefore, we are highly confident in rejecting the null hypothesis (e.g., α = 0.01) and insist that
∂∆f(i,j,S)

∂W depends on the data distributions of downstream tasks and the backbone model architec-
tures.

C CNNS AND MLP-MIXER ON VISUAL TASKS

To investigate the change of interaction strengths during the training process in image classification,
we train ResNet-50 (He et al., 2016) and MLP-Mixer (Small) (Tolstikhin et al., 2021) and calculate
the interaction strength by the official implementation provided by Deng et al. (2021). MLP-mixer is
an architecture based exclusively on multi-layer perceptrons (MLPs). It contains two types of layers:
one with MLPs applied independently to image patches (i.e. “mixing” the per-location features), and
one with MLPs applied across patches (i.e. “mixing” spatial information). We discuss MLP-mixer
to compare it with the traditional CNNs. Notably, CNNs assume the local inductive bias, while
MLP-mixer instead connects each patch with other patches (e.g., no constraint of locality).
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We follow the training settings of DeiT (Touvron et al., 2021) and train 200 epochs with the input
resolution of 224× 224 on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al.,
2015) datasets. Fig. 3 plots the corresponding strengths at different epochs, where the dotted line de-
notes the initial interaction strength without training (referring to epoch 0), i.e., the data distribution
of strengths J (m)

D .

Through visualization, it can be easily found that J (m)
D in both CIFAR-10 and ImageNet have already

obeyed a mode that the low-order (m/n ≤ 0.2) and high-order (m/n ≥ 0.8) interaction strengths
are much higher than middle-order (0.2 ≤ m/n ≤ 0.8). The variation of interaction strengths is
very slight with the training proceeding, which validates our statement that the data distribution has
a strong impact on the learned distribution. More importantly, we challenge the argument in Deng
et al. (2021), who believe it is difficult for DNNs to encode middle-order interaction. But in our
experiments on GNNs, we document that DL-based models are capable of capturing middle-order
interactions.

The capability of CNNs to capture desirable levels of interactions is constrained by improper induc-
tive bias. Remarkably, some preceding work (Han et al., 2021; Ding et al., 2022) has proved the ef-
fectiveness of enlarging kernel size to resolve the local inductive bias, where adequately large kernel
size is able to improve the performance of CNNs comparable to ViT and MLP-Mixer. Nevertheless,
how determining the scale of convolutional kernels is still under-explored. Our ISGR algorithm pro-
vides a promising way to seek the optimal kernel size based on the interaction strength, abandoning
the exhaustive search.

C.1 GRAPH CONSTRUCTION APPROACHES

Unlike social networks or knowledge graphs, there are, indeed, no explicit edges in graphs of most
scientific problems. So in order to represent molecules or systems as graphs, KNN-graphs (see
Fig. 5 (a)), fully-connected graphs (see Fig. 5 (b)), and r-ball graphs are the three most broadly used
mechanisms to build the connectivity. In fact, FC-graphs is a special type of KNN-graphs, where
K ≥ n − 1. However, FC-graphs or KNN-graphs with a large K suffer from high computational
expenditure and are usually infeasible with thousands of entities. In addition, they are sometimes
unnecessary since the impact from distant nodes is so minute to be ignored.
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Figure 5: Different graph constructions of the compound C6H6O.

D COMPREHENSIVE COMPARISON TO EXISTING BOTTLENECKS OF GNNS

GNNs based on the message-passing diagram show extraordinary results with a small number of
layers. Nevertheless, such GNNs fail to capture information that depends on the entire structure
of the graph and prevent the information flow from reaching distant nodes. This phenomenon is
called under-reaching (Barceló et al., 2020). To overcome this limitation, an intuitive resolution
is to increase the layers. But unfortunately, GNNs with many layers tend to suffer from the over-
smoothing (Oono & Suzuki, 2019) or over-squashing (Alon & Yahav, 2020) problems.

Over-smoothing takes place when node embeddings become indistinguishable. It occurs in GNNs
that are used to tackle short-range tasks, i.e., the accurate prediction majorly depends on the local
neighborhood. On the contrary, long-range tasks require as many layers as the range of interactions
between nodes. But this would contribute to the exponential increase of the node’s receptive field
and compress the information flow, which is named over-squashing. In our study, we do not specify
which category of problems to be addressed (i.e., long-range or short-range). Instead, we aim to ex-
plore which sort of interactions that GNNs are more likely to encode (i.e., too simple, intermediately
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complex, and too complex). It is also worth noting that different tasks require different levels of in-
teractions. For instance, Newtonian and Hamiltonian dynamics demand too complex interactions,
while molecular property prediction prefers interactions of intermediate complexity. Then based
on both theoretical and empirical evidence, we discover that improper inductive bias introduced by
the way to construct graph connectivity prevents GNNs from capturing the desirable interactions,
resulting in the representation bottleneck of GNNs.

So what is the significant difference between our representation bottleneck and over-squashing?
Most foundationally and importantly, our representation bottleneck is based on the theory of multi-
order interactions, while over-squashing relies on the message propagation of node representations.
To be specific, it is demonstrated in Alon & Yahav (2020) that the propagation of messages is
controlled by a suitable power of Â (the normalized augmented adjacency matrix), which relates
over-squashing to the graph topology. In contrast, we show that the graph topology strongly de-
termines the distribution of interaction strengths J (m), i.e., whether GNNs are inclined to capture
too simple or too complex interactions. This difference in theoretical basis leads to the following
different behaviors of our representation bottleneck and over-squashing:

• The multi-order interaction technique focuses on interactions under a certain context, whose com-
plexity is measured as the number of its variables (i.e., nodes) m divided by the total number of
variables of the environment (i.e., the graph) n. Thus, the complexity of interactions is, indeed,
a relative quantity. Conversely, over-squashing (as well as under-reaching) concerns about the
absolute distance between nodes. Given a pair of nodes i and j, if the shortest path between them
is r, then at least r layers are required for i to reach out to j. More generally, long-range or
short-range tasks discussed in most GNN studies are referring to this r-distance. Over-squashing,
therefore, follows this r-distance metric and argues that the information aggregated across a long
path is compressed, which causes the degradation of GNNs’ performance.
As a result, our representation bottleneck can occur in both short-range and long-range tasks,
but over-squashing mainly exists in long-range problems. For short-range tasks, if we assume
a KNN-graph with a large K or even fully-connected graphs (i.e., nodes can have immediate
interactions with distant nodes), then the receptive field of each node is very large and GNNs
intend to concentrate on too complex interactions but fail to capture interactions within local
neighbors. For long-range tasks, if we assume a KNN-graph with a small K (i.e., nodes only
interact with nearby nodes), then the receptive field of each node is relatively small compared to
the size of the entire graph. Consequently, GNNs prefer to capture too simple interactions but are
incapable of seizing more informative complex interactions.

• More essentially, the multi-order interaction theory of our representation bottleneck is model-
agnostic, but the starting point of over-squashing is message passing, the characteristic of most
GNN architectures. To make it more clear, the calculation of multi-order interactions (see Equ. 1
and 3) is completely independent of the network (e.g., CNNs, GNNs, RNNs). However, the
theory of over-squashing is founded on the message-passing procedure. This hypothesis makes
over-squashing limited to the group of GNNs that are built on message passing. But other kinds
of GNNs such as the invariants of Transformers may not suffer from this catastrophe. Instead, the
analysis of multi-order interactions in our representation bottleneck can be utilized in any GNN
architecture, even if it abandons the traditional message-passing mechanism.

To summarize, our representation bottleneck is more universal than over-squashing, which is built
upon the absolute distance and merely talks about long-range tasks. This is due to the fact that our
representation bottleneck is given birth to by the theory of multi-order interactions rather than the
property of message propagation.

E MORE RELATED WORK

Expressiveness of GNNs. It is well-known that MLP can approximate any Borel measurable func-
tion (Hornik et al., 1989), but few study the universal approximation capability of GNNs (Wu et al.,
2020). Hammer et al. (2005) demonstrates that cascade correlation can approximate functions with
structured outputs. Scarselli et al. (2008a) prove that a RecGNN (Scarselli et al., 2008b) can ap-
proximate any function that preserves unfolding equivalence up to any degree of precision. Maron
et al. (2018) show that an invariant GNN can approximate an arbitrary invariant function defined
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on graphs. Xu et al. (2018) show that common GNNs including GCN (Kipf & Welling, 2016) and
GraphSage (Hamilton et al., 2017) are incapable of differentiating different graph structures. They
further prove if the aggregation functions and the readout functions of a GNN are injective, it is at
most as powerful as the Weisfieler-Lehman (WL) test (Leman & Weisfeiler, 1968) in distinguishing
different graphs.

GNNs’ representation capacity. It becomes an emerging area to evaluate the representation ca-
pability of DNNs (Shwartz-Ziv & Tishby, 2017; Neyshabur et al., 2017; Novak et al., 2018; Weng
et al., 2018; Fort et al., 2019). Interactions between variables are pioneeringly to inspect the limi-
tation of DNNs in feature representations (Zhang et al., 2020; Deng et al., 2021). Notwithstanding,
prior works merely highlight the behaviors of general DNNs and examine their assertions via MLP
and CNNs. In comparison, we emphasize GNNs that operate on structured graphs, distinct from
images and texts.
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