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Abstract

Accurate drug—target affinity (DTA) prediction is fundamental to computational
drug discovery. Drug—target binding affinity is influenced by multiple factors,
including structural conformations, functional groups, and molecular flexibility.
However, existing graph neural network (GNN)-based approaches often fail to
explicitly capture these fine-grained features, leading to suboptimal performance
and limited interpretability. To address these issues, we propose a framework
that integrates structure-aware protein embeddings with muti-channel molecular
representations across global, scaffold, and local levels. The key innovation lies in
a Cross-Channel Attention (CCA) mechanism, which dynamically aligns protein
features with molecular channels and assigns adaptive weights, thereby selectively
emphasizing binding-relevant information while reducing redundancy. Experi-
ments on the Davis dataset demonstrate that our model consistently outperforms
strong baseline methods. Beyond performance improvements, the cross-channel
attention mechanism also enhances interpretability by highlighting structural and
chemical determinants of binding. Overall, this work establishes cross-channel
attention as an effective and interpretable paradigm for advancing DTA prediction.

1 Introduction

Drug-target affinity (DTA) is a crucial task in drug design and development, playing a vital role in
drug discovery, candidate screening, and dosage optimization. Traditional experimental approaches
such as high-throughput screening (HTS) and surface plasmon resonance (SPR) provide accurate
measurements but suffer from high cost, low throughput, and long processing time, making them
insufficient for modern large-scale drug development [8]. In recent years, deep learning has emerged
as a powerful tool, showing strong ability to model large-scale biomedical data and significantly
accelerating progress in DTA prediction.

In DTA modeling, the representation of compounds and proteins is a crucial factor affecting model
performance. Generally, three mainstream strategies are adopted: one-dimensional sequence repre-
sentation (1D), two-dimensional structural graphs (2D), and three-dimensional spatial structures (3D)
(Figure[I). At the 1D level, compounds are usually represented by SMILES strings or molecular
fingerprints, while proteins are expressed as amino acid sequences encoded through descriptors such
as k-mer or PSSM [3]]. At the 2D level, compounds are modeled as molecular graphs and proteins as
contact maps, capturing topological and spatial dependencies[7]. At the 3D level, with advances such
as AlphaFold2, structural conformations and drug—target complexes can be modeled as point clouds,
voxel grids, or atom-level graphs to better capture realistic molecular interactions [[16]].

Previous studies have proposed a variety of deep learning-based methods for DTA prediction, which
can be broadly divided into three categories: sequence-based models, structure-based models, and
hybrid-based models [22]]. Sequence-driven models usually rely on SMILES strings for compounds
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Figure 1: Illustration of compound and protein representations in DTA modeling.

and amino acid sequences for proteins, and employ CNNs, RNNs, or Transformer-based architec-
tures for feature extraction. Representative examples include DeepDTA [24], DeepCDA [1]], and
AttentionDTA [23]], which achieve strong baseline performance but fail to capture spatial structural
information. Structure-aware models leverage molecular graphs, protein contact maps, or 3D com-
plex structures to incorporate spatial dependencies. Notable approaches include GSAML-DTA [10],
HGRL-DTA [4], and MSGNN-DTA [18]]. Although these models offer better interpretability and
physical consistency, they are heavily dependent on high-quality structural inputs, which are not
always available in real-world scenarios [22]. Moreover, structure-aware models typically im-
pose higher computational costs due to the complexity of processing 3D spatial information and
large-scale graph structures. Hybrid models combine the strengths of both paradigms by jointly
leveraging sequence and structural information. Representative methods include GraphDTA [14]],
MGraphDTA [20], ColdDTA [6], and MutualDTA [21]], obatining the balance between performance
and efficiency.

Despite recent advances, existing DTA prediction methods still face several challenges as follows:

* Insufficient feature representation: Drug—target affinity depends on multiple factors such
as conformations, functional groups, and molecular flexibility. However, many GNN-based
models fail to capture these fine-grained structural signals, which limits prediction accuracy
and generalization.

* Limitations in feature fusion: Multi-channel molecular features are often combined via
simple concatenation, static weighting, or globally learnable weights. These strategies
cannot adaptively assign channel importance for each specific drug—protein pair, and may
encounter unstable weight convergence or even yield inferior performance compared to
single-channel representations.

* Lack of interpretability: Many existing models operate as black-box predictors, offering
little biological insight into the determinants of molecular binding, which restricts their
utility in practical drug discovery scenarios.

Therefore, to address these challenges, we propose a novel framework for drug—target affinity
prediction that integrates GNN-based multi-channel molecular representation with structure-aware
protein embedding (Figure [2). On the molecular side, three complementary channels—global
topology, scaffold backbone, and local functional groups—are extracted using a pretrained GNN,
providing a hierarchical description of chemical features. On the protein side, we employ the
pretrained ESM-2 language model to generate structure-aware embeddings that capture contextual
and conformational information. To enable effective interaction between drug and protein features,
we introduce a Cross-Channel Attention mechanism that adaptively balances the contributions of
different molecular channels, thereby enhancing both predictive accuracy and interpretability.

In summary, our main contributions are as follows:
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* We propose a drug—target affinity prediction model that incorporates multi-channel molec-
ular representations, enabling a more comprehensive capture of global, scaffold, and local
chemical features.

* We design a Cross-Channel Attention (CCA) mechanism that adaptively weights molecu-
lar channels against protein embeddings, effectively leveraging complementary information
while mitigating redundancy.

* We conduct extensive experiments, including ablation studies and case analyses, which
demonstrate that the proposed model not only outperforms mainstream baselines but also
yields biologically meaningful interpretability under different binding modes.

2 Methodology

In this section, we introduce the proposed framework for DTA prediction. We first present the overall
architecture of our proposed framework. We then describe the molecular and protein representation
modules in detail, followed by the cross-channel attention mechanism, which enables adaptive
integration of multi-channel molecular features.

2.1 Model Architecture

The proposed framework consists of three main components: a molecular feature extraction module,
a protein feature extraction module, and a cross-channel attention fusion module. Concretely, a
pretrained protein language model is employed to encode protein sequences into structure-aware
embeddings. On the molecular side, we adopt the multi-channel representation scheme introduced in
MoIMCL [17]], where graph neural networks generate three complementary embeddings capturing
global, scaffold, and local features. Building on these representations, our key contribution is the
cross-channel attention module, where protein embeddings serve as guiding signals to dynamically
adjust the importance of different molecular channels. The fused representation is then passed through
a multilayer perceptron to predict drug—target affinity. This design enables effective utilization of
structural information and enhances interpretability, as illustrated in Figure[2]

\ al Prompt.Guided Global Embedding
Ny N GNN Encoder Adareaation | lLScaffold Embedding i
CQ( gres Local Embedding Cross

channel
Attention

Block

Rotary Position
Embedding

Sequnence
Embedding -
pretrained ESM-2

Global Embedding V 8,34
Scaffold Embedding

Local Embedding _M_, K 3K Weight
Attention softmax Wi
Score Wy
Protein Embedding —M—v Q [B, 1,k W

* Note: B = batch size, k = attention hidden dimension

G —| Protein Embedding

Encoder Layer
x48 layers

Mixed Molecule
Embedding

concat ==

Figure 2: Overall framework. Molecular graphs are encoded by a single GNN and, via prompt-guided
aggregation, pooled into three channel embeddings (global, scaffold, local) following MoIMCL [17].
Protein sequences are encoded by pretrained ESM-2 [[L1]. Our key contribution is the Cross-Channel
Attention Block, which uses the protein embedding to compute softmax weights over the three
channels and fuse them for affinity prediction.
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2.2 Molecular Representation

We adopt the MoLMCL framework [17] to construct hierarchical molecular embeddings from three
complementary perspectives: global, scaffold, and local. Concretely, molecular SMILES are first
converted into graphs and encoded by a GNN. Within each channel, a Prompt-Guided Aggregation
module introduces a learnable prompt token to guide attention-based pooling over node features,
producing a channel-specific graph embedding. Through this process, we obtain three embeddings
that correspond to global topology, scaffold backbone, and local functional groups. Each embedding
is channel with a dedicated self-supervised objective to capture multi-level structural information, as
detailed in the following subsections.

Global Channel: Molecule Contrastive Distancing (MCD). The goal is to learn embeddings
that preserve the overall molecular topology. Training for this channel is conducted through triplet
contrastive learning, where each batch constructs {anchor, positive, negative} triplets. The anchor a
is the original molecule, the positive p is generated by applying subgraph masking to a following the
strategy proposed by MolCLR [19], and the negative n is randomly sampled from other molecules in
the batch. To improve sensitivity to structural similarity, an adaptive-margin triplet loss is employed:

Lyep = max (0, amep + d(a, p) — d(a,n)), ey

where d(-, -) denotes the embedding distance between two molecules. The adaptive margin cncp is
defined as:

AMCD = loffset * (1 — SiMTanimoto (FPI(I?(,)N FPE;:Q)) )

where offser 18 @ hyper-parameter controlling the margin scale, Simmpimoto(, ) i the Tanimoto

similarity [2l], and FPT(Y?O)1 and FPIS:))] are molecular fingerprints of the anchor and negative molecules,
respectively.

Sacffold Channel: Scaffold Contrastive Distancing (SCD). This channel focuses on backbone-
level invariance. The anchor a is the original molecule, the positive p is generated by applying
scaffold-invariant perturbations using CReM (an open-source framework for chemically reasonable
mutations), and the negative n is sampled from the batch. A similar adaptive-margin triplet loss is
applied:

Lscp =max (0, ascp + d(a,p) — d(a,n)), (€)
AsCD = offset * (1 — SiMTanimoto (Fpgga)ff, FPg;)ff)) @
where Fchaff and Fcha)ff represent scaffold-level fingerprints of the anchor and negative molecules.

Local Channel: Context Prediction (CP). The local channel enhances context understanding by
jointly modeling subgraph-level structures and functional group descriptors through a multi-task
learning scheme with two objectives:

* Masked subgraph prediction: A random atom and its 1-hop neighbors are masked, and
the model predicts the missing features as a multi-label classification task optimized with
cross-entropy loss:

c
Lomask = — Y _ yilogpi, &)
i=1
where C is the number of classes, p; is the predicted probability for class 4, and y; € {0,1}
is the ground-truth label.

* Functional group prediction: Each molecule is represented by an 86-dimensional normalized
functional group descriptor, and the task is formulated as regression with Smooth L1 loss:

1 0.5 —ya)?,  if |5 —ysl < 1,
d 6
—d Zl {lyz y;| — 0.5, otherwise, (6)

where y; and y; denote the ground-truth and predicted descriptor values of the ¢-th functional
group.



137

138
139
140
141
142
143
144

145

146
147
148
149

150
151
152
153
154
155

156
157

159
160
161

162

164
165
166
167

168
169
170
171

172
173
174
175
176

177

178
179
180
181
182

The total context prediction loss is defined as:

ECP = Lmask + LFG- (7)

Prompt-Guided Aggregation. In each channel, a learnable prompt token guides a multi-head
attention pooling over atom-level features: the prompt serves as the query, while node embeddings act
as keys and values. This prompt-guided pooling enforces channel-wise structural focus and replaces
uniform pooling with selective, structure-aware aggregation. Prompt-Guided Aggregation operates
during channel encoding and is optimized jointly with the corresponding channel objective in the
pretraining stage, yielding a unified yet channel-aware molecular representation for downstream
prediction.

2.3 Protein Representation

We employ the ESM-2 model [[L1]], a state-of-the-art protein language model, to encode protein
sequences into structure-aware embeddings. ESM-2 was pretrained on 98M UniRef50 protein
sequences, covering diverse evolutionary and functional contexts, which enables it to capture rich
contextual and structural information from primary amino acid sequences.

The model adopts a masked language modeling objective: around 15% of residues are randomly
masked or replaced, and the model is trained to recover the original amino acids. This task drives ESM-
2 to learn rich contextual dependencies across residues, capturing long-range sequence relationships.
In addition, embeddings from upper layers of ESM-2 have been shown to align closely with protein
contact map, demonstrating that the model implicitly encodes structural features despite being trained
without explicit 3D supervision.

In our work, we utilize the final-layer embeddings (layer 36) from ESM-2, where residue-level
representations are averaged to form a global protein embedding. These embeddings are particularly
suitable for our multi-channel framework, as they simultaneously encode complementary information
at different levels: global sequence context, structural backbone organization, and local binding-
pocket features. Such hierarchical protein information aligns naturally with the molecule-side
multi-channel design, enabling effective cross-channel attention and more accurate affinity prediction.

2.3.1 Cross-Channel Attention Mechanism(CCA)

In the preliminary design, the fusion of the three molecular channels relied on fixed weights or static
weighted summation. Such approaches lack sensitivity to protein features and cannot dynamically
adapt to different protein—molecule pairs. To address these limitations, we introduce a Cross-Channel
Attention mechanism that enables more flexible and context-aware integration of representations

(Figure2]).

Specifically, the protein embedding is first projected into a query vector Q € REX1%* while the
three molecular channel embeddings are projected into key and value vectors K € RE*3%k and
V € RBx3%k respectively, where B is the batch size and k represents the hidden dimension of the
attention space. The attention scores are then computed using the scaled dot-product attention:

Attention(Q, K, V') = softmax (QKT) \% 8)
T Vi,

where dj, represents the dimensionality of the key vectors, used to scale the dot product and prevent
the attention scores from becoming excessively large. The softmax operation produces dynamic
weights {w1, we, w3} for the three channels, which are used to compute a weighted sum of molecular
embeddings and form the Mixed Molecule Embedding. This fused embedding is subsequently
concatenated with the protein embedding and passed into an MLP predictor for affinity regression.

The CCA mechanism offers several advantages compared to other fusion methods:

» Adaptive and stable fusion: Attention weights are computed dynamically for each protein—
molecule pair, enabling the model to adjust the fusion strategy in a context-specific manner.
Unlike approaches that assign a fixed learnable scalar weight to each channel, which may
lead to unstable or biased convergence, this dynamic weighting ensures more reliable and
consistent training behavior.
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* Context-guided alignment: Protein embeddings guide the computation of fusion weights,
enabling the model to capture dependencies between protein context and molecular structural
levels.

3 Experiments

In this section, we evaluate the effectiveness of our proposed model on the Davis dataset and compare
it with representative baselines. We further conduct ablation studies and case analyses to validate the
contribution of each module and the interpretability of our framework.

3.1 Experimental Setup
Objective. The primary goal of our experiments is to assess the predictive performance of the
proposed model on DTA prediction tasks and benchmark it against state-of-the-art baselines.

Evaluation Metrics. We adopt three widely used regression metrics. Let y; denote the ground-truth
affinity value, g; the predicted value, and N the number of samples.

(1) Mean Squared Error (MSE). MSE evaluates the absolute prediction accuracy by measuring the
average squared difference between predictions and true values:

| N
MSE = NZ(%‘ —9i)% ©
=1

(2) Concordance Index (CI). CI measures the consistency of ranking between predicted and true
affinities. For all comparable pairs (%, j) where y; > y;, Clis defined as:

1 F
Cl=~ Z h(9i — 35) (10)

Yi>Yj

where Z is the total number of such pairs and

1 x>0,
h(z) =405 z=0,
0 z < 0.

(3) Coefficient of Determination (R?). R? assesses the proportion of variance in the ground-truth
values explained by the model:

; Y
where ¥ is the mean of the ground-truth values.

3.2 Dataset

We conduct experiments on the Davis dataset, which is a widely adopted benchmark for DTA
prediction [S]. The dataset consists of 68 kinase inhibitors and 442 protein kinases, resulting in
30,056 interaction pairs with experimentally measured binding affinities (K4 values). These values
are provided in log-transformed form, making them suitable for regression-based modeling. The
Davis dataset is characterized by its large coverage, containing more than 30k compound—protein
pairs, as well as its continuous affinity labels that enable quantitative evaluation.

Split strategy. Following common practice, the dataset is split into 80% training, 10% validation,
and 10% testing, controlled by a fixed random seed to ensure reproducibility.
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Table 1: Performance comparison on the Davis dataset. The best results are in bold.

Model MSE| CIt R2%
KronRLS 0379 0.871 0.407
DeepDTA 0261 0.878 0.630
GraphDTA 0229 0.893 0.670
ColdDTA 0250 0.884 0.652
NTMFF-DTA 0237 0.896 0.684
Ours 0.221 0.884 0.732

3.3 Baselines

We compare our proposed model with six representative baseline methods, covering traditional
kernel-based approaches, early deep learning models, and the latest multi-scale frameworks:

* KronRLS [13]: a classical kernelized regression method that models drug—target pairs via
the Kronecker product of drug kernels and protein kernels. Despite its simplicity, KronRLS
remains a strong traditional baseline due to its efficiency and effectiveness on small-scale
datasets.

* DeepDTA [24]: the first end-to-end deep learning framework for DTA prediction. It
encodes drug SMILES and protein amino acid sequences separately with convolutional
neural networks (CNNs) and learns their joint interactions through fully connected layers.

e GraphDTA [14]: extends DeepDTA by representing drugs as molecular graphs instead of
SMILES strings, thereby capturing richer structural information with graph neural networks
(GNN?). Proteins are still modeled using CNNs over their sequences.

* ColdDTA [6]: designed to address the cold-start problem where unseen drugs or proteins
appear in the test set. It introduces a cold-start aware loss function that forces the model to
generalize better across novel compounds and targets.

* NTMFF-DTA [12]: a recent state-of-the-art model that incorporates neural temporal mem-
ory modules and multi-scale feature fusion. This design enables the model to capture both
local and global dependencies in drug and protein features.

3.4 Implementation Details

Our model is implemented in PyTorch 2.1.2 with CUDA 11.8 and trained on a single NVIDIA
RTX 3090 GPU (24GB). We adopt the Adam optimizer with a cosine learning rate scheduler and
warm-up strategy, and train for up to 100 epochs with early stopping to prevent overfitting.

3.5 Results

We evaluate our model against five representative baselines on the Davis dataset, and the results are
summarized in Table[T} Traditional kernel methods such as KronRLS achieve reasonable performance
but are limited by shallow feature representations. DeepDTA improves substantially by introducing
CNN encoders for SMILES and protein sequences, while GraphDTA further reduces error by
leveraging molecular graph structures. ColdDTA enhances generalization in cold-start scenarios with
specialized loss design, and more recent approaches such as NTMFF-DTA demonstrate the benefits
of incorporating attention mechanisms and multi-scale modeling. Compared with these baselines, our
model achieves the lowest MSE (0.221) and the highest R? (0.732), indicating superior regression
accuracy and stronger explanatory power. Although NTMFF-DTA attains a slightly higher CI, our
approach strikes a better balance between error minimization and predictive stability. These results
highlight the effectiveness of combining hierarchical molecular representations, protein language
embeddings, and cross-channel attention for prediction.

3.6 Ablation Studies

To investigate the contribution of each component in our proposed model to DTA prediction, we
conducted a series of ablation experiments. Specifically, we examined the effect of different molecular
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Table 2: Ablation study results on the Davis dataset.
Model Variant MSE CI R?

Single-channel (CP) 0.238 0.881 0.711
Single-channel (SCD)  0.284 0.868 0.655
Single-channel (MCD) 0.277 0.869 0.664
Mean weight 0.251 0.880 0.695

Full model 0.214 0.886 0.740

channel settings by removing or simplifying the cross-channel fusion mechanism, while keeping the
other parts of the architecture unchanged. The experimental settings follow the same data splitting
strategy as in the main experiments, and all results were obtained with random seed fixed at the same
value for reproducibility.

Regarding the molecular channel representation, we evaluated three reduced configurations: (i)
Single-channel (MCD/SCD/CP), where only one type of molecular representation was preserved
and the other channels were discarded; (ii)) Mean weight, where all three molecular channels were
averaged with equal weights, discarding the dynamic weighting mechanism; and (iii) Full model,
where all channels were fused via cross-channel attention (results provided in Table2)).

As shown in Table 2] the full model achieves the best performance across all metrics, demonstrating
the effectiveness of integrating complementary information from multiple channels with adaptive
attention. In contrast, the single-channel variants exhibited substantial performance degradation,
with the CP-only variant performing relatively better than MCD-only and SCD-only settings. This
result indicates that the CP channel preserves more fine-grained chemical property features that are
directly related to ligand—protein binding, thereby outperforming other single-channel variants. Mean
pooling achieved only moderate results, performing worse than the CP-only variant, since although
it integrates features from all three channels, it fails to adaptively emphasize the most informative
chemical property features and thus cannot fully leverage their complementarity. Overall, these
results verify that both multi-channel representation and cross-channel attention are critical to the
predictive power of the model.

3.6.1 Case Study and Model Interpretability

To further validate the effectiveness of multi-channel fusion and cross-channel attention in practical
tasks, we selected two representative protein—ligand complexes with distinct conformational states of
the Abl tyrosine kinase. The chosen complexes are the Abl tyrosine kinase structures with PDB IDs
3UE4 and 4XEY, which exhibit substantially different ligand binding patterns. The visualization
results are shown in Figure 3] where we analyze how distinct binding patterns influence the attention
weights allocation across molecular channels, demonstrating the interpretability of the model.

Figure[3(a—c) illustrates the complex structure of 3UEA4, originally reported by Levinson and Boxer [9]],
which depicts the Abl kinase domain bound to the ATP-competitive inhibitor bosutinib. Bosutinib
inserts deeply into the conserved ATP-binding pocket, where its rigid backbone forms extensive
hydrophobic contacts with residues such as Leu248A, Phe317A, and Met318A, ensuring a stable
geometric fit within the cavity. The interaction pattern is dominated by scaffold-driven hydrophobic
embedding, while only a limited number of hydrogen bonds (e.g., with Met318A) contribute modestly
to the stabilization of the complex. This binding mode is faithfully captured by our model (Figure [3t),
which assigns high weight to the scaffold channel and minimal weight to the local channel. This
observation highlights the ability of the model to recognize scaffold-driven binding mechanisms and
to adapt its attention toward structural features underpinning ligand affinity.

In contrast, Figure [3(d—f) presents the 4XEY structure, originally reported by Lorenz et al. [13],
which reveals the Abl SH2-kinase domain in complex with dasatinib. Dasatinib binds in a mode
distinct from bosutinib, where local functional groups rather than the rigid scaffold play the dominant
role. The ligand inserts parallel to the protein surface, forming multiple hydrogen bonds with residues
such as Met337A, Thr334A, and Met309A, while also engaging in hydrophobic contacts that provide
additional stabilization. The interaction pattern is thus driven primarily by fine-grained chemical
group recognition, with hydrogen bonds serving as key determinants of binding specificity. This
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Figure 3: Case study of model interpretability on 3UE4 and 4XEY. (a—c) 3UE4 complex: (a) 3D
binding pose, (b) 2D interaction diagram, (c) channel weight distribution. (d—f) 4XEY complex: (d)
3D binding pose, (e) 2D interaction diagram, (f) channel weight distribution.

binding mode is faithfully captured by our model (Figure 3), which assigns dominant weight to the
local channel and only minor contributions to the scaffold and global channels.

Together, these two cases demonstrate the capacity of our model to dynamically adjust attention across
channels depending on the binding mode. In 3UE4, binding is scaffold-dominated and attention
is focused on the scaffold channel, whereas in 4XEY, functional group interactions dominate and
attention shifts to the local channel. This adaptive allocation not only confirms the rationality of
the multi-channel design but also illustrates its structural interpretability. By dynamically allocating
attention across multi-channel molecular representations, the framework provides mechanistic insights
and enhances trustworthiness, addressing the common criticism of deep learning methods for their
limited interpretability.

4 Conclusion

In this work, we presented an attentive multi-channel framework for DTA prediction that integrates
structure-aware protein embeddings with muti-channel molecular representations. By employing
complementary channels for global topology, scaffold backbone, and local functional groups, and
fusing them through a cross-channel attention mechanism, our model effectively captures multi-level
structural and chemical information. Extensive experiments on the Davis dataset demonstrated
that our method outperforms representative baselines, while ablation studies and case analyses
confirmed the importance of both multi-channel representation and adaptive attention for accuracy
and interpretability. Beyond predictive performance, the framework provides mechanistic insights
into distinct binding modes, enhancing the reliability of computational DTA modeling. These findings
suggest that attentive multi-channel learning offers a promising direction for advancing interpretable
and generalizable approaches in computational drug discovery.
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