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ABSTRACT

View synthesis using Neural Radiance Fields (NeRF) and Gaussian Splatting (GS)
has demonstrated impressive fidelity in rendering real-world scenarios. However,
practical methods for accurate and efficient epistemic Uncertainty Quantification
(UQ) in view synthesis are lacking. Existing approaches for NeRF either intro-
duce significant computational overhead (e.g., “10x increase in training time” or
“10x repeated training”) or are limited to specific uncertainty conditions or mod-
els. Notably, GS models lack any systematic approach for comprehensive epis-
temic UQ. This capability is crucial for improving the robustness and scalability
of neural view synthesis, enabling active model updates, error estimation, and
scalable ensemble modeling based on uncertainty. In this paper, we revisit NeRF
and GS-based methods from a function approximation perspective, identifying
key differences and connections in 3D representation learning. Building on these
insights, we introduce PH-DROPOUT, the first real-time and accurate method for
epistemic uncertainty estimation that operates directly on pre-trained NeRF and
GS models. Extensive evaluations validate our theoretical findings and demon-
strate the effectiveness of PH-DROPOUT.

1 INTRODUCTION

Emerging approaches in view synthesis, such as Neural Radiance Fields (NeRF) (Mildenhall et al.,
2021) and Gaussian Splatting (GS) (Kerbl et al., 2023b), have demonstrated remarkable advance-
ments in rendering quality and efficiency. These methods transcend synthetic datasets to embrace
real-world, unconstrained scenarios, setting new standards for generating highly realistic 3D scenes
that are nearly indistinguishable from reality. However, achieving high-quality results requires a
large number of known views for training, ensuring that the model is exposed to multiple perspec-
tives near any arbitrary target viewpoint. Previous works (Goli et al., 2024; Sünderhauf et al., 2023;
Hu et al., 2024) have highlighted that training view synthesis models from a discrete set of multi-
view images is fraught with uncertainty. Even under ideal experimental conditions, occlusions and
missing views inherently limit the epistemic knowledge that the model can acquire about the scene.

Studying epistemic uncertainty in view synthesis is crucial for understanding the limitations of algo-
rithms, identifying gaps in model performance, improving the reliability of predictions, and ensur-
ing effective generalization to unseen data. This investigation is pivotal for advancing the robustness
and accuracy of view synthesis methods, yet research in this area remains limited. Broadly, related
work can be classified into two categories: (1) Direct estimation of overall epistemic uncertainty,
as seen in methods such as S-NeRF (Shen et al., 2021), CF-NeRF (Shen et al., 2022), and NeRF
OTG (Ren et al., 2024), which apply deep ensemble techniques to NeRF with significant computa-
tional overhead. (2) Investigation of specific factors contributing to epistemic uncertainty, such as
Bayes Rays (Goli et al., 2024) and CG-SLAM (Hu et al., 2024), which focus primarily on spatial
(depth) uncertainty caused by a lack of views. In fact, epistemic uncertainty can be caused by a range
of factors beyond mere lack of training data, including inadequate feature representation and model
misspecification. Traditional methods for estimating epistemic uncertainty, such as Monte-Carlo
dropout (Gal & Ghahramani, 2016) and random initialization (Lee et al., 2015; Lakshminarayanan
et al., 2017), prove impractical for view synthesis due to conflicts with the training paradigm or the
prohibitively high computational demands, requiring hours even for simple scenarios.
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Another limitation is efficiency. Ensemble-based approaches can require hours of additional train-
ing for a single bounded object. Furthermore, there is a noticeable gap between GS and NeRF
models, as existing methods lack versatility and are typically applicable to only one of these frame-
works. However, we observe that NeRF-based and GS-based solutions excel in different scenarios.
A versatile method integrating both approaches could enable the development of a new rendering
technique that combines their respective strengths.

Driven by the goal of developing a more efficient, accurate, and versatile approach for estimating
epistemic uncertainty in view synthesis, we revisit current view synthesis methods through the lens
of function learning and approximation theory. We make the following key observations:
• Existing view synthesis models often exhibit substantial parameter redundancy; specifically,

their performance on the training set remains unaffected by the application of appropriate dropout.
• However, while no observable impact is seen on training views, significant performance variance

is evident on test views.

These insights lead us to propose a relatively underexplored post hoc epistemic uncertainty estima-
tion method: (1) insert dropout on trained fully connected layers (NeRF) or splats (GS); (2) increase
the dropout ratio as long as the performance on the training set remains unaffected; (3) measure the
variation after dropout on the testing set as a quantification of epistemic uncertainty (UQ).

In summary, our contributions are:
• We propose PH-DROPOUT, the first approach, to our knowledge, that quantifies epistemic uncer-

tainty for view synthesis in real-time, orders of magnitude faster, without additional training, and
applicable to both NeRF and GS methods.

• We conduct comprehensive experiments with PH-DROPOUT on NeRF-based and GS-based meth-
ods, providing the first in-depth comparison of their features beyond training speed and fidelity.

• We evaluate the effectiveness of PH-DROPOUT through several downstream use cases, including
active learning and model ensembling, where it demonstrates promising performance in support-
ing these applications.

2 BACKGROUND

2.1 EPISTEMIC UQ WITH SPECIALIZED TRAINING APPROACH

We explore general methods for epistemic UQ and explain why they are unsuitable for typical view
synthesis tasks, highlighting the need for a novel approach. These traditional methods impose sig-
nificant computational overhead and impose strict limitations on model selection.

Random initialization (Lee et al., 2015; Lakshminarayanan et al., 2017): is one technique used to
measure epistemic uncertainty, particularly in the context of deep learning. However, it is not the
most comprehensive method for capturing all aspects of uncertainty for following reason.
• Training overhead. Repeatedly retraining the model can be impractical, especially when the

training process is slow or computationally expensive.
• Random initialization cannot address limitations inherent in the model architecture itself.

If the model is not capable of learning the true underlying distribution, then random initialization
won’t reveal this inadequacy clearly.

Monte Carlo Dropout (Gal & Ghahramani, 2016): Applying dropout at test time and averaging
predictions can be a cheaper way to estimate uncertainty without needing to train multiple models.
NeRF’s tendency to overfit arises from its high model capacity, the limited and specific nature of
its training data, and its per-scene training approach. However, dropout is a method to prevent
overfitting, which prevents NeRF to memorize the scene in training set. Empirically, we find that
training with dropout in conventional NeRF places negative effect on performance, and hence MC
dropout is not suitable for NeRF. Also GS models do not have a neural network, and hence hard to
implement BNN based methods. Similar methods can be find in MC-batchnorm (Teye et al., 2018),
where a deterministic network trained with batch normalization, which is also maintained during
testing for UQ. Detailed discussion on applying MC-dropout on NeRF is enclosed in Appendix A.2

Deep Ensemble Methods (Lakshminarayanan et al., 2017): Training multiple models (not just with
different initializations but potentially with different architectures or hyperparameters) and aggre-
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gating their predictions can provide a more robust estimate of uncertainty. S-NeRF (Shen et al.,
2021), CF-NeRF (Shen et al., 2022), and 3D Uncertainty Field (Shen et al., 2024) are based on this
concept but with expensive training overhead and poor performance.

2.2 POST HOC EPISTEMIC UQ

Post hoc epistemic UQ refers to techniques for assessing a trained model’s epistemic uncertainty
without altering its original training process. The most frequently used frameworks for modeling
uncertainty of neural networks are often not agnostic to the network architecture and task, and also
require modifications in the optimization and training processes, including MC-dropout and deep
ensembles. This is why post hoc UQ is desirable – it can be applied to already trained architectures.

We distinguish our study with the epistemic UQ in well pretrained models (Wang & Ji, 2024;
Schweighofer et al., 2023). By well pretrained, the basic assumption of this method is the model
is trained with sufficient in-distribution training data D, so that ∀x ∈ X → p(x /∈ D) < ϵ, where
X is the set of potential inputs, ϵ is a small positive number. However, typical view synthesis tasks
often face missing training views, making such methods unsuitable. Therefore, we exclude them as
baselines in this paper.

Bayes Rays (Goli et al., 2024), based on Laplace approximation (Ritter et al., 2018), meets the
post hoc requirements for practical application, requiring only a few additional training epochs.
However, it solely models spatial uncertainty (depth prediction error) in NeRF and is not applicable
to GS-based models. Previous work (Ledda et al., 2023) has also shown that in ad network based on
fully connected layers, inject dropout during the inference time can achieve similar effect as MC-
dropout (Gal & Ghahramani, 2016) after calibration. However, it is non-trivial to apply this method
to view synthesis model. NeRF does not use dropout during the training, so it is hard to justify the
approximation of MC-dropout. GS model even does not have a typical neural network.

3 PH-DROPOUT FOR EPISTEMIC UNCERTAINTY ESTIMATION

In this section, we first introduce the proposed algorithm in §3.1, then provide the conditions to
ensure the effectiveness of the proposed method.

3.1 PH-DROPOUT

Here we introduce the proposed algorithm PH-DROPOUT. The process of PH-DROPOUT is illus-
trated in the following pseudo-code, where F (x; θ) is the trained rendering function (NeRF or GS)

Algorithm 1 PH-DROPOUT

Require: Trained model: F (·; θ), threshold ϵ, step length ∆r, sampling number N
Ensure: Ex(|F (x; θ)− F (x; PHD(θ, r))|) < ϵ

1: r ← ∆r ▷ Initialize dropout ratio.
2: D(θ, r)←M · θ, Mij ∈ {0, 1},∀i, j and r =

∑
Mij

|θ| ▷ M : {Mij} is the binary dropout mask

3: Ex(|F (x; θ)− F (x; PHD(θ, r))|)← 1
N

∑N
i

∑
x∈X

|F (x;θ)−F (x;Di(θ,r))|
|X | ▷

Di(θ, r) ∼ PHD(θ, r)
4: while Ex(|F (x; θ)− F (x; PHD(θ, r))|) < ϵ do
5: r ← r +∆r ▷ Increase dropout ratio
6: rdrop ← r −∆r ▷ Select the maximal r that meets requirement
7: if rdrop = 0 then ▷ rdrop = 0→Wrong configuration
8: Raise Error ▷ The model is not properly trained
9: else

10: ζ(x),← std(F (x; PHD(θ, rdrop))) ▷ Per pixel and channel UQ ζ of input x based on std
11: σmax ← G(ζ(x)) ▷ G(·) represents the processing in §A.1

with parameters θ, E(·) denotes the expectation, PHD(·) refers to repeating stochastic inferences
using independent dropout masks M , and D(·) is a sample of PHD(·). It includes a heuristic solu-
tion of argmaxr Ex(|F (x; θ)− F (x; PHD(θ, r))|) < ϵ. If dropout ratio rdrop = 0 after interaction,
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then this indicates the model is configured with less parameter than need (see Theorem 3.1). rdrop is
a measurement of parameter redundancy.

To further quantify the overall uncertainty ζ(x) of a model, we introduce σmax as a metric, which
considers the max std across height, width, and RGB channels for each image, averaged over the
whole rendered image set. See detailed definition in §A.1. By default, we use σmax to represent the
overall uncertainty of a trained model on a given scene.

The differences to inject dropout in Ledda et al. (2023) are as follows,
• The dropout is applied with the condition that the model must still perfectly fit the training set

afterward.
• Unlike a standard dropout layer, the dropout mask in PH-DROPOUT directly sets the weights (or

splats in GS) to zero without scaling up amplitude of the rest weights.
• In NeRF-based methods, we apply dropout (i.e., a binary mask) to one of the middle layers,

typically after the first fully connected layer, to selectively remove components from the render
function, enhancing control over the process.

3.2 CONDITIONS OF USING PH-DROPOUT: FEATURES IN VIEW SYNTHESIS

The following phenomenons are integral to our reasoning and will be validated through experiments.

Phenomenon 1: The rendering function is not stochastic since we try to render a static object.

Phenomenon 2: After dropout, as long as there is no change on training set performance, the
expectation performance on evaluation set only has negligible change as well (see §5).

Besides empirical observations, we also notice a common features across all NeRF-based and GS-
based method: there must be redundancy in model parameters θ, which is explained in detail in
Theorem 3.1.

Theorem 3.1. As long as the model is properly trained with overfitting (L(x)→ 0 on training set),
there must be significant redundancy in NeRF and GS model, i.e.,

∃ 0≪ r < 1→ ∀x ∈ Dtrain, |F (x; θ)− F (x;D(θ, r))| < ϵ

Proof. (Sketch) The rendering function is neither purely continuous nor purely discrete, but rather
a combination of both. Achieving fine convergence using exclusively continuous methods (e.g.,
NeRF) or discrete methods (e.g., 3DGS) requires an infinite number of Fourier components (as in
NeRF with positional encoding) or splats (as in splatting-based methods like 3DGS) to approximate
functions with varying degrees of continuity.

NeRF: Continuous function→ discrete representation. For many natural signals (Oppenheim et al.,
1997), the amplitude of Fourier coefficients cn decay rapidly as |n| increases, especially when sig-
nal is “continuously differentiable”. This means that the lower-frequency components (those with
smaller |n|) contain most of the signal’s power, while the higher-frequency components (larger |n|)
contribute very little to the total power. To overfit a function with nearly discrete pattern, many low
power and high frequency components are introduced.

GS: Discrete splats → continuous representation. Similar to the Fourier transform, where fine
spatial details (higher frequency components) generally have lower power, the training of GS models
follows a similar pattern. A few large splats are used to capture the broader, background features,
while numerous smaller splats are introduced to capture finer details and subtle variations in the
rendering function.

As a result, in both NeRF and GS, to overfit the details of rendering function, most of the components
have very low power and therefore are robust to dropout.

Theorem 3.1 also highlights that NeRF-based and GS-based methods exhibit varying levels of redun-
dancy at different regions of an object or scene. Both experimental results and theoretical analysis
later demonstrate that this variation in redundancy patterns contributes to distinct robustness and
reliability when capturing specific features. By leveraging an ensemble approach that selects the
components with the lowest epistemic uncertainty, we achieve a significant improvement in view
synthesis fidelity.
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Empirical results show that all well-converged view synthesis models exhibit 20–30% redundancy,
varying across methods. Removing this redundancy causes significant convergence issues during
training. Thus, we conclude that PH-DROPOUT does not require an additional increase in pa-
rameters, as this redundancy is by default required for proper convergence.

4 EFFECTIVENESS OF ESTIMATION WITH PH-DROPOUT

4.1 EFFECTIVENESS ANALYSIS OF PH-DROPOUT IN NERF

Here we discuss NeRF based methods with encoding that can reflect the spacial proximity faithfully,
including Positional Encoding (PE) (Tancik et al., 2020), Sinusoidal PE (SPE) (Sun et al., 2024),
etc. We discuss hash encoding-based methods separately in Section §4.3 due to the impact of their
unique probabilistic operations.

Lemma 4.1. If two models a and b with same structural and number of parameter, have similar
distribution of parameter, i.e., DKL(θa, θb) < ϵ, and they both converge on the same dataset D,
they can be obtained via random initialization with the same setup with a or b. Meanwhile, the
probability density to obtain model a and b will be close, i.e., if p(a) is significant, then p(b) should
be significant as well.

Proof. (Sketch). This can be proven based on the continuousity of the space of model parameter.
The random initialization of weights of MLP (e.g., in NeRF) from continuous distributions, which
influences the training dynamics Glorot & Bengio (2010). These continuous distributions provide
the network’s starting point for training, and as training proceeds, the weights and biases are up-
dated continuously by optimization algorithms (e.g., stochastic gradient descent). These updates
are applied to real-valued weights, thus ensuring that the neural network’s parameters remain in the
continuous space Rd, where d is the number of parameters Raghu et al. (2017). Because the func-
tion space Rd is continuous, if the two models have small KL partition, i.e., DKL(θa, θb) < ϵ, then
p(a) ≈ p(b) in random initialisation because of the continuousity.

With Lemma 4.1, we establish a connection between random initialization (Lakshminarayanan et al.,
2017; Lee et al., 2015) and PH-DROPOUT, where each ensemble in PH-DROPOUT should exhibit
significant probability density, assuming the trained model (w/o dropout) maintains substantial prob-
ability density within the function space. This forms the following Theorem.

Theorem 4.2. The variance after PH-DROPOUT represents a biased epistemic uncertainty estima-
tion.

Proof. (Sketch) With PH-DROPOUT, the KL divergence of the remaining parameters from the orig-
inal model is small. For instance, in NeRF, dropout is applied to only one hidden layer, leaving most
parameters unchanged. Similarly, in the GS model, most splats have low power (see Proof of Theo-
rem 3.1), and setting them to zero minimally impacts the overall power distribution.

We can further assume that the trained model is not an outlier and that the probability density of
obtaining F after random initialization is significant. Consequently, models after dropout represent
a biased subset of the ensemble, and their variation captures epistemic uncertainty (see detailed
discussion in Appendix A.3, Theorem A.2), as the probability density of these functions is non-
negligible, consistent with Lemma 4.1.

We have demonstrated that PH-DROPOUT is an effective approach for producing ensembles in
NeRF, with the ensemble variation reflecting a biased estimation of epistemic uncertainty. Next,
we extend this reasoning to the GS model.

4.2 EPISTEMIC UNCERTAINTY ESTIMATION IN GAUSSIAN SPLATS

Theorem 4.3. During the training of 3DGS and 2DGS models following the scheme in (Kerbl et al.,
2023a), the state of the splats in later training phase can be taken as changing in a continuous space,
i.e., the probability distribution density function P of model parameters θ is continuous.

5
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Proof. According to (Kheradmand et al., 2024), we know the typical splats updating scheme in
(Kerbl et al., 2023a) can be approximated by a Stochastic Gradient Langevin Dynamics (Brosse
et al., 2018), with a noise term missing. Standard Gaussian Splatting optimization could be under-
stood as having Gaussians that are sampled from a likelihood distribution that is tied to the rendering
quality. Suppose P is the data-dependent probability density function of models, it will have a form
P ∝ exp (−L), where L is the loss function during training. Because the loss function L is contin-
uous, the density function P should be continuous as well.

Because of the continuousity of GS updating dynamics in Theorem 4.3, we can extend the
Lemma 4.1 to typical GS models. Similar to dropout in the fully connected layers, we directly
dropout the Gaussians, as they are the “weights” to optimize during the training.

4.3 PH-DROPOUT IS UNABLE TO HANDLE INPUT HASH COLLISION

NeRF may use hash encoding (HE) to process the input x. When collision happens, we have xi ̸= xj

and h(xi) ≈ h(xj), where h(·) is the hashing operation. In HE based methods (Müller et al., 2022;
Tancik et al., 2023), especially in few view cases, the model may not able to learn how to correct the
hash collision due to lack of training data. In typical rendering tasks, much of the space is empty, a
phenomenon leveraged by HE-based methods for more efficient learning. However, without proper
supervision, the model may fail to render unseen regions, as the HE transformation brings the input
too close to known empty space.

Theorem 4.4. In sparse scenario, where most of the space is empty,

p(F (x; θ) > 0)≪ p(F (x; θ) = 0), x ∈ X (1)

where the RGB (final rendering) epistemic uncertainty caused by hash collision in HE cannot be
detected by any ensemble based method, including PH-DROPOUT, X is set of potential inputs.
The ensemble based method refers to epistemic uncertainty estimation by the variance of ensembles
F (x; θ + δ), where |F (x, θ)− Ex[F (x; θ + δ)]| < ϵ, δ is the random perturbation.

Proof. We extend the ensembles to hash encoding case as

|F (h(x); θ)− Ex[F (h(x); θ + δ)]| < ϵ

Considering a significant portion of rendering output is empty, when hash collision happens on new
input x′, we are very likely to have F (h(x′), θ) = 0 according to Eq. 1. Because this is a rendering
problem, the expected output must be positive, and so the ensembles |Ex[F (h(x′); θ + δ)]| < ϵ,
which means the output of ensemble is almost zero. Therefore, as long as hash collision happens
and the scenario is sparse, the output would be likely to be zero without variance, i.e.,

Var[F (h(x′); θ + δ)] =
1

N

∑
(F (h(x′); θ + δ)− F̄ (h(x′); θ + δ))2 < ϵ2

Near zero variance means no uncertainty, hence the epistemic uncertainty will not be reflected.

Similarly, we can extend this conclusion to random initialization scheme. As long as the h(·) is a
consistent pseudo hash function, the collision will happen at the same input, and will not give any
informative information on the input with collision.

Takeaway. Due to hash collisions, faithful epistemic uncertainty estimation (on RGB) is not feasi-
ble when hash collision happens. Epistemic uncertainty in depth prediction is influenced by hash
collision as well. See extended discussion about depth prediction and overall uncertainty in §A.7.

5 PERFORMANCE EVALUATION

5.1 EVALUATION ON TASKS

In rendering tasks, ground truth for epistemic uncertainty is unattainable, so we validate the effec-
tiveness of uncertainty estimation indirectly through diverse tasks.
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Mic Ficus Hotdog Drums Train Truck

Figure 1: Active Learning - σmax: PH-Dropout robustness to active learning is showed by a de-
creasing epistemic uncertainty at decreasing σmax, with increasing number of training views.

Mic Ficus Drums Train TruckHotdog

Figure 2: Active Learning - rdrop: PH-Dropout robustness to active learning is showed by a de-
creasing epistemic uncertainty at increasing rdrop, with increasing number of training views.

• Active Learning (Gal et al., 2017; Raj & Bach, 2022; Nguyen et al., 2022): Correlation with
Training Data Sufficiency ρU and ρR. A faithful estimation of epistemic uncertainty should show
a lower uncertainty with a more training views. Therefore we take ρU = ρs(σmax, Ntrain) as
metric, where ρs(·) represents the Spearman’s Correlation (Corder & Foreman, 2014), Ntrain is
the number of training views, σmax is defined in Alg. 1. ρU is expected to be negative. Similarly,
the redundancy (dropout ratio rdrop in Alg. 1) should increase as more training view is available,
i.e., better overfitting according to Theorem 3.1. We introduce ρR = ρs(rdrop, Ntrain) as the other
metric reflecting correlation between model robustness and training views. Hence ρR should
be positive. We streamline the estimation of the correlation coefficient by focusing on 8-view,
16-view, and 100-view setups, leveraging the overall trend for reasonable approximation.

• Correlation with Prediction Error (Liu et al., 2019; Nannapaneni & Mahadevan, 2016): rPE.
Since the rendering function in view synthesis is deterministic, the primary sources of pre-
diction error are epistemic uncertainty and model mis-specification. Therefore, a correlation
between uncertainty estimation and actual error is expected. Specifically, we have ρPE =
ρs(ζ(x),RMSE(F (x), FGT(x))), where RMSE(·) is the Root Mean Squared Error per pixel and
channel, FGT(x) denotes the ground truth image.

Besides effectiveness of PH-DROPOUT, we also highlight the efficiency of PH-DROPOUT in Fig-
ure 6. Even when focusing solely on inference speed, without accounting for other practical con-
straints in alternative methods, PH-DROPOUT demonstrates a performance gain of at least two or-
ders of magnitude. This substantial efficiency improvement makes PH-DROPOUT the only viable
option for use during runtime, with only a minimal frame rate drop on the initial render.

Datasets: We conducted experiments to evaluate the performance of PH-DROPOUT across 3
widely-used datasets: NeRF Synthetic Blender (Mildenhall et al., 2021), Tanks & Temples
(T&T) (Knapitsch et al., 2017) and the LLFF dataset (Mildenhall et al., 2019).

5.2 ACTIVE LEARNING

For bounded case we evaluate the model on the Blender dataset following Mildenhall et al. (2021).
The baselines for the bounded case of NeRF include FreeNeRF (Yang et al., 2023) and its fine-
tuned variant FreeNeRF+SPE (Sun et al., 2024). These methods achieve superior fidelity in limited
training view scenarios (few-view) and are free from hash collision issues, making them ideal bench-
marks to demonstrate the effectiveness of PH-DROPOUT. GS based method includes 3DGS (Kerbl
et al., 2023b) and 2DGS (Huang et al., 2024), yielding better fidelity and efficiency than NeRF based
methods when there are sufficient training views. The results are demonstrated in Figure 1 and Fig-
ure 2 (detail in §A.8, Table 3), where the dropout ratio rdrop increases as the number of training view
increases, indicating higher redundancy of the trained model. Meanwhile, the models tend to have
higher uncertainty σmax when the number of training view decreases, even with smaller rdrop. 2DGS
is the only outlier on the trend of σmax because model collision in few view cases, §A.10.
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RGB Ground Truth RGB Prediction Error Image Uncertainty Map

Figure 3: Correlation between PH-DROPOUT based epistemic uncertainty estimation and the actual
RMSE, with 3DGS at bounded scenario (Blender drum). 8 training views.

Zoom-in Zoom-in

High Error Zone High Uncertainty
Zone

Ground Truth 2DGS @ 64v RMSE Map Uncertainty Map

Figure 4: Correlation between PH-DROPOUT based epistemic uncertainty estimation and the actual
RMSE, with 2DGS at unbounded scenario. 64 training views.

FreeNeRF + SPE exhibits greater redundancy and lower UQ compared to FreeNeRF, despite both
being based on NeRF with the same number of parameters. SPE (Sun et al., 2024) simplifies func-
tion learning by altering just one activation function (discussed in detail in the §A.4). This subtle
structural change is clearly detected by PH-DROPOUT, further demonstrating the effectiveness of
PH-DROPOUT.

For unbounded cases, we primarily focus on GS-based methods (2DGS and 3DGS), as conventional
NeRF methods are too slow in this context without offering fidelity improvements. While HE-
based NeRF is faster, it suffers from hash collisions in few-view setups, making it incompatible with
other methods. Therefore, we explore NeRF for unbounded scenarios in a later section, where we
implement PH-DROPOUT only on unbounded NeRF with sufficient training views. The results of
GS-based models in unbounded scenarios, as shown in Figure 1 and 2 (detail in §A.8, Table 4),
reveal a consistent pattern with the bounded scenarios. Specifically, as the number of training views
increases, the dropout ratio rdrop rises, while UQ metric σmax decreases.

Combining results from both bounded and unbounded scenarios across NeRF and GS-based meth-
ods, we find a clear negative trend in ρU and a significant positive trend in ρR. This demonstrates that
the UQ provided by PH-DROPOUT is well-suited for supporting active learning tasks. This effective
UQ is then applied to an uncertainty-driven ensemble usecase in §5.4.

5.3 CORRELATION BETWEEN UNCERTAINTY AND PREDICTION ERROR

As Figure 3 and Figure 4 illustrate, in 2DGS and 3DGS, high RMSE region tends to overlap with
high uncertainty region. The correlation between RMSE and UQ in different scenarios is demon-
strated in Figure 5. In bounded scenarios, both NeRF and GS-based methods demonstrate a strong
correlation between RMSE and UQ. Results for 2DGS with 8 views are missing due to training lim-
itations. In unbounded scenarios, GS-based models show lower correlation compared to bounded
cases, reflecting the complexity of real-world data versus synthetic objects (Ren et al., 2024). Ad-

Blender - 𝝆𝒔 (𝑼𝑸, 𝑹𝑴𝑺𝑬) Blender - 𝝆𝒑 	(𝑼𝑸, 𝑹𝑴𝑺𝑬) T&T - 𝝆𝒔	(𝑼𝑸, 𝑹𝑴𝑺𝑬) T&T - 𝝆𝒑 	(𝑼𝑸, 𝑹𝑴𝑺𝑬)

Figure 5: Correlation between RMSE and UQ of PH-DROPOUT in bounded (Blender) and un-
bounded (T&T) scenarios.
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ditionally, both 2DGS and 3DGS exhibit higher correlation as training views increase, suggesting
that insufficient training data leads to more unpredictable and random RMSE values. More detail
about the correlation between PH-DROPOUT UQ and RMSE is showed in §A.9 Table 5 for bounded
cases, and Table 6 for unbounded cases.

In addition to the methods discussed in Figure 5, we also explore hash encoding (HE) methods for
error prediction, as they are not limited to few-view scenarios. For the unbounded case, we compare
PH-DROPOUT against Bayes Rays (Goli et al., 2024) using its NeRFacto setup (Tancik et al., 2023),
which, to our knowledge, represents the current state-of-the-art for unbounded NeRF and serves as
an enhanced version of InstantNGP Müller et al. (2022).

Dataset Method PSNR ↑ SSIM ↑ ρs ↑ ρp ↑ AUSE RMSE ↓ AUSE MSE ↓ AUSE MAE ↓

Africa Bayes Rays 22.1 0.839 0.020 -0.071 0.545 0.512 0.512
PH-Dropout 22.1 0.839 0.163 0.154 0.489 0.485 0.441

Basket Bayes Rays 22.8 0.823 -0.335 -0.241 0.410 0.304 0.287
PH-Dropout 22.9 0.825 0.342 0.310 0.438 0.345 0.351

Torch Bayes Rays 24.4 0.867 -0.395 -0.196 0.454 0.314 0.348
PH-Dropout 24.5 0.867 0.472 0.314 0.428 0.367 0.277

Statue Bayes Rays 19.9 0.813 -0.469 -0.285 0.369 0.187 0.216
PH-Dropout 20.0 0.813 0.370 0.166 0.596 0.469 0.468

Avg. Bayes Rays 22.30 0.836 -0.295 -0.198 0.445 0.329 0.341
PH-Dropout 22.38 0.836 0.337 0.236 0.488 0.417 0.384

Table 1: Comparison of Bayes Rays and PH-DROPOUT on
NeRFacto: Bayes Rays fails to correlate depth uncertainty with
high prediction error on the LF dataset.

PH-Dropout

Bayes Rays

MC-Dropout
CF-NeRF

Random Init.

100

101

102

103

104

Pr
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sin

g 
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e 
(s
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0.21

~90

~6000 ~7200 ~18000

Figure 6: PH-DROPOUT can be
applied on-the-fly to a trained
method, yielding orders of mag-
nitude efficiency gain.

As for the comparison with baseline, we mainly focus on Bayes Rays (Goli et al., 2024), which
carries out depth uncertainty of NeRF. Related work as NeRF OTG (Ren et al., 2024) is not con-
sidered as a baseline as it is proposed for dynamic scenarios. CG-SLAM (Hu et al., 2024) has
recently explored similar spatial uncertainty-aware methods for GS models. However, it cannot
be included either since CG-SLAM is not open-source and lacks sufficient implementation details.
Computation-heavy methods like CF-NeRF (Shen et al., 2022) are excluded as they cannot be ap-
plied to more representative models, limiting the usefulness of their UQ. In Table 1, PH-DROPOUT
achieves higher correlation (ρs and ρp) between UQ and RMSE. This comes at no fidelity cost,
empirically validating the negligible impact of inference-only dropout due to expected high model
redundancy (see Theorem 3.1).

5.4 USECASES: UNCERTAINTY DRIVEN MODEL ENSEMBLES

Here we consider uncertainty driven model ensembling (Wang & Ji, 2023) as the usecase to fur-
ther demonstrate the effectiveness of PH-DROPOUT. The ensemble method is driven by select-
ing the image with lower overall uncertainty, i.e., select function F from Fa and Fb, following
argminF∈{Fa,Fb} ζF (x)), where ζF (·) is the per pixel and channel UQ under function F , ζF (x)) is
the mean over all pixels and channel.

We randomly selected two non-overlapping 16-view training sets to train models ‘16v-a’ (Fa) and
‘16v-b’ (Fb). This task is challenging due to the random selection and the proximity between views
in both sets, requiring the model to be highly sensitive in choosing the correct rendering results. As
an ensemble method, we expect PH-DROPOUT to select the optimal view, ensuring overall fidelity
that matches or exceeds the best ground-truth model between the two models.

Metric EME is introduced to quantify the performance of ensembling. Here we consider model en-
sembling with dynamic selection, where two models with exactly same configuration are trained
with different views of the same object, denoting as Fa and Fb. We aim to evaluate the expected
value of the following ratio, which directly reflects PH-DROPOUT’s effectiveness in estimating un-
certainty due to insufficient training views

EME = E(rME) = Ex

(
SSIM(F (x)| argminF∈{Fa,Fb} ζF (x))

max(SSIM(Fa(x), FGT(x)),SSIM(Fb(x), FGT(x)))

)
Intuitively, if the estimation can guide the selection of more suitable model, we will have EME → 1.

9
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Method 2DGS 3DGS
Dataset Metric 16v-a 16v-b selected EME 16v-a 16v-b selected EME

Blender SSIM 0.887 0.873 0.881 0.974 0.900 0.894 0.912 0.996
PSNR 24.4 24.1 24.3 25.4 25.3 26.3

T&T SSIM 0.564 0.553 0.591 0.952 0.550 0.537 0.601 0.987
PSNR 15.4 15.6 16.3 15.8 15.8 17.1

Table 2: Performance on selecting rendered views with the lowest σmax from an ensemble of two
models with different training views.

FreeNeRF@8v 3DGS@8vFreeNeRF RMSE FreeNeRF Unc. Map 3DGS RMSE 3DGS Unc. Map

High 
Error&Unc. 

at edges

High 
Error&Unc. 
at surface

Low Unc. at 
surface

Figure 7: NeRF and GS models show distinct features in UQ and RMSE.

The detailed results are included in §A.11, Table 7 for bounded cases, where PH-DROPOUT suc-
cessfully selects most correct views in 2DGS, with the ensemble model consistently performing at or
near the level of the model with better training views. In 3DGS, PH-DROPOUT consistently selects
the correct view, with EME always close to 1. PH-DROPOUT performs better in 3DGS primarily
because 2DGS experiences collision issues in few-view scenarios, leading to missing renderings,
similar to hash collisions in HE-based methods. (see §A.10).

§A.11 Table 8 shows the ensemble performance in unbounded cases. PH-DROPOUT effectively
selects images with superior fidelity, enabling the ensemble model to outperform any individual
model. Similar to the bounded case, PH-DROPOUT shows reduced performance on 2DGS due to
the inherent limitations of the 2DGS method.

6 DISCUSSION

6.1 DIFFERENT PERFORMANCE ON NERF AND GS, DIFFERENT ENCODING METHODS

Throughout this paper, NeRF and GS-based methods exhibit distinct patterns in redundancy and
correlation with RMSE. As indicated by Theorem 3.1, these differences arise from the fundamental
ways each method approximates the rendering function. Figure 7 illustrates that NeRF tends to
show higher error and uncertainty at object edges, while GS models display increased uncertainty
on smooth surfaces. This behavior aligns with the theorem and is a key factor behind the distinct
UQ performance of each method.

6.2 LIMITATIONS OF PH-DROPOUT

PH-DROPOUT struggles with UQ in the presence of input hash collisions or similar model collisions
in 2DGS, limiting its applicability to hash encoding-based methods (Müller et al., 2022; Tancik
et al., 2023). Additionally, PH-DROPOUT is specifically designed for view synthesis tasks; further
research is required to adapt it for other applications.

7 CONCLUSION

We present PH-DROPOUT, an efficient and effective epistemic uncertainty quantification (UQ)
method for view synthesis, designed to operate directly on trained models. PH-DROPOUT is com-
patible with both NeRF and GS-based methods and can be applied to both bounded objects and
unbounded scenarios. By offering fast inference and easy implementation, PH-DROPOUT makes
epistemic UQ practical and stands as the first training-free method for UQ in GS models. Extensive
evaluations across a broad range of downstream applications highlight its effectiveness. Theoretical
analysis of PH-DROPOUT also uncovers fundamental differences and connections between NeRF
and GS rendering methods, paving the way for future research to enhance their efficiency, fidelity,
and scalability.
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A APPENDIX

A.1 COMPUTE THE STD OF A MULTI-CHANNEL IMAGE

Here we explain how to define the overall variance of the image x.

Let ζ(x) = σ ∈ RN×H×W×C be a tensor representing the standard deviation image x of N views
after S stochastic forward-passes using PH-DROPOUT. The dimension of the rendered sampled
images is H ×W × C, where H is the height, W is the width, and C is the number of channels.

For each view i ∈ {1, 2, . . . , N}, we define the maximum standard deviation as:

σmax,i = max
h,w,c

(σi,h,w,c)

where h ∈ {1, 2, . . . ,H}, w ∈ {1, 2, . . . ,W}, and c ∈ {1, 2, . . . , C}.
We use the maximum value instead of the mean due to the sparse nature of the uncertainty map and
the overall rendering process. A large portion of the pixels or space in the rendering is either empty
or easily predictable, making the mean value ineffective for capturing meaningful variations, thus
reducing sensitivity in quantification.

The mean of the maximum standard deviations across all N views, denoted as σmax, is defined as:

σmax =
1

N

N∑
i=1

σmax,i =
1

N

N∑
i=1

max
h,w,c

(σi,h,w,c)
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A.2 MC-DROPOUT IS NOT SUITABLE FOR NERF

Overall, training dropout is a linear approximation of the average of ensembles, and hence prevent
overfitting (Srivastava et al., 2014). The target rendering function is unique and deterministic, hence
this technology cannot bring performance gain but only reduce the training efficiency and approxi-
mation accuracy.

Theorem A.1. Training dropout prevents the efficient convergence of NeRF MLP on the rendering
function.

Proof. The color to render a ray r, i.e., the rendering function is defined as:

C(r) =

∫ tf

tn

T (r)σ(r(t))c(r(t), d)dt

where T (r) = exp−
∫ t

tn
σ(r(s))ds denotes the accumulated transmittance along the ray from from

tn to t. Considering the typical NeRF with PE approximate rendering function using Fourier fea-
tures should have a unique spectrum as: C(r) =

∑
wi(r) sin(r), wi(r) is the Fourier features.

Applying dropout is equal to remove a few features, i.e., C ′(r) = ρ
∑

µiwi(r) sin(r), where
µi ∼ Bern(p,Nf ), ρ = 1/(1 − p). Since they both converge on training set, then on training
set:

|
∑

wi(r) sin(r)− ρ
∑

µiwi(r) sin(r)| < ϵ (2)

when p = 0 (no dropout), we have µi = 1 as solution. However, when p ̸= 0, an approximation
can be made under certain conditions (ignore the empty space): (1) p is small, so the dropout rate
is low, ensuring that the majority of neurons remain active and the model behavior closely approx-
imates the no-dropout scenario; (2) the power of each component is distributed sparsely, meaning
the dropped components contribute minimally to the overall output, or the components exhibit even
power distribution, akin to white noise.

Since the rendering function in most practical scenarios is not equivalent to white noise, it follows
that the dropout ratio must remain small by default to avoid excessive loss of important information.
Additionally, the distribution of power across components tends to be sparse in real-world cases,
implying that only a few components carry significant influence.

This suggests that models with dropout can only effectively approximate cases where the compo-
nents are sparse, leading to patterns that are simpler and lack fine-grained detail. As a result, while
dropout helps prevent overfitting, it may also limit the model’s capacity to capture intricate patterns
when too much information is dropped.

Empirically, previous works Shen et al. (2024); Sünderhauf et al. (2023) have proven that the esti-
mation of MC-dropout on NeRF is inaccurate with significant worse rendering quality when trained
with dropout.

A.3 CONDITION OF EFFECTIVE UNCERTAINTY ESTIMATION

Theorem A.2. Suppose instances F in a set of models F̂ (trained on same data D), i.e.,

∀F̂ ⊂ F , |F̂ | > T →
∑

∀F∈F ŷF

|F|
=

∑
∀F∈F̂ ŷF

|F̂ |
+ ϵmean

exhibit identical and perfect fitting performance on the training set, where ŷF = F (x), ϵmean is the
approximation error. The variation of their output can be interpreted as a reflection of epistemic
uncertainty, if under a random initialization scheme S(·),

|F̂ ∩ S(F)|
|S(F)|

=
|F̂ ∩ F∗|
|F∗|

≫ 0

where F∗ = S(F) is the result of random initialization, assuming the data is non-noisy and deter-
ministic.
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Proof. Let F be the set of all possible models that could explain the dataset D. Each model F ∈ F
provides a prediction ŷ for given input x. We define function F can explain a dataset if and only if

∀(x, y) ∈ D → |y − F (x)| = |y − ŷ| ≤ ϵ

where y is the expected and deterministic output to input x, appearing in pairwise in dataset D
The predictive distribution of the model can be expressed as:

p(ŷ|x,D) =
∫
F
p(ŷ|x, F )p(F |D)dF

The epistemic uncertainty can be then represented as

Var[ŷ|x,D] =
∫
F
p(F |D)(ŷF − E[ŷ|x,D])2dF

where ŷF ∼ p(ŷ|x, F ) and E[ŷ|x,D] is the expectation of the prediction over the model posterior
distribution.

To estimate the value of uncertainty Var[·], we can conduct a Monte-Carlo solution. We first obtain
an unbiased and significant number of instance F forms set F̃ , and F̃ ⊂ F . The expectation of
prediction is estimated as

∑
∀F∈F̃ ŷF

|F̃| . The the estimated uncertainty is

Ṽar[ŷ|x,D] =
∑
F∈F̃

NF

|F̃ |
(ŷF −

∑
∀F∈F̃ ŷF

|F̃ |
)2 = Var[ŷ|x,D] + ϵAPP

lim
|F̃|→+∞

Ṽar[ŷ|x,D] = Var[ŷ|x,D]

where ϵAPP is the error caused by the bias of limited sampling number.

So far we have present the ideal case of uncertainty estimation. To obtain an ideal F̃ is difficult
because of the computation overhead and bias in sampling (e.g., only consider F with certain number
of parameters). Here we discuss the feature of a subset F̂ ⊂ F̃ .

Suppose the prediction expectation with F̂ has an error β∑
∀F∈F̃ ŷF

|F̃ |
=

∑
∀F∈F̂ ŷF

|F̂ |
+ β(x)

the probability density of F should be calibrate by αF

p(F |D) = αFNF

|F̂ |

now the target estimation could be described with

Ṽar[ŷ|x,D] =
∑
F∈F̂

αFNF

|F̂ |
(ŷF −

∑
∀F∈F̂ ŷF

|F̂ |
− β(x))2 +

∑
F∈F̃−F̂

NF

|F̃ |
(ŷF −

∑
∀F∈F̃ ŷF

|F̃ |
)2

=
∑
F∈F̂

αFNF

|F̂ |
(ŷF −

∑
∀F∈F̂ ŷF

|F̂ |
− β(x))2 + δ(x)

=
∑
F∈F̂

αFNF

|F̂ |
(ŷF − γ(x)− β(x))2 + δ(x)
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=
∑
F∈F̂

αFNF

|F̂ |
(ŷF − γ(x)− ϵ)2 + δ(x)

where δ(·) ≥ 0, β(·) is determined by F̂ and x, γ(x) =
∑

∀F∈F̂ ŷF

|F̂| =
∑

∀F∈F̂ F (x)

|F̂| ≥ 0, and
0 < αF .

The estimation on F̂ without calibration is

V̂ar[ŷ|x,D] =
∑
F∈F̂

NF

|F̂ |
(ŷF − γ(x))2

this is what we can compute directly.

Because all of the function in F̂ is equivalent to functions in F , and F̃ is also a subset of F , then
we have β(x)→ ϵ when |F̂ | → +∞.

We can compute αF as |F̂ |/|F̃ | if the size of both sets are available. The ratio of space αF represents
how the actual measurement contributes the ground truth uncertainty. And the actual uncertainty will
be αTV + δ(x), as long as αT ≫ 0, V is an effective estimation, as large V indicates high model
uncertainty for sure.

Now we need to measure |F̂ |/|F̃ |. Given the complexity of the space of the high dimension func-
tions, we cannot easily compute the exact value. However, we can still verify the αT is not a negli-
gible small value by doing sparse sampling over F̃ following reference schemes. Suppose there is a
reference sampling scheme to obtain F∗, if 1 > |F̂∩F∗|

|F∗| ≫ 0, then the uncertainty measurement on

F̂ represents the a significant part of uncertainty on F∗. Also because of 1 > |F∗|
|F̃| ≫ 0, we have

αT =
|F̂ |
|F̃ |

>
|F̂ ∩ F∗|
|F∗|

· |F
∗|
|F̃ |

≫ 0

By default, we obtain F∗ via random initialization, which has been proven to be an effective way to
represent the model uncertainty.

As a special case, if the data uncertainty at input x is zero, then we must have

δ(x) = 0,∀F ∈ F̂ , F (x) = γ(x)

This means, if the uncertainty is very low, then given arbitrary F̂ with a significant size |F̂|
|F̃| ≫ 0,

we should have a stable F (x).

If the model shows high uncertainty at input x within set F̂ , then this uncertainty will contribute to
a significant part of the ground truth uncertainty. And if the model has overall low uncertainty at x,
F (x)− γ(x) ≈ 0,∀F ∈ F̂

Random initialization is expensive and we cannot obtain F∗ easily. Each trained model is just one
instance of F∗. Following aforementioned theorem, if we can find a subset of F∗ with significant
probability density, and guarantee the expectation of ŷ converges to the global expectation with
marginal error, then the estimation on this subset can reflect the lower bound of uncertainty.

A.4 EXPLANATION OF DIFFERENCE BETWEEN SPE AND PE

Here we prove that conventional positional encoding (PE) (Tancik et al., 2020) needs more parame-
ters to approximate the same function than sinusoidal positional encoding (SPE) (Sun et al., 2024).
We first investigate the following question: how to use signal of frequency f1 and f2 to create a
new frequency component. Suppose signal y(t) is the weighted combination of sinusoidal signal
with frequency f1 and f2, representing the initial fully connected layer with PE, A is the amplitude

16
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factor, and F (·) denotes the rest neural networks. To create a new frequency f1+f2
2 , the following

layers need performs a function F ∗(·) to eliminate frequency f1−f2
2 , as follows (because the signal

is a combination of unique set of frequency features, f1−f2
2 may not be needed).

F (y(t)) = F (A cos(2π
f1 − f2

2
t) sin(2π

f1 + f2
2

t)) (3)

= F ∗(A sin(2π
f1 + f2

2
t)) (4)

F ∗(·) = cos(2π
f1 − f2

2
t)−1F (·) (5)

f =

L∑
i=0

wifi,where:
∑

wi = 1, wi ∈ {m/2n},m, n ∈ N (6)

Obviously, the highest freuqncy can be represented is bounded by

f ≤ fL = 2L−1 (7)

When n is large enough, the error is bounded by 1/2n. Therefore, in theory, under ideal convergence,
NeRF with PE can approximate arbitrary frequency within 2L−1 effectively.

However, when try to fine tune the high frequency features, the following effect will happen. The
artifacts can be only be reduced when f1 and f2 are close. fl − fl−1 = fl−1 could be still require to
learn high frequency representation directly via MLP. This results in NeRF is always struggling to
approximate high frequency detail until the input sample rate is high enough (many views).

If f1+f2
2 is a new frequency features, then |f1−f2|

2 is a new frequency feature as well.

Following the standard PE, the input frequency component can be represented by 2L−1, the new
created features is (2n+1)2m−1, so the synthetic frequency is always as Odd Num.×2n in pairwise.

2m + 2m · 2n

2
= 2m−1 + 2m−1 · 2n (8)

= (2n + 1)2m−1 (9)

in cos(·)−1 side

2m · 2n − 2m

2
= (2n − 1)2m−1 (10)

suppose now merge with k

(2n + 1)2m−1 + 2k

2
= (2n + 1 + 2k−m+1) · 2m−2 (11)

(2n + 1)2m−1 − 2k

2
= (2n + 1− 2k−m+1) · 2m−2 (12)

17
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Figure 8: NeRFacto (Tancik et al., 2023) fails to render the “dolls” due to hash collision. PH-
DROPOUT reveals part of the missing dolls but cannot render the fully collapsed part. Depth Uncer-
tainty wit Bayes Rays (Goli et al., 2024)

A.5 OVER-CONFIDENT WITH PH-DROPOUT IN HASH ENCODING

This discussion tries to explain two phenomenon: (1) hash encoding based NeRF performs terrible
in few-view cases, mixing object and background; (2) hash encoding is agnostic to PH-DROPOUT,
i.e., our method is less effective on hash encoding based NeRF.

In the hash encoding used in InstantNGP (Müller et al., 2022) and NeRFacto (Tancik et al., 2023),
the input is encoded in a pseudo-random manner.

h(x) =

(
d⊕

i=1

xiπi

)
mod T (13)

where ⊕ denotes the bit-wise XOR operation and πi are unique, large prime numbers, T is the size
of hash table. Due to the pseudo-random encoding, similar encoded values do not necessarily reflect
spatial proximity. Without targeted supervision, the MLP tends to regress based on the absolute
values of the encoding, often producing similar results for close encodings. This occurs because
the MLP, with ReLU (or other continuous activations), exhibits smoothness and continuity (Nair
& Hinton, 2010; Yarotsky, 2018), making it difficult to effectively distinguish between background
and object in few-view InstantNGP and NeRFacto.

Takeaway. In this paper, we apply PH-DROPOUT to hash encoding only in many-view and un-
bounded scenarios due to its overconfidence issue and poor generalization to unseen views.

A.6 SUPPLEMENTAL RESULTS WITH HASH ENCODING BASED METHODS

We present a comprehensive comparison of three methods: NeRF + HE, NeRF + PE, and GS, using
the Blender dataset as a benchmark. We evaluate their performance across two key scenarios: (1)
rendering fidelity in a few-view setup (8 views and 16 views), and (2) training speed with a sufficient
number of training views. These scenarios address two critical aspects of view synthesis approaches:
how well the model generalizes when observations are limited, and how efficient the training and
inference processes are when ample training data is available.

From the result in [], we observe a significant performance improvement in the few-view setup with
the PE + NeRF method. This gain is primarily due to the method’s ability to learn a continuous
function, allowing it to capture low-frequency, large-scale features that generalize effectively across
the spatial domain. In the second task, all methods show high fidelity rendering performance given
sufficient training view. GS achieves highest training and inference efficiency.

For HE based methods, we notice a significant drop when implement them on PyTorch only. This
is because HE based method uses indexing operations (e.g., look up after hashing), which is easier
to be accelerated with c++ compiler. As a result, a significant portion of efficiency gain of HE is
caused by the difference between PyTorch and c++. And even under the ideal setup with c++, it is
still slower than GS model.

Takeaway. HE-based methods receive less attention in this paper due to their poor performance in
few-view setups and inefficiency in many-view scenarios.
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Figure 9: More views of PH-DROPOUT performance under hash collision. PH-DROPOUT can only
track the rendered part, shift to left due the collision, highlighted with yellow

Method FreeNeRF FreeNeRF+SPE 2DGS 3DGS

Metric Viewpoints (8v, 16v, 100v)
8v 16v 100v 8v 16v 100v 16v 100v 8v 16v 100v

Mic σmax 0.283 0.234 0.220 0.259 0.228 0.217 0.428 0.402 0.465 0.428 0.361
rdrop 0.07 0.08 0.11 0.24 0.23 0.23 0.87 0.86 0.69 0.74 0.78

Chair σmax 0.406 0.345 0.334 0.328 0.338 0.315 0.470 0.424 0.487 0.451 0.377
rdrop 0.08 0.07 0.10 0.19 0.19 0.20 0.60 0.60 0.47 0.50 0.55

Ship σmax 0.339 0.284 0.288 0.306 0.313 0.298 0.427 0.417 0.430 0.382 0.346
rdrop 0.09 0.10 0.08 0.23 0.23 0.24 0.38 0.62 0.21 0.24 0.37

Materials σmax 0.280 0.230 0.223 0.261 0.230 0.211 0.426 0.436 0.502 0.427 0.418
rdrop 0.08 0.10 0.13 0.26 0.28 0.30 0.65 0.72 0.49 0.52 0.57

Lego σmax 0.344 0.354 0.325 0.363 0.352 0.348 0.461 0.382 0.463 0.417 0.339
rdrop 0.08 0.08 0.08 0.18 0.21 0.23 0.47 0.50 0.36 0.40 0.46

Drums σmax 0.369 0.358 0.335 0.328 0.336 0.311 0.462 0.427 0.501 0.489 0.430
rdrop 0.04 0.04 0.06 0.15 0.15 0.16 0.62 0.73 0.46 0.46 0.57

Ficus σmax 0.300 0.287 0.252 0.318 0.273 0.245 0.397 0.388 0.347 0.328 0.275
rdrop 0.08 0.12 0.13 0.25 0.29 0.31 0.72 0.77 0.66 0.67 0.69

Hotdog σmax 0.340 0.319 0.321 0.329 0.308 0.298 0.463 0.384 0.473 0.445 0.376
rdrop 0.10 0.12 0.12 0.26 0.29 0.30 0.64 0.70 0.43 0.48 0.60

Table 3: Active Learning Scenario on Blender dataset: PH-Dropout robustness to active learning
is showed by a decreasing epistemic uncertainty, σmax, at a similar dropout rate rdrop, or a stable
σmax at increasing rdrop, with increasing number of training views, given a constant ϵ. The cases
where PH-DROPOUT does not adhere to the active learning principle are marked with red.

A.7 SUPPLEMENTARY EXPERIMENTS: UNABLE TO HANDLE HASH COLLISION IN HASH
ENCODING BASED METHODS

In Figure 8 we show an example where NeRFacto does not render some objects, e.g., the dolls
highlighted with blue. PH-DROPOUT is able to show high uncertainty on the place NeRFacto tends
to render but cannot show anything on the fully collapsed place. PH-DROPOUT still yields better
robustness when collision happens, because the other methods require training as Bayes Rays will
experience collision issue more significantly and fail to render anything on the collapsed regions.
Figure 9 further demonstrates the influence of hash collision in HE. The yellow “ghost” effect is
replication of the dolls, the NeRFacto model mix up two different input, and it does not consistent
on the spatial domain because the collision is pseudo random.

A.8 DETAILED RESULTS OF ACTIVE LEARNING TASK

Here we enclosed the detailed experiment results of the active learning usecase in §5.2, refer to the
Table 3 and Table 4.
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Method 2DGS 3DGS

Metric Viewpoints (16v, 64v, 128v, 256v)
16v 64v 128v 256v 16v 64v 128v 256v

Train σmax 0.390 0.397 0.408 0.409 0.338 0.328 0.321 0.317
rdrop 0.16 0.26 0.32 0.38 0.12 0.15 0.18 0.20

Truck σmax 0.435 0.424 0.413 0.407 0.369 0.342 0.331 0.329
rdrop 0.21 0.32 0.36 0.40 0.14 0.18 0.21 0.23

Table 4: Unbounded Scenarios: Performance of PH-DROPOUT on quantifying epistemic uncer-
tainty in GS-based methods

Method FreeNeRF FreeNeRF+SPE 2DGS 3DGS

Dataset 8v 16v 100v 8v 16v 100v 16v 100v 8v 16v 100v
ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp↑ ρs ↑ ρp ↑

Mic 0.981 0.412 0.985 0.396 0.984 0.397 0.984 0.435 0.983 0.425 0.982 0.415 0.996 0.693 0.996 0.750 0.996 0.720 0.997 0.754 0.997 0.776
Chair 0.963 0.388 0.962 0.338 0.967 0.407 0.967 0.405 0.967 0.400 0.970 0.412 0.990 0.739 0.993 0.817 0.989 0.682 0.991 0.742 0.994 0.830
Ship 0.873 0.454 0.863 0.438 0.856 0.414 0.887 0.484 0.879 0.458 0.891 0.486 0.940 0.694 0.943 0.683 0.898 0.643 0.915 0.619 0.943 0.642
Materials 0.918 0.329 0.934 0.361 0.868 0.164 0.939 0.372 0.943 0.400 0.945 0.410 0.979 0.680 0.982 0.695 0.964 0.669 0.982 0.669 0.984 0.678
Lego 0.936 0.413 0.933 0.406 0.927 0.419 0.944 0.434 0.946 0.455 0.949 0.461 0.979 0.696 0.986 0.769 0.975 0.671 0.979 0.692 0.987 0.792
Drums 0.961 0.472 0.947 0.378 0.953 0.392 0.963 0.497 0.959 0.453 0.961 0.474 0.980 0.649 0.990 0.703 0.980 0.660 0.988 0.652 0.991 0.673
Ficus 0.978 0.479 0.984 0.547 0.982 0.547 0.982 0.527 0.986 0.573 0.988 0.582 0.992 0.718 0.993 0.782 0.994 0.752 0.995 0.779 0.996 0.844
Hotdog 0.941 0.376 0.946 0.404 0.944 0.416 0.946 0.401 0.951 0.419 0.953 0.421 0.978 0.752 0.987 0.813 0.972 0.644 0.978 0.690 0.987 0.789

Table 5: Bounded Scenarios: Performance on Blender dataset with different training views. ρs:
Spearman correlation, ρp: Pearson correlation.

A.9 DETAILED CORRELATION BETWEEN RMSE MAP AND UQ WITH PH-DROPOUT

Here we include the per scenario correlation between RMSE and UQ in the following tables, Table 5
and Table 6.

A.10 2DGS IN FEW-VIEW CASES

As Figure 10 shows, 2DGS encounters a similar issue to hash-encoding-based NeRF, where certain
parts of the object fail to render entirely, limiting PH-DROPOUT’s ability to detect significant vari-
ance. Without this variance, PH-DROPOUT cannot effectively perform uncertainty quantification
(UQ).

A.11 DETAILS OF ENSEMBLE USECASE

Here we enclose more details about the ensemble usecase in §5.4, including Table 7 and Table 8.

Method 2DGS 3DGS

Dataset 16v 64v 128v 256v 16v 64v 128v 256v
ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑ ρs ↑ ρp ↑

Train 0.270 0.213 0.351 0.308 0.354 0.317 0.388 0.355 0.299 0.239 0.362 0.328 0.384 0.345 0.412 0.360
Truck 0.311 0.293 0.414 0.429 0.432 0.439 0.426 0.436 0.343 0.333 0.371 0.419 0.393 0.420 0.410 0.420

Table 6: Unbounded Scenarios: Performance of Gaussian Splatting methods on T&T dataset with
different training views. ρs: Spearman correlation, ρp: Pearson correlation.
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Blender Drum 2DGS @ 16v RMSE Map UQ Map

Missing High RMSE Missing

High Unc.

Figure 10: 2DGS misses rendering certain part of the object, when it is trained with few-view, e.g.,
16-views for blender dataset. Besides the missing part, PH-DROPOUT is able to show UQ with clear
correlation with RMSE.

Method 2DGS 3DGS
Dataset Metric 16v-a 16v-b selected EME 16v-a 16v-b selected EME

Mic SSIM 0.921 0.928 0.931 0.991 0.947 0.944 0.947 0.997
PSNR 24.7 25.1 24.5 27.4 26.9 27.2

Chair SSIM 0.920 0.927 0.935 0.991 0.931 0.935 0.938 0.992
PSNR 25.6 26.0 26.1 26.5 27.0 27.2

Ship SSIM 0.793 0.742 0.747 0.912 0.781 0.777 0.800 0.993
PSNR 24.7 22.8 23.1 25.5 25.2 26.1

Materials SSIM 0.871 0.857 0.863 0.978 0.892 0.884 0.903 1.00
PSNR 23.3 21.7 22.6 24.8 24.3 25.6

Lego SSIM 0.907 0.902 0.910 0.995 0.916 0.915 0.925 0.999
PSNR 26.8 25.6 27.0 28.0 27.6 28.3

Drums SSIM 0.859 0.777 0.818 0.935 0.890 0.851 0.901 0.998
PSNR 19.9 18.9 19.8 22.6 21.1 23.1

Ficus SSIM 0.917 0.933 0.924 0.988 0.932 0.935 0.936 0.998
PSNR 23.7 25.7 24.5 25.6 25.9 26.0

Hotdog SSIM 0.909 0.920 0.923 0.998 0.926 0.944 0.945 0.998
PSNR 26.1 26.6 27.1 26.9 29.5 29.7

Avg. SSIM 0.887 0.873 0.881 0.974 0.900 0.894 0.912 0.996
PSNR 24.4 24.1 24.3 25.4 25.3 26.3

Table 7: Bounded Scenarios. Select synthetic view from models with different training views, so
that two models are merged on-the-fly.

Method 2DGS 3DGS
Dataset Metric 16v-a 16v-b selected EME 16v-a 16v-b selected EME

Train SSIM 0.476 0.491 0.522 0.940 0.463 0.468 0.526 0.979
PSNR 13.3 14.5 14.9 13.9 14.5 15.5

Truck SSIM 0.652 0.615 0.660 0.963 0.636 0.606 0.676 0.995
PSNR 17.5 16.7 17.7 17.7 17.0 18.6

Avg. SSIM 0.564 0.553 0.591 0.952 0.550 0.537 0.601 0.987
PSNR 15.4 15.6 16.3 15.8 15.8 17.1

Table 8: Unbounded Scenarios. Select synthetic view from models with different training views,
so that two models are merged on-the-fly.
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