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Abstract

Accurate drug–target affinity (DTA) prediction is fundamental to computational1

drug discovery. Drug–target binding affinity is influenced by multiple factors,2

including structural conformations, functional groups, and molecular flexibility.3

However, existing graph neural network (GNN)-based approaches often fail to4

explicitly capture these fine-grained features, leading to suboptimal performance5

and limited interpretability. To address these issues, we propose a framework6

that integrates structure-aware protein embeddings with muti-channel molecular7

representations across global, scaffold, and local levels. The key innovation lies in8

a Cross-Channel Attention (CCA) mechanism, which dynamically aligns protein9

features with molecular channels and assigns adaptive weights, thereby selectively10

emphasizing binding-relevant information while reducing redundancy. Experi-11

ments on the Davis dataset demonstrate that our model consistently outperforms12

strong baseline methods. Beyond performance improvements, the cross-channel13

attention mechanism also enhances interpretability by highlighting structural and14

chemical determinants of binding. Overall, this work establishes cross-channel15

attention as an effective and interpretable paradigm for advancing DTA prediction.16

1 Introduction17

Drug–target affinity (DTA) is a crucial task in drug design and development, playing a vital role in18

drug discovery, candidate screening, and dosage optimization. Traditional experimental approaches19

such as high-throughput screening (HTS) and surface plasmon resonance (SPR) provide accurate20

measurements but suffer from high cost, low throughput, and long processing time, making them21

insufficient for modern large-scale drug development [8]. In recent years, deep learning has emerged22

as a powerful tool, showing strong ability to model large-scale biomedical data and significantly23

accelerating progress in DTA prediction.24

In DTA modeling, the representation of compounds and proteins is a crucial factor affecting model25

performance. Generally, three mainstream strategies are adopted: one-dimensional sequence repre-26

sentation (1D), two-dimensional structural graphs (2D), and three-dimensional spatial structures (3D)27

(Figure 1). At the 1D level, compounds are usually represented by SMILES strings or molecular28

fingerprints, while proteins are expressed as amino acid sequences encoded through descriptors such29

as k-mer or PSSM [3]. At the 2D level, compounds are modeled as molecular graphs and proteins as30

contact maps, capturing topological and spatial dependencies[7]. At the 3D level, with advances such31

as AlphaFold2, structural conformations and drug–target complexes can be modeled as point clouds,32

voxel grids, or atom-level graphs to better capture realistic molecular interactions [16].33

Previous studies have proposed a variety of deep learning-based methods for DTA prediction, which34

can be broadly divided into three categories: sequence-based models, structure-based models, and35

hybrid-based models [22]. Sequence-driven models usually rely on SMILES strings for compounds36
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Figure 1: Illustration of compound and protein representations in DTA modeling.

and amino acid sequences for proteins, and employ CNNs, RNNs, or Transformer-based architec-37

tures for feature extraction. Representative examples include DeepDTA [24], DeepCDA [1], and38

AttentionDTA [23], which achieve strong baseline performance but fail to capture spatial structural39

information. Structure-aware models leverage molecular graphs, protein contact maps, or 3D com-40

plex structures to incorporate spatial dependencies. Notable approaches include GSAML-DTA [10],41

HGRL-DTA [4], and MSGNN-DTA [18]. Although these models offer better interpretability and42

physical consistency, they are heavily dependent on high-quality structural inputs, which are not43

always available in real-world scenarios [22]. Moreover, structure-aware models typically im-44

pose higher computational costs due to the complexity of processing 3D spatial information and45

large-scale graph structures. Hybrid models combine the strengths of both paradigms by jointly46

leveraging sequence and structural information. Representative methods include GraphDTA [14],47

MGraphDTA [20], ColdDTA [6], and MutualDTA [21], obatining the balance between performance48

and efficiency.49

Despite recent advances, existing DTA prediction methods still face several challenges as follows:50

• Insufficient feature representation: Drug–target affinity depends on multiple factors such51

as conformations, functional groups, and molecular flexibility. However, many GNN-based52

models fail to capture these fine-grained structural signals, which limits prediction accuracy53

and generalization.54

• Limitations in feature fusion: Multi-channel molecular features are often combined via55

simple concatenation, static weighting, or globally learnable weights. These strategies56

cannot adaptively assign channel importance for each specific drug–protein pair, and may57

encounter unstable weight convergence or even yield inferior performance compared to58

single-channel representations.59

• Lack of interpretability: Many existing models operate as black-box predictors, offering60

little biological insight into the determinants of molecular binding, which restricts their61

utility in practical drug discovery scenarios.62

Therefore, to address these challenges, we propose a novel framework for drug–target affinity63

prediction that integrates GNN-based multi-channel molecular representation with structure-aware64

protein embedding (Figure 2). On the molecular side, three complementary channels—global65

topology, scaffold backbone, and local functional groups—are extracted using a pretrained GNN,66

providing a hierarchical description of chemical features. On the protein side, we employ the67

pretrained ESM-2 language model to generate structure-aware embeddings that capture contextual68

and conformational information. To enable effective interaction between drug and protein features,69

we introduce a Cross-Channel Attention mechanism that adaptively balances the contributions of70

different molecular channels, thereby enhancing both predictive accuracy and interpretability.71

In summary, our main contributions are as follows:72
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• We propose a drug–target affinity prediction model that incorporates multi-channel molec-73

ular representations, enabling a more comprehensive capture of global, scaffold, and local74

chemical features.75

• We design a Cross-Channel Attention (CCA) mechanism that adaptively weights molecu-76

lar channels against protein embeddings, effectively leveraging complementary information77

while mitigating redundancy.78

• We conduct extensive experiments, including ablation studies and case analyses, which79

demonstrate that the proposed model not only outperforms mainstream baselines but also80

yields biologically meaningful interpretability under different binding modes.81

2 Methodology82

In this section, we introduce the proposed framework for DTA prediction. We first present the overall83

architecture of our proposed framework. We then describe the molecular and protein representation84

modules in detail, followed by the cross-channel attention mechanism, which enables adaptive85

integration of multi-channel molecular features.86

2.1 Model Architecture87

The proposed framework consists of three main components: a molecular feature extraction module,88

a protein feature extraction module, and a cross-channel attention fusion module. Concretely, a89

pretrained protein language model is employed to encode protein sequences into structure-aware90

embeddings. On the molecular side, we adopt the multi-channel representation scheme introduced in91

MolMCL [17], where graph neural networks generate three complementary embeddings capturing92

global, scaffold, and local features. Building on these representations, our key contribution is the93

cross-channel attention module, where protein embeddings serve as guiding signals to dynamically94

adjust the importance of different molecular channels. The fused representation is then passed through95

a multilayer perceptron to predict drug–target affinity. This design enables effective utilization of96

structural information and enhances interpretability, as illustrated in Figure 2.97

Figure 2: Overall framework. Molecular graphs are encoded by a single GNN and, via prompt-guided
aggregation, pooled into three channel embeddings (global, scaffold, local) following MolMCL [17].
Protein sequences are encoded by pretrained ESM-2 [11]. Our key contribution is the Cross-Channel
Attention Block, which uses the protein embedding to compute softmax weights over the three
channels and fuse them for affinity prediction.
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2.2 Molecular Representation98

We adopt the MoLMCL framework [17] to construct hierarchical molecular embeddings from three99

complementary perspectives: global, scaffold, and local. Concretely, molecular SMILES are first100

converted into graphs and encoded by a GNN. Within each channel, a Prompt-Guided Aggregation101

module introduces a learnable prompt token to guide attention-based pooling over node features,102

producing a channel-specific graph embedding. Through this process, we obtain three embeddings103

that correspond to global topology, scaffold backbone, and local functional groups. Each embedding104

is channel with a dedicated self-supervised objective to capture multi-level structural information, as105

detailed in the following subsections.106

Global Channel: Molecule Contrastive Distancing (MCD). The goal is to learn embeddings107

that preserve the overall molecular topology. Training for this channel is conducted through triplet108

contrastive learning, where each batch constructs {anchor, positive, negative} triplets. The anchor a109

is the original molecule, the positive p is generated by applying subgraph masking to a following the110

strategy proposed by MolCLR [19], and the negative n is randomly sampled from other molecules in111

the batch. To improve sensitivity to structural similarity, an adaptive-margin triplet loss is employed:112

LMCD = max (0, αMCD + d(a, p)− d(a, n)) , (1)

where d(·, ·) denotes the embedding distance between two molecules. The adaptive margin αMCD is113

defined as:114

αMCD = αoffset ·
(
1− simTanimoto

(
FP(a)

mol, FP(n)
mol

))
, (2)

where αoffset is a hyper-parameter controlling the margin scale, simTanimoto(·, ·) is the Tanimoto115

similarity [2], and FP(a)
mol and FP(n)

mol are molecular fingerprints of the anchor and negative molecules,116

respectively.117

Sacffold Channel: Scaffold Contrastive Distancing (SCD). This channel focuses on backbone-118

level invariance. The anchor a is the original molecule, the positive p is generated by applying119

scaffold-invariant perturbations using CReM (an open-source framework for chemically reasonable120

mutations), and the negative n is sampled from the batch. A similar adaptive-margin triplet loss is121

applied:122

LSCD = max (0, αSCD + d(a, p)− d(a, n)) , (3)
123

αSCD = αoffset ·
(
1− simTanimoto

(
FP(a)

scaff, FP(n)
scaff

))
, (4)

where FP(a)
scaff and FP(n)

scaff represent scaffold-level fingerprints of the anchor and negative molecules.124

Local Channel: Context Prediction (CP). The local channel enhances context understanding by125

jointly modeling subgraph-level structures and functional group descriptors through a multi-task126

learning scheme with two objectives:127

• Masked subgraph prediction: A random atom and its 1-hop neighbors are masked, and128

the model predicts the missing features as a multi-label classification task optimized with129

cross-entropy loss:130

Lmask = −
C∑
i=1

yi log pi, (5)

where C is the number of classes, pi is the predicted probability for class i, and yi ∈ {0, 1}131

is the ground-truth label.132

• Functional group prediction: Each molecule is represented by an 86-dimensional normalized133

functional group descriptor, and the task is formulated as regression with Smooth L1 loss:134

LFG =
1

d

d∑
i=1

{
0.5(ŷi − yi)

2, if |ŷi − yi| < 1,

|ŷi − yi| − 0.5, otherwise,
(6)

where yi and ŷi denote the ground-truth and predicted descriptor values of the i-th functional135

group.136
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The total context prediction loss is defined as:137

LCP = Lmask + LFG. (7)

Prompt-Guided Aggregation. In each channel, a learnable prompt token guides a multi-head138

attention pooling over atom-level features: the prompt serves as the query, while node embeddings act139

as keys and values. This prompt-guided pooling enforces channel-wise structural focus and replaces140

uniform pooling with selective, structure-aware aggregation. Prompt-Guided Aggregation operates141

during channel encoding and is optimized jointly with the corresponding channel objective in the142

pretraining stage, yielding a unified yet channel-aware molecular representation for downstream143

prediction.144

2.3 Protein Representation145

We employ the ESM-2 model [11], a state-of-the-art protein language model, to encode protein146

sequences into structure-aware embeddings. ESM-2 was pretrained on 98M UniRef50 protein147

sequences, covering diverse evolutionary and functional contexts, which enables it to capture rich148

contextual and structural information from primary amino acid sequences.149

The model adopts a masked language modeling objective: around 15% of residues are randomly150

masked or replaced, and the model is trained to recover the original amino acids. This task drives ESM-151

2 to learn rich contextual dependencies across residues, capturing long-range sequence relationships.152

In addition, embeddings from upper layers of ESM-2 have been shown to align closely with protein153

contact map, demonstrating that the model implicitly encodes structural features despite being trained154

without explicit 3D supervision.155

In our work, we utilize the final-layer embeddings (layer 36) from ESM-2, where residue-level156

representations are averaged to form a global protein embedding. These embeddings are particularly157

suitable for our multi-channel framework, as they simultaneously encode complementary information158

at different levels: global sequence context, structural backbone organization, and local binding-159

pocket features. Such hierarchical protein information aligns naturally with the molecule-side160

multi-channel design, enabling effective cross-channel attention and more accurate affinity prediction.161

2.3.1 Cross-Channel Attention Mechanism(CCA)162

In the preliminary design, the fusion of the three molecular channels relied on fixed weights or static163

weighted summation. Such approaches lack sensitivity to protein features and cannot dynamically164

adapt to different protein–molecule pairs. To address these limitations, we introduce a Cross-Channel165

Attention mechanism that enables more flexible and context-aware integration of representations166

(Figure 2 ).167

Specifically, the protein embedding is first projected into a query vector Q ∈ RB×1×k, while the168

three molecular channel embeddings are projected into key and value vectors K ∈ RB×3×k and169

V ∈ RB×3×k, respectively, where B is the batch size and k represents the hidden dimension of the170

attention space. The attention scores are then computed using the scaled dot-product attention:171

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (8)

where dk represents the dimensionality of the key vectors, used to scale the dot product and prevent172

the attention scores from becoming excessively large. The softmax operation produces dynamic173

weights {w1, w2, w3} for the three channels, which are used to compute a weighted sum of molecular174

embeddings and form the Mixed Molecule Embedding. This fused embedding is subsequently175

concatenated with the protein embedding and passed into an MLP predictor for affinity regression.176

The CCA mechanism offers several advantages compared to other fusion methods:177

• Adaptive and stable fusion: Attention weights are computed dynamically for each protein–178

molecule pair, enabling the model to adjust the fusion strategy in a context-specific manner.179

Unlike approaches that assign a fixed learnable scalar weight to each channel, which may180

lead to unstable or biased convergence, this dynamic weighting ensures more reliable and181

consistent training behavior.182
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• Context-guided alignment: Protein embeddings guide the computation of fusion weights,183

enabling the model to capture dependencies between protein context and molecular structural184

levels.185

3 Experiments186

In this section, we evaluate the effectiveness of our proposed model on the Davis dataset and compare187

it with representative baselines. We further conduct ablation studies and case analyses to validate the188

contribution of each module and the interpretability of our framework.189

3.1 Experimental Setup190

Objective. The primary goal of our experiments is to assess the predictive performance of the191

proposed model on DTA prediction tasks and benchmark it against state-of-the-art baselines.192

Evaluation Metrics. We adopt three widely used regression metrics. Let yi denote the ground-truth193

affinity value, ŷi the predicted value, and N the number of samples.194

(1) Mean Squared Error (MSE). MSE evaluates the absolute prediction accuracy by measuring the195

average squared difference between predictions and true values:196

MSE =
1

N

N∑
i=1

(yi − ŷi)
2. (9)

(2) Concordance Index (CI). CI measures the consistency of ranking between predicted and true197

affinities. For all comparable pairs (i, j) where yi > yj , CI is defined as:198

CI =
1

Z

∑
yi>yj

h(ŷi − ŷj), (10)

where Z is the total number of such pairs and199

h(x) =


1 x > 0,

0.5 x = 0,

0 x < 0.

(3) Coefficient of Determination (R2). R2 assesses the proportion of variance in the ground-truth200

values explained by the model:201

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
, (11)

where ȳ is the mean of the ground-truth values.202

3.2 Dataset203

We conduct experiments on the Davis dataset, which is a widely adopted benchmark for DTA204

prediction [5]. The dataset consists of 68 kinase inhibitors and 442 protein kinases, resulting in205

30,056 interaction pairs with experimentally measured binding affinities (Kd values). These values206

are provided in log-transformed form, making them suitable for regression-based modeling. The207

Davis dataset is characterized by its large coverage, containing more than 30k compound–protein208

pairs, as well as its continuous affinity labels that enable quantitative evaluation.209

Split strategy. Following common practice, the dataset is split into 80% training, 10% validation,210

and 10% testing, controlled by a fixed random seed to ensure reproducibility.211
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Table 1: Performance comparison on the Davis dataset. The best results are in bold.

Model MSE ↓ CI ↑ R2 ↑
KronRLS 0.379 0.871 0.407
DeepDTA 0.261 0.878 0.630
GraphDTA 0.229 0.893 0.670
ColdDTA 0.250 0.884 0.652
NTMFF-DTA 0.237 0.896 0.684
Ours 0.221 0.884 0.732

3.3 Baselines212

We compare our proposed model with six representative baseline methods, covering traditional213

kernel-based approaches, early deep learning models, and the latest multi-scale frameworks:214

• KronRLS [15]: a classical kernelized regression method that models drug–target pairs via215

the Kronecker product of drug kernels and protein kernels. Despite its simplicity, KronRLS216

remains a strong traditional baseline due to its efficiency and effectiveness on small-scale217

datasets.218

• DeepDTA [24]: the first end-to-end deep learning framework for DTA prediction. It219

encodes drug SMILES and protein amino acid sequences separately with convolutional220

neural networks (CNNs) and learns their joint interactions through fully connected layers.221

• GraphDTA [14]: extends DeepDTA by representing drugs as molecular graphs instead of222

SMILES strings, thereby capturing richer structural information with graph neural networks223

(GNNs). Proteins are still modeled using CNNs over their sequences.224

• ColdDTA [6]: designed to address the cold-start problem where unseen drugs or proteins225

appear in the test set. It introduces a cold-start aware loss function that forces the model to226

generalize better across novel compounds and targets.227

• NTMFF-DTA [12]: a recent state-of-the-art model that incorporates neural temporal mem-228

ory modules and multi-scale feature fusion. This design enables the model to capture both229

local and global dependencies in drug and protein features.230

3.4 Implementation Details231

Our model is implemented in PyTorch 2.1.2 with CUDA 11.8 and trained on a single NVIDIA232

RTX 3090 GPU (24GB). We adopt the Adam optimizer with a cosine learning rate scheduler and233

warm-up strategy, and train for up to 100 epochs with early stopping to prevent overfitting.234

3.5 Results235

We evaluate our model against five representative baselines on the Davis dataset, and the results are236

summarized in Table 1. Traditional kernel methods such as KronRLS achieve reasonable performance237

but are limited by shallow feature representations. DeepDTA improves substantially by introducing238

CNN encoders for SMILES and protein sequences, while GraphDTA further reduces error by239

leveraging molecular graph structures. ColdDTA enhances generalization in cold-start scenarios with240

specialized loss design, and more recent approaches such as NTMFF-DTA demonstrate the benefits241

of incorporating attention mechanisms and multi-scale modeling. Compared with these baselines, our242

model achieves the lowest MSE (0.221) and the highest R2 (0.732), indicating superior regression243

accuracy and stronger explanatory power. Although NTMFF-DTA attains a slightly higher CI, our244

approach strikes a better balance between error minimization and predictive stability. These results245

highlight the effectiveness of combining hierarchical molecular representations, protein language246

embeddings, and cross-channel attention for prediction.247

3.6 Ablation Studies248

To investigate the contribution of each component in our proposed model to DTA prediction, we249

conducted a series of ablation experiments. Specifically, we examined the effect of different molecular250
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Table 2: Ablation study results on the Davis dataset.

Model Variant MSE CI R2

Single-channel (CP) 0.238 0.881 0.711
Single-channel (SCD) 0.284 0.868 0.655
Single-channel (MCD) 0.277 0.869 0.664
Mean weight 0.251 0.880 0.695

Full model 0.214 0.886 0.740

channel settings by removing or simplifying the cross-channel fusion mechanism, while keeping the251

other parts of the architecture unchanged. The experimental settings follow the same data splitting252

strategy as in the main experiments, and all results were obtained with random seed fixed at the same253

value for reproducibility.254

Regarding the molecular channel representation, we evaluated three reduced configurations: (i)255

Single-channel (MCD/SCD/CP), where only one type of molecular representation was preserved256

and the other channels were discarded; (ii) Mean weight, where all three molecular channels were257

averaged with equal weights, discarding the dynamic weighting mechanism; and (iii) Full model,258

where all channels were fused via cross-channel attention (results provided in Table 2).259

As shown in Table 2, the full model achieves the best performance across all metrics, demonstrating260

the effectiveness of integrating complementary information from multiple channels with adaptive261

attention. In contrast, the single-channel variants exhibited substantial performance degradation,262

with the CP-only variant performing relatively better than MCD-only and SCD-only settings. This263

result indicates that the CP channel preserves more fine-grained chemical property features that are264

directly related to ligand–protein binding, thereby outperforming other single-channel variants. Mean265

pooling achieved only moderate results, performing worse than the CP-only variant, since although266

it integrates features from all three channels, it fails to adaptively emphasize the most informative267

chemical property features and thus cannot fully leverage their complementarity. Overall, these268

results verify that both multi-channel representation and cross-channel attention are critical to the269

predictive power of the model.270

3.6.1 Case Study and Model Interpretability271

To further validate the effectiveness of multi-channel fusion and cross-channel attention in practical272

tasks, we selected two representative protein–ligand complexes with distinct conformational states of273

the Abl tyrosine kinase. The chosen complexes are the Abl tyrosine kinase structures with PDB IDs274

3UE4 and 4XEY, which exhibit substantially different ligand binding patterns. The visualization275

results are shown in Figure 3, where we analyze how distinct binding patterns influence the attention276

weights allocation across molecular channels, demonstrating the interpretability of the model.277

Figure 3(a–c) illustrates the complex structure of 3UE4, originally reported by Levinson and Boxer [9],278

which depicts the Abl kinase domain bound to the ATP-competitive inhibitor bosutinib. Bosutinib279

inserts deeply into the conserved ATP-binding pocket, where its rigid backbone forms extensive280

hydrophobic contacts with residues such as Leu248A, Phe317A, and Met318A, ensuring a stable281

geometric fit within the cavity. The interaction pattern is dominated by scaffold-driven hydrophobic282

embedding, while only a limited number of hydrogen bonds (e.g., with Met318A) contribute modestly283

to the stabilization of the complex. This binding mode is faithfully captured by our model (Figure 3c),284

which assigns high weight to the scaffold channel and minimal weight to the local channel. This285

observation highlights the ability of the model to recognize scaffold-driven binding mechanisms and286

to adapt its attention toward structural features underpinning ligand affinity.287

In contrast, Figure 3(d–f) presents the 4XEY structure, originally reported by Lorenz et al. [13],288

which reveals the Abl SH2-kinase domain in complex with dasatinib. Dasatinib binds in a mode289

distinct from bosutinib, where local functional groups rather than the rigid scaffold play the dominant290

role. The ligand inserts parallel to the protein surface, forming multiple hydrogen bonds with residues291

such as Met337A, Thr334A, and Met309A, while also engaging in hydrophobic contacts that provide292

additional stabilization. The interaction pattern is thus driven primarily by fine-grained chemical293

group recognition, with hydrogen bonds serving as key determinants of binding specificity. This294
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Figure 3: Case study of model interpretability on 3UE4 and 4XEY. (a–c) 3UE4 complex: (a) 3D
binding pose, (b) 2D interaction diagram, (c) channel weight distribution. (d–f) 4XEY complex: (d)
3D binding pose, (e) 2D interaction diagram, (f) channel weight distribution.

binding mode is faithfully captured by our model (Figure 3f), which assigns dominant weight to the295

local channel and only minor contributions to the scaffold and global channels.296

Together, these two cases demonstrate the capacity of our model to dynamically adjust attention across297

channels depending on the binding mode. In 3UE4, binding is scaffold-dominated and attention298

is focused on the scaffold channel, whereas in 4XEY, functional group interactions dominate and299

attention shifts to the local channel. This adaptive allocation not only confirms the rationality of300

the multi-channel design but also illustrates its structural interpretability. By dynamically allocating301

attention across multi-channel molecular representations, the framework provides mechanistic insights302

and enhances trustworthiness, addressing the common criticism of deep learning methods for their303

limited interpretability.304

4 Conclusion305

In this work, we presented an attentive multi-channel framework for DTA prediction that integrates306

structure-aware protein embeddings with muti-channel molecular representations. By employing307

complementary channels for global topology, scaffold backbone, and local functional groups, and308

fusing them through a cross-channel attention mechanism, our model effectively captures multi-level309

structural and chemical information. Extensive experiments on the Davis dataset demonstrated310

that our method outperforms representative baselines, while ablation studies and case analyses311

confirmed the importance of both multi-channel representation and adaptive attention for accuracy312

and interpretability. Beyond predictive performance, the framework provides mechanistic insights313

into distinct binding modes, enhancing the reliability of computational DTA modeling. These findings314

suggest that attentive multi-channel learning offers a promising direction for advancing interpretable315

and generalizable approaches in computational drug discovery.316
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