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ABSTRACT

Transformer architectures have proven to learn useful representations for pro-
tein classification and generation tasks. However, these representations present
challenges in interpretability. In this work, we demonstrate a set of methods for
analyzing protein Transformer models through the lens of attention. We show that
attention: (1) captures the folding structure of proteins, connecting amino acids that
are far apart in the underlying sequence, but spatially close in the three-dimensional
structure, (2) targets binding sites, a key functional component of proteins, and
(3) focuses on progressively more complex biophysical properties with increas-
ing layer depth. We find this behavior to be consistent across three Transformer
architectures (BERT, ALBERT, XLNet) and two distinct protein datasets. We
also present a three-dimensional visualization of the interaction between atten-
tion and protein structure. Code for visualization and analysis is available at
https://github.com/salesforce/provis.

1 INTRODUCTION

The study of proteins, the fundamental macromolecules governing biology and life itself, has led to
remarkable advances in understanding human health and the development of disease therapies. The
decreasing cost of sequencing technology has enabled vast databases of naturally occurring proteins
(El-Gebali et al., 2019a), which are rich in information for developing powerful machine learning
models of protein sequences. For example, sequence models leveraging principles of co-evolution,
whether modeling pairwise or higher-order interactions, have enabled prediction of structure or
function (Rollins et al., 2019).

Proteins, as a sequence of amino acids, can be viewed precisely as a language and therefore modeled
using neural architectures developed for natural language. In particular, the Transformer (Vaswani
et al., 2017), which has revolutionized unsupervised learning for text, shows promise for similar
impact on protein sequence modeling. However, the strong performance of the Transformer comes
at the cost of interpretability, and this lack of transparency can hide underlying problems such as
model bias and spurious correlations (Niven & Kao, 2019; Tan & Celis, 2019; Kurita et al., 2019). In
response, much NLP research now focuses on interpreting the Transformer, e.g., the subspecialty of
“BERTology” (Rogers et al., 2020), which specifically studies the BERT model (Devlin et al., 2019).

In this work, we adapt and extend this line of interpretability research to protein sequences. We
analyze Transformer protein models through the lens of attention, and present a set of interpretability
methods that capture the unique functional and structural characteristics of proteins. We also compare
the knowledge encoded in attention weights to that captured by hidden-state representations. Finally,
we present a visualization of attention contextualized within three-dimensional protein structure.

Our analysis reveals that attention captures high-level structural properties of proteins, connecting
amino acids that are spatially close in three-dimensional structure, but apart in the underlying sequence
(Figure 1a). We also find that attention targets binding sites, a key functional component of proteins
(Figure 1b). Further, we show how attention is consistent with a classic measure of similarity between
amino acids—the substitution matrix. Finally, we demonstrate that attention captures progressively
higher-level representations of structure and function with increasing layer depth.
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(a) Attention in head 12-4, which targets amino
acid pairs that are close in physical space (see
inset subsequence 117D-157I) but lie apart in the
sequence. Example is a de novo designed TIM-
barrel (5BVL) with characteristic symmetry.

(b) Attention in head 7-1, which targets binding
sites, a key functional component of proteins.
Example is HIV-1 protease (7HVP). The primary
location receiving attention is 27G, a binding site
for protease inhibitor small-molecule drugs.

Figure 1: Examples of how specialized attention heads in a Transformer recover protein structure and
function, based solely on language model pre-training. Orange lines depict attention between amino
acids (line width proportional to attention weight; values below 0.1 hidden). Heads were selected
based on correlation with ground-truth annotations of contact maps and binding sites. Visualizations
based on the NGL Viewer (Rose et al., 2018; Rose & Hildebrand, 2015; Nguyen et al., 2017).

In contrast to NLP, which aims to automate a capability that humans already have—understanding
natural language—protein modeling also seeks to shed light on biological processes that are not fully
understood. Thus we also discuss how interpretability can aid scientific discovery.

2 BACKGROUND: PROTEINS

In this section we provide background on the biological concepts discussed in later sections.

Amino acids. Just as language is composed of words from a shared lexicon, every protein sequence
is formed from a vocabulary of amino acids, of which 20 are commonly observed. Amino acids may
be denoted by their full name (e.g., Proline), a 3-letter abbreviation (Pro), or a single-letter code (P).

Substitution matrix. While word synonyms are encoded in a thesaurus, proteins that are similar in
structure or function are captured in a substitution matrix, which scores pairs of amino acids on how
readily they may be substituted for one another while maintaining protein viability. One common
substitution matrix is BLOSUM (Henikoff & Henikoff, 1992), which is derived from co-occurrence
statistics of amino acids in aligned protein sequences.

Protein structure. Though a protein may be abstracted as a sequence of amino acids, it represents
a physical entity with a well-defined three-dimensional structure (Figure 1). Secondary structure
describes the local segments of proteins; two commonly observed types are the alpha helix and beta
sheet. Tertiary structure encompasses the large-scale formations that determine the overall shape
and function of the protein. One way to characterize tertiary structure is by a contact map, which
describes the pairs of amino acids that are in contact (within 8 angstroms of one another) in the folded
protein structure but lie apart (by at least 6 positions) in the underlying sequence (Rao et al., 2019).

Binding sites. Proteins may also be characterized by their functional properties. Binding sites are
protein regions that bind with other molecules (proteins, natural ligands, and small-molecule drugs)
to carry out a specific function. For example, the HIV-1 protease is an enzyme responsible for a
critical process in replication of HIV (Brik & Wong, 2003). It has a binding site, shown in Figure 1b,
that is a target for drug development to ensure inhibition.

Post-translational modifications. After a protein is translated from RNA, it may undergo additional
modifications, e.g. phosphorylation, which play a key role in protein structure and function.
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3 METHODOLOGY

Model. We demonstrate our interpretability methods on five Transformer models that were pretrained
through language modeling of amino acid sequences. We primarily focus on the BERT-Base model
from TAPE (Rao et al., 2019), which was pretrained on Pfam, a dataset of 31M protein sequences (El-
Gebali et al., 2019b). We refer to this model as TapeBert. We also analyze 4 pre-trained Transformer
models from ProtTrans (Elnaggar et al., 2020): ProtBert and ProtBert-BFD, which are 30-layer,
16-head BERT models; ProtAlbert, a 12-layer, 64-head ALBERT (Lan et al., 2020) model; and
ProtXLNet, a 30-layer, 16-head XLNet (Yang et al., 2019) model. ProtBert-BFD was pretrained on
BFD (Steinegger & Söding, 2018), a dataset of 2.1B protein sequences, while the other ProtTrans
models were pretrained on UniRef100 (Suzek et al., 2014), which includes 216M protein sequences.
A summary of these 5 models is presented in Appendix A.1.

Here we present an overview of BERT, with additional details on all models in Appendix A.2. BERT
inputs a sequence of amino acids x = (x1, . . . , xn) and applies a series of encoders. Each encoder
layer ` outputs a sequence of continuous embeddings (h(`)

1 , . . . ,h
(`)
n ) using a multi-headed attention

mechanism. Each attention head in a layer produces a set of attention weights α for an input, where
αi,j > 0 is the attention from token i to token j, such that

∑
j αi,j = 1. Intuitively, attention weights

define the influence of every token on the next layer’s representation for the current token. We denote
a particular head by <layer>-<head_index>, e.g. head 3-7 for the 3rd layer’s 7th head.

Attention analysis. We analyze how attention aligns with various protein properties. For properties
of token pairs, e.g. contact maps, we define an indicator function f(i, j) that returns 1 if the property
is present in token pair (i, j) (e.g., if amino acids i and j are in contact), and 0 otherwise. We
then compute the proportion of high-attention token pairs (αi,j > θ) where the property is present,
aggregated over a dataset X:

pα(f) =
∑
x∈X

|x|∑
i=1

|x|∑
j=1

f(i, j) · 1αi,j>θ

/∑
x∈X

|x|∑
i=1

|x|∑
j=1

1αi,j>θ (1)

where θ is a threshold to select for high-confidence attention weights. We also present an alternative,
continuous version of this metric in Appendix B.1.

For properties of individual tokens, e.g. binding sites, we define f(i, j) to return 1 if the property is
present in token j (e.g. if j is a binding site). In this case, pα(f) equals the proportion of attention
that is directed to the property (e.g. the proportion of attention focused on binding sites).

When applying these metrics, we include two types of checks to ensure that the results are not
due to chance. First, we test that the proportion of attention that aligns with particular properties
is significantly higher than the background frequency of these properties, taking into account the
Bonferroni correction for multiple hypotheses corresponding to multiple attention heads. Second,
we compare the results to a null model, which is an instance of the model with randomly shuffled
attention weights. We describe these methods in detail in Appendix B.2.

Probing tasks. We also perform probing tasks on the model, which test the knowledge contained
in model representations by using them as inputs to a classifier that predicts a property of interest
(Veldhoen et al., 2016; Conneau et al., 2018; Adi et al., 2016). The performance of the probing
classifier serves as a measure of the knowledge of the property that is encoded in the representation.
We run both embedding probes, which assess the knowledge encoded in the output embeddings of
each layer, and attention probes (Reif et al., 2019; Clark et al., 2019), which measure the knowledge
contained in the attention weights for pairwise features. Details are provided in Appendix B.3.

Datasets. For our analyses of amino acids and contact maps, we use a curated dataset from TAPE
based on ProteinNet (AlQuraishi, 2019; Fox et al., 2013; Berman et al., 2000; Moult et al., 2018),
which contains amino acid sequences annotated with spatial coordinates (used for the contact map
analysis). For the analysis of secondary structure and binding sites we use the Secondary Structure
dataset (Rao et al., 2019; Berman et al., 2000; Moult et al., 2018; Klausen et al., 2019) from TAPE.
We employed a taxonomy of secondary structure with three categories: Helix, Strand, and Turn/Bend,
with the last two belonging to the higher-level beta sheet category (Sec. 2). We used this taxonomy to
study how the model understood structurally distinct regions of beta sheets. We obtained token-level
binding site and protein modification labels from the Protein Data Bank (Berman et al., 2000).
For analyzing attention, we used a random subset of 5000 sequences from the training split of the
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(d) ProtBert-BFD
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(e) ProtXLNet

Figure 2: Agreement between attention and contact maps across five pretrained Transformer models
from TAPE (a) and ProtTrans (b–e). The heatmaps show the proportion of high-confidence attention
weights (αi,j > θ) from each head that connects pairs of amino acids that are in contact with one
another. In TapeBert (a), for example, we can see that 45% of attention in head 12-4 (the 12th layer’s
4th head) maps to contacts. The bar plots show the maximum value from each layer. Note that the
vertical striping in ProtAlbert (b) is likely due to cross-layer parameter sharing (see Appendix A.3).

respective datasets (note that none of the aforementioned annotations were used in model training).
For the diagnostic classifier, we used the respective training splits for training and the validation splits
for evaluation. See Appendix B.4 for additional details.

Experimental details We exclude attention to the [SEP] delimiter token, as it has been shown to
be a “no-op” attention token (Clark et al., 2019), as well as attention to the [CLS] token, which is
not explicitly used in language modeling. We only include results for attention heads where at least
100 high-confidence attention arcs are available for analysis. We set the attention threshold θ to 0.3
to select for high-confidence attention while retaining sufficient data for analysis. We truncate all
protein sequences to a length of 512 to reduce memory requirements.1

We note that all of the above analyses are purely associative and do not attempt to establish a causal
link between attention and model behavior (Vig et al., 2020; Grimsley et al., 2020), nor to explain
model predictions (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019).

4 WHAT DOES ATTENTION UNDERSTAND ABOUT PROTEINS?
4.1 PROTEIN STRUCTURE

Here we explore the relationship between attention and tertiary structure, as characterized by contact
maps (see Section 2). Secondary structure results are included in Appendix C.1.

Attention aligns strongly with contact maps in the deepest layers. Figure 2 shows how attention
aligns with contact maps across the heads of the five models evaluated2, based on the metric defined in
Equation 1. The most aligned heads are found in the deepest layers and focus up to 44.7% (TapeBert),
55.7% (ProtAlbert), 58.5% (ProtBert), 63.2% (ProtBert-BFD), and 44.5% (ProtXLNet) of attention
on contacts, whereas the background frequency of contacts among all amino acid pairs in the dataset
is 1.3%. Figure 1a shows an example of the induced attention from the top head in TapeBert. We note
that the model with the single most aligned head—ProtBert-BFD—is the largest model (same size as
ProteinBert) at 420M parameters (Appendix A.1) and it was also the only model pre-trained on the

194% of sequences had length less than 512. Experiments performed on single 16GB Tesla V-100 GPU.
2Heads with fewer than 100 high-confidence attention weights across the dataset are grayed out.
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(c) ProtBert
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(d) ProtBert-BFD
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(e) ProtXLNet

Figure 3: Proportion of attention focused on binding sites across five pretrained models. The heatmaps
show the proportion of high-confidence attention (αi,j > θ) from each head that is directed to binding
sites. In TapeBert (a), for example, we can see that 49% of attention in head 11-6 (the 11th layer’s
6th head) is directed to binding sites. The bar plots show the maximum value from each layer.

largest dataset, BFD. It’s possible that both factors helped the model learn more structurally-aligned
attention patterns. Statistical significance tests and null models are reported in Appendix C.2.

Considering the models were trained on language modeling tasks without any spatial information,
the presence of these structurally-aware attention heads is intriguing. One possible reason for this
emergent behavior is that contacts are more likely to biochemically interact with one another, creating
statistical dependencies between the amino acids in contact. By focusing attention on the contacts of
a masked position, the language models may acquire valuable context for token prediction.

While there seems to be a strong correlation between the attention head output and classically-defined
contacts, there are also differences. The models may have learned differing contextualized or nuanced
formulations that describe amino acid interactions. These learned interactions could then be used for
further discovery and investigation or repurposed for prediction tasks similar to how principles of
coevolution enabled a powerful representation for structure prediction.

4.2 BINDING SITES AND POST-TRANSLATIONAL MODIFICATIONS

We also analyze how attention interacts with binding sites and post-translational modifications
(PTMs), which both play a key role in protein function.

Attention targets binding sites throughout most layers of the models. Figure 3 shows the propor-
tion of attention focused on binding sites (Eq. 1) across the heads of the 5 models studied. Attention
to binding sites is most pronounced in the ProtAlbert model (Figure 3b), which has 22 heads that
focus over 50% of attention on bindings sites, whereas the background frequency of binding sites in
the dataset is 4.8%. The three BERT models (Figures 3a, 3c, and 3d) also attend strongly to binding
sites, with attention heads focusing up to 48.2%, 50.7%, and 45.6% of attention on binding sites,
respectively. Figure 1b visualizes the attention in one strongly-aligned head from the TapeBert model.
Statistical significance tests and a comparison to a null model are provided in Appendix C.3.

ProtXLNet (Figure 3e) also targets binding sites, but not as strongly as the other models: the most
aligned head focuses 15.1% of attention on binding sites, and the average head directs just 6.2% of
attention to binding sites, compared to 13.2%, 19.8%, 16.0%, and 15.1% for the first four models
in Figure 3. It’s unclear whether this disparity is due to differences in architectures or pre-training
objectives; for example, ProtXLNet uses a bidirectional auto-regressive pretraining method (see
Appendix A.2), whereas the other 4 models all use masked language modeling objectives.
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Why does attention target binding sites? In contrast to contact maps, which reveal relationships
within proteins, binding sites describe how a protein interacts with other molecules. These external
interactions ultimately define the high-level function of the protein, and thus binding sites remain
conserved even when the sequence as a whole evolves (Kinjo & Nakamura, 2009). Further, structural
motifs in binding sites are mainly restricted to specific families or superfamilies of proteins (Kinjo &
Nakamura, 2009), and binding sites can reveal evolutionary relationships among proteins (Lee et al.,
2017). Thus binding sites may provide the model with a high-level characterization of the protein
that is robust to individual sequence variation. By attending to these regions, the model can leverage
this higher-level context when predicting masked tokens throughout the sequence.

Attention targets PTMs in a small number of heads. A small number of heads in each model con-
centrate their attention very strongly on amino acids associated with post-translational modifications
(PTMs). For example, Head 11-6 in TapeBert focused 64% of attention on PTM positions, though
these occur at only 0.8% of sequence positions in the dataset.3 Similar to our discussion on binding
sites, PTMs are critical to protein function (Rubin & Rosen, 1975) and thereby are likely to exhibit
behavior that is conserved across the sequence space. See Appendix C.4 for full results.

4.3 CROSS-LAYER ANALYSIS

We analyze how attention captures properties of varying complexity across different layers of
TapeBert, and compare this to a probing analysis of embeddings and attention weights (see Section 3).

Attention targets higher-level properties in deeper layers. As shown in Figure 4, deeper layers
focus relatively more attention on binding sites and contacts (high-level concept), whereas secondary
structure (low- to mid-level concept) is targeted more evenly across layers. The probing analysis
of attention (Figure 5, blue) similarly shows that knowledge of contact maps (a pairwise feature)

3This head also targets binding sites (Fig. 3a) but at a percentage of 49%.
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Figure 6: Percentage of each head’s attention focused on amino acids Pro (left) and Phe (right).
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Figure 7: Pairwise attention similarity (left) vs. substitution matrix (right) (codes in App. C.5)

is encoded in attention weights primarily in the last 1-2 layers. These results are consistent with
prior work in NLP that suggests deeper layers in text-based Transformers attend to more complex
properties (Vig & Belinkov, 2019) and encode higher-level representations (Raganato & Tiedemann,
2018; Peters et al., 2018; Tenney et al., 2019; Jawahar et al., 2019).

The embedding probes (Figure 5, orange) also show that the model first builds representations of
local secondary structure in lower layers before fully encoding binding sites and contact maps in
deeper layers. However, this analysis also reveals stark differences in how knowledge of contact maps
is accrued in embeddings, which accumulate this knowledge gradually over many layers, compared
to attention weights, which acquire this knowledge only in the final layers in this case. This example
points out limitations of common layerwise probing approaches that only consider embeddings,
which, intuitively, represent what the model knows but not necessarily how it operationalizes that
knowledge.

4.4 AMINO ACIDS AND THE SUBSTITUTION MATRIX

In addition to high-level structural and functional properties, we also performed a fine-grained
analysis of the interaction between attention and particular amino acids.

Attention heads specialize in particular amino acids. We computed the proportion of TapeBert’s
attention to each of the 20 standard amino acids, as shown in Figure 6 for two example amino acids.
For 16 of the amino acids, there exists an attention head that focuses over 25% of attention on
that amino acid, significantly greater than the background frequencies of the corresponding amino
acids, which range from 1.3% to 9.4%. Similar behavior was observed for ProtBert, ProtBert-BFD,
ProtAlbert, and ProtXLNet models, with 17, 15, 16, and 18 amino acids, respectively, receiving
greater than 25% of the attention from at least one attention head. Detailed results for TapeBert
including statistical significance tests and comparison to a null model are presented in Appendix C.5.

Attention is consistent with substitution relationships. A natural follow-up question from the
above analysis is whether each head has “memorized” specific amino acids to target, or whether it
has actually learned meaningful properties that correlate with particular amino acids. To test the
latter hypothesis, we analyze whether amino acids with similar structural and functional properties
are attended to similarly across heads. Specifically, we compute the Pearson correlation between the
distribution of attention across heads between all pairs of distinct amino acids, as shown in Figure 7
(left) for TapeBert. For example, the entry for Pro (P) and Phe (F) is the correlation between the
two heatmaps in Figure 6. We compare these scores to the BLOSUM62 substitution scores (Sec. 2)
in Figure 7 (right), and find a Pearson correlation of 0.73, suggesting that attention is moderately
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consistent with substitution relationships. Similar correlations are observed for the ProtTrans models:
0.68 (ProtBert), 0.75 (ProtBert-BFD), 0.60 (ProtAlbert), and 0.71 (ProtXLNet). As a baseline, the
randomized versions of these models (Appendix B.2) yielded correlations of -0.02 (TapeBert), 0.02
(ProtBert), -0.03 (ProtBert-BFD), -0.05 (ProtAlbert), and 0.21 (ProtXLNet).

5 RELATED WORK

5.1 PROTEIN LANGUAGE MODELS

Deep neural networks for protein language modeling have received broad interest. Early work
applied the Skip-gram model (Mikolov et al., 2013) to construct continuous embeddings from protein
sequences (Asgari & Mofrad, 2015). Sequence-only language models have since been trained through
autoregressive or autoencoding self-supervision objectives for discriminative and generative tasks,
for example, using LSTMs or Transformer-based architectures (Alley et al., 2019; Bepler & Berger,
2019; Rao et al., 2019; Rives et al., 2019). TAPE created a benchmark of five tasks to assess protein
sequence models, and ProtTrans also released several large-scale pretrained protein Transformer
models (Elnaggar et al., 2020). Riesselman et al. (2019); Madani et al. (2020) trained autoregressive
generative models to predict the functional effect of mutations and generate natural-like proteins.

From an interpretability perspective, Rives et al. (2019) showed that the output embeddings from
a pretrained Transformer can recapitulate structural and functional properties of proteins through
learned linear transformations. Various works have analyzed output embeddings of protein models
through dimensionality reduction techniques such as PCA or t-SNE (Elnaggar et al., 2020; Biswas
et al., 2020). In our work, we take an interpretability-first perspective to focus on the internal model
representations, specifically attention and intermediate hidden states, across multiple protein language
models. We also explore novel biological properties including binding sites and post-translational
modifications.

5.2 INTERPRETING MODELS IN NLP

The rise of deep neural networks in ML has also led to much work on interpreting these so-called
black-box models. This section reviews the NLP interpretability literature on the Transformer model,
which is directly comparable to our work on interpreting Transformer models of protein sequences.

Interpreting Transformers. The Transformer is a neural architecture that uses attention to ac-
celerate learning (Vaswani et al., 2017). In NLP, transformers are the backbone of state-of-the-art
pre-trained language models such as BERT (Devlin et al., 2019). BERTology focuses on interpreting
what the BERT model learns about language using a suite of probes and interventions (Rogers et al.,
2020). So-called diagnostic classifiers are used to interpret the outputs from BERT’s layers (Veldhoen
et al., 2016). At a high level, mechanisms for interpreting BERT can be placed into three main
categories: interpreting the learned embeddings (Ethayarajh, 2019; Wiedemann et al., 2019; Mickus
et al., 2020; Adi et al., 2016; Conneau et al., 2018), BERT’s learned knowledge of syntax (Lin et al.,
2019; Liu et al., 2019; Tenney et al., 2019; Htut et al., 2019; Hewitt & Manning, 2019; Goldberg,
2019), and BERT’s learned knowledge of semantics (Tenney et al., 2019; Ettinger, 2020).

Interpreting attention specifically. Interpreting attention on textual sequences is a well-
established area of research (Wiegreffe & Pinter, 2019; Zhong et al., 2019; Brunner et al., 2020;
Hewitt & Manning, 2019). Past work has been shown that attention correlates with syntactic and
semantic relationships in natural language in some cases (Clark et al., 2019; Vig & Belinkov, 2019;
Htut et al., 2019). Depending on the task and model architecture, attention may have less or more
explanatory power for model predictions (Jain & Wallace, 2019; Serrano & Smith, 2019; Pruthi et al.,
2020; Moradi et al., 2019; Vashishth et al., 2019). Visualization techniques have been used to convey
the structure and properties of attention in Transformers (Vaswani et al., 2017; Kovaleva et al., 2019;
Hoover et al., 2020; Vig, 2019). Recent work has begun to analyze attention in Transformer models
outside of the domain of natural language (Schwaller et al., 2020; Payne et al., 2020).

Our work extends these methods to protein sequence models by considering particular biophysical
properties and relationships. We also present a joint cross-layer probing analysis of attention weights
and layer embeddings. While past work in NLP has analyzed attention and embeddings across layers,
we believe we are the first to do so in any domain using a single, unified metric, which enables us to
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directly compare the relative information content of the two representations. Finally, we present a
novel tool for visualizing attention embedded in three-dimensional structure.

6 CONCLUSIONS AND FUTURE WORK

This paper builds on the synergy between NLP and computational biology by adapting and extending
NLP interpretability methods to protein sequence modeling. We show how a Transformer language
model recovers structural and functional properties of proteins and integrates this knowledge directly
into its attention mechanism. While this paper focuses on reconciling attention with known properties
of proteins, one might also leverage attention to uncover novel relationships or more nuanced forms
of existing measures such as contact maps, as discussed in Section 4.1. In this way, language models
have the potential to serve as tools for scientific discovery. But in order for learned representations
to be accessible to domain experts, they must be presented in an appropriate context to facilitate
discovery. Visualizing attention in the context of protein structure (Figure 1) is one attempt to do so.
We believe there is the potential to develop such contextual visualizations of learned representations
in a range of scientific domains.
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Rose. NGL viewer: web-based molecular graphics for large complexes. Bioinformatics, 34(21):
3755–3758, 05 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty419. URL https:
//doi.org/10.1093/bioinformatics/bty419.

Charles Rubin and Ora Rosen. Protein phosphorylation. Annual Review of Biochemistry, 44:831–887,
1975. URL https://doi.org/10.1146/annurev.bi.44.070175.004151.

Philippe Schwaller, Benjamin Hoover, Jean-Louis Reymond, Hendrik Strobelt, and Teodoro
Laino. Unsupervised attention-guided atom-mapping. ChemRxiv, 5 2020. doi: 10.26434/
chemrxiv.12298559.v1. URL https://chemrxiv.org/articles/Unsupervised_
Attention-Guided_Atom-Mapping/12298559.

Sofia Serrano and Noah A. Smith. Is attention interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 2931–2951, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1282. URL https:
//www.aclweb.org/anthology/P19-1282.

Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets in linear time. Nature
Communications, 9(2542), 2018. doi: 10.1038/s41467-018-04964-5.

Baris E. Suzek, Yuqi Wang, Hongzhan Huang, Peter B. McGarvey, Cathy H. Wu, and the UniProt Con-
sortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics, 31(6):926–932, 11 2014. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btu739. URL https://doi.org/10.1093/bioinformatics/btu739.

Yi Chern Tan and L. Elisa Celis. Assessing social and intersectional biases in contextualized word
representations. In Advances in Neural Information Processing Systems 32, pp. 13230–13241.
Curran Associates, Inc., 2019.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4593–4601, Florence, Italy, 2019. Association for Computational Linguistics.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, and Manaal Faruqui. Attention inter-
pretability across NLP tasks. arXiv preprint arXiv:1909.11218, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Sara Veldhoen, Dieuwke Hupkes, and Willem H. Zuidema. Diagnostic classifiers revealing how
neural networks process hierarchical structure. In CoCo@NIPS, 2016.

Jesse Vig. A multiscale visualization of attention in the Transformer model. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pp. 37–42, Florence, Italy, 2019. Association for Computational Linguistics.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a Transformer language
model. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 63–76, Florence, Italy, 2019. Association for Computational
Linguistics.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
Stuart Shieber. Investigating gender bias in language models using causal mediation analysis. In
Advances in Neural Information Processing Systems, volume 33, pp. 12388–12401, 2020.

Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann. Does BERT make any
sense? Interpretable word sense disambiguation with contextualized embeddings. arXiv preprint
arXiv:1909.10430, 2019.

13

https://doi.org/10.1093/nar/gkv402
https://doi.org/10.1093/bioinformatics/bty419
https://doi.org/10.1093/bioinformatics/bty419
https://doi.org/10.1146/annurev.bi.44.070175.004151
https://chemrxiv.org/articles/Unsupervised_Attention-Guided_Atom-Mapping/12298559
https://chemrxiv.org/articles/Unsupervised_Attention-Guided_Atom-Mapping/12298559
https://www.aclweb.org/anthology/P19-1282
https://www.aclweb.org/anthology/P19-1282
https://doi.org/10.1093/bioinformatics/btu739


Published as a conference paper at ICLR 2021

Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 11–20, November 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V
Le. XLNet: Generalized autoregressive pretraining for language understanding. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32, pp. 5753–5763. Curran Associates, Inc., 2019.

Ruiqi Zhong, Steven Shao, and Kathleen McKeown. Fine-grained sentiment analysis with faithful
attention. arXiv preprint arXiv:1908.06870, 2019.

14



Published as a conference paper at ICLR 2021

A MODEL OVERVIEW

A.1 PRE-TRAINED MODELS

Table 1 provides an overview of the five pre-trained Transformer models studied in this work. The
models originate from the TAPE and ProtTrans repositories, spanning three model architectures:
BERT, ALBERT, and XLNet.

Table 1: Summary of pre-trained models analyzed, including the source of the model, the type of
Transformer used, the number of layers and heads, the total number of model parameters, the source
of the pre-training dataset, and the number of protein sequences in the pre-training dataset.

Source Name Type Layers Heads Params Train Dataset # Seq
TAPE TapeBert BERT 12 12 94M Pfam 31M
ProtTrans ProtBert BERT 30 16 420M Uniref100 216M
ProtTrans ProtBert-BFD BERT 30 16 420M BFD 2.1B
ProtTrans ProtAlbert ALBERT 12 64 224M Uniref100 216M
ProtTrans ProtXLNet XLNet 30 16 409M Uniref100 216M

A.2 BERT TRANSFORMER ARCHITECTURE

Stacked Encoder: BERT uses a stacked-encoder architecture, which inputs a sequence of tokens
x = (x1, ..., xn) and applies position and token embeddings followed by a series of encoder
layers. Each layer applies multi-head self-attention (see below) in combination with a feedforward
network, layer normalization, and residual connections. The output of each layer ` is a sequence of
contextualized embeddings (h(`)

1 , . . . ,h
(`)
n ).

Self-Attention: Given an input x = (x1, . . . , xn), the self-attention mechanism assigns to each
token pair i, j an attention weight αi,j > 0 where

∑
j αi,j = 1. Attention in BERT is bidirectional.

In the multi-layer, multi-head setting, α is specific to a layer and head. The BERT-Base model has 12
layers and 12 heads. Each attention head learns a distinct set of weights, resulting in 12 x 12 = 144
distinct attention mechanisms in this case.

The attention weights αi,j are computed from the scaled dot-product of the query vector of i and the
key vector of j, followed by a softmax operation. The attention weights are then used to produce a
weighted sum of value vectors:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

using query matrix Q, key matrix K, and value matrix V , where dk is the dimension of K. In a
multi-head setting, the queries, keys, and values are linearly projected h times, and the attention
operation is performed in parallel for each representation, with the results concatenated.

A.3 OTHER TRANSFORMER VARIANTS

ALBERT: The architecture of ALBERT differs from BERT in two ways: (1) It shares parameters
across layers, unlike BERT which learns distinct parameters for every layer and (2) It uses factorized
embeddings, which allows the input token embeddings to be of a different (smaller) size than the
hidden states. The original version of ALBERT designed for text also employed a sentence-order
prediction pretraining task, but this was not used on the models studied in this paper.

XLNet: Instead of the masked-language modeling pretraining objective use for BERT, XLNet uses
a bidirectional auto-regressive pretraining method that considers all possible orderings of the input
factorization. The architecture also adds a segment recurrence mechanism to process long sequences,
as well as a relative rather than absolute encoding scheme.
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 ALTERNATIVE ATTENTION AGREEMENT METRIC

Here we present an alternative formulation to Eq. 1 based on an attention-weighted average. We
define an indicator function f(i, j) for property f that returns 1 if the property is present in token pair
(i, j) (i.e., if amino acids i and j are in contact), and zero otherwise. We then compute the proportion
of attention that matches with f over a dataset X as follows:

pα(f) =
∑
x∈X

|x|∑
i=1

|x|∑
j=1

f(i, j)αi,j(x)

/∑
x∈X

|x|∑
i=1

|x|∑
j=1

αi,j(x) (3)

where αi,j(x) denotes the attention from i to j for input sequence x.

B.2 STATISTICAL SIGNIFICANCE TESTING AND NULL MODELS

We perform statistical significance tests to determine whether any results based on the metric defined
in Equation 1 are due to chance. Given a property f , as defined in Section 3, we perform a two-
proportion z-test comparing (1) the proportion of high-confidence attention arcs (αi,j > θ) for which
f(i, j) = 1, and (2) the proportion of all possible pairs i, j for which f(i, j) = 1. Note that the first
proportion is exactly the metric pα(f) defined in Equation 1 (e.g. the proportion of attention aligned
with contact maps). The second proportion is simply the background frequency of the property (e.g.
the background frequency of contacts). Since we extract the maximum scores over all of the heads in
the model, we treat this as a case of multiple hypothesis testing and apply the Bonferroni correction,
with the number of hypotheses m equal to the number of attention heads.

As an additional check that the results did not occur by chance, we also report results on baseline
(null) models. We initially considered using two forms of null models: (1) a model with randomly
initialized weights. and (2) a model trained on randomly shuffled sequences. However, in both cases,
none of the sequences in the dataset yielded attention weights greater than the attention threshold θ.
This suggests that the mere existence of the high-confidence attention weights used in the analysis
could not have occurred by chance, but it does not shed light on the particular analyses performed.
Therefore, we implemented an alternative randomization scheme in which we randomly shuffle
attention weights from the original models as a post-processing step. Specifically, we permute the
sequence of attention weights from each token for every attention head. To illustrate, let’s say that
the original model produced attention weights of (0.3, 0.2, 0.1, 0.4, 0.0) from position i in protein
sequence x from head h, where |x| = 5. In the null model, the attention weights from position i in
sequence x in head h would be a random permutation of those weights, e.g., (0.2, 0.0, 0.4, 0.3, 0.1).
Note that these are still valid attention weights as they would sum to 1 (since the original weights
would sum to 1 by definition). We report results using this form of baseline model.

B.3 PROBING METHODOLOGY

Embedding probe. We probe the embedding vectors output from each layer using a linear probing
classifier. For token-level probing tasks (binding sites, secondary structure) we feed each token’s
output vector directly to the classifier. For token-pair probing tasks (contact map) we construct a
pairwise feature vector by concatenating the elementwise differences and products of the two tokens’
output vectors, following the TAPE4 implementation.

We use task-specific evaluation metrics for the probing classifier: for secondary structure prediction,
we measure F1 score; for contact prediction, we measure precision@L/5, where L is the length of
the protein sequence, following standard practice (Moult et al., 2018); for binding site prediction,
we measure precision@L/20, since approximately one in twenty amino acids in each sequence is a
binding site (4.8% in the dataset).

Attention probe. Just as the attention weight αi,j is defined for a pair of amino acids (i, j), so is
the contact property f(i, j), which returns true if amino acids i and j are in contact. Treating the
attention weight as a feature of a token-pair (i, j), we can train a probing classifier that predicts the

4https://github.com/songlab-cal/tape
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contact property based on this feature, thereby quantifying the attention mechanism’s knowledge of
that property. In our multi-head setting, we treat the attention weights across all heads in a given layer
as a feature vector, and use a probing classifier to assess the knowledge of a given property in the
attention weights across the entire layer. As with the embedding probe, we measure performance of
the probing classifier using precision@L/5, where L is the length of the protein sequence, following
standard practice for contact prediction.

B.4 DATASETS

We used two protein sequence datasets from the TAPE repository for the analysis: the ProteinNet
dataset (AlQuraishi, 2019; Fox et al., 2013; Berman et al., 2000; Moult et al., 2018) and the Secondary
Structure dataset (Rao et al., 2019; Berman et al., 2000; Moult et al., 2018; Klausen et al., 2019). The
former was used for analysis of amino acids and contact maps, and the latter was used for analysis of
secondary structure. We additionally created a third dataset for binding site and post-translational
modification (PTM) analysis from the Secondary Structure dataset, which was augmented with
binding site and PTM annotations obtained from the Protein Data Bank’s Web API.5 We excluded
any sequences for which annotations were not available. The resulting dataset sizes are shown in
Table 2. For the analysis of attention, a random subset of 5000 sequences from the training split
of each dataset was used, as the analysis was purely evaluative. For training and evaluating the
diagnostic classifier, the full training and validation splits were used.

Table 2: Datasets used in analysis

Dataset Train size Validation size
ProteinNet 25299 224

Secondary Structure 8678 2170
Binding Sites / PTM 5734 1418

C ADDITIONAL RESULTS OF ATTENTION ANALYSIS

C.1 SECONDARY STRUCTURE
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Figure 8: Percentage of each head’s attention that is focused on Helix secondary structure.

5http://www.rcsb.org/pdb/software/rest.do
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(e) ProtXLNet

Figure 9: Percentage of each head’s attention that is focused on Strand secondary structure.
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Figure 10: Percentage of each head’s attention that is focused on Turn/Bend secondary structure.
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C.2 CONTACT MAPS: STATISTICAL SIGNIFICANCE TESTS AND NULL MODELS
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Figure 11: Top 10 heads (denoted by <layer>-<head>) for each model based on the proportion of
attention aligned with contact maps [95% conf. intervals]. The differences between the attention
proportions and the background frequency of contacts (orange dashed line) are statistically significant
(p < 0.00001). Bonferroni correction applied for both confidence intervals and tests (see App. B.2).
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Figure 12: Top-10 contact-aligned heads for null models. See Appendix B.2 for details.
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C.3 BINDING SITES: STATISTICAL SIGNIFICANCE TESTS AND NULL MODEL
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Figure 13: Top 10 heads (denoted by <layer>-<head>) for each model based on the proportion of
attention focused on binding sites [95% conf. intervals]. Differences between attention proportions
and the background frequency of binding sites (orange dashed line) are all statistically significant
(p < 0.00001). Bonferroni correction applied for both confidence intervals and tests (see App. B.2).
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Figure 14: Top-10 heads most focused on binding sites for null models. See Appendix B.2 for details.
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C.4 POST-TRANSLATIONAL MODIFICATIONS (PTMS)
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Figure 15: Percentage of each head’s attention that is focused on post-translational modifications.
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Figure 16: Top 10 heads (denoted by <layer>-<head>) for each model based on the proportion of
attention focused on PTM positions [95% conf. intervals]. The differences between the attention
proportions and the background frequency of PTMs (orange dashed line) are statistically significant
(p < 0.00001). Bonferroni correction applied for both confidence intervals and tests (see App. B.2).
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Figure 17: Top-10 heads most focused on PTMs for null models. See Appendix B.2 for details.
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C.5 AMINO ACIDS
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Figure 18: Percentage of each head’s attention that is focused on the given amino acid, averaged over
a dataset (TapeBert).
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Figure 19: Percentage of each head’s attention that is focused on the given amino acid, averaged over
a dataset (cont.)

Table 3: Amino acids and the corresponding maximally attentive heads in the standard and randomized
versions of TapeBert. The differences between the attention percentages for TapeBert and the
background frequencies of each amino acid are all statistically significant (p < 0.00001) taking into
account the Bonferroni correction. See Appendix B.2 for details. The bolded numbers represent the
higher of the two values between the standard and random models. In all cases except for Glutamine,
which was the amino acid with the lowest top attention proportion in the standard model (7.1), the
standard TapeBert model has higher values than the randomized version.

TapeBert TapeBert-Random

Abbrev Code Name Background % Top Head Attn % Top Head Attn %

Ala A Alanine 7.9 12-11 25.5 11-12 12.1
Arg R Arginine 5.2 12-8 63.2 12-7 8.4
Asn N Asparagine 4.3 8-2 44.8 8-2 6.7
Asp D Aspartic acid 5.8 12-6 79.9 5-4 10.7
Cys C Cysteine 1.3 11-6 83.2 11-6 9.3
Gln Q Glutamine 3.8 11-7 7.1 12-1 9.2
Glu E Glutamic acid 6.9 11-7 16.2 11-4 11.8
Gly G Glycine 7.1 2-11 98.1 11-8 14.6
His H Histidine 2.7 9-10 56.7 11-6 5.4
Ile I Isoleucine 5.6 11-10 27.0 9-5 10.6
Leu L Leucine 9.4 2-12 44.1 12-11 13.9
Lys K Lysine 6.0 12-8 29.4 6-11 12.9
Met M Methionine 2.3 3-10 73.5 9-3 6.2
Phe F Phenylalanine 3.9 12-3 22.7 12-1 6.7
Pro P Proline 4.6 1-11 98.3 10-6 7.6
Ser S Serine 6.4 12-7 36.1 11-12 11.0
Thr T Threonine 5.4 12-7 19.0 10-4 9.0
Trp W Tryptophan 1.3 11-4 68.1 9-2 3.0
Tyr Y Tyrosine 3.4 12-3 51.6 12-11 6.6
Val V Valine 6.8 12-11 34.0 8-2 15.0
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