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ABSTRACT

Although pre-trained language models (PLMs) have shown impressive perfor-
mance by text-only self-supervised training, they are found lack of visual se-
mantics or commonsense, e.g., sizes, shapes, and colors of commonplace objects.
Existing solutions often rely on explicit images for visual knowledge augmenta-
tion (requiring time-consuming retrieval or generation), and they also conduct the
augmentation for the whole input text, without considering whether it is actually
needed in specific inputs or tasks. To address these issues, we propose a novel
visually-augmented fine-tuning approach that can be generally applied to various
PLMs or NLP tasks, without using any retrieved or generated images, namely
VAWI. Specifically, we first identify the visually-hungry words (VH-words) from
input text via a token selector, where three different methods have been proposed,
including syntax-, attention- and learning-based strategies. Then, we adopt a fixed
CLIP text encoder to generate the visually-augmented representations of these
VH-words. As it has been pre-trained by vision-language alignment task on the
large-scale corpus, it is capable of injecting visual semantics into the aligned text
representations. Finally, the visually-augmented features will be fused and trans-
formed into the pre-designed visual prompts based on VH-words, which can be
inserted into PLMs to enrich the visual semantics in word representations. We
conduct extensive experiments on ten NLP tasks, i.e., GLUE benchmark, Com-
monsenseQA, CommonGen, and SNLI-VE. Experimental results show that our
approach can consistently improve the performance of BERT, RoBERTa, BART,
and T5 at different scales, and outperform several competitive baselines signifi-
cantly. Besides, the generated visual prompts of our framework can also be used
for parameter-efficient tuning, which boosts the performance of T5-3B. We will
make our code, data, and models publicly available.

1 INTRODUCTION

Recent years have witnessed the success of pre-trained language models (PLMs), such as GPT-
3 (Brown et al., 2020) and T5 (Raffel et al., 2020), in a variety of natural language process (NLP)
tasks. Since these PLMs are mostly trained on text-only corpus via self-supervised pre-training, they
have been shown lack of visual commonsense (Liu et al., 2022) and real-world knowledge (Zhang
et al., 2022). As a result, PLMs can’t well solve visually related language tasks 1, e.g., answering
the color and size of common things, especially those requiring complex commonsense knowledge.

To alleviate this problem, existing works mainly enhance PLMs by infusing the visual information.
Typically, given a text input, these studies firstly augment the visual information from retrieved or
generated images about the input and then leverage their visual representations to improve PLMs on
NLP tasks. Such an approach leads to visually-augmented pre-trained language models (VaLMs),
where they adopt either visually-augmented pre-training (Tan & Bansal, 2020; Wang et al., 2022)
or visually-augmented fine-tuning techniques (Lu et al., 2022). Despite the effectiveness, there are
two major shortcomings in these methods. First, it is very costly to retrieve or generate high-quality
images that are paired with the input. These methods often rely on pre-learned complementary re-
trievers or generators, and also require time-consuming inference for obtaining the images, which

1In this work, we mainly consider the text-only NLP tasks that may need the visual information as comple-
mentary, but not the visual-language tasks with images.
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largely limits the applicability of this approach. Second, as the augmented visual information comes
from retrieved or generated images, it is inevitable to involve irrelevant or redundant visual informa-
tion. If simply integrating the augmented visual information, the original text representations might
be affected or even “polluted”. Increasing evidence shows that the visual information is not always
useful for NLP tasks (Dai et al., 2022), and sometimes leads to performance degradation.

Considering these issues, we aim to develop a more efficient and effective way to visually augment
the PLMs and the solution is twofold:

• Firstly, we don’t explicitly produce (retrieve or generate) the images but instead generate visually-
aligned representations of the text on-the-fly. Recent studies (Radford et al., 2021; Jia et al., 2021)
have shown that the vision-language pre-trained models (VL-PTMs) can well learn the alignment
between the representations of texts and images from large-scale text-image pairs. Thus, our idea is
to employ the output representations of a text from VL-PTMs’ text encoders as a surrogate for the
visual representations of related images.

Such a way is simple and efficient: we can only keep the text encoder of a VL-PTM to produce the
visually-aligned representations of texts, getting rid of the complicated image retrieval or genera-
tion process. It is widely recognized that there is a large semantic gap between different modali-
ties (Liang et al., 2022). Our method can alleviate this issue to some extent since the visual augmen-
tations are derived from the text representation itself, i.e., visually-aligned text representations from
VL-PTMs.

• Secondly, instead of directly feeding visual augmentations into the PLM, we propose to use
the augmented visual information only when it actually needs. In fact, for a text input of a NLP
task, PLMs are not always hungry for the visual background knowledge to effectively understand
it, especially for visually-irrelevant expressions. Unlike previous works which inject visual infor-
mation into a text (Tan & Bansal, 2020; Wang et al., 2022) from the whole, we consider identifying
visually-hungry words (those that require visual knowledge to derive complete semantics) from the
text input, and only infuse the visual augmentations through these trigger words. We conduct vi-
sual augmentations at the word level, because it is more flexible and controllable, considering the
augmented information is often irrelevant or noisy.

To this end, in this paper, we propose a general Visually-Augmented fine-tuning approach to improv-
ing PLMs for NLP tasks Without Images, namely VAWI. Our approach consists of three ingredients,
namely visually-hungry words extraction, visual knowledge augmentation, and visually-enhanced
fine-tuning. Given the text input from a NLP task, we first extract the visually-hungry words (VH-
words) from the input sentence. As the annotations of VH-words are generally unavailable, we
propose three strategies to automatically extract the VH-words, relying on the syntax trees, attention
distributions of the VL-PTMs’ text encoder, and an adaptive learnable module, respectively. Then,
based on the extracted VH-words, we leverage the text encoder of CLIP (Radford et al., 2021) (be-
ing fixed in our approach), a VL-PTM that has been pre-trained on millions of text-image pairs,
to encode the VH-words for obtaining their visually-aligned representations. Finally, we design
visually-enhanced fine-tuning strategies to infuse the visually-aligned representations into PLMs.
For small PLMs, we directly incorporate these visual representations to enrich the word embed-
dings and fine-tune the parameters of the PLM and our approach. For large-scale PLMs, we also
propose a parameter-efficient prompt-tuning strategy that only tunes very few parameters in our
approach, with the PLM being frozen.

To summarize, our approach provides an adaptive, flexible and efficient way to leverage visual infor-
mation for enhancing text-based PLMs. For verifying the effectiveness of our framework VAWI, we
test it on four PLMs (i.e., BERT, BART, RoBERTa, and T5) at different scales (i.e., 110M, 340M,
3B), and conduct extensive experiments in natural language understanding, commonsense reason-
ing, and text generation tasks. Experimental results show that our VAWI can boost the performance
of these PLMs significantly, i.e., 3.11%, 2.54%, and 2.16% absolute improvements on the com-
monsenseQA task using RoBERTa-base, RoBERTa-large, and T5-3b, respectively. Besides, VAWI
can outperform (or be on par with) several competitive baselines that adopt complicated visually-
augmented methods. Additionally, VAWI further improves the performance of a VL-PTM (i.e.,
ALBEF(Li et al., 2021)) on the cross-modal reasoning task by enhancing its text-encoder.
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2 RELATED WORK

In this section, we illustrate related work from the following three perspectives, namely pre-trained
language models, vision-language pre-trained models and visually-augmented language model.

Pre-trained Language Models. Recent years have witnessed the success of pre-trained language
models (PLMs) (Devlin et al., 2019; Radford et al., 2019; Lewis et al., 2020; Raffel et al., 2020).
After pre-trained on large-scale corpus, PLMs can be fine-tuned on multiple NLP tasks and achieve
remarkable performance. Typically, PLMs incorporate the Transformer architecture (Vaswani et al.,
2017) and require large-scale corpus. With the increasing scale of the model parameters and pre-
training corpus, PLMs can even achieve human performance (Devlin et al., 2019; Radford et al.,
2019). However, since PLMs are just pre-trained with text-only data, they may suffer from the
reporting bias problem (Gordon & Van Durme, 2013; Paik et al., 2021; Zhang et al., 2022), where the
frequency distribution of visual commonsense in the text may not reflect the real-world distribution
of the commonsense. Existing works have also found that such a problem can not be addressed
by enlarging the model or pre-training corpus (Paik et al., 2021; Zhang et al., 2022). In this work,
we aim to reduce the influence of the reporting bias problem on PLMs by adding visual knowledge
during fine-tuning.

Vision-Language Pre-Trained Models. To better accomplish the vision-language tasks, vision-
language pre-trained models (VL-PTMs) (Su et al., 2019; Lu et al., 2019; Li et al., 2021) become a
hot point in recent years, which require large-scale image-text pairs for pre-training. Existing VL-
PTMs fall into two categories based on the way of modeling vision-language interaction. The first
category of models (Su et al., 2019; Lu et al., 2019; Li et al., 2021) adopts an explicit vision-language
interaction layer to fuse the text embeddings and image features using a single-stream or dual-stream
network structure. These models are more suitable for the tasks that need to capture fine-grained
semantic interactions between vision and language (e.g., NLVR, VQA, and VE), and have achieved
remarkable performance on them (Li et al., 2021; Alayrac et al., 2022). The second category of
models (Radford et al., 2021; Jia et al., 2021) incorporates separate encoders to independently model
the vision and language information, and relies on pre-training tasks (e.g., cross-modal contrastive
learning) to align their representations into the same space. Such a way is capable of producing
enriched single-modal representations and has achieved remarkable performance on both vision and
image-text retrieval tasks (Radford et al., 2021).

Visually-Augmented Language Model. Visually-augmented pre-trained language
model (VaLM) (Wang et al., 2022) has become an emerging research topic that aims to in-
troduce the visual information into PLMs for alleviating the reporting bias problem. Existing
VaLMs can be categorized into visually-augmented pre-training and fine-tuning methods. Visually-
augmented pre-training approaches (Tan & Bansal, 2020; Wang et al., 2022) have to continually
pre-train the PLMs with the visual information. They mostly retrieve the visual information related
to input tokens or sentences from a large-scale images dataset and revise the masked language
model task for better capturing the visual semantics. Visually-augmented fine-tuning methods (Lu
et al., 2022) introduce the visual information into PLMs during the fine-tuning stage. These methods
also leverage the image retrieval or generation models to augment the visual information and design
a special fusion module to inject it into PLMs. However, existing VaLM approaches mostly need to
retrieve or generate visual information for utilization. Such a way is not only time-consuming, but
may also involve unrelated or noisy information into PLMs, leading to performance degradation.
In this work, we aim to first detect the visually-hungry words from the text, and then utilize a
VL-PTM to generate their visually-aligned representations without the usage of external images
or generation models. As a comparison, our approach is more flexible and efficient to leverage the
visual information for enhancing text-based PLMs.

3 METHOD

In this section, we firstly introduce the task setting, and then describe our proposed visual augmen-
tation approach for infusing visual knowledge into PLMs during fine-tuning.
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Figure 1: The illustration of our VAWI approach, consisting of visually-hungry words extraction,
visual knowledge augmentation and visually-enhanced fine-tuning.

3.1 TASK SETTING AND SOLUTION OVERVIEW

This work aims to improve the fine-tuning performance of pre-trained language models (PLMs) on
NLP tasks by leveraging the related visual information without images. For a NLP task, a set of n
labeled texts {⟨xi, yi⟩} are available, where xi is the i-th text data consisting of a sequence of words,
denoted as xi = {w1, w2, ..., wm}, and yi is the ground-truth output. Note that we don’t specify the
form of yi, which can be a discrete label (classification), a continuous value (regression) or a text
sequence (generation), since our approach is generally applicable to various settings (either natural
language understanding or generation tasks).

To solve the target task, we assume that a text-based PLM is given (either for understanding or gen-
eration). Let f denote a PLM parameterized by θPLM that has already been pre-trained on general-
purpose large-scale text data. We mainly focus on the encoder of the PLM, which learns the input
embedding via the “[CLS]” token. Given the labeled training data, we can train the PLM using
specific loss function (e.g., cross-entropy loss) and further solve the target task. However, existing
works (Tan & Bansal, 2020; Zhang et al., 2022) have revealed that PLMs may be unaware of vi-
sual knowledge that is not explicitly mentioned in the pre-trained text-only data (e.g., the shape of
coins and the color of the sky), leading to the lack of world commonsense and generating wrong
statements.

In this work, we focus on devising an efficient and effective way to infuse such visual knowledge
into PLMs during fine-tuning. Our approach is based on visually-hungry words (abbreviated as VH-
words), which require the visual information to derive complete semantic representations. The over-
all illustration of our approach is shown in Figure 1, which consists of three important ingredients,
namely VH-words extraction, visual knowledge augmentation, and visually-enhanced fine-tuning.
Given the input text xi and its label yi, we first detect and extract a set of VH-words. Then, we adopt
a visual knowledge augmentation module to enhance the visual background knowledge of their to-
kens and generate their visually-aligned representations. Finally, we infuse the visually-aligned text
representations into the PLM to improve its fine-tuning performance, where we consider both the
general fine-tuning of small PLMs and the parameter-efficient fine-tuning of large-scale PLMs.

3.2 VISUALLY-HUNGRY WORDS EXTRACTION

In our approach, visually-hungry words (VH-words) are the trigger units for visual augmentations,
requiring visual knowledge for deriving complete semantic representations. For example, some
visually-related words (e.g., color, shape and object) may not be well learned by the text-only PLM.
Therefore, we propose to first detect the VH-words from the input text, and then inject the proper
visual knowledge that they are hungry for into the PLM. However, the annotations about VH-words
are generally not available in NLP datasets. To address this problem, we devise three different
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strategies to extract the VH-words from the input text, including two feature-based strategies based
on syntax tree and attention distribution of PLMs, and a learnable model-based strategy.

Syntax-based Strategy. In natural language, entity words and descriptive words usually convey
more visual semantics than others. For example, for the sentence “He is eating a green apple”,
where underlined words are more related to visual semantics. Such words are mostly nouns or
adjectives in the input text, which can be detected by syntactic analysis. Therefore, we design a rule-
based strategy that leverages the syntactic information of the words in s for VH-words extraction.
Concretely, we first delete all stop words in a text and then adopt an open-resource toolkit SPACY 2 to
convert the input text into a syntax dependency tree. Based on the syntax tree, we extract the words
that have a particular part of speech (POS), e.g., nouns or adjectives, as the VH-words denoted by
W(V H). In this way, we can efficiently extract the VH-words from input text by using a fast parser
toolkit. However, as such a strategy mainly relies on the syntax information, it may select some
nouns or adjectives that are not explicitly related to visual semantics (e.g., sweet and bitter). In the
following, we will introduce two improved strategies to alleviate this problem.

Visually-enhanced Attention Based Strategy. The attention-based strategy utilizes the attention
distribution of a VL-PTM to detect the VH-words. Since VL-PTMs (Radford et al., 2021) are pre-
trained on large-scale image-text pairs, their text encoders are able to focus more on the words cor-
responding to some specific visual concepts in an image, which are likely to be VH-words. Inspired
by this idea, we can use the attention scores calculated by the text encoder of VL-PLMs to select
the VH-words. Specifically, we adopt the text encoder of CLIP (Radford et al., 2021), a VL-PTM
that has been pre-trained on millions of image-text pairs, to help extract the VH-words. As CLIP
adopts an autoregressive GPT-2 model as the text encoder, we calculate the average attention scores
between each token and the “[EOS]” token on the last multi-head self-attention layer, denoted as
swi

. Then, we select the top-K ranked words according to {swi
} as the VH-words W(V H). In this

way, we can leverage the intrinsic knowledge encoded by the VL-PTM to extract VH-words.

Learning-based Strategy. Considering that diverse PLMs and NLP tasks may be hungry for the
different complementary visual information, we devise a learning-based strategy that can adaptively
extract VH-words according to task requirements. Concretely, we add a parameterized VH-words
extractor layer for the PLM, which can be updated by gradient-based optimization algorithms to fit
the need for some specific task. Given the input text xi, we first leverage the PLM and a text encoder
of a VL-PTM (i.e., CLIP (Radford et al., 2021)) to produce the contextualized representations of the
contained words in xi. Then, we concatenate the representations of each word from the two models
and utilize a MLP layer to project it into the score swi

:

swi
= MLP([h(P )

wi
;h(V )

wi
]) (1)

where h(P )
wi and h

(V )
wi are the output word representations from the PLM and VL-PTM, respectively,

and scores swi are calculated by the learned model based on the supervision information from down-
stream tasks. Based on the scores of all words, we incorporate the gumbel-softmax function (Jang
et al., 2016) to extract the top-k words as the VH-words in a differentiable way. In this way, the
gradients of the fine-tuned tasks can be back-propagated to the extractor layer, which learns to adap-
tively select the more suitable VH-words.

3.3 VISUAL KNOWLEDGE AUGMENTATION

Existing works (Lu et al., 2022; Wang et al., 2022) mainly utilize image retrieval or generation
module to augment related visual knowledge. Such a way is time-consuming and may also involve
noisy images that will influence the task performance. Inspired by recent works that show the
effective visual-language alignment in VL-PTMs (Radford et al., 2021; Li et al., 2021), we utilize
the visually-aligned text encoders as the visual augmentation representations of VH-words. As the
text encoders have been aligned to the image encoders during pre-training on large-scale image-text
pairs, their output textual representations can be used as surrogates of visual augmentations based
on real images related to the input text. As will be shown in experiments (Section 4), this approach
is not only efficient but very effective for downstream NLP tasks.

2https://spacy.io/
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Based on the extracted VH-words, we first add a prefix text in the image caption style before the
VH-words, e.g., “a photo of: ”, to compose the input text x′. Then, we utilize the text encoder
of CLIP (Radford et al., 2021) to encode x′ and obtain the contextualized word representations
as the visually-aligned representations Hx ∈ Rk×d, where k is the sequence length of x′ and d
is the embedding size. To effectively reserve the visual semantics of VH-words, we obtain the
visual representation of each VH-word in W(V H). For example, given a sentence “a green apple
and a big orange”, we enhance the visual knowledge of underlined words with visually-aligned
representations Hx, respectively. Therefore, we incorporate a reformulation layer to aggregate the
visually-aligned representation Hx into the visually-augmented representations of these VH-words.
However, the positions of the VH-words vary from sentence to sentence. Therefore, we design a
position-aware attention mechanism in the reformulation layer to inject position information into
Hx for obtaining the visual representation of each VH-word via Hx. Specifically, we leverage a soft
position embedding matrix E ∈ Rl×d to reserve the position information of VH-words, where l is
the number of VH-words, and perform cross-attention between it and the visual representations as:

Q = E, K = HxW
K + bK , V = HxW

V + bV , (2)

Hv = softmax(
QK⊤
√
d

)V, (3)

H⊤
v = {h1,h2, ...,hl}, (4)

where hi ∈ Rd, K,V ∈ Rk×d. Hv ∈ Rl×d is the obtained visually-augmented representations
of VH-words, which can be leveraged for augmenting the visual knowledge of the PLM during
fine-tuning. hi is the visual representation of the i-th VH-word in W(V H), which are sorted by the
position of VH-word in x′. Note that in Eq. 2, we only use the position information to set the query
matrix Q, which is more efficient than standard self-attention (Vaswani et al., 2017), and the visual
semantics are mainly captured and injected through the key and value matrices.

3.4 VISUALLY-ENHANCED FINE-TUNING

After obtaining the visually-augmented representations of VH-words (i.e., Hv in Eq. 4), we propose
a visually-enhanced fine-tuning strategy to inject the captured visual knowledge. Here, we consider
two cases: (1) full-parameter fine-tuning for small PLMs, and (2) parameter-efficient prompt-tuning
for large-scale PLMs. Before introducing the learning method, we simply review the parameters to
consider, consisting of the parameters in the underlying PLM (denoted by Θplm) and the parameters
from our approach (denoted by Θref ). Note that we will always fix the text encoder from CLIP.

Fine-tuning for Small PLMs. For small PLMs, we can perform full-parameter fine-tuning, which
updates both Θplm and Θref . Specifically, given the visually-augmented representations Hv of VH-
words, we directly incorporate them into the embedding layer of the PLM. For a certain VH-word,
we insert its visually-augmented representation after the original word embedding, which leverages
the visual semantics to enrich the word representations.

Prompt-tuning for Large-Scale PLMs. For large-scale PLMs, we fix the parameters in it, i.e.,
Θplm and employ a parameter-efficient prompt-tuning way to optimize it on downstream NLP tasks.
Concretely, given the visually-augmented representations Hv of VH-words, we directly insert them
before the key, value of every layer of PLM, respectively. Then, following the typical prompt-tuning
paradigm (Li & Liang, 2021), we only tune the parameters of the reformulation layer (i.e., Θref ) to
control the soft prompts.

Our approach can be generally applied to various PLMs (e.g., BERT (Devlin et al., 2019),
BART (Lewis et al., 2020), T5 (Raffel et al., 2020)) and NLP tasks (natural language understanding
and text generation). Unlike other complicated visually-augmented methods (Tan & Bansal, 2020;
Wang et al., 2022), it is more efficient, without the explicit need of external images or generation
model; and meanwhile, it only introduces a relatively small number of parameters (Eq. 2), which
are easier to learn.
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Table 1: Performance comparison of different methods on NLU tasks, the BEST results are high-
lighted in bold. +None denotes that we directly fine-tune the backbone without adding visual infor-
mation. SBS, VABS, and LBS represent using the syntax-based strategy, visually-enhanced attention
based strategy, and learning-based strategy in our approach, respectively. The results of VOKEN and
iACE on GLUE are reported from Lu et al. (2022).

Base Model Method SST-2 QNLI QQP MNLI MRPC STS-B Avg.

CLIP +None 73.3 74.5 72.8 68.4 74.3 73.8 72.85
BLIP +None 76.3 77.4 78.8 72.5 77.8 76.4 76.53

ALBEF14M +None 78.9 78.2 79.4 73.4 76.5 77.5 77.31

BERTbase

+None 89.3 87.9 87.2 79.4 81.7 84.4 84.98
+VOKEN 92.2 88.6 88.6 82.6 83.5 86.0 86.83

+iACE 91.7 88.6 89.1 82.8 85.8 86.6 87.43
+VAWI-SBS 92.9 88.4 89.6 82.2 85.5 86.9 87.58

+VAWI-VABS 92.7 88.9 89.5 82.7 85.8 87.2 87.80
+VAWI-LBS 92.4 89.1 89.7 83.0 85.6 86.9 87.78

RoBERTabase

+None 89.2 87.5 86.2 79.0 81.4 85.4 84.78
+VOKEN 90.5 89.2 87.8 81.0 87.0 86.9 87.06

+iACE 91.6 89.1 87.9 82.6 87.7 86.9 87.63
+VAWI-SBS 91.4 89.4 87.7 82.2 88.2 87.7 87.76

+VAWI-VABS 91.7 89.1 87.9 82.6 88.3 88.1 87.95
+VAWI-LBS 91.6 90.6 87.9 82.4 88.5 88.3 88.21

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datesets. We conduct experiments on four types of NLP tasks. (1) Nature Language Understand-
ing (NLU) task: we extract 6 datasets from the popular GLUE benchmark (Wang et al., 2018); (2)
Commonsense reasoning task: we select CommonsenseQA (Talmor et al., 2019), a 5-way multi-
ple choice QA dataset that requires commonsense knowledge; (3) Text generation task: we select
CommonGen (Lin et al., 2019b), a constrained text generation task about generative commonsense
reasoning. (4) Cross-modal reasoning task: we select SNLI-VE (Xie et al., 2019), to evaluate the
capacity of predicting whether the image semantically entails the text.

4.2 MAIN EXPERIMENTAL RESULTS

In this part, we conduct a series of experiments on NLU, commonsense reasoning, text generation,
and cross-modal commonsense reasoning tasks.

Evaluation on NLU Tasks. We present the experimental results of different methods on 6 NLU
tasks in Table 1. First, we observe that VL-PTMs perform worse than PLMs, a possible reason is
that they have been continually pre-trained on large-scale image-text pairs, which may cause the
catastrophic forgetting problem. Second, VaLMs (i.e., VOKEN, iACE ,and VAWI) achieve better
performance over PLMs. As VaLMs infuse external visual knowledge into the PLMs, they can
help the PLMs better understand the background knowledge of some words (e.g., color, shape, and
size of objects). Between the two VaLM baselines, iACE is slightly better. This is because iACE
is enhanced based on VOKEN and incorporates an image generation model, so it produces more
visual information to utilize. However, the generated images inevitably contain noise and redundant
information, which limits the performance gain of iACE.

Finally, by comparing our approach with all baselines, it is obvious that VAWI performs consistently
better than them on the six datasets. In our approach, we adopt an efficient and effective way that
augments the visually-augmented representations using the text encoder of CLIP to encode the VH-
words from the input text. Benefiting from pre-training on large-scale image-text pairs, the text
encoder of CLIP has been well aligned with the semantic space of images, so that it can generate
high-quality visually-augmented representations of the VH-words to enrich them. Such a way not
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only saves the costs of time and computation but also reduces the influence of inevitable noise
from retrieved or generated images. It is worth noting that our approach only needs to add 5.09M
learnable parameters to the RoBERTa-base, far less than the 192.37M learnable parameters of iACE,
but achieves better performance. Additionally, among three VH-words extraction strategies, LBS
slightly outperforms others in most NLU tasks. The reason is that LBS incorporates a learnable
model-based strategy to select the VH-words. Such a way can adaptively extract proper VH-words
with the consideration of the intrinsic knowledge of the PLMs. However, LBS will increase the
computation cost due to its involved learnable VH-words extractor layer. Therefore, for efficiency,
in the following experiments, we utilize the SBS strategy in our approach for comparison.

Evaluation on Commonsense Reasoning Tasks. Following existing works (Lin et al., 2019a), we
also rely on a rule-based strategy to extract the examples containing visible objects, to construct a
new dataset called CommonsenseQA-3K. It consists of 2,903 and 341 examples in the training set
and dev set, respectively. In this way, we can ensure that most of the instances in this dataset require
the visual information to enrich the commonsense knowledge. Based on the CommonsenseQA and
CommonsenseQA-3k, we also report the results with different amounts of training data, to further
evaluate the performance of different methods in the few-shot setting.

We show the experimental results of different methods on the commonsense reasoning tasks in
Table 2. We can also see that with the help of the visual information from either retrieved images
or our VAWI-SBS, the performance of PLMs can be improved significantly. It indicates that the
visual information is indeed helpful to improve PLMs for understanding commonsense knowledge.
Besides, our approach outperforms the method using retrieved images from search engines. Our
approach omits the image retrieval process due to its inevitably involved noise, and relies on the
text encoder of CLIP to augment the visual representations. Such a way can guarantee the relevance
between the augmented visual knowledge and the text input, reducing the influence of retrieved
noisy images and redundant information. Furthermore, we also perform parameter-efficient tuning
on T5-3B-encoder with our approach and boost its performance. It shows that our approach is able
to be applied to large-scale PLMs to meet their thirst for visual information.

Table 2: Performance comparison on CommonsenseQA-3k and CommonsenseQA with different
amounts of training data. We report the average performance on the dev set over three runs, and
the BEST results are highlighted in bold. +Images denotes that we add retrieved images about the
VH-words using web search engines, and encode them via CLIP-ViT.

Base Model Method CommonsenseQA-3k CommonsenseQA

5% 10% 20% 100% 5% 10% 20% 100%

RoBERTabase
+None 41.88 46.04 50.58 61.88 44.88 50.04 57.08 67.90

+Images 42.37 48.09 52.81 64.22 45.72 51.17 58.96 69.64
+VAWI-SBS 42.94 49.27 53.97 65.10 46.51 52.44 59.87 71.01

RoBERTalarge
+None 48.39 56.30 59.06 74.19 51.24 59.95 65.52 76.65

+Images 49.55 57.78 61.29 75.61 52.18 60.93 66.08 78.39
+VAWI-SBS 50.27 58.17 62.22 76.54 52.98 61.97 67.40 79.19

T5-3B
+None 70.16 73.02 75.04 81.81 71.99 75.27 77.72 82.40

+Images 70.96 73.60 75.91 82.40 72.87 76.17 78.71 83.64
VAWI-SBS+PET 71.52 74.19 76.49 83.61 73.58 73.58 79.66 84.56

Evaluation on the Text Generation Task. As shown in previous experiments, it is useful to improve
the performance of VAWI on commonsense reasoning and nature language understanding tasks.
Here, we would like to study the effectiveness of our approach on the text generation task (i.e.,
CommonGen) using large PLMs. As shown in Table 3, our model VAWI also consistently boosts
the performance of BART-Large and T5-3b among all metrics. It further shows that our approach
can also improve PLMs on the text generation task. As a comparison, we can see that the retrieved
images are not very helpful and even cause performance degradation. The reason may be that the
text generation task is more sensitive to the inevitable noise from the retrieved images. Finally, the
parameter-efficient tuning strategy of our approach also achieves comparable performance with the
full-parameter tuning. It indicates that our parameter-efficient strategy is able to efficiently optimize
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Table 3: Performance comparison on CommonGen. We also show the performance of parameter-
efficient tuning of our approach, denoted as +PET. The BEST results are highlighted in bold.

Method Base Model BLUE-3 BLUE-4 METOR Rouge-L CIDER SPICE

BART-large

+None 42.80 32.42 31.36 57.57 16.56 32.94
+Images 42.67 32.67 32.12 57.46 16.78 32.81

+VAWI-SBS 44.56 34.17 32.47 58.46 17.23 33.67
+VAWI-SBS+PET 43.12 33.76 32.20 58.12 16.91 33.17

T5-3b

+None 45.92 35.92 33.02 58.57 17.71 33.51
+Images 45.69 35.50 33.55 58.94 17.51 32.91

+VAWI-SBS 47.67 37.54 33.41 59.94 18.34 34.67
+VAWI-SBS+PET 47.40 37.36 33.71 59.78 18.18 34.17

the parameters of large-scale PLMs, and shows a promising future to apply our approach to much
larger PLMs, e.g., GPT-3.

Evaluation on the Cross-modal Commonsense Reasoning Task. To verify the generality of our
method, we further evaluate the effectiveness of our VAWI on improving a VL-PTM (i.e., ALBEF Li
et al. (2021)), and conduct experiments on a cross-modal reasoning dataset, SNLI-VE. Concretely,
we implement our approach on ALBEF by inserting the visually-augmented representations after
the VH-words embeddings of the text encoder before the multimodal encoder, and keeping others
unchanged. As shown in Table 4, our VAWI can also improve the performance of ALBEF using
different amounts of training data. It further shows the generality of our approach in VL-PTMs, as it
can also provide rich information to enhance the text encoder of VL-PTM, helping it better perform
cross-modal reasoning.

Table 4: Results on the test set of SNLI-VE task. The BEST results are highlighted in bold.

Method SNLI-VE

10% 20% 50% 100%

ALBEF 65.46 67.52 75.47 80.91
ALBEF+VAWI +SBS 65.94 68.23 76.14 81.64

5 CONCLUSION

In this paper, we proposed a general visually-augmented fine-tuning approach that can be applied
to a variety of PLMs and NLP tasks, without using any retrieved or generated images, namely
VAWI. Specifically, we first identified and extracted the visually-hungry words (VH-words) from
input text via a token selector, where three different methods have been proposed, including syntax-,
attention- and learning-based strategies. Then, we adopted a fixed CLIP text encoder to generate
the visually-augmented representations of these VH-words. As it has been pre-trained by visual-
language alignment task on large-scale corpus, it is capable of injecting visual semantics into the
aligned text representations. Finally, we transformed the visually-augmented features into several
pre-designed visual prompts based on VH-words, and inserted them into PLMs to enrich the visual
semantics of word representations in PLMs. Extensive experiments conducted on 10 NLP tasks,
i.e., GLUE benchmark, CommonsenseQA, CommonGen, and SNLI-VE show that our approach can
consistently improve the performance of BERT, RoBERTa, BART, and T5 at different scales, and
outperform several competitive baselines significantly. Besides, the visual prompts of our framework
can also be used for parameter-efficient tuning, which boosts the performance of T5-3b.

In the future, we will investigate more effective approaches to extract visual-hungry words from the
input text, and incorporate more effective VL-PTMs to augment the visual representations. Besides,
we will also devise more effective visually-augmented pre-training strategies without images, to
further improve the performance of PLMs.
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A EXPERIMENTAL SETUP

Implementation Details. We implement all baselines and our method based on Huggingface Trans-
formers (Wolf et al., 2020). For all baselines, we set their hyper-parameters according to the original
papers. In our approach, we leverage the text encoder of CLIP (ViT-B/32) to implement the learnable
model-based VH-words extractor and generate the visual representations of VH-words in the visual
knowledge augmentation module. The hidden size of visual representations is set to 512. For differ-
ent NLP tasks, we tune the number of visually hungry words in {2, 3, 4, 5}. During fine-tuning, we
perform parameter-efficient tuning on T5-3b and BART-Large, and full-parameter tuning on other
PLMs. For all tasks and all backbones, we utilize Adam as the optimizer, set the learning rate to
2e-5, weight decay to 0.01, and a linear warmup for the first 6% steps. For GLUE, GommonGen,
and SNLI-VE datasets, we fine-tune our model for 3 epochs with a batch size of 32. For Common-
senseQA, we tune our model for 10 epochs with a batch size of 32. We use the cross-entropy loss
for classification and mean squared error loss for regression. All experiments are conducted on a
V100 GPU.

Baseline Models. We compare our approach with the following baselines, including pre-trained
language models (PLMs), visual-language pre-trained models (VL-PTMs), and visually-augmented
pre-trained language modes (VaLMs). (1) PLMs: We choose BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), BART (Lewis et al., 2020), T5 (Raffel et al., 2020) as the PLM back-
bones, and directly fine-tune them as baselines. (2) VL-PTMs: We select ALBEF (Li et al., 2021),
BLIP (Li et al., 2022), and CLIP (Radford et al., 2021) as baselines, which have been pre-trained
on large-scale image-text pairs via cross-modal contrastive learning. (3) VaLMs: we select VO-
KEN (Tan & Bansal, 2020) and iACE (Lu et al., 2022), which introduce the visual information into
PLMs by pre-training on retrieved images and fine-tuning on generated images, respectively.

B ABLATION STUDY

B.1 ABLATION STUDY ON VISUAL KNOWLEDGE AUGMENTATION

In this part, we conduct a series of experiments to verify whether the improvement of our approach
derives from the augmented visual knowledge about the VH-words.

The Effect of the Source of Visual Representations. We first propose three variants that incor-
porate powerful PLMs, i.e., RoBERTa-base, T5-Large, and T5-3b respectively, to replace the text
encoder of CLIP in our framework. We also replace the generated visual representations from the
text encoder of CLIP with random noise, to investigate the importance of the visual representations.
As shown in Table 5, we can see that our approach is better than all the variants, even T5-3b with
billion-scale parameters. It indicates that CLIP-base is more effective to augment visual knowledge
to improve the performance of PLMs. Besides, our approach also outperforms the variant using
random noise as the visual representation, showing the worse performance among all the variants.
It also shows the importance of visual representations, as they indeed contain the visual knowledge
that the PLM is hungry for.

Table 5: Performance comparison of different sources of visual representation in our approach. The
base model is RoBERTa-base.

Source of visual representation (Params) CSQA-3k CSQA SST-2 QQP STS-B QNLI

Random Noise (0M) 61.59 66.78 89.13 86.27 85.13 87.22
RoBERTa-large (355M) 61.18 67.17 89.43 86.53 85.60 87.77

T5-large-encoder (375M) 62.21 67.87 89.71 86.67 86.40 87.94
T5-3b-encoder (1500M) 63.10 68.42 90.24 86.96 86.93 88.21

CLIP-base (52M) 65.10 71.07 91.41 87.72 87.67 89.40

The Effect of the Stronger VL-PTMs. In our work, we choose CLIP-base to enhance PLMs, as
it has been pre-trained on a large-scale image-text dataset. Generally, a stronger VL-PTM would
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be more promising to further improve the performance. Here, we replace our CLIP-base model
with some stronger VL-PTMs, e.g., ALBEF (Li et al., 2021), UniCL-base (Yang et al., 2022), and
CLIP-large. Concretely, ALBEF leverages more pre-training tasks (e.g., MLM, ITM, and ITC),
UniCL utilizes more high-quality pre-training data, and CLIP-large increases the scale of model
parameters. We evaluate the above variations on CSQA-3k, QQP, and SST-2, and the results are
shown in Table 6. We can see that UniCL and CLIP-large outperform CLIP-base. It indicates that
the VL-PTMs with larger scale of model parameters or more high-quality pre-training data are more
capable of augmenting useful visual knowledge for PLMs. Considering the efficiency, CLIP-base is
also a good choice in our approach, and we will investigate more proper VL-PTMs in the future.

Table 6: Performance comparison of visual representations from different VL-PTMs in our ap-
proach. The base model is RoBERTa-base.

The text encoder of different VL-PTMs (Params) CSQA-3k SST-2 QQP

Random Noise (0M) 61.59 89.23 86.21
ALBEF (110M) 63.34 90.72 87.17

CLIP-base (52M) 65.10 91.41 87.72
UniCL-base (52M) 65.98 91.75 88.07
CLIP-large (123M) 66.27 92.10 88.31

The Effect of the Pre-trained Dataset of VL-PTMs. We notice that the pre-training dataset of
VL-PTMs is different from PLMs. Here, we investigate whether the captions or images from the
large-scale image-text pairs contribute more to the performance gain of our approach. To verify it,
we pre-train a new PLM only using the captions data. Following the setting of ALBEF, we utilize
the pre-trained parameters of BERT to initialize this model and only extract the captions from the
pre-training data of ALBEF (totally 14.5M sentences). After pre-training on these captions until
convergence, we utilize this model to replace CLIP-base in our approach and keep other settings
unchanged. We conduct experiments on commonsense reasoning and NLU tasks to evaluate its ef-
fectiveness for augmenting visual knowledge. As shown in Table 7, we can see that such a variation
underperforms ALBEF and our approach, and even leads to performance degradation on CSQA
task. It indicates that during pre-training the image data is an important resource for learning visual
knowledge in VL-PTMs. Only text data (i.e., captions) can not provide sufficient visual knowledge
that PLMs are hungry for. Therefore, after pre-learned on large-scale text-image pairs, CLIP can
absorb the useful visual knowledge from the images and inject them into PLMs in our approach. It
further indicates that the improvement of our method is due to the involvement of the visual infor-
mation about the VH-words.

Table 7: Performance comparison of visual representations pre-trained using different pre-training
data in our approach. The base model is RoBERTa-base.

The text encoder of different VL-PTMs (Params) CSQA-3k CSQA SST-2 STS-B MNLI

None 61.59 67.90 89.23 85.46 79.06
BERT pre-trained on captions (110M) 62.17 67.56 89.58 85.73 79.24

ALBEF (110M) 63.64 68.47 90.72 87.17 80.86
CLIP-base (52M) 65.10 71.07 91.41 87.73 82.27

B.2 ABLATION STUDY ON VISUALLY-ENHANCED FINE-TUNING

Different Insertion Positions of Visual Representations. In our visually-enhanced fine-tuning
framework, we insert the visual representation of the VH-word after its original word embedding.
To verify its effectiveness, we propose three variants of it that do not insert, insert all visual repre-
sentations of VH-words before and after the input text, respectively. As shown in Table 8, we can
observe that all these variants would lead to a performance decrease. It demonstrates that a proper
position to insert the visual representation is important for the utilization of augmented visual rep-
resentations. By inserting them after the word embeddings of corresponding VH-words, PLMs can
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effectively aggregate the visual representations to enrich the word representations, leading to better
performance on downstream NLP tasks.

Table 8: Performance comparison w.r.t. different insertion positions of visual representations. The
base model is RoBERTa-base.

Insert Positions CSQA-3k

5% 10% 20% 100%

Not insert 41.88 46.04 50.58 61.88
Before input text - 39.77 44.86 57.47
After input text - 40.23 45.67 58.08

After the VH-words 42.94 49.27 53.97 65.10

C FURTHER ANALYSIS

The Number of VH-words. Our approach has an important hyper-parameter required to tune,
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Figure 2: Performance comparison
w.r.t. different numbers of VH-words.

such as the number of VH-words. VH-words can supply
visual knowledge that PLMs may be hungry for. Here, we
would like to study whether more VH-words are better to
improve performance. We conduct experiments on the
QQP and CSQA-3K datasets using RoBERTa-base as the
backbone, and present the results in Figure 2. We can see
that with the increase of the number of VH-words, the
performance gain of our approach first increases and then
decreases. A possible reason is that too many VH-words
may also introduce noisy or redundant information (e.g.,
not very relevant words), which would also influence the
fine-tuning performance. Instead, it is also more efficient
to select a few VH-words (e.g., two words for CSQA-3k)
for deploying our approach in large-scale PLMs.

The Computation Latency of the Proposed Methods.
In our VAWI, we fix the model parameters of CLIP-base
to preserve the visual knowledge. Such a way can also
decrease the computation costs during training and inference. To verify it, we report the mean
training and inference latency per batch on the CSQA-3k dataset of our method and baselines on
RTX3090 GPU, where all these methods utilize RoBERTa-base as the backbone. As shown in the
Table 9, we can see that our proposed VAWI-SBS and VAWI-ABS would not increase the latency
too much. For VAWI-LBS, as it requires a PLM and a VL-PTM to adaptively select the VH-words,
it will relatively increase the much latency. As shown in Table 1, we can see that all the three variants
achieve comparable performance in 6 NLU datasets. Therefore, it is more efficient and effective to
select the SBS and ABS variations in our approach. Despite it, we can see that all our variants own
less latency than iACE, since our approach does not require a time-consuming image generation
process. And as shown in Table 1, our approach can also achieve better performance.

Table 9: The computation latency during training and inference.

Computation Costs RoBERTa-base +VAWI-SBS +VAWI-ABS +VAWI-LBS +Voken +iACE

Training Time (s) 0.506 0.587 0.680 0.893 0.506 1.138
Inference Time (s) 0.182 0.241 0.308 0.486 0.182 0.512

The Effect of the Improper Visually-hungry Words. To analyze how the quality of the VH-words
affects the performance of our approach, we further conduct the experiments on CSQA-3K and
two NLU tasks SST-2 and QQP from GLUE, to show the effect of insufficient VH-words on our
model performance. After extracting the VH-words, we remove part of them and only randomly
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sample 0%, 20%, and 50% VH-words for augmentation. As shown in Table 10, we can see that with
the decreasing of the sampling probability, the performance of our approach degrades gradually. It
indicates that not enough VH-words would degrade the performance of our approach.

Table 10: The effect of the improper visually-hungry words. The base model is RoBERTa-base.

The proportion of correct visual words CSQA-3k SST-2 QQP

0 % 61.60 89.57 87.63
20 % 62.17 89.44 87.40
50 % 64.22 91.73 89.20

100 % 65.10 92.93 89.74

None 61.88 89.23 86.21

The Interpretability of Augmented Embeddings. In this part, we show how our augmented em-
beddings infuse visual knowledge into the PLM. Concretely, we show the attention distributions
of a PLM (i.e., RoBERTa-base) in the last few layers before and after infusing visually-augmented
representations on CSQA. As shown in Table 11, we can see that the [CLS] tokens pay more at-
tention to the visually-hungry words (VH-words) and their visually-augmented representations, and
the VH-words also pay more attention to their visually-augmented representations. It shows that
the injected visually-augmented representations indeed provide useful knowledge, which guides the
PLM to focus on more important tokens and also improves the representations of the VH-words and
the [CLS] token.

Case Study of Extracted Visually-hungry Words. In this part, we show the visually-hungry words
(VH-words) extracted by syntax-, attention- and learning-based strategies in the Table 12, Table 13,
Table 14 and Table 15. We can see that the three strategies would extract slightly different VH-
words. The reason is that the three strategies are based on different techniques to identify the VH-
words. As we can see, the cases show that most of the extracted VH-words by our strategies are
generally related to some visual semantics, e.g., spider, two eyes. Although such VH-words can
not perfectly cover all the visual semantics, they actually contain most of the important words that
the PLMs may be hungry for, e.g., red and yellow. Besides, we can also see that the VH-words
extracted by our three strategies may not perfectly align with human judgment. In fact, it is also
hard for humans to determine proper rules to identify VH-words, e.g., people, human, and water. In
addition, as the learned knowledge of PLM is a black box, it is also difficult for humans to judge the
usefulness of our extracted VH-words for PLMs.
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Table 11: The attention maps of the self-attention layers on RoBERTa-base and our approach.

RoBERTa-Base VAWI
Self-Attention, Layer12, Head5 Self-Attention, Layer12, Head5
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Table 12: The first instance from the CommonsenseQA dataset. The extracted visually-hungry
words are highlighted in green.

Input
Input sentence: Unlike a spider and his many sight seers, people only have what? two eyes.

Syntax-based Strategy
Unlike a spider and his many sight seers, people only have what? two eyes

Attention-based Strategy
Unlike a spider and his many sight seers, people only have what? two eyes.

Attention-based Strategy
Unlike a spider and his many sight seers, people only have what? two eyes.
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Table 13: The second instance from the CommonsenseQA dataset. The extracted visually-hungry
words are highlighted in green.

Input
Input sentence: Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Syntax-based Strategy
Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Attention-based Strategy
Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Attention-based Strategy
Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Table 14: The instance from the SST-2 dataset. The extracted visually-hungry words are highlighted
in green.

Input
Input sentence: the mesmerizing performances of the leads keep the film grounded and keep the audience
riveted.

Syntax-based Strategy
the mesmerizing performances of the leads keep the film grounded and keep the audience riveted.

Attention-based Strategy
the mesmerizing performances of the leads keep the film grounded and keep the audience riveted.

Attention-based Strategy
the mesmerizing performances of the leads keep the film grounded and keep the audience riveted.

Table 15: The instance from the QQP dataset. The extracted visually-hungry words are highlighted
in green.

Input
Input sentence: How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that
are already starting to turn yellow or yellowish?

Syntax-based Strategy
How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that are already
starting to turn yellow or yellowish?

Attention-based Strategy
How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that are already
starting to turn yellow or yellowish?

Attention-based Strategy
How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that are already
starting to turn yellow or yellowish?
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