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Abstract

Large language models (LLMs) are transform-
ing numerous sectors and are increasingly be-
ing explored to advance molecular biology by
enabling computational analysis of biological
language. However, the grammatical and se-
mantic complexities of biomolecules present
challenges for LLMs. This survey explores
three key strategies to bridge this gap: (1) bi-
ological LLMs, pretrained on biological lan-
guage to capture unimodal representation or
multimodal (i.e., sequence-structure) relation-
ships, (2) post-training adaptations, which re-
fine natural LLMs through instruction-tuning
or retrieval-augmented generation, and (3) mul-
timodal LLMs, which is capable of jointly pro-
cessing biological and natural languages. In
this work, we highlight the potential of multi-
modal LL.Ms that integrate biomolecular data,
general and scientific literature knowledge to
enhance biological language processing, thus
accelerating molecular biology research while
addressing the aforementioned challenges.

1 Introduction

Biomolecules, including proteins, nucleic acids
and small molecules, are fundamental to cellular
functions and homeostasis. Understanding and
reasoning over their sequences, structures, and
functions is key to deciphering biological pro-
cesses. Additionally, biomolecular generation en-
ables the design of molecules with tailored prop-
erties. Their efficacy depends not only on intrin-
sic properties but also on interactions within bio-
logical systems. Therefore, elucidating biomolec-
ular interactions enhances our understanding of
disease mechanisms (Sebastian-Leon et al., 2014)
and drive innovations in novel therapeutic tar-
get identification (Nowell et al., 2023), treatment
optimation (Negishi et al., 2024), personalized
medicine (Goetz and Schork, 2018), biomarker dis-
covery (Ou et al., 2021), and biomolecular engi-
neering (Victorino da Silva Amatto et al., 2022).

However, computational analysis of biomolecules
remains challenging due to their high-dimensional
nature, intricate interactions, and diverse func-
tions. Recent achievements in artificial intelligence,
particularly large language models (LLMs), of-
fer promising solutions by leveraging large-scale
biomolecular data to extract meaningful represen-
tations and relationships.

Advances in natural LLMs have inspired re-
searchers to apply language modeling techniques
to biological sequences, treating nucleotide, amino
acid sequences, and molecular representations
as structured data. This perspective has led to
the development of biological LLMs, including
Evo (Nguyen et al., 2024b), ESM-2/ESM-fold (Lin
et al., 2022), ESM3 (Hayes et al., 2025) and Na-
tureLM (Xia et al., 2025), which excel in protein
structure prediction, molecular property prediction,
and DNA sequence design, etc. However, the bi-
ological LLMs, primarily pretrained on domain-
specific corpora, have limited coverage of gen-
eral and scientific literature knowledge, restricting
their performance on complex biological language
tasks that require cross-disciplinary integration. To
address this, researchers have explored adapting
natural LLMs through instruction tuning (Xiao
et al., 2024a) or retrieval-augmented generation
(RAG) (Lin et al., 2024), showing some success
in biological language processing. Still, natural
LLMs, primarily pretrained on plain text, struggle
with more complex biomolecular data modalities
such as 2D molecular graphs and 3D protein struc-
tures.

Given that natural LLMs cannot fully capture
the complexity of biomolecules, researchers have
developed multimodal LLMs to integrate diverse
biological data. These models process sequences,
structures, and texts (functions) simultaneously
while incorporating domain knowledge to improve
biological understanding, reasoning and gener-
ation. Recent advances, such as Evola (Zhou
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Figure 1: Overview of LLMs for molecular biology, encompassing models, data, tasks, and evaluation. TAI: Text
Aligned Integration. MBI: Multiple Biomolecules Integration.

et al., 2025a), highlight the potential of modeling
biomolecules in 3D space while leveraging textual
data for biological inference. This trend under-
scores the growing role of multimodal LLMs in
computational biology, paving the way for next-
generation biological computation models.

As shown in Figure 1, we categorize existing
works by biomolecular data types, analyzing their
modalities and key applications. We also high-
light emerging methodology to construct LLMs for
molecular biology. This survey offers a comprehen-
sive research dimensions and potential applications
of LL.Ms to transform molecular biology research.

2 Natural and biological language

Natural language, such as English, French, Chi-
nese, and Japanese, are a communication system
developed by humans to express thoughts, ideas,
and information. It evolves naturally and are char-
acterized by defined syntax, semantics, and prag-
matics. Similarly, biological language refers to
structured, information-rich encoding systems that
regulate biological processes, encompassing pro-
tein sequences and structures, RNA and DNA se-
quences, molecular strings such as SMILES, and
cellular signaling pathways. As shown in Table 5
of Appendix A, despite their distinct origins and
purposes, both natural and biological languages
encode complex, structured information, enabling
communication within their respective domains.
However, biological language differs fundamen-

tally from natural language in grammars and se-
mantics. While natural language derives meaning
from linguistic and contextual relationships, biolog-
ical language primarily encodes functions through
structural properties and biomolecular interactions.

Although the development of NLP techniques
has also brought promising applications in biologi-
cal language processing, significant challenges re-
main. Natural LLMs lack a fundamental under-
standing of biomolecular structures and interac-
tions. Unlike natural language, where semantic
meaning arises from word relationships and syn-
tax, biological language is governed by biophysical
and biochemical principles that cannot be fully cap-
tured by sequence-based models alone. Overall,
the uniqueness and challenges of biological lan-
guage are as follows:

* Lack of explicit grammar and semantics

Natural language follows well-defined gram-
matical rules, while biological language lack
fixed syntax rules. Biomolecular functions
often require experimental validation rather
than relying solely on sequence analysis. For
example, a DNA fragment may encode a pro-
tein or function as a regulatory region, but its
true role is difficult to determine based solely
on sequence analysis.

* Highly structured and multimodal nature

Unlike natural language, biological language
is highly structured and multimodal, encom-



passing sequences, structures, and biophys-
ical and biochemical properties. For exam-
ple, cellular signaling involves spatial, tem-
poral, and multi-layered regulation. As a
result, sequence-based models often fail to
capture these complexities, requiring integra-
tion with additional components such as graph
neural networks and multimodal connectors.
While natural LLMs excel in pattern recogni-
tion, they struggle with structural modeling
and causal inference in biological contexts.
They fail to capture dependencies between
protein structures and functions or between
genetic mutations and phenotypic effects, as
biological systems are highly nonlinear, dy-
namic, and context-dependent. Addressing
these challenges requires multimodal learn-
ing and causal modeling to enhance LLMs for
molecular biology.

Therefore, although natural LLMs can be par-
tially applied to biological language tasks, truly
leveraging LLMs to solve biological language tasks
requires the integration of general knowledge and
specialized domain expertise and abilities by inte-
grating diverse biological data modalities.

3 Biological language tasks

Recent advancements in bioinformatics and com-
putational biology have increasingly focused on
applying LLMs to biological language tasks that
can be broadly categorized into three main cate-
gories: understanding, reasoning, and genera-
tion. These three categories cover a wide range of
challenges in computational biology, and applying
LLMs to these tasks has the potential to transform
molecular biology research, enhancing our under-
standing of biomolecular systems and accelerating
scientific discoveries.

Understanding. This category encompasses
tasks related to parsing and interpreting biological
sequences, structures, and their functional implica-
tions. Its primary objective is to extract meaningful
insights from biomolecules and uncover the funda-
mental principles that govern biological processes.
Applications includes protein functions or active
sites prediction from structures, gene functions or
non-coding regions identification from DNA se-
quences, cell type prediction from single-cell se-
quencing data and disease diagnosis from multi-
omics data.

Reasoning. This category involves tasks that

require higher-order thinking, such as predicting
complex biological relationships and causal mecha-
nisms. It aims to generate new knowledge and infer
previously unknown biological processes by lever-
aging existing data. These tasks can be broadly
classified into predictive modeling and causal in-
ference. Applications include novel therapeutic
target identification from gene-protein-disease net-
works, gene-phenotype association prediction from
genetic variations and phenotypic traits, identifying
critical genes or molecular interactions from bio-
logical pathways, and disease mechanism inference
from multi-omics data.

Generation. This category focuses on generat-
ing biologically meaningful molecules, including
sequences and structures. It targets to design novel
molecules with tailored properties or functions. Ap-
plications include protein design with specific func-
tions, antibody design with high affinity and speci-
ficity, novel chemical structures generation for drug
discovery, gene editing tool generation creating pre-
cise and efficient CRISPR sequences, and antigen
epitopes design based on pathogen data.

4 Biological data modalities

In computational biology and artificial intelligence,
data fall into two categories: unimodal data and
multimodal data (see Table 1). Unimodal data con-
sists of a single input type, while multimodal data
integrate multiple types, reflecting the complexity
of real-world biological systems. Understanding
the distinction between unimodal and multimodal
data is essential for developing advanced models
that address the complexities of molecular biology
research.

Table 1: Comparison of unimodal and multimodal data
in molecular biology. TAI: Text Aligned Integration.
MBI: Multiple Biomolecules Integration.

Modality  Fusion method Examples
Unimodal Sequence, Structure, Graph, Text
Sequence-Text, Structure-Text, Graph-Text,
TAI S ce-Structure-Text, S ce-Graph-Text
Multimodal equence-structure- 1ext, Sequence-Graph-1ex

MBI Sequence-Structure, Sequence-Graph

Unimodal data serves as the foundation for
many applications in molecular biology. Exam-
ples include protein sequences, where models pre-
dict function or structure based solely on amino
acid sequences, and biological graphs, which repre-
sent molecular interactions or networks. Similarly,
biological structures, such as 3D protein conforma-
tions, are used to understand biophysical properties



or ligand binding. Beyond biological data, general
text and biological text, such as research articles or
clinical reports, provide valuable information for
tasks like named entity recognition or knowledge
mining.

Multimodal data aims to enable comprehen-
sive understanding of complex biomolecules by
integrating multiple biological data modalities,
such as sequence, structure, and text (function).
Cross-modal fusion presents new opportunities to
bridge biomolecular insights with broader gen-
eral and scientific literature knowledge. As mul-
timodal approaches capture the multifaceted na-
ture of biomolecular data, they are increasingly
utilized in molecular biology research. The pri-
mary forms of multimodal data fall into two catego-
rizes: Text Aligned Integration (TAI) and Multiple
Biomolecule Integration (MBI).

TAI uses text to enhance the understanding
of biological modalities, such as learning protein
functions or gene regulation from scientific liter-
ature. Sequence-Text combines sequences with
text, linking molecular information to functional
descriptions for better understanding of genetic
sequences and biological functions. Structure-
Text merges structures with text to connect spa-
tial features with biological interpretations, help-
ing to relate 3D structures to protein functions.
Graph-Text integrates graph data, like molecu-
lar topologies, with text, supporting drug discov-
ery by associating molecular graphs with literature
insights. Sequence-Structure-Text combines se-
quences, 3D structures, and text, providing a holis-
tic view of how sequence variations affect biolog-
ical functions. Sequence-Graph-Text connects
sequence data with graph representations and text,
aiding in drug development and gene-disease asso-
ciations by contextualizing sequence variations.

MBI focuses on the integration of biomolecular
data itself, utilizing the multimodal characteristics
of sequences, structures, and graphs to improve
predictive capabilities. Sequence-Structure in-
tegration links biomolecular sequences with their
corresponding 3D conformations. This allows mod-
els to capture how structural properties emerge
from linear sequences, facilitating a better under-
standing of how sequence variations influence pro-
tein folding and function. Sequence-Graph in-
corporates sequence information with graph-based
representations, enabling a more comprehensive
understanding of biological mechanisms by em-
bedding sequence-derived features within graph

features. This can enhance applications such as
protein-protein interaction prediction and molecu-
lar pathway analysis.

5 Model methodology

5.1 Training objective

Masked language modeling (MLM) is a com-
monly used self-supervised pretraining approach,
in which certain input tokens are masked, and the
model is trained to predict them using contextual
information. Through this method, the model can
learn bidirectional representations, improving its
performance on tasks requiring deep contextual un-
derstanding. In ESM3, MLM integrates multiple
modalities, such as sequence, structure, and text,
with the filling of each masked token conditioned
on various modalities. This interaction process
enables ESM3 to capture the residue-level evolu-
tionary path dependencies within the protein space.
This includes modeling the feasible sequence space
under specific protein conformational constraints
and structural selection driven by functional con-
straints, providing a deeper understanding of pro-
tein evolution. From the perspective of protein
design, the mechanism of ESM3 allows it to ac-
cept flexible combinations of modalities as input
for designing novel proteins.

Autoregressive (AR) models, like GPT, gener-
ate tokens sequentially, conditioning each on the
previous ones. This unidirectional approach is ideal
for tasks requiring sequential coherence, such as
text completion. This autoregressive method also
allows EVO to capture sequential dependencies in
genomic data, ensuring more accurate and coher-
ent generation of long-range genetic structures. In
genomes, functional elements like promoters and
enhancers are distributed with a sequential rela-
tionship, making AR particularly well-suited for
modeling the sequential semantic information of
genomic sequences.

5.2 Embedding generation

Data embedding generation involve two key meth-
ods: feature extraction and tokenization. Both
methods are essential for converting raw data into
representations that can be effectively utilized by
LLMs for diverse downstream tasks.

Feature extraction aim to process raw data to
extract meaningful representations that capture es-
sential information. Using pre-trained encoders,
the raw data such as biomolecular sequences,



graphs, and structures are transformed into high-
dimensional feature vectors. These features serve
as abstract embeddings, which can then be used
for further analysis, prediction, or understanding
of biomolecular properties. This method enables a
deeper understanding of the raw data by convert-
ing raw information into a more manageable and
interpretable format.

Tokenization treats biomolecular sequences as
discrete symbols, where individual residues, nu-
cleotides, functional motifs, or atoms are tokenized.
This strategy leverages techniques such as k-mer
modeling, subword tokenization, to segment se-
quences into meaningful units, allowing for effi-
cient learning of sequence patterns. In addition,
biomolecular structures can be tokenized via vector
quantization (VQ). Unlike sequence data, structural
representations are inherently continuous, making
direct tokenization challenging. VQ addresses this
by discretizing 3D coordinates into a predefined
codebook, capturing essential geometric and topo-
logical features. This enables structural data to be
processed similarly to sequence data while preserv-
ing critical spatial information.

5.3 Model architecture

In this survey, LLMs fall into two categories based
on language types. Biological LLMs (5.3.1) are
trained on biomolecular sequences, graphs and
structures or their integration, capturing domain-
specific patterns for biological language tasks.
While effective in processing biological language,
they lack general knowledge. Natural LLMs
(5.3.2) excel in understanding and generating hu-
man language but struggle with biomolecular com-
plexity. Adaptations such as instruction tuning help
them handle biological tasks but remain limited in
tasks related to biomolecular graphs and structures.
Multimodal LLMs (5.3.3) bridge biological and
natural language by integrating sequences, graphs
structures, and textual data, enabling cross-modal
understanding, reasoning and generation. Table 2
shows recent progress of LLMs in molecular biol-
ogy, encompassing single cell, protein, DNA, RNA,
small molecules, etc.

5.3.1 Biological large language models

Biological LLMs are computational models specif-
ically trained on large-scale biological data, includ-
ing amino acid sequences, nucleotide sequences,
SMILES representations, and single-cell sequenc-
ing data. Examples include ESM3 (Hayes et al.,

2024), Nucleotide Transformer (Dalla-Torre et al.,
2024), and Evo (Nguyen et al., 2024a). These mod-
els build upon advancements in language modeling
techniques to learn the unique properties of biolog-
ical language (Li et al., 2021), aiming to uncover
meaningful insights encoded within them. Depend-
ing on the type of biomolecular data they process,
biological LLMs can be further categorized into
the following five model classes (see Appendix B),
each tailored to address specific challenges in their
respective domains.

5.3.2 Natural large language models

Natural and biological LLMs, although operat-
ing in distinct domains, share fundamental prin-
ciples for processing sequential data. Over the
past decade, language models have transformed
NLP (Mikolov et al., 2013; Pennington et al.,
2014), with key breakthroughs driven by transform-
ers (Vaswani et al., 2017), such as BERT (Devlin
et al., 2019) and GPT (Radford and Narasimhan,
2018; Radford et al., 2019). Their attention mech-
anisms enable efficient modeling of long-range
dependencies, leading to increasingly powerful
models like GPT-3 (Brown et al., 2020), Instruct-
GPT (Ouyang et al., 2022), and GPT-4 (Achiam
et al., 2023), DeepSeek (Liu et al., 2024a), ex-
celling in text generation, translation, and question-
answering. Natural LLMs have been adapted
to biological language tasks via instruction fine-
tuning (Fang et al., 2024a), but they struggle with
more complex biomolecular data, such as 2D
molecular graphs and 3D protein structures. This
limitation has spurred the development of multi-
modal LLMs (MLLMs), which integrate text with
diverse biomolecular data types to bridge natural
and biological languages.

5.3.3 Multimodal large language models

With the rapid advancement of natural LLMs,
MLLMs, which process and integrate multimodal
data, have gained significant attention, such as
BLIP-2 (Li et al., 2023), Kosmos-1 (Huang et al.,
2023), and Llava (Liu et al., 2024c¢). These models
not only enhance performance in language-related
tasks, but also advance the capability of models
to understand and generate information that spans
both abstract and physical domains. MLLMs have
shown promise in a wide range of tasks, such as
text-to-image/video generation, video analysis, and
audio-visual understanding, which are essential
steps towards artificial general intelligence (AGI).



These developments are pushing the boundaries
of machine understanding by facilitating more nu-
anced interactions with the real world. In this sur-
vey, we term MLLMs as those trained on integra-
tion of textual data with heterogeneous biomolec-
ular data (i.e., using TAI for data integration), en-
abling deeper insights into complex biomolecu-
lar interactions. In molecular biology, MLLMs
leverage mainstream multimodal architectures for
modality alignment, such as projection-based (e.g.,
Llava) and Q-Former-based (e.g., BLIP-2) models.
These architectures align different modalities by
projecting them into a shared space or using query
encoders and cross attention mechanisms to extract
and fuse key biological information.

6 Tokenization for biomolecules

Tokenization plays a crucial role in biological lan-
guage processing, akin to its importance in nat-
ural language processing, as it directly affects a
model’s ability to interpret input and overall per-
formance (Pei et al., 2024). Tokenization tech-
niques for biomolecular data have evolved to ad-
dress diverse modalities. For 1D biomolecular se-
quences, methods like K-mer tokenization segment
sequences into fixed-length substrings, while sub-
word methods focus on biologically relevant mo-
tifs. For 2D graphs and 3D structures, tokenization
incorporates biomolecular topologies and spatial
relationships. Approaches such as graph-based tok-
enizers and vector quantization (VQ) capture graph
and structure features, enabling models to effec-
tively represent 2D and 3D biomolecular data.

6.1 1D sequence tokenization

K-mer tokenization is a widely used technique for
processing biological sequences, particularly in ge-
nomics and proteomics. This method involves seg-
menting sequences into fixed-length overlapping
or non-overlapping substrings, known as K-mer,
where K represents the length of each substring.
For example, in DNA sequences, a 3-mer tokeniza-
tion would break the sequence “ATGCGT” into
[“ATG”, “TGC”, “GCG”, “CGT”].
Byte-pair-encoding (BPE) is a renowned
subword tokenization method that constructs a
variable-length vocabulary by repeatedly merging
the most frequent adjacent symbol pairs. It has
been widely adopted in NLP to efficiently handle
rare and out-of-vocabulary words. Its effectiveness
in managing long sequences and rare token oc-

currences, has led to applications in biomolecular
data. For example, DNABERT-2 (Zhou et al., 2023)
merges frequent nucleotide pairs and genome seg-
ments to enhance genomic sequence representa-
tion by capturing local and long-range dependen-
cies. Despite improving tokenization efficiency,
BPE has limitations in biological contexts. Un-
like natural language, where subword units carry
semantic meaning, biological sequences lack ex-
plicit word boundaries, complicating meaningful
tokenization. BPE’s frequency-based merging may
overlook functional motifs or structural elements,
potentially leading to biologically irrelevant seg-
mentations. Additionally, frequent patterns in one
dataset may not generalize across species or se-
quence contexts. Addressing these challenges re-
quires biologically informed tokenization that in-
corporate structural, functional, or evolutionary
constraints.

Hierarchical encoding is a technique that repre-
sents biomolecules at multiple levels of abstraction
to preserve both local and global contextual infor-
mation. Unlike conventional tokenization methods
that operate at a single level (e.g., residue-level and
atom-level), hierarchical encoding introduces mul-
tiple layers of representation to capture the struc-
tural and functional complexity of biological data.
For example, HELM (Yazdani-Jahromi et al., 2024)
encodes mRNA at multiple levels, such as 6-mer
and codon-level tokenization, to seize the biologi-
cal significance of mRNA sequences.

Specialized vocabulary refers to a tokenization
approach where domain-specific token dictionar-
ies are designed for biomolecular data. Instead
of relying on purely statistical subword segmenta-
tion methods, specialized vocabulary approaches
incorporate domain knowledge to define biologi-
cally meaningful tokens, such as amino acid motifs,
codons, or functional domains, to enhance model
interpretability and performance in biomolecular
tasks. The work (Ai and Kavuluru, 2023) cus-
tomized tokenization way and specialized dictio-
naries for biomolecular sequences, providing em-
pirical evidence of their effectiveness.

6.2 2D graph and 3D structure tokenization

Graph-based tokenizers represent biomolecules
as graphs, where atoms are nodes and bonds are
edges, capturing spatial relationships and connec-
tivity. Tokenization involves encoding node fea-
tures (e.g., atom type, charge) and edge features
(e.g., bond type, distance) into embeddings for pro-



Table 2: Recent research progress of large language models for molecular biology

Model/Method

Biomolecule type

Data modality

Key takeaway

ESMFold (Lin et al., 2023b)

ESM3 (Hayes et al., 2025)

AIDO.RAGFold (Li et al., 2024c)

EVO (Nguyen et al., 2024b)

Nucleotide Transformer (Dalla-Torre et al., 2024)
GenomeOcean (Zhou et al., 2025b)

MegaDNA (Shao and Yan, 2024)

scGPT (Cui et al., 2024)
LucaOne (He et al., 2024b)
NatureLM (Xia et al., 2025)

Protein
Protein
Protein
DNA
DNA
DNA
DNA

RNA
DNA, RNA, Protein

RNA, Protein, Small molecules

Sequence-Structure
Sequence-Structure-Text
Sequence-Structure
Sequence

Sequence

Sequence

Sequence

Sequence
Sequence
Sequence

Protein structure prediction

Multimodal, Large-scale token level pretraining
Protein structure prediction, RAG

Genome generation

Genome foundation model

Large-Scale, Metagenomic

Long-context generative model

Single-cell foundation model, Multi-omic
Large-scale genome foundational model
Sequence-based molecule foundation model

InstructProtein (Wang et al., 2023)
HelixProtX (Chen et al., 2024)
SEPIT (Wu et al., 2024)

ProtT3 (Liu et al., 2024¢)
ProLLM (Jin et al., 2024)
PROTLLM (Zhuo et al., 2024)

ProLLaMA (Lv et al., 2024)

P-LLMs (Zeinalipour et al., 2024)
ProtDAT (Guo et al., 2024)

BioM3 (Praljak et al., 2024)
ProteinGPT (Xiao et al., 2024b)
ProteinChat (Huo et al., 2024)
ProtChatGPT (Wang et al., 2024a)
Protein Captioning (Zhang et al., 2024b)
Evola (Zhou et al., 2025a)
TourSynbio (Shen et al., 2024)

PQA (Carrami and Sharifzadeh, 2024)
RSA (Ma et al., 2024)

Protein

Protein

Protein

Protein

Protein

Protein

Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein
Protein

Protein

Sequence-Text
Sequence-Structure-Text
Sequence-Structure-Text
Sequence-Text
Sequence-Text
Sequence-Text

Sequence-Text
Sequence-Text
Sequence-Text
Sequence-Text
Sequence-Structure-Text
Sequence-Text
Sequence-Structure-Text
Sequence-Text
Sequence-Structure-Text
Sequence-Text
Sequence-Text

Sequence-Text

Bidirectional generation of protein sequence

and language, Knowledge graph-based instruction
Transformation between protein sequences,
structures, and textual descriptions

Protein function prediction, Mixture of

experts (MoE), Instruction tuning

Protein Understanding, Q-Former

Cross-modal contrastive learning

Protein-protein interaction prediction

Protein chain of thought

Interleaved protein-text dataset

Dynamic protein mounting

Protein sequence generation and understanding
Protein vocabulary pruning

Tokenizer retraining, Adaptation to small datasets
De novo protein design

Multimodal cross-attention

Protein domain design, Contrastive learning
Protein property prediction

Linear projection

Interactive refinement, Adaptor, LORA
Interactive conversations about protein structures
Multi-level protein-language alignment

Protein captioning, Conversational interaction
Direct preference optimization, RAG
Al-generated data

Protein engineering, Mutation analysis, Agent
Protein question answering, Soft prompts

Gated cross-attention

RAG, LLM agents

MolT5 (Edwards et al., 2022)
InstructMol (Cao et al., 2023)

MoICA (Liu et al., 2023)
STRUCTCOT (Jang et al., 2024)
GIT-Mol (Liu et al., 2024d)

ICMA (Li et al., 2024b)
3D-MoLM (Li et al., 2024d)

ChemLLM (Zhang et al., 2024a)
ChemDFM (Zhao et al., 2024b)
nachQ (Livne et al., 2024)

BioT5 (Pei et al., 2023)
BioMedGPT (Luo et al., 2023)
InstructBioMol (Zhuang et al., 2024)
ChatNT (Richard et al., 2024)
LangCell (Zhao et al., 2024a)

CHATCELL (Fang et al., 2024b)
GeneRAG (Lin et al., 2024)
BioRAG (Wang et al., 2024b)

Small molecules
Small molecules

Small molecules
Small molecules

Small molecules

Small molecules

Small molecules

Small molecules
Small molecules

Small molecules

Small molecules, Protein
Small molecules, Protein
Small molecules, Protein
Protein, DNA, RNA
RNA

Gene
Gene

Gene, Protein

Sequence-Text
Sequence-Graph-Text

Sequence-Graph-Text
Sequence-Text

Graph-Text
Sequence-Graph-Text
Sequence-Structure-Text

Sequence-Text
Sequence-Text

Sequence-Text

Sequence-Sequence-Text
Sequence-Text
Sequence-Structure-Text
Sequence-Text
Sequence-Text

Text
Text
Text

Molecule captioning and

text-based molecule generation

Assistants in molecular research
Multimodal instruction-tuning

Gragh-text alignment

Q-Former, LoORA

Structure-aware, Chain-of-thought
Multimodal LLMs that integrates

graph, text, and image

In-context molecule tuning

Hybrid context retrieval

Connects LLMs and 3D molecular encoder
Q-Former

Chemistry, Instruction tuning

Benchmark for chemistry tasks

Chemical literature, Instruction tuning
Pre-trained on scientific literature

and molecular data, Drug discovery
integrates molecular string SELFIES and
contextual knowledge from literature
Incremental training on literature, Biomedical QA
Understanding and design of biomolecules
Motif-Guided multimodal module
Multimodal LLMs for DNA, RNA, and protein
Understanding of cell identity
Language-cell pre-training

Single-cell analysis

RAG, Gene, LLMs

RAG

cessing by graph neural networks (GNNs). This ap-
proach preserves the biomolecular topology, mak-
ing it effective for tasks like molecular property

prediction, drug discovery, and protein-ligand in-
teractions. However, challenges include managing
large graphs, ensuring efficient graph convolution



operations, and maintaining interpretability.
Vector quantization (VQ) methods construct
vocabularies for continuous biomolecular data, es-
pecially 3D protein structures (see Table 3). VQ
discretizes continuous representations into a code-
book, serving as tokens for downstream tasks.
This results in compact and meaningful vocabu-
laries that retain essential biomolecular features
while reducing complexity. However, VQ meth-
ods face challenges in biomolecular applications.
Discretization may lose critical structural and func-
tional details, as biomolecules exhibit hierarchical
and multi-scale properties that may not be well-
captured by a fixed set of quantized codes. Ad-
ditionally, determining an optimal codebook size
is crucial—too few codes may oversimplify com-
plex biomolecular representations, while too many
introduce sparsity and inefficiency. Furthermore,
VQ methods struggle to generalize across diverse
biological contexts due to species- and condition-
specific variability. Addressing these limitations
may require biologically informed constraints,
adaptive quantization, or hybrid approaches bal-
ancing continuous and discrete representations.

Table 3: Vector quantization (VQ) methods.

Method Key takeaway

VQPL (Gao et al., 2023)
ProTokens (Lin et al., 2023a)

Quantized protein language
Probabilistic tokenization

Large molecular structures, Mamba,

bio2token (Liu et al., 2024b) State space model architecture
LPS (Gaujac et al., 2024) Vect(')r—quantl'zed aul(')encoder,
Multi-modal integration

FoldToken (Gao et al., 2024d)  Soft conditional vector quantization

Equivariant structures,

FoldToken2 (Gao et al., 2024b) Vector-quantized compressor

FoldToken3 (Gao et al., 2024a)
FoldToken4 (Gao et al., 2024c)

Light-weight, efficient tokenization

Hierarchical multiscale, Token mixing

7 Evaluation of LLMs in molecular
biology

The evaluation of LLMs in molecular biology re-
quires specialized benchmarks that assess their abil-
ity to understand, generate, and reason over bio-
logical data. Table 4 offers an overview of key
datasets and benchmarks designed for evaluating
LLMs in life sciences, covering various task such
as molecular understanding, generation, and rea-
soning. These benchmarks focus on different as-
pects of molecular biology. By leveraging these
diverse benchmarks, researchers can systematically
analyze the advantages and shortcomings of LLMs
in biological language tasks, guiding future im-

provements and adaptations for more effective ap-
plications in molecular biology research.

Table 4: Datasets and benchmarks for evaluation of
LLMs in life sciences.

Model/Method Task scope Key takeaway

Bioinfo-Bench (Chen and Deng, 2023) LLM:s for bioinformatics
SciEval (Sun et al., 2023)
LLMaMol (Zhong et al., 2024)

MoleculeQA (Lu et al., 2024)

Understanding

Understanding ~ Scientific research, Multi-level

Understanding ~ Geometric structure of molecules

Understanding ~ Factual evaluation

Molecular property prediction

MolCap-Arena (Edwards et al., 2024) Molecule caption

Understanding

Annotation prediction, Sequence

{20 ot al.. 202
OPI (Xiao et al., 2024a) understanding, Knowledge mining

Understanding

Understanding,

R Multi-omics, Large-scale
Reasoning

Biology Instructions (He et al., 2024a)

Understanding,

Mol-Instructions (Fang et al., 2024a) Generation

Protein design, Instruction tuning

Molecule editing,

TOMG-Bench (Li et al., 2024a) Molecule optimization

Generation

Multi-metrics, Antibody design

Generation X
Inverse folding

ProteinBench (Ye et al., 2024)

8 Conclusion and future work

LLMs are transforming molecular biology by en-
abling biological language computation, yet chal-
lenges persist due to the grammar and semantic
complexities of biomolecules. This survey exam-
ines three key strategies to address these challenges:
(1) biological LLMs trained on biomolecular data,
(2) post-training adaptations like instruction-tuning,
and (3) multimodal LLMs integrating sequences,
structures, and functions. Among these, multi-
modal LLLMs show the greatest promise, as they
unify biomolecular data, general knowledge, and
scientific literature to enhance biological language
processing and accelerate scientific discoveries.
Yet, challenges like biologically informed tokeniza-
tion and cross-domain generalization, still remain.
Future research directions suggested in this work
include: (1) developing adaptive tokenizers (Yan
et al., 2024b; Shen et al., 2025) for biomolecules,
which dynamically adjust token granularity based
on input data characteristics, optimizing tokeniza-
tion through variable token lengths and context-
specific rules, making them particularly suited for
domains like biological language modeling with
highly variable structures; (2) optimizing the inte-
gration of specialized biomolecular encoders and
LLMs to align biological and natural languages;
(3) developing comprehensive benchmarks for mul-
timodal LLMs in biomolecular tasks, improving
model generalization across various downstream
tasks of interest to domain experts.



Limitations

This survey focuses on LLMs in molecular biol-
ogy, specifically targeting biomolecular sequences,
structures, graphs and functions (texts). They are
key aspects of molecular biology that have gained
attention in recent years. The LLMs listed in this
survey do not address other data types, such as cell
images or experimental data. With the develop-
ment of molecular biology research, future surveys
could cover more advanced LLMs that incorpo-
rate a broader range of data types and explore their
applications in molecular biology.

Ethics Statement

To the best of our knowledge, there are no ethical
concerns associated with the LLMs listed in this
survey, as they are trained on publicly available,
non-sensitive information. This work primarily
aims to introduce the construction and application
of LLMs in molecular biology, focusing on advanc-
ing scientific research without generating harmful
content.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Xuguang Ai and Ramakanth Kavuluru. 2023. End-to-
end models for chemical-protein interaction extrac-
tion: Better tokenization and span-based pipeline
strategies. In 2023 IEEE 11th International Confer-
ence on Healthcare Informatics (ICHI), pages 610—
618. IEEE.

Zhenyu Bi, Sajib Acharjee Dip, Daniel Hajialigol, Sind-
hura Kommu, Hanwen Liu, Meng Lu, and Xuan
Wang. 2024. Al for biomedicine in the era of large
language models. arXiv preprint arXiv:2403.15673.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

He Cao, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li.
2023. InstructMol: Multi-modal integration for build-
ing a versatile and reliable molecular assistant in drug
discovery. arXiv preprint arXiv:2311.16208.

Eli M Carrami and Sahand Sharifzadeh. 2024. PQA:
Zero-shot protein question answering for free-form
scientific enquiry with large language models. arXiv
preprint arXiv:2402.13653.

Qiyuan Chen and Cheng Deng. 2023. Bioinfo-Bench: A
simple benchmark framework for 1lm bioinformatics
skills evaluation. bioRxiv.

Zhiyuan Chen, Tianhao Chen, Chenggang Xie, Yang
Xue, Xiaonan Zhang, Jingbo Zhou, and Xiaomin
Fang. 2024. Unifying sequences, structures, and de-
scriptions for any-to-any protein generation with the
large multimodal model HelixProtX. arXiv preprint
arXiv:2407.09274.

Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang,
Fengning Luo, Nan Duan, and Bo Wang. 2024.
scGPT: toward building a foundation model for
single-cell multi-omics using generative ai. Nature
Methods, pages 1-11.

Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-
Revilla, Nicolas Lopez Carranza, Adam Henryk
Grzywaczewski, Francesco Oteri, Christian Dallago,
Evan Trop, Bernardo P de Almeida, Hassan Sirelkha-
tim, et al. 2024. Nucleotide transformer: building
and evaluating robust foundation models for human
genomics. Nature Methods, pages 1-11.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke,
Kyunghyun Cho, and Heng Ji. 2022. Translation
between molecules and natural language. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 375-413,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Carl Edwards, Ziging Lu, Ehsan Hajiramezanali, Tom-
maso Biancalani, Heng Ji, and Gabriele Scalia. 2024.
Molcap-arena: A comprehensive captioning bench-
mark on language-enhanced molecular property pre-
diction. arXiv preprint arXiv:2411.00737.

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei
Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Hua-
jun Chen. 2024a. Mol-Instructions: A large-scale
biomolecular instruction dataset for large language
models. arXiv preprint arXiv:2306.08018.

Yin Fang, Kangwei Liu, Ningyu Zhang, Xinle Deng,
Penghui Yang, Zhuo Chen, Xiangru Tang, Mark Ger-
stein, Xiaohui Fan, and Huajun Chen. 2024b. Chat-
Cell: Facilitating single-cell analysis with natural
language. arXiv preprint arXiv:2402.08303.

Daniel Flam-Shepherd and Aldn Aspuru-Guzik. 2023.
Language models can generate molecules, materi-
als, and protein binding sites directly in three di-
mensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708.

Zhangyang Gao, Chen Tan, and Stan Z Li. 2024a. Fold-
Token3: Fold structures worth 256 words or less.
bioRxiv.


https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/ichi57859.2023.00108
https://doi.org/10.1109/ichi57859.2023.00108
https://doi.org/10.1109/ichi57859.2023.00108
https://doi.org/10.1109/ichi57859.2023.00108
https://doi.org/10.1109/ichi57859.2023.00108
https://doi.org/10.1109/ichi57859.2023.00108
https://doi.org/10.1109/ichi57859.2023.00108
https://arxiv.org/abs/2403.15673
https://arxiv.org/abs/2403.15673
https://arxiv.org/abs/2403.15673
https://doi.org/10.5555/3495724.3495883
https://doi.org/10.5555/3495724.3495883
https://doi.org/10.5555/3495724.3495883
https://arxiv.org/abs/2311.16208
https://arxiv.org/abs/2311.16208
https://arxiv.org/abs/2311.16208
https://arxiv.org/abs/2311.16208
https://arxiv.org/abs/2311.16208
https://arxiv.org/abs/2402.13653
https://arxiv.org/abs/2402.13653
https://arxiv.org/abs/2402.13653
https://arxiv.org/abs/2402.13653
https://arxiv.org/abs/2402.13653
https://doi.org/10.1101/2023.10.18.563023
https://doi.org/10.1101/2023.10.18.563023
https://doi.org/10.1101/2023.10.18.563023
https://doi.org/10.1101/2023.10.18.563023
https://doi.org/10.1101/2023.10.18.563023
https://arxiv.org/abs/2407.09274
https://arxiv.org/abs/2407.09274
https://arxiv.org/abs/2407.09274
https://arxiv.org/abs/2407.09274
https://arxiv.org/abs/2407.09274
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.1101/2023.01.11.523679
https://doi.org/10.1101/2023.01.11.523679
https://doi.org/10.1101/2023.01.11.523679
https://doi.org/10.1101/2023.01.11.523679
https://doi.org/10.1101/2023.01.11.523679
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2022.emnlp-main.26
https://doi.org/10.18653/v1/2022.emnlp-main.26
https://doi.org/10.18653/v1/2022.emnlp-main.26
https://arxiv.org/abs/2411.00737
https://arxiv.org/abs/2411.00737
https://arxiv.org/abs/2411.00737
https://arxiv.org/abs/2411.00737
https://arxiv.org/abs/2411.00737
https://arxiv.org/abs/2306.08018
https://arxiv.org/abs/2306.08018
https://arxiv.org/abs/2306.08018
https://arxiv.org/abs/2306.08018
https://arxiv.org/abs/2306.08018
https://arxiv.org/abs/2402.08303
https://arxiv.org/abs/2402.08303
https://arxiv.org/abs/2402.08303
https://arxiv.org/abs/2402.08303
https://arxiv.org/abs/2402.08303
https://arxiv.org/abs/2305.05708
https://arxiv.org/abs/2305.05708
https://arxiv.org/abs/2305.05708
https://arxiv.org/abs/2305.05708
https://arxiv.org/abs/2305.05708
https://doi.org/10.1101/2024.07.08.602548
https://doi.org/10.1101/2024.07.08.602548
https://doi.org/10.1101/2024.07.08.602548

Zhangyang Gao, Cheng Tan, and Stan Z Li. 2023.
VQPL: Vector quantized protein language. arXiv
preprint arXiv:2310.04985.

Zhangyang Gao, Cheng Tan, and Stan Z Li. 2024b.
FoldToken2: Learning compact, invariant and gener-
ative protein structure language. bioRxiv.

Zhangyang Gao, Cheng Tan, and Stan Z Li. 2024c.
FoldToken4: Consistent & hierarchical fold language.
bioRxiv.

Zhangyang Gao, Cheng Tan, Jue Wang, Yufei Huang,
Lirong Wu, and Stan Z Li. 2024d. FoldToken: Learn-
ing protein language via vector quantization and be-
yond. arXiv preprint arXiv:2403.09673.

Benoit Gaujac, Jérémie Dona, Liviu Copoiu, Timothy
Atkinson, Thomas Pierrot, and Thomas D Barrett.
2024. Learning the language of protein structure.
arXiv preprint arXiv:2405.15840.

Laura H Goetz and Nicholas J Schork. 2018. Personal-
ized medicine: motivation, challenges, and progress.
Fertility and sterility, 109(6):952-963.

Xiao-Yu Guo, Yi-Fan Li, Yuan Liu, Xiaoyong Pan, and
Hong-Bin Shen. 2024. ProtDAT: A unified frame-
work for protein sequence design from any protein
text description. arXiv preprint arXiv:2412.04069.

Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J.
Sofroniew, Deniz Oktay, Zeming Lin, Robert Verkuil,
Vincent Q. Tran, Jonathan Deaton, Marius Wiggert,
Rohil Badkundri, Irhum Shafkat, Jun Gong, Alexan-
der Derry, Raul S. Molina, Neil Thomas, Yousuf
Khan, Chetan Mishra, Carolyn Kim, Liam J. Bartie,
Matthew Nemeth, Patrick D. Hsu, Tom Sercu, Salva-
tore Candido, and Alexander Rives. 2024. Simulat-
ing 500 million years of evolution with a language
model. bioRxiv.

Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J
Sofroniew, Deniz Oktay, Zeming Lin, Robert Verkuil,
Vincent Q Tran, Jonathan Deaton, Marius Wiggert,
et al. 2025. Simulating 500 million years of evolution
with a language model. Science, page eads0018.

Haonan He, Yuchen Ren, Yining Tang, Ziyang Xu,
Junxian Li, Minghao Yang, Di Zhang, Dong Yuan,
Tao Chen, Shufei Zhang, Yugiang Li, Nanqing
Dong, Wanli Ouyang, Dongzhan Zhou, and Peng Ye.
2024a. Biology instructions: A dataset and bench-
mark for multi-omics sequence understanding ca-
pability of large language models. arXiv preprint
arXiv:2412.19191.

Yong He, Pan Fang, Yongtao Shan, Yuanfei Pan, Yan-
hong Wei, Yichang Chen, Yihao Chen, Yi Liu,
Zhenyu Zeng, Zhan Zhou, et al. 2024b. Lucaone:
Generalized biological foundation model with unified
nucleic acid and protein language. bioRxiv, pages
2024-05.

10

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao,
Saksham Singhal, Shuming Ma, Tengchao Lv, Lei
Cui, Owais Khan Mohammed, Barun Patra, et al.
2023. Language is not all you need: Aligning per-
ception with language models. Advances in Neural
Information Processing Systems, 36:72096—72109.

Mingjia Huo, Han Guo, Xingyi Cheng, Digvijay Singh,
Hamidreza Rahmani, Shen Li, Philipp Gerlof, Trey
Ideker, Danielle A Grotjahn, Elizabeth Villa, et al.
2024. Multi-modal large language model enables
protein function prediction. bioRxiv.

Yunhui Jang, Jaehyung Kim, and Sungsoo Ahn.
2024. Chain-of-thoughts for molecular understand-
ing. arXiv preprint arXiv:2410.05610.

Mingyu Jin, Haochen Xue, Zhenting Wang, Boming
Kang, Ruosong Ye, Kaixiong Zhou, Mengnan Du,
and Yongfeng Zhang. 2024. ProLLM: Protein chain-
of-thoughts enhanced 1lm for protein-protein interac-
tion prediction. bioRxiv, pages 2024-04.

Wei Lan, Guohang He, Mingyang Liu, Qingfeng Chen,
Junyue Cao, and Wei Peng. 2024. Transformer-based
single-cell language model: A survey. arXiv preprint
arXiv:2407.13205.

Hongliang Li, Yihe Pang, and Bin Liu. 2021. BioSeq-
BLM: a platform for analyzing DNA, RNA and pro-
tein sequences based on biological language models.
Nucleic Acids Research, 49:€129 —e129.

Jiatong Li, Junxian Li, Yunqing Liu, Dongzhan Zhou,
and Qing Li. 2024a. Tomg-bench: Evaluating llms
on text-based open molecule generation. arXiv
preprint arXiv:2412.14642.

Jiatong Li, Wei Liu, Zhihao Ding, Wengqi Fan, Yuqiang
Li, and Qing Li. 2024b. Large language models
are in-context molecule learners. arXiv preprint
arXiv:2403.04197.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In International conference on ma-
chine learning, pages 19730-19742. PMLR.

Pan Li, Xingyi Cheng, Le Song, and Eric Xing. 2024c.
Retrieval augmented protein language models for
protein structure prediction. bioRxiv.

Sihang Li, Zhiyuan Liu, Yanchen Luo, Xiang Wang,
Xiangnan He, Kenji Kawaguchi, Tat-Seng Chua,
and Qi Tian. 2024d. Towards 3D molecule-text
interpretation in language models. arXiv preprint
arXiv:2401.13923.

Xiaohan Lin, Zhenyu Chen, Yanheng Li, Zicheng Ma,
Chuanliu Fan, Zigiang Cao, Shihao Feng, Yi Qin Gao,
and Jun Zhang. 2023a. Tokenizing foldable protein
structures with machine-learned artificial amino-acid
vocabulary. bioRxiv.


https://arxiv.org/abs/2310.04985
https://doi.org/10.1101/2024.06.11.598584
https://doi.org/10.1101/2024.06.11.598584
https://doi.org/10.1101/2024.06.11.598584
https://doi.org/10.1101/2024.08.04.606514
https://arxiv.org/abs/2403.09673
https://arxiv.org/abs/2403.09673
https://arxiv.org/abs/2403.09673
https://arxiv.org/abs/2403.09673
https://arxiv.org/abs/2403.09673
https://arxiv.org/abs/2405.15840
https://doi.org/10.1016/j.fertnstert.2018.05.006
https://doi.org/10.1016/j.fertnstert.2018.05.006
https://doi.org/10.1016/j.fertnstert.2018.05.006
https://arxiv.org/abs/2412.04069
https://arxiv.org/abs/2412.04069
https://arxiv.org/abs/2412.04069
https://arxiv.org/abs/2412.04069
https://arxiv.org/abs/2412.04069
https://doi.org/10.1101/2024.07.01.600583
https://doi.org/10.1101/2024.07.01.600583
https://doi.org/10.1101/2024.07.01.600583
https://doi.org/10.1101/2024.07.01.600583
https://doi.org/10.1101/2024.07.01.600583
https://doi.org/10.1101/2024.07.01.600583
https://doi.org/10.1101/2024.07.01.600583
https://doi.org/10.1101/2024.07.01.600583
https://arxiv.org/abs/2412.19191
https://arxiv.org/abs/2412.19191
https://arxiv.org/abs/2412.19191
https://arxiv.org/abs/2412.19191
https://arxiv.org/abs/2412.19191
https://doi.org/10.1101/2024.05.10.592927
https://doi.org/10.1101/2024.05.10.592927
https://doi.org/10.1101/2024.05.10.592927
https://doi.org/10.1101/2024.05.10.592927
https://doi.org/10.1101/2024.05.10.592927
https://openreview.net/forum?id=UpN2wfrLec
https://openreview.net/forum?id=UpN2wfrLec
https://openreview.net/forum?id=UpN2wfrLec
https://doi.org/10.1101/2024.08.19.608729
https://doi.org/10.1101/2024.08.19.608729
https://doi.org/10.1101/2024.08.19.608729
https://arxiv.org/abs/2410.05610
https://arxiv.org/abs/2410.05610
https://arxiv.org/abs/2410.05610
https://doi.org/10.1101/2024.04.18.590025
https://doi.org/10.1101/2024.04.18.590025
https://doi.org/10.1101/2024.04.18.590025
https://doi.org/10.1101/2024.04.18.590025
https://doi.org/10.1101/2024.04.18.590025
https://arxiv.org/abs/2407.13205
https://arxiv.org/abs/2407.13205
https://arxiv.org/abs/2407.13205
https://doi.org/10.1093/nar/gkab829
https://doi.org/10.1093/nar/gkab829
https://doi.org/10.1093/nar/gkab829
https://doi.org/10.1093/nar/gkab829
https://doi.org/10.1093/nar/gkab829
https://arxiv.org/abs/2412.14642
https://arxiv.org/abs/2412.14642
https://arxiv.org/abs/2412.14642
https://arxiv.org/abs/2403.04197
https://arxiv.org/abs/2403.04197
https://arxiv.org/abs/2403.04197
https://proceedings.mlr.press/v202/li23q/li23q.pdf
https://proceedings.mlr.press/v202/li23q/li23q.pdf
https://proceedings.mlr.press/v202/li23q/li23q.pdf
https://proceedings.mlr.press/v202/li23q/li23q.pdf
https://proceedings.mlr.press/v202/li23q/li23q.pdf
https://doi.org/10.1101/2024.12.02.626519
https://doi.org/10.1101/2024.12.02.626519
https://doi.org/10.1101/2024.12.02.626519
https://arxiv.org/abs/2401.13923
https://arxiv.org/abs/2401.13923
https://arxiv.org/abs/2401.13923
https://doi.org/10.1101/2023.11.27.568722
https://doi.org/10.1101/2023.11.27.568722
https://doi.org/10.1101/2023.11.27.568722
https://doi.org/10.1101/2023.11.27.568722
https://doi.org/10.1101/2023.11.27.568722

Xinyi Lin, Gelei Deng, Yuekang Li, Jingquan Ge,
Joshua Wing Kei Ho, and Yi Liu. 2024. GeneRAG:
Enhancing large language models with gene-related
task by retrieval-augmented generation. bioRxiv.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie,
Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa,
Maryam Fazel-Zarandi, Tom Sercu, Sal Candido,
et al. 2022. Language models of protein sequences
at the scale of evolution enable accurate structure
prediction. BioRxiv, 2022:500902.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie,
Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, et al. 2023b.
Evolutionary-scale prediction of atomic-level pro-

tein structure with a language model. Science,
379(6637):1123-1130.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report.  arXiv preprint
arXiv:2412.19437.

Andrew Liu, Axel Elaldi, Nathan Russell, and Olivia
Viessmann. 2024b. Bio2Token: All-atom tokeniza-
tion of any biomolecular structure with mamba.
arXiv preprint arXiv:2410.19110.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae
Lee. 2024c. Improved baselines with visual instruc-
tion tuning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 26296-26306.

Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang
Ren. 2024d. Git-Mol: A multi-modal large lan-
guage model for molecular science with graph, im-
age, and text. Computers in biology and medicine,
171:108073.

Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin
Cao, Kenji Kawaguchi, Xiang Wang, and Tat-Seng
Chua. 2023. MolCA: Molecular graph-language
modeling with cross-modal projector and uni-modal
adapter. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 15623—-15638, Singapore. Association for
Computational Linguistics.

Zhiyuan Liu, An Zhang, Hao Fei, Enzhi Zhang, Xi-
ang Wang, Kenji Kawaguchi, and Tat-Seng Chua.
2024e.  ProtT3: Protein-to-text generation for

text-based protein understanding. arXiv preprint
arXiv:2405.12564.

Micha Livne, Zulfat Miftahutdinov, Elena Tutubalina,
Maksim Kuznetsov, Daniil Polykovskiy, Annika
Brundyn, Aastha Jhunjhunwala, Anthony Costa,
Alex Aliper, Alan Aspuru-Guzik, et al. 2024. nachO:
Multimodal natural and chemical languages founda-
tion model. Chemical Science, 15(22):8380-8389.

Xingyu Lu, He Cao, Zijing Liu, Shengyuan Bai, Leqing
Chen, Yuan Yao, Hai-Tao Zheng, and Yu Li. 2024.

11

Moleculeqa: A dataset to evaluate factual accu-
racy in molecular comprehension. arXiv preprint
arXiv:2403.08192.

Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang,
Yushuai Wu, Mu Qiao, and Zaiqing Nie. 2023.
Biomedgpt: Open multimodal generative pre-trained
transformer for biomedicine. arXiv preprint
arXiv:2308.09442.

Liuzhenghao Lv, Zongying Lin, Hao Li, Yuyang Liu,
Jiaxi Cui, Calvin Yu-Chian Chen, Li Yuan, and
Yonghong Tian. 2024. ProLLaMA: A protein large
language model for multi-task protein language pro-
cessing. arXiv preprint arXiv:2402.16445.

Chang Ma, Haiteng Zhao, Lin Zheng, Jiayi Xin, Qin-
tong Li, Lijun Wu, Zhihong Deng, Yang Young Lu,
Qi Liu, Sheng Wang, and Lingpeng Kong. 2024. Re-
trieved sequence augmentation for protein represen-
tation learning. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1738-1767, Miami, Florida, USA.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Shuto Negishi, James H Girsch, Elizabeth L Siegler,
Evandro D Bezerra, Kotaro Miyao, and R Leo Sake-
mura. 2024. Treatment strategies for relapse after
CAR T-cell therapy in B cell lymphoma. Frontiers
in Pediatrics, 11:1305657.

Eric Nguyen, Michael Poli, Matthew G. Durrant, Brian
Kang, Dhruva Katrekar, David B. Li, Liam J. Bartie,
Armin W. Thomas, Samuel H. King, Garyk Brixi,
Jeremy Sullivan, Madelena Y. Ng, Ashley Lewis,
Aaron Lou, Stefano Ermon, Stephen A. Baccus, Tina
Hernandez-Boussard, Christopher Ré, Patrick D. Hsu,
and Brian L. Hie. 2024a. Sequence modeling and
design from molecular to genome scale with evo.
Science, 386(6723):ead09336.

Eric Nguyen, Michael Poli, Matthew G Durrant, Brian
Kang, Dhruva Katrekar, David B Li, Liam J Bar-
tie, Armin W Thomas, Samuel H King, Garyk
Brixi, et al. 2024b. Sequence modeling and design
from molecular to genome scale with Evo. Science,
386(6723):ead09336.

Joseph Nowell, Eleanor Blunt, and Paul Edison. 2023.
Incretin and insulin signaling as novel therapeutic tar-
gets for alzheimer’s and parkinson’s disease. Molec-
ular Psychiatry, 28(1):217-229.

Fang-Shu Ou, Stefan Michiels, Yu Shyr, Alex A Ad-
jei, and Ann L Oberg. 2021. Biomarker discovery
and validation: statistical considerations. Journal of
Thoracic Oncology, 16(4):537-545.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.


https://doi.org/10.1101/2024.06.24.600176
https://doi.org/10.1101/2024.06.24.600176
https://doi.org/10.1101/2024.06.24.600176
https://doi.org/10.1101/2024.06.24.600176
https://doi.org/10.1101/2024.06.24.600176
https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1
https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1
https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1
https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1
https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.ade2574
https://doi.org/10.1126/science.ade2574
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2410.19110
https://arxiv.org/abs/2410.19110
https://arxiv.org/abs/2410.19110
https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Improved_Baselines_with_Visual_Instruction_Tuning_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Improved_Baselines_with_Visual_Instruction_Tuning_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Liu_Improved_Baselines_with_Visual_Instruction_Tuning_CVPR_2024_paper.pdf
https://doi.org/10.1016/j.compbiomed.2024.108073
https://doi.org/10.1016/j.compbiomed.2024.108073
https://doi.org/10.1016/j.compbiomed.2024.108073
https://doi.org/10.1016/j.compbiomed.2024.108073
https://doi.org/10.1016/j.compbiomed.2024.108073
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://doi.org/10.18653/v1/2023.emnlp-main.966
https://arxiv.org/abs/2405.12564
https://arxiv.org/abs/2405.12564
https://arxiv.org/abs/2405.12564
https://doi.org/10.1039/d4sc00966e
https://doi.org/10.1039/d4sc00966e
https://doi.org/10.1039/d4sc00966e
https://doi.org/10.1039/d4sc00966e
https://doi.org/10.1039/d4sc00966e
https://arxiv.org/abs/2403.08192
https://arxiv.org/abs/2403.08192
https://arxiv.org/abs/2403.08192
https://arxiv.org/abs/2308.09442
https://arxiv.org/abs/2308.09442
https://arxiv.org/abs/2308.09442
https://arxiv.org/abs/2402.16445
https://arxiv.org/abs/2402.16445
https://arxiv.org/abs/2402.16445
https://arxiv.org/abs/2402.16445
https://arxiv.org/abs/2402.16445
https://doi.org/10.18653/v1/2024.emnlp-main.104
https://doi.org/10.18653/v1/2024.emnlp-main.104
https://doi.org/10.18653/v1/2024.emnlp-main.104
https://doi.org/10.18653/v1/2024.emnlp-main.104
https://doi.org/10.18653/v1/2024.emnlp-main.104
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.3389/fped.2023.1305657
https://doi.org/10.3389/fped.2023.1305657
https://doi.org/10.3389/fped.2023.1305657
https://doi.org/10.1126/science.ado9336
https://doi.org/10.1126/science.ado9336
https://doi.org/10.1126/science.ado9336
https://doi.org/10.1101/2024.02.27.582234
https://doi.org/10.1101/2024.02.27.582234
https://doi.org/10.1101/2024.02.27.582234
https://doi.org/10.1038/s41380-022-01792-4
https://doi.org/10.1038/s41380-022-01792-4
https://doi.org/10.1038/s41380-022-01792-4
https://doi.org/10.1016/j.jtho.2021.01.1616
https://doi.org/10.1016/j.jtho.2021.01.1616
https://doi.org/10.1016/j.jtho.2021.01.1616

2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Qizhi Pei, Lijun Wu, Kaiyuan Gao, Jinhua Zhu,
Yue Wang, Zun Wang, Tao Qin, and Rui Yan.
2024. Leveraging biomolecule and natural language
through multi-modal learning: A survey. arXiv
preprint arXiv:2403.01528.

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan
Gao, Lijun Wu, Yingce Xia, and Rui Yan. 2023.
BioT5: Enriching cross-modal integration in biol-
ogy with chemical knowledge and natural language
associations. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1102-1123, Singapore. Association for
Computational Linguistics.

Rafael Josip Peni¢, Tin Vlasi¢, Roland G. Huber,
Yue Wan, and Mile Siki¢. 2024. RiNALMo:
General-purpose RNA language models can general-

ize well on structure prediction tasks. arXiv preprint
arXiv:2403.00043.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532—1543, Doha, Qatar.
Association for Computational Linguistics.

NikSa Praljak, Hugh Yeh, Miranda Moore, Michael So-
colich, Rama Ranganathan, and Andrew L Ferguson.
2024. Natural language prompts guide the design of
novel functional protein sequences. bioRxiv.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language

models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Guillaume Richard, Bernardo P de Almeida, Hugo
Dalla-Torre, Christopher Blum, Lorenz Hexemer,
Priyanka Pandey, Stefan Laurent, Marie P Lopez,
Alexander Laterre, Maren Lang, et al. 2024. ChatNT:
A multimodal conversational agent for dna, rna and
protein tasks. bioRxiv.

Anna C Schaar, Alejandro Tejada-Lapuerta, Gio-
vanni Palla, Robert Gutgesell, Lennard Halle,
Mariia Minaeva, Larsen Vornholz, Leander Dony,
Francesca Drummer, Mojtaba Bahrami, et al. 2024.
Nicheformer: a foundation model for single-cell and
spatial omics. bioRxiv.

Patricia Sebastian-Leon, Enrique Vidal, Pablo Minguez,
Ana Conesa, Sonia Tarazona, Alicia Amadoz, Car-
men Armero, Francisco Salavert, Antonio Vidal-Puig,
David Montaner, et al. 2014. Understanding disease
mechanisms with models of signaling pathway activ-
ities. BMC systems biology, 8:1-19.

12

Bin Shao and Jiawei Yan. 2024. A long-context
language model for deciphering and generating

bacteriophage genomes. Nature Communications,
15(1):9392.

Junhong Shen, Kushal Tirumala, Michihiro Yasunaga,
Ishan Misra, Luke Zettlemoyer, Lili Yu, and Chunt-
ing Zhou. 2025. CAT: Content-adaptive image tok-
enization. arXiv preprint arXiv:2501.03120.

Yiqing Shen, Zan Chen, Michail Mamalakis, Yungeng
Liu, Tianbin Li, Yanzhou Su, Junjun He, Pietro Lio,
and Yu Guang Wang. 2024. TourSynbio: A multi-
modal large model and agent framework to bridge
text and protein sequences for protein engineering.
arXiv preprint arXiv:2408.15299.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan
Shen, Baocai Chen, Lu Chen, and Kai Yu. 2023. Sci-
Eval: A multi-level large language model evaluation
benchmark for scientific research. arXiv preprint
arXiv:2308.13149.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Process-
ing Systems.

Isabela Victorino da Silva Amatto, Nathalia Gonsales da
Rosa-Garzon, Flavio Antonio de Oliveira Simoes,
Fernanda Santiago, Nathalia Pereira da Silva Leite,
Julia Raspante Martins, and Hamilton Cabral. 2022.
Enzyme engineering and its industrial applications.
Biotechnology and Applied Biochemistry, 69(2):389—
409.

Mai Ha Vu, Rahmad Akbar, Philippe A. Robert, Bart-
lomiej Swiatczak, Geir Kjetil Ferkingstad Sandve,
Victor Greiff, and Dag Trygve Tryslew Haug. 2022.
Linguistically inspired roadmap for building biologi-
cally reliable protein language models. Nature Ma-
chine Intelligence, pages 1-12.

Chao Wang, Hehe Fan, Ruijie Quan, and Yi Yang.
2024a. ProtChatGPT: Towards understanding pro-
teins with large language models. arXiv preprint
arXiv:2402.09649.

Chengrui Wang, Qingqing Long, Meng Xiao, Xunxin
Cai, Chengjun Wu, Zhen Meng, Xuezhi Wang,
and Yuanchun Zhou. 2024b. BioRAG: A rag-llm
framework for biological question reasoning. arXiv
preprint arXiv:2408.01107.

Zeyuan Wang, Qiang Zhang, Keyan Ding, Ming Qin,
Xiang Zhuang, Xiaotong Li, and Huajun Chen. 2023.
InstructProtein: Aligning human and protein lan-
guage via knowledge instruction. arXiv preprint
arXiv:2310.03269.

Wei Wu, Chao Wang, Liyi Chen, Mingze Yin, Yiheng
Zhu, Kun Fu, Jieping Ye, Hui Xiong, and Zheng
Wang. 2024. Structure-enhanced protein instruction
tuning: Towards general-purpose protein understand-
ing. arXiv preprint arXiv:2410.03553.


https://doi.org/10.5555/3600270.3602281
https://doi.org/10.5555/3600270.3602281
https://doi.org/10.5555/3600270.3602281
https://arxiv.org/abs/2403.01528
https://arxiv.org/abs/2403.01528
https://arxiv.org/abs/2403.01528
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://arxiv.org/abs/2403.00043
https://arxiv.org/abs/2403.00043
https://arxiv.org/abs/2403.00043
https://arxiv.org/abs/2403.00043
https://arxiv.org/abs/2403.00043
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1101/2024.11.11.622734
https://doi.org/10.1101/2024.11.11.622734
https://doi.org/10.1101/2024.11.11.622734
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1101/2024.04.30.591835
https://doi.org/10.1101/2024.04.30.591835
https://doi.org/10.1101/2024.04.30.591835
https://doi.org/10.1101/2024.04.30.591835
https://doi.org/10.1101/2024.04.30.591835
https://doi.org/10.1101/2024.04.15.589472
https://doi.org/10.1101/2024.04.15.589472
https://doi.org/10.1101/2024.04.15.589472
https://doi.org/10.1186/s12918-014-0121-3
https://doi.org/10.1186/s12918-014-0121-3
https://doi.org/10.1186/s12918-014-0121-3
https://doi.org/10.1186/s12918-014-0121-3
https://doi.org/10.1186/s12918-014-0121-3
https://doi.org/10.1101/2023.12.18.572218
https://doi.org/10.1101/2023.12.18.572218
https://doi.org/10.1101/2023.12.18.572218
https://doi.org/10.1101/2023.12.18.572218
https://doi.org/10.1101/2023.12.18.572218
https://arxiv.org/abs/2501.03120
https://arxiv.org/abs/2501.03120
https://arxiv.org/abs/2501.03120
https://arxiv.org/abs/2408.15299
https://arxiv.org/abs/2408.15299
https://arxiv.org/abs/2408.15299
https://arxiv.org/abs/2408.15299
https://arxiv.org/abs/2408.15299
https://arxiv.org/abs/2308.13149
https://arxiv.org/abs/2308.13149
https://arxiv.org/abs/2308.13149
https://arxiv.org/abs/2308.13149
https://arxiv.org/abs/2308.13149
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1002/bab.2117
https://doi.org/10.1038/s42256-023-00637-1
https://doi.org/10.1038/s42256-023-00637-1
https://doi.org/10.1038/s42256-023-00637-1
https://arxiv.org/abs/2402.09649
https://arxiv.org/abs/2402.09649
https://arxiv.org/abs/2402.09649
https://arxiv.org/abs/2408.01107
https://arxiv.org/abs/2408.01107
https://arxiv.org/abs/2408.01107
https://arxiv.org/abs/2310.03269
https://arxiv.org/abs/2310.03269
https://arxiv.org/abs/2310.03269
https://arxiv.org/abs/2410.03553
https://arxiv.org/abs/2410.03553
https://arxiv.org/abs/2410.03553
https://arxiv.org/abs/2410.03553
https://arxiv.org/abs/2410.03553

Yingce Xia, Peiran Jin, Shufang Xie, Liang He, Chuan
Cao, Rengian Luo, Guoqing Liu, Yue Wang, Zequn
Liu, Yuan-Jyue Chen, et al. 2025. Naturelm: Deci-
phering the language of nature for scientific discov-
ery. arXiv preprint arXiv:2502.07527.

Hongwang Xiao, Wenjun Lin, Hui Wang, Zheng Liu,
and Qiwei Ye. 2024a. OPIL: An open instruction
dataset for adapting large language models to protein-
related tasks. In NeurlPS 2024 Workshop: Founda-
tion Models for Science: Progress, Opportunities,
and Challenges.

Yijia Xiao, Edward Sun, Yiqgiao Jin, Qifan Wang, and
Wei Wang. 2024b. Proteingpt: Multimodal 1lm for
protein property prediction and structure understand-
ing. arXiv preprint arXiv:2408.11363.

Binghao Yan, Yunbi Nam, Lingyao Li, Rebecca A Deek,
Hongzhe Li, and Siyuan Ma. 2024a. Recent advances
in deep learning and language models for studying
the microbiome. arXiv preprint arXiv:2409.10579.

Wilson Yan, Matei Zaharia, Volodymyr Mnih, Pieter
Abbeel, Aleksandra Faust, and Hao Liu. 2024b. Elas-
tictok: Adaptive tokenization for image and video.
arXiv preprint arXiv:2410.08368.

Mehdi Yazdani-Jahromi, Mangal Prakash, Tommaso
Mansi, Artem Moskalev, and Rui Liao. 2024. HELM:
Hierarchical encoding for mRNA language modeling.
arXiv preprint arXiv:2410.12459.

Fei Ye, Zaixiang Zheng, Dongyu Xue, Yuning Shen,
Lihao Wang, Yiming Ma, Yan Wang, Xinyou Wang,
Xiangxin Zhou, and Quanquan Gu. 2024. Protein-
Bench: A holistic evaluation of protein foundation
models. arXiv preprint arXiv:2409.06744.

Kamyar Zeinalipour, Neda Jamshidi, Monica Bianchini,
Marco Maggini, and Marco Gori. 2024. Design pro-
teins using large language models: Enhancements
and comparative analyses. In Proceedings of the st
Workshop on Language + Molecules (L+M 2024),
pages 34-47, Bangkok, Thailand. Association for
Computational Linguistics.

Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang Yan,
Yuliang Yan, Jiatong Li, Weiran Huang, Xiangyu
Yue, Dongzhan Zhou, et al. 2024a. ChemLLM:
A chemical large language model. arXiv preprint
arXiv:2402.06852.

Jianrong Zhang, Hehe Fan, and Yi Yang. 2024b. Pro-
tein captioning: Bridging the gap between protein
sequences and natural languages. ACM Trans. Multi-
media Comput. Commun. Appl.

Suyuan Zhao, Jiahuan Zhang, Yushuai Wu, Yizhen Luo,
and Zaiqing Nie. 2024a. LangCell: Language-cell
pre-training for cell identity understanding. arXiv
preprint arXiv:2405.06708.

Zihan Zhao, Da Ma, Lu Chen, Liangtai Sun, Zihao
Li, Hongshen Xu, Zichen Zhu, Su Zhu, Shuai Fan,
Guodong Shen, et al. 2024b. ChemDFM: Dialogue

13

foundation model for chemistry.
arXiv:2401.14818.

arXiv preprint

Zhigiang Zhong, Kuangyu Zhou, and Davide Mot-
tin. 2024. Benchmarking large language mod-
els for molecule prediction tasks. arXiv preprint
arXiv:2403.05075.

Xibin Zhou, Chenchen Han, Yingqi Zhang, Jin Su,
Kai Zhuang, Shiyu Jiang, Zichen Yuan, Wei Zheng,
Fengyuan Dai, Yuyang Zhou, Yuyang Tao, Dan Wu,
and Fajie Yuan. 2025a. Decoding the molecular lan-
guage of proteins with evola. bioRxiv.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ra-
mana Davuluri, and Han Liu. 2023. DNABERT-2:
Efficient foundation model and benchmark for multi-
species genome. arXiv preprint arXiv:2306.15006.

Zhihan Zhou, Robert Riley, Satria Kautsar, Weimin
Wu, Rob Egan, Steven Hofmeyr, Shira Goldhaber-
Gordon, Mutian Yu, Harrison Ho, Fengchen Liu, et al.
2025b. Genomeocean: An efficient genome founda-
tion model trained on large-scale metagenomic as-
semblies. bioRxiv, pages 2025-01.

Xiang Zhuang, Keyan Ding, Tianwen Lyu, Yinuo Jiang,
Xiaotong Li, Zhuoyi Xiang, Zeyuan Wang, Ming
Qin, Kehua Feng, Jike Wang, et al. 2024. Instruct-
BioMol: Advancing biomolecule understanding and
design following human instructions. arXiv preprint
arXiv:2410.07919.

Le Zhuo, Zewen Chi, Minghao Xu, Heyan Huang,
Jianan Zhao, Heqi Zheng, Conghui He, Xian-Ling
Mao, and Wentao Zhang. 2024. ProtLLM: An inter-
leaved protein-language LLM with protein-as-word
pre-training. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8950-8963,
Bangkok, Thailand. Association for Computational
Linguistics.

A Differences and similarities of natural
and biological languages

Natural and biological languages both encode
complex, structured information for communica-
tion, but differ fundamentally in meaning deriva-
tion—natural language relies on linguistic and con-
textual relationships, while biological language en-
codes functions through structural properties and
biomolecular interactions.

B Biological language models

Single-cell language models. Single-cell sequenc-
ing enables the study of individual cells, allowing
researchers to analyze cellular heterogeneity and
unique characteristics at high resolution. Single-
cell language models, such as scGPT (Cui et al.,
2024) and Nicheformer (Schaar et al., 2024), are
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Table 5: Natural Language v.s. Biological Language:
Differences and Similarities

Feature Natural Language Biological Language

Origin Human-developed communication Natwrally evolved molecular codes

Symbols Words, phonemes, sentences Nucleotides, amino acids, molecules

§ Structure Biochemical and structural constraints
Differences

Meaning

Grammar and syntax rules

Functional molecular

Context-dependent interpretation

Ambiguity Common and resolved through context Minimally ambiguous, highly structured

Evolution Cultural and historical evolution Evolution via mutation and selection

Symbolic Systems

structures logical information

Hierarchical Structure
—+ phrase ences) naling, and systems biology

Similarities

Word meanings depend on surrounding text (¢.g., The function of a sequence depends on its context

Context Dependenc; ! X
P ¥ “bank” may refer to finance or a riverbank) and environment

Contains synonyms, an
cal flexibility

guities, and grammati-  Genetic code has redundancy (e.g., synonymous

Redundancy and Robustness N
? codons) and error tolerance mechanisms

Words, sentences, and texts form communication  DNA, RNA, and protein sequences encode bio-

Follows syntactic and semantic structures (words ~ Organized from genome to proteins, cellular sig-

computational models designed to process and in-
terpret single-cell sequencing data. These mod-
els facilitate the exploration of genomic, transcrip-
tomic, proteomic, and epigenomic information at
the single-cell level, advancing our understanding
of cellular function and differentiation (Lan et al.,
2024).

Protein language models. Proteins are complex
macromolecules composed of amino acid chains
that play essential roles in biological processes.
Protein language models apply linguistical ideas to
model protein sequences, facilitating function pre-
diction, structure prediction, and sequence design.
These models have garnered significant attention
due to their potential in protein biology (Vu et al.,
2022).

RNA language models. RNA is an important
biomolecule involved in genetic information trans-
fer and protein synthesis. RNA language models
are specialized computational models designed to
process and analyze RNA sequences (Penic et al.,
2024). They enable the prediction of structural and
functional attributes, such as secondary structure
base-pairing probabilities and solvent accessibility,
which are crucial for understanding RNA function
and binding mechanism (Bi et al., 2024).

DNA language models. DNA encodes genetic
instructions essential for the growth, development,
and reproduction of all living organisms. DNA lan-
guage models treat DNA sequences as structured
linguistic data, enabling pattern recognition and
function prediction (Yan et al., 2024a). These mod-
els facilitate the study of genome architecture, reg-
ulatory elements, and evolutionary dynamics, ad-
vancing genomics research and precision medicine.

Small molecule language models. Small
molecule language models are specifically de-
signed to analyze and predict the chemical prop-
erties and interactions of small molecules (Flam-
Shepherd and Aspuru-Guzik, 2023). By treat-
ing small molecules, such as drugs, metabolites,
and other low molecular weight compounds, as
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sequences or graphs, these models capture their
unique characteristics, contributing to advance-
ments in drug discovery and cheminformatics.
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