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Abstract001

Large language models (LLMs) are transform-002
ing numerous sectors and are increasingly be-003
ing explored to advance molecular biology by004
enabling computational analysis of biological005
language. However, the grammatical and se-006
mantic complexities of biomolecules present007
challenges for LLMs. This survey explores008
three key strategies to bridge this gap: (1) bi-009
ological LLMs, pretrained on biological lan-010
guage to capture unimodal representation or011
multimodal (i.e., sequence-structure) relation-012
ships, (2) post-training adaptations, which re-013
fine natural LLMs through instruction-tuning014
or retrieval-augmented generation, and (3) mul-015
timodal LLMs, which is capable of jointly pro-016
cessing biological and natural languages. In017
this work, we highlight the potential of multi-018
modal LLMs that integrate biomolecular data,019
general and scientific literature knowledge to020
enhance biological language processing, thus021
accelerating molecular biology research while022
addressing the aforementioned challenges.023

1 Introduction024

Biomolecules, including proteins, nucleic acids025

and small molecules, are fundamental to cellular026

functions and homeostasis. Understanding and027

reasoning over their sequences, structures, and028

functions is key to deciphering biological pro-029

cesses. Additionally, biomolecular generation en-030

ables the design of molecules with tailored prop-031

erties. Their efficacy depends not only on intrin-032

sic properties but also on interactions within bio-033

logical systems. Therefore, elucidating biomolec-034

ular interactions enhances our understanding of035

disease mechanisms (Sebastian-Leon et al., 2014)036

and drive innovations in novel therapeutic tar-037

get identification (Nowell et al., 2023), treatment038

optimation (Negishi et al., 2024), personalized039

medicine (Goetz and Schork, 2018), biomarker dis-040

covery (Ou et al., 2021), and biomolecular engi-041

neering (Victorino da Silva Amatto et al., 2022).042

However, computational analysis of biomolecules 043

remains challenging due to their high-dimensional 044

nature, intricate interactions, and diverse func- 045

tions. Recent achievements in artificial intelligence, 046

particularly large language models (LLMs), of- 047

fer promising solutions by leveraging large-scale 048

biomolecular data to extract meaningful represen- 049

tations and relationships. 050

Advances in natural LLMs have inspired re- 051

searchers to apply language modeling techniques 052

to biological sequences, treating nucleotide, amino 053

acid sequences, and molecular representations 054

as structured data. This perspective has led to 055

the development of biological LLMs, including 056

Evo (Nguyen et al., 2024b), ESM-2/ESM-fold (Lin 057

et al., 2022), ESM3 (Hayes et al., 2025) and Na- 058

tureLM (Xia et al., 2025), which excel in protein 059

structure prediction, molecular property prediction, 060

and DNA sequence design, etc. However, the bi- 061

ological LLMs, primarily pretrained on domain- 062

specific corpora, have limited coverage of gen- 063

eral and scientific literature knowledge, restricting 064

their performance on complex biological language 065

tasks that require cross-disciplinary integration. To 066

address this, researchers have explored adapting 067

natural LLMs through instruction tuning (Xiao 068

et al., 2024a) or retrieval-augmented generation 069

(RAG) (Lin et al., 2024), showing some success 070

in biological language processing. Still, natural 071

LLMs, primarily pretrained on plain text, struggle 072

with more complex biomolecular data modalities 073

such as 2D molecular graphs and 3D protein struc- 074

tures. 075

Given that natural LLMs cannot fully capture 076

the complexity of biomolecules, researchers have 077

developed multimodal LLMs to integrate diverse 078

biological data. These models process sequences, 079

structures, and texts (functions) simultaneously 080

while incorporating domain knowledge to improve 081

biological understanding, reasoning and gener- 082

ation. Recent advances, such as Evola (Zhou 083
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Figure 1: Overview of LLMs for molecular biology, encompassing models, data, tasks, and evaluation. TAI: Text
Aligned Integration. MBI: Multiple Biomolecules Integration.

et al., 2025a), highlight the potential of modeling084

biomolecules in 3D space while leveraging textual085

data for biological inference. This trend under-086

scores the growing role of multimodal LLMs in087

computational biology, paving the way for next-088

generation biological computation models.089

As shown in Figure 1, we categorize existing090

works by biomolecular data types, analyzing their091

modalities and key applications. We also high-092

light emerging methodology to construct LLMs for093

molecular biology. This survey offers a comprehen-094

sive research dimensions and potential applications095

of LLMs to transform molecular biology research.096

2 Natural and biological language097

Natural language, such as English, French, Chi-098

nese, and Japanese, are a communication system099

developed by humans to express thoughts, ideas,100

and information. It evolves naturally and are char-101

acterized by defined syntax, semantics, and prag-102

matics. Similarly, biological language refers to103

structured, information-rich encoding systems that104

regulate biological processes, encompassing pro-105

tein sequences and structures, RNA and DNA se-106

quences, molecular strings such as SMILES, and107

cellular signaling pathways. As shown in Table 5108

of Appendix A, despite their distinct origins and109

purposes, both natural and biological languages110

encode complex, structured information, enabling111

communication within their respective domains.112

However, biological language differs fundamen-113

tally from natural language in grammars and se- 114

mantics. While natural language derives meaning 115

from linguistic and contextual relationships, biolog- 116

ical language primarily encodes functions through 117

structural properties and biomolecular interactions. 118

Although the development of NLP techniques 119

has also brought promising applications in biologi- 120

cal language processing, significant challenges re- 121

main. Natural LLMs lack a fundamental under- 122

standing of biomolecular structures and interac- 123

tions. Unlike natural language, where semantic 124

meaning arises from word relationships and syn- 125

tax, biological language is governed by biophysical 126

and biochemical principles that cannot be fully cap- 127

tured by sequence-based models alone. Overall, 128

the uniqueness and challenges of biological lan- 129

guage are as follows: 130

• Lack of explicit grammar and semantics 131

Natural language follows well-defined gram- 132

matical rules, while biological language lack 133

fixed syntax rules. Biomolecular functions 134

often require experimental validation rather 135

than relying solely on sequence analysis. For 136

example, a DNA fragment may encode a pro- 137

tein or function as a regulatory region, but its 138

true role is difficult to determine based solely 139

on sequence analysis. 140

• Highly structured and multimodal nature 141

Unlike natural language, biological language 142

is highly structured and multimodal, encom- 143
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passing sequences, structures, and biophys-144

ical and biochemical properties. For exam-145

ple, cellular signaling involves spatial, tem-146

poral, and multi-layered regulation. As a147

result, sequence-based models often fail to148

capture these complexities, requiring integra-149

tion with additional components such as graph150

neural networks and multimodal connectors.151

While natural LLMs excel in pattern recogni-152

tion, they struggle with structural modeling153

and causal inference in biological contexts.154

They fail to capture dependencies between155

protein structures and functions or between156

genetic mutations and phenotypic effects, as157

biological systems are highly nonlinear, dy-158

namic, and context-dependent. Addressing159

these challenges requires multimodal learn-160

ing and causal modeling to enhance LLMs for161

molecular biology.162

Therefore, although natural LLMs can be par-163

tially applied to biological language tasks, truly164

leveraging LLMs to solve biological language tasks165

requires the integration of general knowledge and166

specialized domain expertise and abilities by inte-167

grating diverse biological data modalities.168

3 Biological language tasks169

Recent advancements in bioinformatics and com-170

putational biology have increasingly focused on171

applying LLMs to biological language tasks that172

can be broadly categorized into three main cate-173

gories: understanding, reasoning, and genera-174

tion. These three categories cover a wide range of175

challenges in computational biology, and applying176

LLMs to these tasks has the potential to transform177

molecular biology research, enhancing our under-178

standing of biomolecular systems and accelerating179

scientific discoveries.180

Understanding. This category encompasses181

tasks related to parsing and interpreting biological182

sequences, structures, and their functional implica-183

tions. Its primary objective is to extract meaningful184

insights from biomolecules and uncover the funda-185

mental principles that govern biological processes.186

Applications includes protein functions or active187

sites prediction from structures, gene functions or188

non-coding regions identification from DNA se-189

quences, cell type prediction from single-cell se-190

quencing data and disease diagnosis from multi-191

omics data.192

Reasoning. This category involves tasks that193

require higher-order thinking, such as predicting 194

complex biological relationships and causal mecha- 195

nisms. It aims to generate new knowledge and infer 196

previously unknown biological processes by lever- 197

aging existing data. These tasks can be broadly 198

classified into predictive modeling and causal in- 199

ference. Applications include novel therapeutic 200

target identification from gene-protein-disease net- 201

works, gene-phenotype association prediction from 202

genetic variations and phenotypic traits, identifying 203

critical genes or molecular interactions from bio- 204

logical pathways, and disease mechanism inference 205

from multi-omics data. 206

Generation. This category focuses on generat- 207

ing biologically meaningful molecules, including 208

sequences and structures. It targets to design novel 209

molecules with tailored properties or functions. Ap- 210

plications include protein design with specific func- 211

tions, antibody design with high affinity and speci- 212

ficity, novel chemical structures generation for drug 213

discovery, gene editing tool generation creating pre- 214

cise and efficient CRISPR sequences, and antigen 215

epitopes design based on pathogen data. 216

4 Biological data modalities 217

In computational biology and artificial intelligence, 218

data fall into two categories: unimodal data and 219

multimodal data (see Table 1). Unimodal data con- 220

sists of a single input type, while multimodal data 221

integrate multiple types, reflecting the complexity 222

of real-world biological systems. Understanding 223

the distinction between unimodal and multimodal 224

data is essential for developing advanced models 225

that address the complexities of molecular biology 226

research. 227

Table 1: Comparison of unimodal and multimodal data
in molecular biology. TAI: Text Aligned Integration.
MBI: Multiple Biomolecules Integration.

Modality Fusion method Examples

Unimodal - Sequence, Structure, Graph, Text

Multimodal
TAI

Sequence-Text, Structure-Text, Graph-Text,
Sequence-Structure-Text, Sequence-Graph-Text

MBI Sequence-Structure, Sequence-Graph

Unimodal data serves as the foundation for 228

many applications in molecular biology. Exam- 229

ples include protein sequences, where models pre- 230

dict function or structure based solely on amino 231

acid sequences, and biological graphs, which repre- 232

sent molecular interactions or networks. Similarly, 233

biological structures, such as 3D protein conforma- 234

tions, are used to understand biophysical properties 235
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or ligand binding. Beyond biological data, general236

text and biological text, such as research articles or237

clinical reports, provide valuable information for238

tasks like named entity recognition or knowledge239

mining.240

Multimodal data aims to enable comprehen-241

sive understanding of complex biomolecules by242

integrating multiple biological data modalities,243

such as sequence, structure, and text (function).244

Cross-modal fusion presents new opportunities to245

bridge biomolecular insights with broader gen-246

eral and scientific literature knowledge. As mul-247

timodal approaches capture the multifaceted na-248

ture of biomolecular data, they are increasingly249

utilized in molecular biology research. The pri-250

mary forms of multimodal data fall into two catego-251

rizes: Text Aligned Integration (TAI) and Multiple252

Biomolecule Integration (MBI).253

TAI uses text to enhance the understanding254

of biological modalities, such as learning protein255

functions or gene regulation from scientific liter-256

ature. Sequence-Text combines sequences with257

text, linking molecular information to functional258

descriptions for better understanding of genetic259

sequences and biological functions. Structure-260

Text merges structures with text to connect spa-261

tial features with biological interpretations, help-262

ing to relate 3D structures to protein functions.263

Graph-Text integrates graph data, like molecu-264

lar topologies, with text, supporting drug discov-265

ery by associating molecular graphs with literature266

insights. Sequence-Structure-Text combines se-267

quences, 3D structures, and text, providing a holis-268

tic view of how sequence variations affect biolog-269

ical functions. Sequence-Graph-Text connects270

sequence data with graph representations and text,271

aiding in drug development and gene-disease asso-272

ciations by contextualizing sequence variations.273

MBI focuses on the integration of biomolecular274

data itself, utilizing the multimodal characteristics275

of sequences, structures, and graphs to improve276

predictive capabilities. Sequence-Structure in-277

tegration links biomolecular sequences with their278

corresponding 3D conformations. This allows mod-279

els to capture how structural properties emerge280

from linear sequences, facilitating a better under-281

standing of how sequence variations influence pro-282

tein folding and function. Sequence-Graph in-283

corporates sequence information with graph-based284

representations, enabling a more comprehensive285

understanding of biological mechanisms by em-286

bedding sequence-derived features within graph287

features. This can enhance applications such as 288

protein-protein interaction prediction and molecu- 289

lar pathway analysis. 290

5 Model methodology 291

5.1 Training objective 292

Masked language modeling (MLM) is a com- 293

monly used self-supervised pretraining approach, 294

in which certain input tokens are masked, and the 295

model is trained to predict them using contextual 296

information. Through this method, the model can 297

learn bidirectional representations, improving its 298

performance on tasks requiring deep contextual un- 299

derstanding. In ESM3, MLM integrates multiple 300

modalities, such as sequence, structure, and text, 301

with the filling of each masked token conditioned 302

on various modalities. This interaction process 303

enables ESM3 to capture the residue-level evolu- 304

tionary path dependencies within the protein space. 305

This includes modeling the feasible sequence space 306

under specific protein conformational constraints 307

and structural selection driven by functional con- 308

straints, providing a deeper understanding of pro- 309

tein evolution. From the perspective of protein 310

design, the mechanism of ESM3 allows it to ac- 311

cept flexible combinations of modalities as input 312

for designing novel proteins. 313

Autoregressive (AR) models, like GPT, gener- 314

ate tokens sequentially, conditioning each on the 315

previous ones. This unidirectional approach is ideal 316

for tasks requiring sequential coherence, such as 317

text completion. This autoregressive method also 318

allows EVO to capture sequential dependencies in 319

genomic data, ensuring more accurate and coher- 320

ent generation of long-range genetic structures. In 321

genomes, functional elements like promoters and 322

enhancers are distributed with a sequential rela- 323

tionship, making AR particularly well-suited for 324

modeling the sequential semantic information of 325

genomic sequences. 326

5.2 Embedding generation 327

Data embedding generation involve two key meth- 328

ods: feature extraction and tokenization. Both 329

methods are essential for converting raw data into 330

representations that can be effectively utilized by 331

LLMs for diverse downstream tasks. 332

Feature extraction aim to process raw data to 333

extract meaningful representations that capture es- 334

sential information. Using pre-trained encoders, 335

the raw data such as biomolecular sequences, 336
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graphs, and structures are transformed into high-337

dimensional feature vectors. These features serve338

as abstract embeddings, which can then be used339

for further analysis, prediction, or understanding340

of biomolecular properties. This method enables a341

deeper understanding of the raw data by convert-342

ing raw information into a more manageable and343

interpretable format.344

Tokenization treats biomolecular sequences as345

discrete symbols, where individual residues, nu-346

cleotides, functional motifs, or atoms are tokenized.347

This strategy leverages techniques such as k-mer348

modeling, subword tokenization, to segment se-349

quences into meaningful units, allowing for effi-350

cient learning of sequence patterns. In addition,351

biomolecular structures can be tokenized via vector352

quantization (VQ). Unlike sequence data, structural353

representations are inherently continuous, making354

direct tokenization challenging. VQ addresses this355

by discretizing 3D coordinates into a predefined356

codebook, capturing essential geometric and topo-357

logical features. This enables structural data to be358

processed similarly to sequence data while preserv-359

ing critical spatial information.360

5.3 Model architecture361

In this survey, LLMs fall into two categories based362

on language types. Biological LLMs (5.3.1) are363

trained on biomolecular sequences, graphs and364

structures or their integration, capturing domain-365

specific patterns for biological language tasks.366

While effective in processing biological language,367

they lack general knowledge. Natural LLMs368

(5.3.2) excel in understanding and generating hu-369

man language but struggle with biomolecular com-370

plexity. Adaptations such as instruction tuning help371

them handle biological tasks but remain limited in372

tasks related to biomolecular graphs and structures.373

Multimodal LLMs (5.3.3) bridge biological and374

natural language by integrating sequences, graphs375

structures, and textual data, enabling cross-modal376

understanding, reasoning and generation. Table 2377

shows recent progress of LLMs in molecular biol-378

ogy, encompassing single cell, protein, DNA, RNA,379

small molecules, etc.380

5.3.1 Biological large language models381

Biological LLMs are computational models specif-382

ically trained on large-scale biological data, includ-383

ing amino acid sequences, nucleotide sequences,384

SMILES representations, and single-cell sequenc-385

ing data. Examples include ESM3 (Hayes et al.,386

2024), Nucleotide Transformer (Dalla-Torre et al., 387

2024), and Evo (Nguyen et al., 2024a). These mod- 388

els build upon advancements in language modeling 389

techniques to learn the unique properties of biolog- 390

ical language (Li et al., 2021), aiming to uncover 391

meaningful insights encoded within them. Depend- 392

ing on the type of biomolecular data they process, 393

biological LLMs can be further categorized into 394

the following five model classes (see Appendix B), 395

each tailored to address specific challenges in their 396

respective domains. 397

5.3.2 Natural large language models 398

Natural and biological LLMs, although operat- 399

ing in distinct domains, share fundamental prin- 400

ciples for processing sequential data. Over the 401

past decade, language models have transformed 402

NLP (Mikolov et al., 2013; Pennington et al., 403

2014), with key breakthroughs driven by transform- 404

ers (Vaswani et al., 2017), such as BERT (Devlin 405

et al., 2019) and GPT (Radford and Narasimhan, 406

2018; Radford et al., 2019). Their attention mech- 407

anisms enable efficient modeling of long-range 408

dependencies, leading to increasingly powerful 409

models like GPT-3 (Brown et al., 2020), Instruct- 410

GPT (Ouyang et al., 2022), and GPT-4 (Achiam 411

et al., 2023), DeepSeek (Liu et al., 2024a), ex- 412

celling in text generation, translation, and question- 413

answering. Natural LLMs have been adapted 414

to biological language tasks via instruction fine- 415

tuning (Fang et al., 2024a), but they struggle with 416

more complex biomolecular data, such as 2D 417

molecular graphs and 3D protein structures. This 418

limitation has spurred the development of multi- 419

modal LLMs (MLLMs), which integrate text with 420

diverse biomolecular data types to bridge natural 421

and biological languages. 422

5.3.3 Multimodal large language models 423

With the rapid advancement of natural LLMs, 424

MLLMs, which process and integrate multimodal 425

data, have gained significant attention, such as 426

BLIP-2 (Li et al., 2023), Kosmos-1 (Huang et al., 427

2023), and Llava (Liu et al., 2024c). These models 428

not only enhance performance in language-related 429

tasks, but also advance the capability of models 430

to understand and generate information that spans 431

both abstract and physical domains. MLLMs have 432

shown promise in a wide range of tasks, such as 433

text-to-image/video generation, video analysis, and 434

audio-visual understanding, which are essential 435

steps towards artificial general intelligence (AGI). 436
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These developments are pushing the boundaries437

of machine understanding by facilitating more nu-438

anced interactions with the real world. In this sur-439

vey, we term MLLMs as those trained on integra-440

tion of textual data with heterogeneous biomolec-441

ular data (i.e., using TAI for data integration), en-442

abling deeper insights into complex biomolecu-443

lar interactions. In molecular biology, MLLMs444

leverage mainstream multimodal architectures for445

modality alignment, such as projection-based (e.g.,446

Llava) and Q-Former-based (e.g., BLIP-2) models.447

These architectures align different modalities by448

projecting them into a shared space or using query449

encoders and cross attention mechanisms to extract450

and fuse key biological information.451

6 Tokenization for biomolecules452

Tokenization plays a crucial role in biological lan-453

guage processing, akin to its importance in nat-454

ural language processing, as it directly affects a455

model’s ability to interpret input and overall per-456

formance (Pei et al., 2024). Tokenization tech-457

niques for biomolecular data have evolved to ad-458

dress diverse modalities. For 1D biomolecular se-459

quences, methods like K-mer tokenization segment460

sequences into fixed-length substrings, while sub-461

word methods focus on biologically relevant mo-462

tifs. For 2D graphs and 3D structures, tokenization463

incorporates biomolecular topologies and spatial464

relationships. Approaches such as graph-based tok-465

enizers and vector quantization (VQ) capture graph466

and structure features, enabling models to effec-467

tively represent 2D and 3D biomolecular data.468

6.1 1D sequence tokenization469

K-mer tokenization is a widely used technique for470

processing biological sequences, particularly in ge-471

nomics and proteomics. This method involves seg-472

menting sequences into fixed-length overlapping473

or non-overlapping substrings, known as K-mer,474

where K represents the length of each substring.475

For example, in DNA sequences, a 3-mer tokeniza-476

tion would break the sequence “ATGCGT” into477

[“ATG”, “TGC”, “GCG”, “CGT”].478

Byte-pair-encoding (BPE) is a renowned479

subword tokenization method that constructs a480

variable-length vocabulary by repeatedly merging481

the most frequent adjacent symbol pairs. It has482

been widely adopted in NLP to efficiently handle483

rare and out-of-vocabulary words. Its effectiveness484

in managing long sequences and rare token oc-485

currences, has led to applications in biomolecular 486

data. For example, DNABERT-2 (Zhou et al., 2023) 487

merges frequent nucleotide pairs and genome seg- 488

ments to enhance genomic sequence representa- 489

tion by capturing local and long-range dependen- 490

cies. Despite improving tokenization efficiency, 491

BPE has limitations in biological contexts. Un- 492

like natural language, where subword units carry 493

semantic meaning, biological sequences lack ex- 494

plicit word boundaries, complicating meaningful 495

tokenization. BPE’s frequency-based merging may 496

overlook functional motifs or structural elements, 497

potentially leading to biologically irrelevant seg- 498

mentations. Additionally, frequent patterns in one 499

dataset may not generalize across species or se- 500

quence contexts. Addressing these challenges re- 501

quires biologically informed tokenization that in- 502

corporate structural, functional, or evolutionary 503

constraints. 504

Hierarchical encoding is a technique that repre- 505

sents biomolecules at multiple levels of abstraction 506

to preserve both local and global contextual infor- 507

mation. Unlike conventional tokenization methods 508

that operate at a single level (e.g., residue-level and 509

atom-level), hierarchical encoding introduces mul- 510

tiple layers of representation to capture the struc- 511

tural and functional complexity of biological data. 512

For example, HELM (Yazdani-Jahromi et al., 2024) 513

encodes mRNA at multiple levels, such as 6-mer 514

and codon-level tokenization, to seize the biologi- 515

cal significance of mRNA sequences. 516

Specialized vocabulary refers to a tokenization 517

approach where domain-specific token dictionar- 518

ies are designed for biomolecular data. Instead 519

of relying on purely statistical subword segmenta- 520

tion methods, specialized vocabulary approaches 521

incorporate domain knowledge to define biologi- 522

cally meaningful tokens, such as amino acid motifs, 523

codons, or functional domains, to enhance model 524

interpretability and performance in biomolecular 525

tasks. The work (Ai and Kavuluru, 2023) cus- 526

tomized tokenization way and specialized dictio- 527

naries for biomolecular sequences, providing em- 528

pirical evidence of their effectiveness. 529

6.2 2D graph and 3D structure tokenization 530

Graph-based tokenizers represent biomolecules 531

as graphs, where atoms are nodes and bonds are 532

edges, capturing spatial relationships and connec- 533

tivity. Tokenization involves encoding node fea- 534

tures (e.g., atom type, charge) and edge features 535

(e.g., bond type, distance) into embeddings for pro- 536
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Table 2: Recent research progress of large language models for molecular biology
Model/Method Biomolecule type Data modality Key takeaway

ESMFold (Lin et al., 2023b) Protein Sequence-Structure Protein structure prediction

ESM3 (Hayes et al., 2025) Protein Sequence-Structure-Text Multimodal, Large-scale token level pretraining

AIDO.RAGFold (Li et al., 2024c) Protein Sequence-Structure Protein structure prediction, RAG

EVO (Nguyen et al., 2024b) DNA Sequence Genome generation

Nucleotide Transformer (Dalla-Torre et al., 2024) DNA Sequence Genome foundation model

GenomeOcean (Zhou et al., 2025b) DNA Sequence Large-Scale, Metagenomic

MegaDNA (Shao and Yan, 2024) DNA Sequence Long-context generative model

scGPT (Cui et al., 2024) RNA Sequence Single-cell foundation model, Multi-omic
LucaOne (He et al., 2024b) DNA, RNA, Protein Sequence Large-scale genome foundational model
NatureLM (Xia et al., 2025) RNA, Protein, Small molecules Sequence Sequence-based molecule foundation model

InstructProtein (Wang et al., 2023) Protein Sequence-Text
Bidirectional generation of protein sequence
and language, Knowledge graph-based instruction

HelixProtX (Chen et al., 2024) Protein Sequence-Structure-Text
Transformation between protein sequences,
structures, and textual descriptions

SEPIT (Wu et al., 2024) Protein Sequence-Structure-Text
Protein function prediction, Mixture of
experts (MoE), Instruction tuning

ProtT3 (Liu et al., 2024e) Protein Sequence-Text
Protein Understanding, Q-Former
Cross-modal contrastive learning

ProLLM (Jin et al., 2024) Protein Sequence-Text
Protein-protein interaction prediction
Protein chain of thought

PROTLLM (Zhuo et al., 2024) Protein Sequence-Text
Interleaved protein-text dataset
Dynamic protein mounting

ProLLaMA (Lv et al., 2024) Protein Sequence-Text
Protein sequence generation and understanding
Protein vocabulary pruning

P-LLMs (Zeinalipour et al., 2024) Protein Sequence-Text Tokenizer retraining, Adaptation to small datasets

ProtDAT (Guo et al., 2024) Protein Sequence-Text
De novo protein design
Multimodal cross-attention

BioM3 (Praljak et al., 2024) Protein Sequence-Text Protein domain design, Contrastive learning

ProteinGPT (Xiao et al., 2024b) Protein Sequence-Structure-Text
Protein property prediction
Linear projection

ProteinChat (Huo et al., 2024) Protein Sequence-Text Interactive refinement, Adaptor, LoRA

ProtChatGPT (Wang et al., 2024a) Protein Sequence-Structure-Text
Interactive conversations about protein structures
Multi-level protein-language alignment

Protein Captioning (Zhang et al., 2024b) Protein Sequence-Text Protein captioning, Conversational interaction

Evola (Zhou et al., 2025a) Protein Sequence-Structure-Text
Direct preference optimization, RAG
AI-generated data

TourSynbio (Shen et al., 2024) Protein Sequence-Text Protein engineering, Mutation analysis, Agent

PQA (Carrami and Sharifzadeh, 2024) Protein Sequence-Text
Protein question answering, Soft prompts
Gated cross-attention

RSA (Ma et al., 2024) Protein Sequence-Text RAG, LLM agents

MolT5 (Edwards et al., 2022) Small molecules Sequence-Text
Molecule captioning and
text-based molecule generation

InstructMol (Cao et al., 2023) Small molecules Sequence-Graph-Text
Assistants in molecular research
Multimodal instruction-tuning

MolCA (Liu et al., 2023) Small molecules Sequence-Graph-Text
Gragh-text alignment
Q-Former, LoRA

STRUCTCOT (Jang et al., 2024) Small molecules Sequence-Text Structure-aware, Chain-of-thought

GIT-Mol (Liu et al., 2024d) Small molecules Graph-Text
Multimodal LLMs that integrates
graph, text, and image

ICMA (Li et al., 2024b) Small molecules Sequence-Graph-Text
In-context molecule tuning
Hybrid context retrieval

3D-MoLM (Li et al., 2024d) Small molecules Sequence-Structure-Text
Connects LLMs and 3D molecular encoder
Q-Former

ChemLLM (Zhang et al., 2024a) Small molecules Sequence-Text
Chemistry, Instruction tuning
Benchmark for chemistry tasks

ChemDFM (Zhao et al., 2024b) Small molecules Sequence-Text Chemical literature, Instruction tuning

nach0 (Livne et al., 2024) Small molecules Sequence-Text
Pre-trained on scientific literature
and molecular data, Drug discovery

BioT5 (Pei et al., 2023) Small molecules, Protein Sequence-Sequence-Text
integrates molecular string SELFIES and
contextual knowledge from literature

BioMedGPT (Luo et al., 2023) Small molecules, Protein Sequence-Text Incremental training on literature, Biomedical QA

InstructBioMol (Zhuang et al., 2024) Small molecules, Protein Sequence-Structure-Text
Understanding and design of biomolecules
Motif-Guided multimodal module

ChatNT (Richard et al., 2024) Protein, DNA, RNA Sequence-Text Multimodal LLMs for DNA, RNA, and protein

LangCell (Zhao et al., 2024a) RNA Sequence-Text
Understanding of cell identity
Language-cell pre-training

CHATCELL (Fang et al., 2024b) Gene Text Single-cell analysis

GeneRAG (Lin et al., 2024) Gene Text RAG, Gene, LLMs

BioRAG (Wang et al., 2024b) Gene, Protein Text RAG

cessing by graph neural networks (GNNs). This ap-537

proach preserves the biomolecular topology, mak-538

ing it effective for tasks like molecular property539

prediction, drug discovery, and protein-ligand in- 540

teractions. However, challenges include managing 541

large graphs, ensuring efficient graph convolution 542
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operations, and maintaining interpretability.543

Vector quantization (VQ) methods construct544

vocabularies for continuous biomolecular data, es-545

pecially 3D protein structures (see Table 3). VQ546

discretizes continuous representations into a code-547

book, serving as tokens for downstream tasks.548

This results in compact and meaningful vocabu-549

laries that retain essential biomolecular features550

while reducing complexity. However, VQ meth-551

ods face challenges in biomolecular applications.552

Discretization may lose critical structural and func-553

tional details, as biomolecules exhibit hierarchical554

and multi-scale properties that may not be well-555

captured by a fixed set of quantized codes. Ad-556

ditionally, determining an optimal codebook size557

is crucial—too few codes may oversimplify com-558

plex biomolecular representations, while too many559

introduce sparsity and inefficiency. Furthermore,560

VQ methods struggle to generalize across diverse561

biological contexts due to species- and condition-562

specific variability. Addressing these limitations563

may require biologically informed constraints,564

adaptive quantization, or hybrid approaches bal-565

ancing continuous and discrete representations.566

Table 3: Vector quantization (VQ) methods.

Method Key takeaway

VQPL (Gao et al., 2023) Quantized protein language

ProTokens (Lin et al., 2023a) Probabilistic tokenization

bio2token (Liu et al., 2024b)
Large molecular structures, Mamba,
State space model architecture

LPS (Gaujac et al., 2024)
Vector-quantized autoencoder,
Multi-modal integration

FoldToken (Gao et al., 2024d) Soft conditional vector quantization

FoldToken2 (Gao et al., 2024b)
Equivariant structures,
Vector-quantized compressor

FoldToken3 (Gao et al., 2024a) Light-weight, efficient tokenization

FoldToken4 (Gao et al., 2024c) Hierarchical multiscale, Token mixing

7 Evaluation of LLMs in molecular567

biology568

The evaluation of LLMs in molecular biology re-569

quires specialized benchmarks that assess their abil-570

ity to understand, generate, and reason over bio-571

logical data. Table 4 offers an overview of key572

datasets and benchmarks designed for evaluating573

LLMs in life sciences, covering various task such574

as molecular understanding, generation, and rea-575

soning. These benchmarks focus on different as-576

pects of molecular biology. By leveraging these577

diverse benchmarks, researchers can systematically578

analyze the advantages and shortcomings of LLMs579

in biological language tasks, guiding future im-580

provements and adaptations for more effective ap- 581

plications in molecular biology research. 582

Table 4: Datasets and benchmarks for evaluation of
LLMs in life sciences.

Model/Method Task scope Key takeaway

Bioinfo-Bench (Chen and Deng, 2023) Understanding LLMs for bioinformatics

SciEval (Sun et al., 2023) Understanding Scientific research, Multi-level

LLMaMol (Zhong et al., 2024) Understanding Geometric structure of molecules

MoleculeQA (Lu et al., 2024) Understanding Factual evaluation

MolCap-Arena (Edwards et al., 2024) Understanding
Molecular property prediction
Molecule caption

OPI (Xiao et al., 2024a) Understanding
Annotation prediction, Sequence
understanding, Knowledge mining

Biology Instructions (He et al., 2024a)
Understanding,

Reasoning
Multi-omics, Large-scale

Mol-Instructions (Fang et al., 2024a)
Understanding,

Generation
Protein design, Instruction tuning

TOMG-Bench (Li et al., 2024a) Generation
Molecule editing,
Molecule optimization

ProteinBench (Ye et al., 2024) Generation
Multi-metrics, Antibody design
Inverse folding

8 Conclusion and future work 583

LLMs are transforming molecular biology by en- 584

abling biological language computation, yet chal- 585

lenges persist due to the grammar and semantic 586

complexities of biomolecules. This survey exam- 587

ines three key strategies to address these challenges: 588

(1) biological LLMs trained on biomolecular data, 589

(2) post-training adaptations like instruction-tuning, 590

and (3) multimodal LLMs integrating sequences, 591

structures, and functions. Among these, multi- 592

modal LLMs show the greatest promise, as they 593

unify biomolecular data, general knowledge, and 594

scientific literature to enhance biological language 595

processing and accelerate scientific discoveries. 596

Yet, challenges like biologically informed tokeniza- 597

tion and cross-domain generalization, still remain. 598

Future research directions suggested in this work 599

include: (1) developing adaptive tokenizers (Yan 600

et al., 2024b; Shen et al., 2025) for biomolecules, 601

which dynamically adjust token granularity based 602

on input data characteristics, optimizing tokeniza- 603

tion through variable token lengths and context- 604

specific rules, making them particularly suited for 605

domains like biological language modeling with 606

highly variable structures; (2) optimizing the inte- 607

gration of specialized biomolecular encoders and 608

LLMs to align biological and natural languages; 609

(3) developing comprehensive benchmarks for mul- 610

timodal LLMs in biomolecular tasks, improving 611

model generalization across various downstream 612

tasks of interest to domain experts. 613
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Limitations614

This survey focuses on LLMs in molecular biol-615

ogy, specifically targeting biomolecular sequences,616

structures, graphs and functions (texts). They are617

key aspects of molecular biology that have gained618

attention in recent years. The LLMs listed in this619

survey do not address other data types, such as cell620

images or experimental data. With the develop-621

ment of molecular biology research, future surveys622

could cover more advanced LLMs that incorpo-623

rate a broader range of data types and explore their624

applications in molecular biology.625

Ethics Statement626

To the best of our knowledge, there are no ethical627

concerns associated with the LLMs listed in this628

survey, as they are trained on publicly available,629

non-sensitive information. This work primarily630

aims to introduce the construction and application631

of LLMs in molecular biology, focusing on advanc-632

ing scientific research without generating harmful633

content.634
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Table 5: Natural Language v.s. Biological Language:
Differences and Similarities

Feature Natural Language Biological Language

Differences

Origin Human-developed communication Naturally evolved molecular codes

Symbols Words, phonemes, sentences Nucleotides, amino acids, molecules

Structure Grammar and syntax rules Biochemical and structural constraints

Meaning Context-dependent interpretation Functional molecular outcomes

Ambiguity Common and resolved through context Minimally ambiguous, highly structured

Evolution Cultural and historical evolution Evolution via mutation and selection

Similarities

Symbolic Systems Words, sentences, and texts form communication
structures

DNA, RNA, and protein sequences encode bio-
logical information

Hierarchical Structure Follows syntactic and semantic structures (words
→ phrases → sentences)

Organized from genome to proteins, cellular sig-
naling, and systems biology

Context Dependency Word meanings depend on surrounding text (e.g.,
“bank” may refer to finance or a riverbank)

The function of a sequence depends on its context
and environment

Redundancy and Robustness Contains synonyms, ambiguities, and grammati-
cal flexibility

Genetic code has redundancy (e.g., synonymous
codons) and error tolerance mechanisms

computational models designed to process and in-1157

terpret single-cell sequencing data. These mod-1158

els facilitate the exploration of genomic, transcrip-1159

tomic, proteomic, and epigenomic information at1160

the single-cell level, advancing our understanding1161

of cellular function and differentiation (Lan et al.,1162

2024).1163

Protein language models. Proteins are complex1164

macromolecules composed of amino acid chains1165

that play essential roles in biological processes.1166

Protein language models apply linguistical ideas to1167

model protein sequences, facilitating function pre-1168

diction, structure prediction, and sequence design.1169

These models have garnered significant attention1170

due to their potential in protein biology (Vu et al.,1171

2022).1172

RNA language models. RNA is an important1173

biomolecule involved in genetic information trans-1174

fer and protein synthesis. RNA language models1175

are specialized computational models designed to1176

process and analyze RNA sequences (Penić et al.,1177

2024). They enable the prediction of structural and1178

functional attributes, such as secondary structure1179

base-pairing probabilities and solvent accessibility,1180

which are crucial for understanding RNA function1181

and binding mechanism (Bi et al., 2024).1182

DNA language models. DNA encodes genetic1183

instructions essential for the growth, development,1184

and reproduction of all living organisms. DNA lan-1185

guage models treat DNA sequences as structured1186

linguistic data, enabling pattern recognition and1187

function prediction (Yan et al., 2024a). These mod-1188

els facilitate the study of genome architecture, reg-1189

ulatory elements, and evolutionary dynamics, ad-1190

vancing genomics research and precision medicine.1191

Small molecule language models. Small1192

molecule language models are specifically de-1193

signed to analyze and predict the chemical prop-1194

erties and interactions of small molecules (Flam-1195

Shepherd and Aspuru-Guzik, 2023). By treat-1196

ing small molecules, such as drugs, metabolites,1197

and other low molecular weight compounds, as1198

sequences or graphs, these models capture their 1199

unique characteristics, contributing to advance- 1200

ments in drug discovery and cheminformatics. 1201
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