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Abstract

Large Language Models (LLMs) produce strong results but
are costly to serve. Static post-training quantization reduces
memory and compute, yet uses a single bit width for all
prompts, wasting resources on easy inputs and degrading
accuracy on harder ones. We introduce Prompt-Adaptive
Quantization (PAQ), a per-prompt precision framework that
requires no retraining of the underlying model. PAQ trains a
lightweight BERT router with perplexity-guided supervision
to select the smallest adequate quantization level (2, 4, 8, or
16 bits) per input. At inference, prompts are automatically
routed to the appropriate pre-quantized LLM variant. Over-
all, PAQ serves as a novel framework for adaptive per-prompt
quantization, reducing latency while maintaining strong accu-
racy across tasks.

Introduction

Large language models (LLMs) have achieved state-of-the-
art performance across a wide range of tasks, from open-
domain question answering to multi-step reasoning (Mi-
naee et al. 2024). Yet their deployment is often constrained
by compute and memory requirements (Zhou et al. 2024).
Quantization reduces these costs by compressing param-
eters from full-precision to lower-bit representations. Ap-
proaches such as GPTQ (Frantar et al. 2022b), AWQ (Lin
et al. 2023b), and SmoothQuant (Xiao et al. 2023) show
that static quantization can yield substantial efficiency im-
provements while maintaining competitive accuracy. How-
ever, static quantization assigns a fixed bit-width across all
prompts, wasting resources on simple inputs and degrading
performance on complex or long-context queries (Lu et al.
2024).

Adaptive inference suggests that tailoring compute to in-
put difficulty can preserve model quality while reducing
cost (Leviathan, Kalman, and Matias 2023; Schuster et al.
2023; Shazeer et al. 2017b). Early-exit methods (Leviathan,
Kalman, and Matias 2023; Schuster et al. 2023) and mixture-
of-experts architectures (Shazeer et al. 2017b) dynamically
allocate computation across layers or subnetworks. Yet this
adaptivity has not been extended to quantization.
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We address this gap with Prompt-Adaptive Quantiza-
tion (PAQ), a framework that dynamically selects quantiza-
tion levels on a per-prompt basis. PAQ uses a lightweight
BERT router trained with perplexity-guided supervision:
each prompt is labeled with the smallest quantized LLaMA-
3.1-8B variant (2, 4, 8, or 16 bits) achieving perplexity be-
low a threshold (7 = 1.13). At inference, the router directs
prompts to the appropriate model, reducing compute and
memory while preserving accuracy.

Our contributions are as follows:

1. We introduce the first end-to-end system for per-prompt
adaptive quantization that requires no retraining of the
base model.

2. We develop a perplexity-driven labeling strategy for
training a prompt router.

3. We perform a comprehensive evaluation across QA and
reasoning benchmarks, showing that PAQ delivers near-
baseline accuracy while substantially reducing inference
cost.

Related Work

Static quantization methods such as GPTQ (Frantar et al.
2022a) and AWQ (Lin et al. 2023a) apply a fixed bit-width
across all inputs, while adaptive approaches seek to adjust
precision based on input or model characteristics. For ex-
ample, OWQ (Lee et al. 2024) uses outlier-aware Hessian
metrics to achieve 3.1-bit models with minimal degredation,
QAQ (Cheng et al. 2024) applies distinct strategies for key/-
value caches, and Delta-CoMe (Ping et al. 2024) enables
training-free mixed precision for fine-tuned LLMs. In con-
trast, PAQ routes entire prompts to pre-quantized models
based on predicted complexity using perplexity thresholds.
Unlike confidence-based early-exit networks (Schuster et al.
2021) or MoE gating (Shazeer et al. 2017a), this approach
provides an interpretable, model-agnostic signal for select-
ing the minimal sufficient precision without retraining or ar-
chitectural changes.

Methodology

When using quantized versions of an LLM, there is typically
a trade-off between efficiency and accuracy. Lower-bit rep-
resentations reduce memory usage and inference latency, but
also limit the numerical precision of weights and activations.



As a result, performance typically degrades on complex or
ambiguous prompts, where higher precision is often neces-
sary to maintain reliable predictions.

Prompt-Adaptive Quantization (PAQ) addresses this chal-
lenge by dynamically selecting the smallest pre-quantized
model sufficient for each prompt using a custom BERT-
based router. In practice, we use freely available pre-
quantized LLaMA-3.1-8B models at 2-, 4-, 8-, and 16-bit
precision from Hugging Face (Bartowski 2024; Grattafiori
et al. 2024) as well as quantized versions of LLaMA-3.2-3B
(Grattafiori et al. 2024) and Qwen3-8B (Yang et al. 2025) at
the same bit-widths, ensuring a wide range of quantization
levels to balance efficiency and accuracy. Our contribution
lies in building a system that automatically routes prompts
to the appropriate model, achieving significant computa-
tional and memory savings without compromising task per-
formance.

Pre-Quantized Models

First, we define a set of pre-quantized models, each operat-
ing at different bit lengths:
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where the superscript denotes the bit-width of the model.
From probability logging, we then compute the perplexity of
the model’s response.

Perplexity provides a simple measure of how confident a
model is in its token predictions for a prompt, measuring
the average uncertainty across all predicted tokens (Juraf-
sky et al. 2023). Intuitively, lower perplexity can be seen
as the model assigning higher confidence to its predictions,
which often corresponds to less variability in responses and
a tendency toward greater accuracy (Choi et al. 2020). Con-
versely, higher perplexity reflects greater uncertainty, which
may indicate that a higher-precision model would be more
appropriate.

Labeling Prompts with the Smallest Sufficient
Model

We explore three threshold strategies to balance efficiency
and accuracy: a conservative threshold (I" = 1.07) that
prioritizes accuracy by routing more prompts to higher-bit
models, a medium threshold (7" = 1.13) that balances effi-
ciency and accuracy, and an aggressive (I' = 1.21) thresh-
old that maximizes efficiency by routing more prompts to
lower-bit models. We selected three thresholds that maintain
high accuracy while utilizing all quantization levels, based
on average accuracy of the base LLMs on train datasets. For
example, the conservative threshold chosen (1" = 1.07) had
77.2% accuracy, however, demonstrated a high usage of the
16-bit model. The aggressive threshold (I" = 1.21) had a
total precision of 76. 08% while demonstrating a preference
for the 2-bit model, and the medium threshold (T" = 1.13)
was more balanced with an accuracy of 76.55% while main-
taining a much closer distribution between bit widths. We
use perplexity thresholds rather than direct accuracy be-
cause perplexity can provide a more reliable measure of the
model’s understanding of the prompt (Gonen et al. 2024).
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Figure 1: Architecture of Prompt-Adaptive Quantization
(PAQ). A ModernBERT classifier routes prompts to appro-
priate quantized models (2-16 bit) based on predicted com-
plexity.

By capturing the model’s level of uncertainty and confusion,
perplexity helps ensure that correct responses are not the re-
sult of chance or spurious patterns, allowing us to more con-
fidently assess whether the model genuinely comprehends
the prompts. For each threshold T, we define:

k* = mink € 2,4,8,16 | PPL(z; f®)) < T,

where PPL(z; f(k)) is the perplexity of model f*) on z.
We train separate BERT routers for each threshold strategy
to evaluate their trade-offs.

For training, we constructed a balanced dataset of 110,000
prompts, with a maximum of 50,000 drawn from each
benchmark (Cobbe et al. 2021b; Rajpurkar et al. 2016a;
Dua et al. 2019a; Peter et al. 2018). Each router is trained
on prompts labeled according to its respective threshold. To
avoid biasing the routers toward a single precision level, we
downsampled so that prompts were approximately evenly
distributed across the four quantization levels for each
threshold setting. We randomly split each dataset into train
and validation sets, using validation to tune hyperparameters
and using a separate test set for final performance reporting.
In order to measure the performance of all 3 threshold-level
routers, we evaluate their ability to match expected routing
results based on pure threshold prompt sorting.

Router Performance

After evaluating all 3 threshold-level routers in performance,
we determined that the medium threshold (7' = 1.13) was
the most aligned with our goals in maintaining accuracy
while increasing efficiency. On our early router evaluation
dataset (3000 samples), the medium threshold performed
consistently well across all precision classes, striking a bal-
ance between aggressive quantization and stability. While
the conservative router (1" = 1.07) preserved slightly higher
accuracy in routing, it failed to yield meaningful computa-
tional savings. Conversely, the extreme router (7' = 1.21)
achieved the highest compression and throughput gains but
at a notable cost to accuracy, showing extreme preference to-
wards 2-bit model usage (53.3%). Under the medium config-
uration, the overall accuracy reached 70.61%. This suggests
that the router successfully allocated more complex inputs to
higher-precision paths, thereby preserving semantic fidelity
without overusing costly precision tiers.



Router Architecture and Training

The router is a lightweight classifier designed to predict the
minimal sufficient quantization level for a given prompt, im-
plemented using ModernBERT (Warner et al. 2024). Each
input is processed by the classifier to produce scores for the
four quantization levels (2, 4, 8, or 16 bits), which are con-
verted into probabilities to select the most likely bit-width.

The router is trained as a standard classifier, with the
correct quantization level as the target. The loss encour-
ages higher probability for the correct class, teaching the
router which prompts can safely use lower-bit models and
which require higher precision. We initially trained with
5,000 samples per dataset, but found that more data was
needed for the model to generalize. To address this, we
added 45,000 samples per dataset, and for datasets that did
not reach 50,000 samples, we used the full training split.
PAQ is trained on the train splits of five frequently used
datasets: SQuAD v2 (Rajpurkar et al. 2016b), DROP (Dua
etal. 2019b), GSMS8K (Cobbe et al. 2021a), ARC-Easy, and
ARC-Challenge (Peter et al. 2018).

We train with a batch size of 16 for five epochs using
AdamW (Loshchilov et al. 2019), monitoring validation ac-
curacy to ensure generalization and avoid overfitting. Early
observations show the router quickly learns to distinguish
simple from complex prompts, assigning low-bit models to
easy queries and reserving high-bit models for more chal-
lenging cases.

We experimented with different labeling strategies and
data splits, finding that including a diverse mix of prompts
from multiple datasets improved generalization across QA
and reasoning tasks. This training setup allows the router to
serve as a reliable method for adaptive quantization, balanc-
ing computational efficiency and accuracy without retrain-
ing the underlying LLM.

Inference Procedure
During inference, the system operates in three steps:

1. The router predicts the probability distribution p*) over
the four quantization levels for a new prompt x.

2. The predicted quantization level is selected as:

k = arg mgxﬁ(k).

3. The prompt is forwarded to the pre-quantized model f (k)
to produce the output.

This adaptive routing allows low-bit models to handle
easy prompts, reducing compute and memory, while higher-
precision models process harder prompts to maintain perfor-
mance (Xia et al. 2008; Roy et al. 2021).

Experiments
Experimental Setup

We evaluate PAQ on seven widely used benchmarks:
SQuAD v2 (Rajpurkar et al. 2016b), DROP (Dua et al.
2019b), GSMS8K (Cobbe et al. 2021c), MMLU (Hendrycks
et al. 2021), HumanEval (Chen, Tworek et al. 2021), ARC-
Easy, and ARC-Challenge (Peter et al. 2018). We report
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Figure 2: Adaptive bitwidth routing distribution across
benchmark tasks for LLaMA-8B using a BERT-based router.
Each stacked bar shows the percentage of samples routed to
each bitwidth precision (2-bit, 4-bit, 8-bit, and 16-bit) for
different evaluation tasks.

task-specific metrics (F1/EM, accuracy, or code correct-
ness) and latency per prompt. Models are served using
transformers on an NVIDIA RTX 6000 Ada GPU.
Baselines include each individual quantized variant (2-, 4-
, 8-, 16-bit) and the 16-bit model for all prompts, as well as
a randomized router to verify that results are due to the ac-
tual performance of the router. We use Llama 8B (Grattafiori
et al. 2024), Llama 3B (Grattafiori et al. 2024), and Qwen
8B (Yang et al. 2025) to evaluate performance. Unless other-
wise noted, results are averaged across datasets to highlight
trends in scaling, routing efficiency, and precision—accuracy
tradeoffs.

Accuracy Results

Table 1 reports per-dataset accuracy and average inference
time. Overall, the BERT router achieves 0.707 average accu-
racy across LLaMA 3B, LLaMA 8B, and Qwen 8B, slightly
surpassing the 16-bit baseline (0.705) as well as exceed-
ing all 2-bit, 4-bit, and 8-bit models. This demonstrates that
adaptive routing preserves model quality even under aggres-
sive quantization.

QA and Multiple Choice Datasets: On SQuAD, the
router achieves 0.970 average accuracy across all models,
showing a slight decrease from the 16-bit average accu-
racy of 0.972. ARC-Easy and ARC-Challenge exhibit mi-
nor reductions or equal performance in routed accuracy
compared to their highest-performing static configurations
(ARC-Easy: 0.412 vs. 0.412; ARC-Challenge: 0.405 vs.
0.416). This indicates that while low-bit routing accelerates
inference, higher-bit models are selectively used for more
difficult prompts, yet careful tuning may still further im-
prove router accuracy.



Dataset LLaMA 3B LLaMA 8B Qwen 8B

2b 4b 8b 16b BERT Rand 2b 4b 8b 16b BERT Rand 2b 4b 8b 16b BERT Rand
SQuAD 0.941 0.946 0.952 0.957 0.950 0.949 0.967 0.974 0.979 0.975 0.973 0.978 0.980 0.985 0.983 0.985 0.986 0.986
DROP 0.543 0.647 0.680 0.674 0.662 0.632 0.677 0.817 0.822 0.821 0.809 0.783 0.762 0.814 0.803 0.793 0.815 0.793
GSMS8K 0.243 0.546 0.596 0.605 0.578 0.487 0.402 0.605 0.626 0.672 0.623 0.574 0.766 0.816 0.822 0.813 0.823 0.810
ARC-Easy  0.374 0.409 0.405 0.412 0412 0.411 0.454 0.489 0.474 0.492 0.484 0.483 0.456 0.460 0.432 0.426 0.457 0.442
ARC-Chall. 0.341 0.390 0.403 0.416 0.405 0.372 0.438 0.529 0.515 0.512 0.529 0.517 0.508 0.510 0.468 0.484 0.505 0.503
MMLU 0.388 0.510 0.514 0.517 0.510 0.485 0.538 0.572 0.576 0.562 0.580 0.558 0.561 0.665 0.671 0.667 0.667 0.644
HumanEval 0.055 0.116 0.207 0.201 0.165 0.116 0.091 0.207 0.250 0.250 0.232 0.171 0.104 0.091 0.067 0.079 0.098 0.073

Overall Ace. 0.548 0.633 0.648 0.651

0.643 0.619 0.629 0.717

0.718 0.723 0.724 0.696 0.710 0.754 0.746 0.743 0.755 0.741

Avg Time (s) 39 43 79 236 80 98 41 45

86 246 84 103 42 44 98 252 86 108

Table 1: Condensed comparison of accuracy and average inference time across fixed quantization levels (2—16 bit) and adaptive
routing strategies (ModernBERT Router vs Random Router) for LLaMA 3B, LLaMA 8B, and Qwen 8B. ModernBERT Router
routes based on predicted prompt complexity, while Random Router uses uniform random selection.

Reasoning Datasets: GSM8K, MMLU, DROP and Hu-
manEval require higher precision for challenging prompts.
DROP, in particular, is demanding due to longer context and
reasoning-intensive questions. The router routes a signifi-
cant portion of these prompts to 8-bit and 16-bit models,
improving accuracy over random routing (e.g., DROP: 0.762
vs. 0.736; MMLU: 0.586 vs. 0.572), demonstrating that the
router captures task- and prompt-specific needs.

Efficiency Analysis

Routing achieves a mean latency of 8.3 s per prompt, rep-
resenting a 65.9% reduction relative to the 16-bit baseline
(24.5 s). Lower-bit models alone have an average latency of
4.3 s (2-bit: 4.1s, 4-bit: 4.4s), meaning PAQ increases la-
tency by 4s on average compared to low bit-width models
but compensates with improved accuracy. Speedups rela-
tive to 16-bit vary by dataset, ranging from 1.5x (DROP)
to 6.4x (SQuAD), and overhead by router is negligible
(<0.025).

Perplexity and Routing Behavior

Perplexity analysis reveals a strong link between prompt
complexity and bitwidth selection. Simple QA and Multiple
Choice tasks (SQuAD, ARC-Easy) show lower perplexity
and are routed mainly to 2- or 4-bit models, while reasoning-
intensive prompts (GSM8K, DROP) have higher perplexity
and are more frequently routed to 8- or 16-bit models.

Routing distributions (Figure 2) further illustrate this
trend: factual or surface-level tasks use low-bit models
70-90% of the time, whereas complex reasoning tasks trig-
ger high-bit routing 20-60% of the time. Overall, across
6,164 test prompts, 41.7% are routed to 2-bit, 30.0% to 4-bit,
10.2% to 8-bit, and 18.0% to 16-bit inference. This adaptive
allocation reduces average latency to 8.3 s (from 24.5 s for
16-bit) while preserving baseline accuracy, demonstrating
that the router effectively internalizes task-level complexity
to optimize precision.

Discussion

PAQ demonstrates that per-prompt adaptive quantization im-
proves efficiency while maintaining high accuracy across di-

verse tasks:

* Efficiency: Routing cuts latency to 8.3s per prompt,
66% faster than 16-bit inference with minimal overhead.

* Routing behavior: Most prompts use low-bit models
(41.7% 2-bit, 30.0% 4-bit), while high-bit models handle
only complex inputs (10.2% 8-bit, 18.0% 16-bit), show-
ing effective precision allocation.

* Accuracy trade-offs: Performance remains strong
(0.643 LLaMA 3B, 0.724 LLaMA 8B, 0.755 Qwen 8B).
QA tasks stay near baseline, and reasoning-intensive
tasks show minor variation, reflecting a balanced effi-
ciency—accuracy trade-off.

By using task- and prompt-specific complexity cues, PAQ
achieves major speedups with minimal accuracy loss, show-
ing the router’s ability to adaptively allocate computation.
Minor drops on reasoning-heavy prompts indicate room for
further tuning, but overall PAQ maintains strong efficiency
and performance. In large-scale systems handling high vol-
umes of prompts, PAQ’s adaptive per-prompt quantization
could reduce computational costs and latency while main-
taining accuracy, enabling more efficient deployment of
large language models in real-time services or multi-user ap-
plications.

Conclusion

We introduced PAQ, a per-prompt adaptive quantiza-
tion framework for LLMs. Leveraging a lightweight
ModernBERT-based router to select among pre-quantized
LLaMA-3.1 and Qwen 8B models, PAQ reduces average la-
tency by 66% while maintaining near-baseline accuracy. It
efficiently routes low-complexity prompts, such as SQuAD
and ARC, to low-bit models and allocates higher precision
for reasoning-intensive prompts like GSM8K and DROP,
demonstrating the router’s ability to match model precision
to prompt complexity. Overall, PAQ provides a practical,
interpretable approach to input-aware, efficient LLM infer-
ence, opening avenues for adaptive large model deployment.
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