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ABSTRACT

Despite their success, vision transformers still remain vulnerable to image corrup-
tions, such as noise or blur. Indeed, we find that the vulnerability mainly stems
from the unstable self-attention mechanism, which is inherently built upon patch-
based inputs and often becomes overly sensitive to the corruptions across patches.
For example, when we only occlude a small number of patches with random noise
(e.g., 10%), these patch-based corruptions would lead to severe accuracy drops
and greatly mislead the intermediate features as well as the corresponding atten-
tions over them. To alleviate this issue, we seek to explicitly reduce the sensitivity
of attention layers to patch-based corruptions and improve the overall robustness
of transformers. In this paper, we propose the Adversarial Feature Alignment
Transformer (AFAT) that aligns the features between clean examples and patch-
based corruptions. To construct these corrupted examples, we build a patch cor-
ruption model to identify and occlude the patches that could severely distract the
intermediate attention layers. We highlight that the corruption model is trained ad-
versarially to the following feature alignment process, which is essentially differ-
ent from existing methods. In experiments, AFAT greatly improves the stability of
attention layers and consistently yields better robustness on various benchmarks,
including CIFAR-10/100-C, ImageNet-A, ImageNet-C, and ImageNet-P.

1 INTRODUCTION

Despite the success of vision transformers (Dosovitskiy et al., 2021) in recent years, they still lack
robustness against common image corruptions (Hendrycks & Dietterich, 2019; Mao et al., 2022)
such as noise or blur. For example, even for the state-of-the-art robust architectures, e.g., RVT (Mao
et al., 2022) and FAN (Zhou et al., 2022), the accuracy drops by more than 15% on corrupted
examples, e.g., with Gaussian noise, as shown in Figure 1 (blue star on the right). We suspect that
this vulnerability is inherent to the used self-attention mechanism, which relies on patch-based input
and may easily become overly sensitive to corruptions or perturbations upon them. In this paper,
we aim to develop a more reliable self-attention scheme and start our journey by first studying the
stability of intermediate attention layers against patch-based corruptions.

For example, as illustrated in Figure 1, we construct patch-based corruptions by occluding a small
number of patches with random noise, e.g., 10%. Considering RVT (Mao et al., 2022) as a strong
baseline, these corrupted patches have significant impact on the attention maps across layers, as
shown in Figure 1 (left). We suspect this to be the case due to the global interactions across tokens
in the self-attention mechanism – even when occluding or corrupting only few patches. Quanti-
tatively, this can be captured by computing the average cosine similarity between the attentions on
clean and corrupted images across layers, denoted by Cos-Sim. Regarding the considered example in
Figure 1, the Cos-Sim of only 0.43 for RVT indicates a significant shift in attention – a phenomenon
that we can observe across the entire validation set of ImageNet (see Figure 4). In fact, these atten-
tion shifts also have direct and severe impact on accuracy: In Figure 1 (right), we randomly sample
100 occlusion masks for each image and show the distribution of accuracy (blue box). Unsurpris-
ingly, the accuracy decreases significantly when facing the patch-based corruptions, compared to
the full/original examples (blue star). These experiments highlight the need for an inherently more
robust attention mechanism in order to improve the overall robustness of transformers.
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Figure 1: Sensitivity to patch-based corruptions in terms of attention stability (left) and accuracy
(right). Left: We randomly occlude 10% patches with noise and show the attention maps of different
layers in RVT-Ti (Mao et al., 2022) and our AFAT-RVT-Ti. Following (Fu et al., 2022), we choose
the center patch (red square) as the query and average the attention scores across all the attention
heads for visualization. Regarding this example, we also compute the average cosine similarity
(Cos-Sim) between the clean and corrupted attentions across different layers. Clearly, our AFAT
model yields more stable attention maps. Right: On ImageNet, we plot the distribution of accuracy
on the occluded examples with different occlusion masks. Here, we randomly sample 100 different
masks for each image. We show that RVT is very sensitive to the patch-based corruptions and has a
much larger variance of accuracy than our AFAT model.

We address this problem by finding particularly vulnerable patches to be occluded/corrupted and
then explicitly stabilizing the intermediate self-attention layers against them. As shown in Figure 1
(right), with a fixed occlusion ratio, the accuracy still varies a lot when occluding different patches
(e.g., ranging from 60% to 75% in the blue box). Since we seek to stabilize the attention mechanism
of transformers, occluding the most vulnerable (often very important) patches and explicitly reduc-
ing the impact of them should bring the largest robustness improvement. Inspired by this, we seek to
identify these vulnerable patches to construct patch-based corruptions and then align the intermedi-
ate features to make the attention less sensitive to the corruptions in individual patches, making the
overall model more robust. In practice, we are able to reduce the impact of patch-based corruptions
significantly, improving the Cos-Sim from 0.43 (for RVT) to 0.91 in Figure 1 (left). This is also
directly observed in the visual results where these corruptions have little impact on the intermedi-
ate attention maps of our AFAT model. The stable attention mechanism also greatly improves the
robustness of transformers. As shown in Figure 1 (right), compared with RVT, we obtain signifi-
cantly higher accuracy when facing examples with different occlusion masks (red box), alongside
the improved overall accuracy and robustness on full images (red star).

Contributions: In this paper, we propose the Adversarial Feature Alignment Transformer
(AFAT), making three key contributions: (1) We propose an adversarial feature alignment scheme
that adversarially selects patches to be occluded/corrupted and then explicitly aligns the intermedi-
ate features between clean and patch-based corrupted examples. (2) To construct these patch-based
corruptions, we develop a patch corruption model that finds particularly vulnerable patches by max-
imizing the distance of intermediate features between clean and corrupted examples. In practice,
the patch corruption model is trained adversarially to the classification model and greatly benefits
the following feature alignment process. (3) In experiments, we demonstrate that the robustness
improvement against patch-based corruptions (shown in Figure 1 (right)) can generalize well to var-
ious robustness benchmarks, including ImageNet-A/C/P (Zhao et al., 2018; Hendrycks & Dietterich,
2019). More critically, we can show, both qualitatively and quantitatively, that these improvements
stem from the more stable attention mechanism across layers.

2 RELATED WORK

Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Vaswani et al., 2017; Heo et al., 2021; Wang
et al., 2021b; Yuan et al., 2021) have achieved remarkable performance in various learning tasks. Be-
sides improving clean accuracy, many works seek to study and improve the robustness of ViTs (Bho-
janapalli et al., 2021; Bai et al., 2021; Shi et al., 2020; Paul & Chen, 2022; Benz et al., 2021b). In-
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Figure 2: Overview of the Adversarial Feature Alignment Transformer (AFAT). We present a patch
corruption model to produce patch-based corruptions and align the features of each self-attention
block between the clean and corrupted examples (the alignment loss is highlighted by green box).
Unlike existing methods, we select the patches to be occluded/corrupted in an adversarial way, i.e.,
corrupting the most vulnerable patches that would greatly distract intermediate attention layers.

terestingly, ViTs are often more robust than convolutional networks against corruptions (Qin et al.,
2022; Tang et al., 2021; Tian et al., 2022; Gu et al., 2022) and adversarial attacks (Mahmood et al.,
2021; Shao et al., 2021; Naseer et al., 2021; Lovisotto et al., 2022; Shi & Han, 2021; Liang et al.,
2022; Benz et al., 2021a). To further improve robustness, RVT (Mao et al., 2022) develops a robust
transformer by comparing different designs for each component, and presents a patch-wise augmen-
tation. FAN (Zhou et al., 2022) combines token attention and channel attention (Ali et al., 2021) and
yields new state-of-the-arts. However, even for these robust transformers, there is still a large gap
between clean and robust accuracy. More critically, the impact of corruptions/perturbations on the
key component of ViTs, i.e., self-attention, still remains poorly understood.

Besides the above, an intuitive way to improve robustness is to reduce the gap of intermediate fea-
tures between clean and corrupted examples, e.g., using feature alignment (Chen et al., 2019; Wang
et al., 2021a; Zhang et al., 2021; Burns & Steinhardt, 2021; Song et al., 2019; Yan et al., 2021).
Typically, feature alignment aligns the features of examples from two different domains. However,
when considering corruption robustness, the corruption type of test data is often unknown and the
corrupted training examples are also unavailable. To tackle this, we focus on ViTs and develop
a patch corruption model to produce corrupted examples for feature alignment. Unlike existing
methods, we select the patches in an adversarial way, i.e., finding the most vulnerable patches, to in-
troduce corruptions. Based on the generated examples with patch-based corruptions, we investigate
the stability of self-attention modules and develop a robust feature alignment approach for ViTs.

3 ADVERSARIAL FEATURE ALIGNMENT TRANSFORMER (AFAT)

We suspect that the vulnerability of state-of-the-art transformers to corruptions stems from the in-
herently fragile self-attention mechanism. To address this issue, we propose the Adversarial Feature
Alignment Transformer (AFAT) that explicitly enhances the stability of self-attention to improve the
overall robustness. We achieve this goal by identifying the vulnerable patches to construct patch-
based corruptions and then aligning their features with the clean ones at intermediate attention layers,
as shown in Figure 2. As for the first step of AFAT, in Section 3.2, we propose a patch corruption
model that finds particularly vulnerable patches to construct patch-based corruptions. Then, in Sec-
tion 3.1, we develop an adversarial feature alignment scheme that jointly trains the corruption model
and the classification model using an adversarial objective.

3



Under review as a conference paper at ICLR 2023

Algorithm 1 Training method for the Adversarial Feature Alignment Transformers (AFATs).
We train the classification model F and the corruption model C in an end-to-end manner. In each
iteration, we descend the gradient for F and ascend the gradient for C, respectively.
Require: Training data D, model parameters θC and θF , occlusion ratio ρ, step size η, hyper-parameter λ.
1: for each training iteration do
2: Sample a data batch {xi}Ni=1 from D
3: // Construct the patch-based corrupted example x̂
4: Sample the random noise δ from a uniform distribution
5: Construct x̂ using the patch corruption model C: x̂ = C(x; ρ) · x+ (1− C(x; ρ)) · δ
6: // Update the classification model F
7: Update θF by descending the gradient: θF = θF − η 1

N

∑N
i=1 ∇θF [Lce(xi) + λLalign(xi, x̂i)]

8: // Update the patch corruption model C
9: Update θC by ascending the gradient: θC = θC + η 1

N

∑N
i=1 ∇θCλLalign(xi, x̂i)

10: end for

3.1 FINDING VULNERABLE PATCHES TO CONSTRUCT PATCH-BASED CORRUPTIONS

In the first step of AFAT, we build a patch corruption model C to construct the examples with patch-
based corruptions that would severely distract the intermediate attention layers. As shown in Fig-
ure 2 (bottom left), given an example x and an occlusion ratio ρ, the corruption model first predicts
a binary mask M(x) = C(x; ρ) to determine which patches should be occluded/corrupted. Then,
we occlude them with a random noise δ sampled from the uniform distribution. Formally, the patch-
based corrupted example can be formulated by

x̂ = M(x) · x+ (1−M(x)) · δ, where M(x) = C(x; ρ). (1)

We highlight that, compared with simply dropping patches, occluding patches with noise is more
challenging for the model and particularly effective in practice (as detailed in Table 5 in appendix).

As shown in Figure 1 (right, blue box), randomly occluding/corrupting patches often incurs signifi-
cantly different impacts on accuracy between the best and worst case. This leads us to consider what
patches should be occluded to perform effective feature alignment. Since we seek to improve the
stability against them, we propose to construct the worst case by finding those vulnerable patches
that, once occluded, can greatly distract the intermediate attention layers. To this end, we train the
patch corruption model by maximizing the distance of intermediate features between clean and cor-
rupted examples. Let Fl(x) be the features obtained at the l-th layer for x. Given a model with L
layers, the training objective of the patch corruption model becomes

max
C

Ex∼D Lalign(x, x̂), where Lalign(x, x̂) =
1

L

∑L

l=1
∥Fl(x)−Fl(x̂)∥2. (2)

Here, D denotes the distribution of data and Lalign(x, x̂) denotes the feature alignment loss that mea-
sures the average feature distance over all the attention layers. Compared with directly maximizing
the cross-entropy loss, maximizing Lalign explicitly distracts the attention layers and in practice
performing alignment against it brings larger robustness improvement (see Table 6 in appendix).

Architecture of the patch corruption model. As shown in Figure 2 (bottom left), the corruption
model is a lightweight network that contains a convolution followed by a fully connected layer and
a binarization layer. The binarization layer is essentially a (hard) threshold function that selects the
top ρ of the patches to be occluded and keeps the rest unchanged. Following (Hubara et al., 2016),
we use the Straight Through Estimator (STE) to make the binarization operation differentiable.

3.2 ADVERSARIAL FEATURE ALIGNMENT

Regarding the second step of AFAT, as shown in Figure 2, we seek to stabilize the self-attention
layers by aligning the intermediate features between clean and patch-based corrupted examples. To
make sure that we can always construct the most challenging corrupted examples w.r.t. the latest
classification model, we simultaneously train the corruption model C and the classification model
F using an adversarial objective. Specifically, we minimize both the cross-entropy loss Lce(x) and
the alignment loss Lalign(x, x̂) to train F , while maximizing the alignment loss for C. Since Lce(x)
only relies on the clean example, our training objective can be equivalently formulated as

min
F

max
C

Ex∼D[Lce(x) + λLalign(x, x̂)], (3)
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Table 1: Comparisons with the state-of-the-art on CIFAR-10 and CIFAR-100. We evaluate clean
accuracy on the original test set and robust accuracy on the corresponding corrupted datasets, i.e.,
CIFAR-10-C and CIFAR-100-C. We show that our AFAT significantly improves the robustness on
both datasets. † denotes models with the same training recipe as used for our AFAT.

Model #Params (M) CIFAR-10 (%) CIFAR-10-C (%) CIFAR-100 (%) CIFAR-100-C (%)
ResNet50 23.5 94.77 84.81 76.43 66.75
ResNet50† 23.5 96.01 87.53 81.16 68.08
RLAT 11.7 94.75 89.60 - -
PRIME 11.7 93.06 89.05 77.60 68.28
NoisyMix 6.1 96.73 92.78 81.16 72.06
AdA 23.5 94.93 92.17 - -

C
N

N

CARD-Decks 44.6 96.80 92.75 80.60 71.30
Swin-T 27.6 95.84 90.25 81.83 70.87
DeiT-S 21.7 95.30 89.01 79.84 68.79
ConViT-S 27.4 96.90 91.73 82.43 71.39
RVT-S 23.0 97.21 92.35 (+0.00) 84.13 73.43 (+0.00)
+ AFAT (Ours) 23.0 97.73 94.14 (+1.79) 84.81 74.94 (+1.51)
FAN-S-Hybrid 25.7 97.69 93.14 (+0.00) 84.92 74.19 (+0.00)

V
iT

+ AFAT (Ours) 25.7 98.06 94.59 (+1.45) 85.30 75.72 (+1.53)

where λ is a trade-off parameter determining the importance of Lalign. The impact of λ on clean
accuracy and robustness can be found in Figure 6. Regarding Eqn. (3), we highlight that constructing
examples to perform feature alignment in an adversarial way greatly improves the robustness and is
essentially different from existing feature alignment approaches.

To solve the minimax problem (3), we update the models F and C by descending and ascending the
gradients, respectively. As shown in Algorithm 1, the training procedure has two key steps. First,
we produce the corrupted examples x̂ using C and descend the gradient w.r.t. Eqn. (3) to update
the parameters θF of the classification model F . Second, we ascend the gradients to update the
parameters θC of the patch corruption model C, enforcing it to produce the worst-case corrupted
examples. When ascending the gradient, we can directly change the sign of gradients to update the
parameters, making it possible for end-to-end training.

4 EXPERIMENTS

We conduct extensive experiments to evaluate our AFAT approach based on two state-of-the-art
robust architectures, including RVT (Mao et al., 2022) and FAN (Zhou et al., 2022). In Section 4.1,
we first justify our method on the CIFAR datasets and show that AFAT achieves new state-of-the-
arts on two corruption test sets, namely CIFAR-10-C and CIFAR-100-C. Then, in Section 4.2, we
perform comparisons on ImageNet and demonstrate that AFAT greatly improves the robustness on
various robustness benchmarks, including ImageNet-A, ImageNet-C, and ImageNet-P.

4.1 COMPARISONS ON CIFAR-10 AND CIFAR-100

In this experiment, we train the models from scratch on CIFAR-10/100 and compare both accuracy
and corruption robustness. Following (Calian et al., 2022), we use DeepAugment (Hendrycks et al.,
2020) and train the models for 200 epochs. We adopt the batch size of 128 and use cosine decay to
adjust the learning rate. For fair comparisons, we consider RVT-S (Mao et al., 2022) and FAN-S-
Hybrid (Zhou et al., 2022) as the baselines that contain approximately the same number of parame-
ters with popular CNNs and transformers. In all the experiments, by default, we set λ=5×10−3 and
ρ=10% for our AFAT models. Please see more ablations on these hyper-parameters in Section 5.

In Table 1, we compare our AFATs with both state-of-the-art CNNs (Kireev et al., 2022; Modas
et al., 2021; Erichson et al., 2022; Calian et al., 2022; Diffenderfer et al., 2021; Guo et al., 2022)
and popular transformer models (Liu et al., 2021; Touvron et al., 2021; d’Ascoli et al., 2021; Mao
et al., 2022; Zhou et al., 2022). To make fair comparisons with CNNs, we also apply the training
recipe of transformers to train a ResNet50 model, denoted by ResNet50† in Table 1. Specifically,
we do not exploit our patch corruption model or feature alignment, but directly apply the same
augmentation for training. Compared with CNNs, transformers tend to obtain higher accuracy but do
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Table 2: Comparisons of robustness on ImageNet. We report the mean corruption error (mCE) on
ImageNet-C and mean flip rate (mFR) on ImageNet-P. The lower mCE or mFR is, the more robust
the model is. Across different model sizes, our AFAT models consistently improve the robustness.

Model #FLOPs #Params ImageNet Robustness Benchmarks
(G) (M) IN-A IN-C ↓ IN-C w/o Noise ↓ IN-P ↓

ResNet50 4.1 25.6 76.1 0.0 76.7 76.0 58.0
Inception v3 5.7 27.2 77.4 10.0 80.6 82.0 61.3
ANT 4.1 25.6 76.1 1.1 63.0 64.3 53.2
EWS 4.1 25.6 77.3 5.9 58.7 60.2 30.9C

N
N

DeepAugment 4.1 25.6 75.8 3.9 60.6 52.2 32.1
Deit-Ti 1.3 5.7 72.2 7.3 71.1 72.9 56.7
ConViT-Ti 1.4 5.7 73.3 8.9 68.4 70.4 53.7
PiT-Ti 0.7 4.9 72.9 6.2 69.1 70.8 53.2
PVT-Tiny 1.9 13.2 75.0 7.9 69.1 70.0 60.1
RVT-Ti 1.3 10.9 79.2 14.6 (+0.0) 57.0 (-0.0) 58.9 (-0.0) 39.1 (-0.0)
+ AFAT (Ours) 1.3 10.9 79.5 16.5 (+1.9) 55.7 (-1.3) 57.5 (-1.4) 38.0 (-1.1)
FAN-T-Hybrid 3.5 7.5 80.1 21.9 (+0.0) 58.3 (-0.0) 59.8 (-0.0) 38.3 (-0.0)

V
iT

-T
in

y

+ AFAT (Ours) 3.5 7.5 80.3 23.6 (+1.7) 57.2 (-1.1) 58.4 (-1.4) 37.3 (-1.0)
Deit-S 4.6 22.1 79.9 6.3 54.6 56.6 36.9
ConViT-S 5.4 27.8 81.5 18.9 49.8 52.1 35.8
Swin-T 4.5 28.3 81.2 21.6 62.0 64.2 38.3
PiT-S 2.9 23.5 80.9 21.7 52.5 54.7 36.7
PVT-Small 3.8 24.5 79.9 18.0 66.9 70.0 45.1
T2T-ViT t-14 6.1 21.5 81.7 23.9 53.2 54.4 36.2
RVT-S 4.7 23.3 81.9 25.7 (+0.0) 49.4 (-0.0) 51.6 (-0.0) 35.2 (-0.0)
+ AFAT (Ours) 4.7 23.3 82.2 27.9 (+2.2) 48.4 (-1.0) 50.4 (-1.2) 34.3 (-0.9)
FAN-S-Hybrid 6.7 25.7 83.5 33.9 (+0.0) 48.5 (-0.0) 50.7 (-0.0) 34.5 (-0.0)

V
iT

-S
m

al
l

+ AFAT (Ours) 6.7 25.7 83.6 36.8 (+2.9) 47.5 (-1.0) 49.4 (-1.3) 33.5 (-1.0)
Deit-B 17.6 86.6 82.0 27.4 48.5 50.9 32.1
ConViT-B 17.7 86.5 82.4 29.0 46.9 49.3 32.2
Swin-B 15.4 87.8 83.4 35.8 54.4 57.0 32.7
PiT-B 12.5 73.8 82.4 33.9 48.2 51.0 32.3
PVT-Large 9.8 61.4 81.7 26.6 59.8 63.0 39.3
T2T-ViT t-24 15.0 64.1 82.6 28.9 48.0 49.3 31.8
RVT-B 17.7 91.8 82.6 28.5 (+0.0) 46.8 (-0.0) 49.8 (-0.0) 31.9 (-0.0)
+ AFAT (Ours) 17.7 91.8 82.8 32.1 (+3.6) 45.7 (-1.1) 48.5 (-1.3) 31.0 (-0.8)
FAN-B-Hybrid 11.3 50.5 83.9 39.6 (+0.0) 46.1 (-0.0) 48.1 (-0.0) 31.3 (-0.0)

V
iT

-B
as

e

+ AFAT (Ours) 11.3 50.5 84.2 41.1 (+1.5) 44.5 (-1.6) 46.8 (-1.3) 30.0 (-1.2)

not necessarily exhibit better robustness, such as Swin (Liu et al., 2021), DeiT (Touvron et al., 2021),
and ConViT (d’Ascoli et al., 2021). As for the carefully designed robust architecture RVT (Mao
et al., 2022) and FAN (Zhou et al., 2022), they both greatly improve the robustness and outperform
existing methods in most cases. Compared with the RVT and FAN baselines, our AFAT models
further improve the corruption robustness by a large margin, i.e., with the improvement larger than
1.4% on both CIFAR-10-C and CIFAR-100-C. More critically, our AFAT-FAN-S-Hybrid modes
achieve new state-of-the-art results on both benchmarks.

4.2 COMPARISONS ON IMAGENET

On ImageNet, we evaluate our method based on both RVT (Mao et al., 2022) and FAN (Zhou et al.,
2022). We consider three variants of each architecture according to the model size, including Tiny,
Small, and Base. Again, we closely follow the settings of RVT and FAN for training. Specifically,
we train the models using the same augmentation schemes and adopt the batch size of 2048. We
set the learning rate to 2×10−3 and train all the models for 300 epochs. To evaluate the robust-
ness, we consider several robustness benchmarks, including ImageNet-A (IN-A) (Zhao et al., 2018),
ImageNet-C (Hendrycks & Dietterich, 2019), and ImageNet-P (IN-P) (Hendrycks & Dietterich,
2019). Since we also introduce noise to construct the patch-based corruptions, we also report the
results on IN-C without the corruption types related to noise (i.e., excluding Gaussian Noise, Shot
Noise, and Impulse Noise from the 15 corruption types). Following (Hendrycks & Dietterich, 2019),
we report the mean corruption error (mCE) on IN-C (also IN-C w/o Noise) and mean flip rate (mFR)
on IN-P. For both metrics, lower is better. Regarding the two considered baseline architectures, for
fair comparisons, we use the official evaluation code of RVT (Mao et al., 2022) to evaluate the
pre-trained models as well as our AFAT models on these robustness benchmarks.
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Figure 3: Comparisons of attention stability between RVT-Ti and our AFAT-Ti. We adopt the same
method as that in Figure 1 to obtain the attention maps for visualization. In the last column, we
also investigate the impact of different occlusion masks (1000 random masks) on each example and
quantitatively evaluate the stability using cosine similarity (Cos-Sim). Clearly, our AFAT yields
much more stable attention maps both qualitatively and quantitatively.

Figure 4: Histogram of cosine
similarity on intermediate atten-
tion maps on ImageNet. For each
image, we construct the corrupted
example using a random occlu-
sion mask and compute the aver-
age cosine similarity across lay-
ers. Clearly, AFAT yields much
more stable attentions than RVT.

As shown in Table 2, compared with the strong baselines RVT and FAN, AFAT models consistently
improve the robust accuracy on IN-A by >1.5% across different model sizes while keeping compa-
rable clean accuracy. Moreover, we reduce the corruption error by >1.0% on IN-C and by >1.2%
on IN-C without noise corruption types, which indicates that our method not only improves the ro-
bustness on noise corruptions but also generalizes well to the other corruption types. Moreover, the
robustness on individual corruption type can be found in Figure 7 of appendix. When evaluating
the stability against perturbations on IN-P, our AFAT models also show clear superiority over the
RVT and FAN baselines. Overall, these experiments indicate that performing adversarial feature
alignment consistently improves robustness across different architectures and corruption types.

5 ANALYSIS AND DISCUSSIONS

In the following, we present further analysis on attention stability and visualize the generated patch-
based corruptions in Section 5.1. In Section 5.2, we report the robustness against both patch-based
corruptions and adversarial attacks. Moreover, we also discuss several hyper-parameters in AFAT,
including the occlusion ratio ρ and the weight of alignment loss λ.

5.1 VISUALIZATION RESULTS AND MORE ANALYSIS

Stability of intermediate attention maps. In this experiment, we directly visualize how much the
intermediate attentions would be changed when facing patch-based corruptions. We take RVT-Ti as
the baseline and compare the attention maps between RVT-Ti and our AFAT-RVT-Ti. Following (Fu
et al., 2022), we average the attention maps across all the attention heads in each layer and visualize
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Figure 5: Visualization of the patch-based corrupted examples produced by the proposed patch
corruption model (the second row) and comparisons of confidence score (bottom row). The corrup-
tion model often identifies those patches that would significantly distract intermediate self-attention
layers if they are occluded. Moreover, our AFAT model tends to yield higher confidence score even
when facing the generated patch-based corruptions.

Table 3: Comparisons of robustness against patch-based corruptions with the occlusion ratio ρ =
10%, patch-based perturbations (e.g., Patch-Fool (Fu et al., 2022)), and PGD attack on ImageNet.
Our AFAT models consistently outperforms the baseline models against them.

Method RVT-B FAN-B-Hybrid

Patch-based Corruption (Random Selected Patch) Vanilla 73.0 (+0.0) 73.7 (+0.0)
AFAT 75.0 (+2.0) 75.2 (+1.5)

Patch-based Corruption (Generated by C) Vanilla 61.4 (+0.0) 62.9 (+0.0)
AFAT 64.1 (+2.7) 65.2 (+2.3)

Patch-Fool Vanilla 69.3 (+0.0) 71.2 (+0.0)
AFAT 70.9 (+1.6) 72.5 (+1.3)

PGD-5 Vanilla 29.9 (+0.0) 30.5 (+0.0)
AFAT 30.8 (+0.9) 31.7 (+1.2)

the attention map for a query token, e.g., the center token highlighted by the red box. In Figure 3,
we show that RVT often incurs significant changes in the attention maps. By contrast, our AFAT
effectively preserves most of the regions with relatively high attention scores across layers. We
also quantitatively evaluate the attention stability by computing the cosine similarity between the
attention maps extracted from the clean and patch-based corrupted examples. Here, we compute the
cosine similarity for each head in all the layers and then report the average score over them. Figure 4
plots histograms of attention similarity scores across the whole validation set of ImageNet. Clearly,
AFAT increases the similarity both on average and in the worst-case across the whole dataset. In
addition, Figure 3 (last column) also studies impact of different occlusion masks and shows the
distribution of this score for two example images, each with 1000 random occlusion masks.

Patch-based corruptions generated by C. We also visualize the patch-based corruptions generated
by our patch corruption model C in Figure 5. By maximizing the feature alignment loss, the patch
corruption model is able to detect those patches that have major contributions in the attention mech-
anism but on the other hand would make the attention very unstable if they are corrupted/occluded.
In practice, the patch corruption model tends to occlude the patches that are mainly located in the
key part of the object, e.g., the eyes of the dog in the first example. In the bottom of this figure, we
also compare the confidence score of the ground-truth class predicted by both RVT and our AFAT
models. Clearly, the generated patch-based corruptions often greatly reduce the confidence score of
RVT. By contrast, as we explicitly perform feature alignment against these patch corruptions, our
AFAT model still yields promising confidence score and thus comes with better robustness.

5.2 MORE RESULTS AND ABLATIONS

Robustness against patch-based corruptions and adversarial attacks. In this experiment, we
evaluate the robustness against patch-based corruptions (with the corruptions on both randomly
selected patches and adversarial selected patches) and adversarial attacks. Regarding adversarial ro-
bustness, we report the accuracy on Patch-Fool (Fu et al., 2022) and the standard PGD attack (Madry
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Table 4: Comparisons of different strategies for feature alignment on ImageNet and ImageNet-
C (IN-C). We take RVT-B and FAN-B-Hybrid as the baselines in this experiment. We show that
the adversarial feature alignment yields significantly better robustness the random strategy while
keeping comparable accuracy with the baseline without the alignment loss.

Patch Selection Strategy RVT-B FAN-B-Hybrid
Imagenet IN-C ↓ Imagenet IN-C ↓

Baseline (w/o Lalign) 82.6 46.8 (-0.0) 83.9 46.1 (-0.0)
AFAT with Random Patch Selection 82.7 46.5 (-0.3) 84.1 45.6 (-0.5)

AFAT with Adversarial Patch Selection 82.8 45.7 (-1.1) 84.2 44.5 (-1.6)
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Figure 6: Accuracy and corruption robustness of AFAT-RVT-S on CIFAR-10 plotted against the
occlusion ratio ρ (left) and the weight of the alignment loss (right). Left: ρ = 10% obtains the best
robustness along with comparable accuracy. Right: A too small or too large value of λ hampers the
robustness of AFAT. We found that λ = 0.005 performs best in most cases.

et al., 2018). Here, we consider the vanilla Patch-Fool (single patch, i.e. 1P) without constraints and
follow the hyper-parameters of the original paper. As for PGD attack, we follow the settings of
RVT (Mao et al., 2022) to construct the adversarial examples with the number of steps t = 5 and
step size α = 0.5. From Table 3, our AFAT models consistently outperform the baseline models on
both patch-based corruptions and adversarial attacks.

Patch selection strategy. As mentioned in Section 3.1, we seek to find the vulnerable patches to be
occluded/corrupted in an adversarial way. To justify this, we compare our method with the random
patch selection strategy. As shown in Table 4, performing feature alignment with the adversarial
patch selection strategy greatly outperforms the random strategy on ImageNet-C. This experiment
indicates that adversarially selecting patches to introduce corruptions is particularly effective.

Occlusion ratio ρ and the weight of alignment loss λ. In this experiment, we train the AFAT-RVT-
S model on CIFAR-10 datasets to investigate the impact of the occlusion ratio ρ and the weight of
alignment loss λ. In Figure 6 (left), we change the value ρ by within the range between 0% and
50%. In practice, we obtain the best robustness with the ratio of 10% and thus set ρ=10% in our
experiments. In Figure 6 (right), we discuss the weight of our adversarial alignment loss λ. Given a
set of candidate values as shown in this figure, we observe that λ=0.005 yields the best robustness
along with competitive clean accuracy. We highlight that these hyper-parameters also generalize
well on CIFAR-100 and ImageNet. We adopt these settings in all the experiments.

6 CONCLUSION

In this paper, we study the robustness of transformer models by investigating the stability of self-
attention against patch-based corruptions. For most self-attention modules, the features and the cor-
responding attentions over them are very sensitive to these corruptions, which, however, contributes
to the lack of overall robustness. To alleviate this, we propose the Adversarial Feature Alignment
Transformers (AFATs) that explicitly stabilize the intermediate features of each self-attention layer.
Specifically, we develop an adversarial feature alignment approach that aligns the features between
clean examples and the examples with patch-based corruptions. We highlight that introducing cor-
ruptions to those adversarially selected patches is particularly effective in feature alignment. In
practice, AFAT greatly improves the stability of self-attention as well as the overall robustness.
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A OVERVIEW AND OUTLINE

In the main paper, we study the vulnerability of transformers by investigating the stability of self-
attention against patch-based corruptions. Since the existing self-attention mechanism tend to be
overly sensitive to patch-based corruptions, we propose the Adversarial Feature Alignment Trans-
former (AFAT), which explicitly enhances the stability of self-attention against patch-based cor-
ruptions to improve the overall robustness. In the appendix, we provide additional ablations and
complementary experimental results. We organize the appendix as follows:

• In Section B, we conduct additional ablation studies on the effect of occluding patches with noise
and the effect of our feature alignment loss in generating patch-based corruptions. We show
that, compared with dropping patches, occluding patches with noise greatly benefits the feature
alignment process. Moreover, generating the corrupted examples using our feature alignment loss
encourages the model to obtain larger robustness improvement than the cross-entropy loss.

• In Section C, we evaluate our AFAT models on each individual corruption type of ImageNet-C.
We show that AFAT outperforms the baseline model in most corruption types, alongside the better
overall robustness on the whole dataset.

• In Section D, we include more qualitative results to demonstrate the effectiveness of our AFAT in
improving the stability of attention maps. Experiments show the superiority of our AFAT over the
RVT baseline in improving the stability of attention maps.

B MORE ABLATIONS AND DISCUSSIONS

In this section, we conduct further ablations of the proposed method based on RVT-B on ImageNet.
Specifically, we first compare occluding patches with noise with simply dropping patches when
generating the patch-based corruptions. Then, we also demonstrate the superiority of our feature
alignment loss over the cross-entropy loss in identifying vulnerable patches.

Occluding patches with noise. As mentioned in the main paper, we construct the patch-based
corruptions by occluding patches with noise. Actually, one can also directly drop these patches,
namely PatchDrop. Here, we empirically compare these two methods based on RVT-B model on
ImageNet(-C). As shown in Table 5, performing feature alignment against both PatchDrop and the
occlusion with noise consistently improves the clean accuracy. Nevertheless, occluding patches with
noise encourages the model to obtain better robustness than PatchDrop on ImageNet-C. The main
reason is that, directly dropping patches often imposes relatively weak impact on the model and thus
comes with limited performance improvement. By contrast, occluding patches with noise provides
more severe impact on the intermediate features, making the feature alignment more challenging
and also more effective.

Table 5: Comparisons between occluding patches with noise and dropping patches on ImageNet and
ImageNet-C. We show that stabilizing the models against the occluded patches with noise yields
significantly better robustness than stabilizing against PatchDrop.

Method ImageNet ↑ ImageNet-C (mCE) ↓
Baseline (RVT-B) 82.6 46.8 (-0.0)
AFAT (PatchDrop) 82.8 46.3 (-0.5)

AFAT (Occlusion with Noise) 82.8 45.7 (-1.1)

Effect of feature alignment loss in generating patch-based corruptions. We further empirically
compare the proposed feature alignment loss Lalign with the cross-entropy loss in generating the
patch-based corruptions. As shown in Eqn. (2), we seek to maximize Lalign to identify those vul-
nerable patches that would greatly distract the intermediate attention layers. Indeed, we can also
directly maximize the cross-entropy loss Lce on the final prediction to perform patch selection. We
compare these two approaches and show the results in Table 6. Clearly, maximizing Lalign yields
significantly better robustness than maximizing Lce. The main reason is that the cross-entropy loss
only focuses on the final layer and may fail to mislead the intermediate attention layers. In contrast,
maximizing Lalign explicitly distracts all the attention layers in the model (also including the final
layer) and would potentially encourage the whole model to be more robust when performing feature
alignment against the generated patch corruptions.
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Table 6: Comparisons between cross-entropy loss and feature alignment loss in generating patch-
based corruptions based on RVT-B. Generating patch corruptions using the feature alignment loss
encourages the model to obtain significantly better robustness than the cross-entropy loss.

Patch Selection Strategy ImageNet ↑ ImageNet-C (mCE) ↓
Baseline (RVT-B) 82.6 46.8 (-0.0)

AFAT with Patch Selection (maxLce(x̂)) 82.7 46.2 (-0.6)
AFAT with Patch Selection (maxLalign(x, x̂)) 82.8 45.7 (-1.1)

C ROBUSTNESS ON INDIVIDUAL CORRUPTION TYPE

In this experiment, we compare the corruption error on each individual corruption type of ImageNet-
C between RVT-Ti and our AFAT-RVT-Ti. As shown in Figure 7, our AFAT model yields lower
corruption error than the baseline model in most of the corruption types except the corruption type
of motion blur. Although we introduce random noise when generating the patch-based corruptions,
the major improvement of corruption robustness does not come from the noise related corruptions.
Instead, the improved robustness can generalize well to other corruptions, e.g., yielding clearly lower
error on the corruptions of snow, frost, and fog.
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Figure 7: Comparisons of corruption error (the lower, the better) on individual corruption type of
ImageNet-C between RVT-Ti and AFAT-RVT-Ti. Our AFAT model outperforms the RVT baseline
model on most of the corruption types.

D MORE VISUALIZATION RESULTS OF ATTENTION STABILITY

In the main paper, we have shown some examples to demonstrate the superiority of our AFATs in
improving the stability of attention maps. Here, we additionally provide the visualization results
of more examples. As highlighted by Figure 5 of the paper, our AFATs yield significantly more
stable attentions, in terms of cosine similarity (Cos-Sim), than the baseline RVTs across the whole
ImageNet dataset. Interestingly, we observe that the visual stability of attentions is highly correlated
with Cos-Sim. To be specific, our AFAT often obtains very stable attentions on the examples with a
Cos-Sim larger than 0.8, as shown in Figure 8. In addition, we also show some examples with the
Cos-Sim lower than 0.8 in Figure 9.

As shown in Figure 8, following (Fu et al., 2022), we average the attention maps across all the at-
tention heads in each layer and visualize the attention map for a query token, e.g., the center token
highlighted by the red box. Given the randomly occluded examples, RVT often incurs significant
changes in the attention maps. By contrast, our AFAT effectively preserves most of the regions
with relatively high attention scores across layers. In addition, as occluding different patches may
have different impacts, we show the distribution of Cos-Sim over 1000 randomly sampled occlusion
masks for each image in Figure 8 (last column). Across different examples, our AFAT yields signif-
icantly better attention stability than RVT both qualitatively and quantitatively. In Figure 9, we also
show two examples with a Cos-Sim lower than 0.8. These occluded examples distract the attentions
of both RVT and our AFAT across layers. Nevertheless, our AFAT still yields better quantitative
results than RVT. Overall, these results demonstrate the effectiveness of AFAT in improving the
stability of self-attention.
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Figure 8: Comparisons of attention stability between RVT-Ti and our AFAT-RVT-Ti on the examples
with relatively high cosine similarity (Cos-Sim). In the last column, we also investigate the impact
of different occlusion masks (1000 random masks) on each example in terms of Cos-Sim. Clearly,
our AFAT yields much more stable attention maps both qualitatively and quantitatively.
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Figure 9: Comparisons of attention stability between RVT-Ti and our AFAT-RVT-Ti on the examples
with relatively low cosine similarity (Cos-Sim). The occluded examples distract the attentions of
both methods but our AFAT still yields higher Cos-Sim than RVT.
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